1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
|
.. _type-narrowing:
Type narrowing
==============
This section is dedicated to several type narrowing
techniques which are supported by mypy.
Type narrowing is when you convince a type checker that a broader type is actually more specific, for instance, that an object of type ``Shape`` is actually of the narrower type ``Square``.
The following type narrowing techniques are available:
- :ref:`type-narrowing-expressions`
- :ref:`casts`
- :ref:`type-guards`
- :ref:`typeis`
.. _type-narrowing-expressions:
Type narrowing expressions
--------------------------
The simplest way to narrow a type is to use one of the supported expressions:
- :py:func:`isinstance` like in :code:`isinstance(obj, float)` will narrow ``obj`` to have ``float`` type
- :py:func:`issubclass` like in :code:`issubclass(cls, MyClass)` will narrow ``cls`` to be ``Type[MyClass]``
- :py:class:`type` like in :code:`type(obj) is int` will narrow ``obj`` to have ``int`` type
- :py:func:`callable` like in :code:`callable(obj)` will narrow object to callable type
- :code:`obj is not None` will narrow object to its :ref:`non-optional form <strict_optional>`
Type narrowing is contextual. For example, based on the condition, mypy will narrow an expression only within an ``if`` branch:
.. code-block:: python
def function(arg: object):
if isinstance(arg, int):
# Type is narrowed within the ``if`` branch only
reveal_type(arg) # Revealed type: "builtins.int"
elif isinstance(arg, str) or isinstance(arg, bool):
# Type is narrowed differently within this ``elif`` branch:
reveal_type(arg) # Revealed type: "builtins.str | builtins.bool"
# Subsequent narrowing operations will narrow the type further
if isinstance(arg, bool):
reveal_type(arg) # Revealed type: "builtins.bool"
# Back outside of the ``if`` statement, the type isn't narrowed:
reveal_type(arg) # Revealed type: "builtins.object"
Mypy understands the implications ``return`` or exception raising can have
for what type an object could be:
.. code-block:: python
def function(arg: int | str):
if isinstance(arg, int):
return
# `arg` can't be `int` at this point:
reveal_type(arg) # Revealed type: "builtins.str"
We can also use ``assert`` to narrow types in the same context:
.. code-block:: python
def function(arg: Any):
assert isinstance(arg, int)
reveal_type(arg) # Revealed type: "builtins.int"
.. note::
With :option:`--warn-unreachable <mypy --warn-unreachable>`
narrowing types to some impossible state will be treated as an error.
.. code-block:: python
def function(arg: int):
# error: Subclass of "int" and "str" cannot exist:
# would have incompatible method signatures
assert isinstance(arg, str)
# error: Statement is unreachable
print("so mypy concludes the assert will always trigger")
Without ``--warn-unreachable`` mypy will simply not check code it deems to be
unreachable. See :ref:`unreachable` for more information.
.. code-block:: python
x: int = 1
assert isinstance(x, str)
reveal_type(x) # Revealed type is "builtins.int"
print(x + '!') # Typechecks with `mypy`, but fails in runtime.
issubclass
~~~~~~~~~~
Mypy can also use :py:func:`issubclass`
for better type inference when working with types and metaclasses:
.. code-block:: python
class MyCalcMeta(type):
@classmethod
def calc(cls) -> int:
...
def f(o: object) -> None:
t = type(o) # We must use a variable here
reveal_type(t) # Revealed type is "builtins.type"
if issubclass(t, MyCalcMeta): # `issubclass(type(o), MyCalcMeta)` won't work
reveal_type(t) # Revealed type is "Type[MyCalcMeta]"
t.calc() # Okay
callable
~~~~~~~~
Mypy knows what types are callable and which ones are not during type checking.
So, we know what ``callable()`` will return. For example:
.. code-block:: python
from collections.abc import Callable
x: Callable[[], int]
if callable(x):
reveal_type(x) # N: Revealed type is "def () -> builtins.int"
else:
... # Will never be executed and will raise error with `--warn-unreachable`
The ``callable`` function can even split union types into
callable and non-callable parts:
.. code-block:: python
from collections.abc import Callable
x: int | Callable[[], int]
if callable(x):
reveal_type(x) # N: Revealed type is "def () -> builtins.int"
else:
reveal_type(x) # N: Revealed type is "builtins.int"
.. _casts:
Casts
-----
Mypy supports type casts that are usually used to coerce a statically
typed value to a subtype. Unlike languages such as Java or C#,
however, mypy casts are only used as hints for the type checker, and they
don't perform a runtime type check. Use the function :py:func:`~typing.cast`
to perform a cast:
.. code-block:: python
from typing import cast
o: object = [1]
x = cast(list[int], o) # OK
y = cast(list[str], o) # OK (cast performs no actual runtime check)
To support runtime checking of casts such as the above, we'd have to check
the types of all list items, which would be very inefficient for large lists.
Casts are used to silence spurious
type checker warnings and give the type checker a little help when it can't
quite understand what is going on.
.. note::
You can use an assertion if you want to perform an actual runtime check:
.. code-block:: python
def foo(o: object) -> None:
print(o + 5) # Error: can't add 'object' and 'int'
assert isinstance(o, int)
print(o + 5) # OK: type of 'o' is 'int' here
You don't need a cast for expressions with type ``Any``, or when
assigning to a variable with type ``Any``, as was explained earlier.
You can also use ``Any`` as the cast target type -- this lets you perform
any operations on the result. For example:
.. code-block:: python
from typing import cast, Any
x = 1
x.whatever() # Type check error
y = cast(Any, x)
y.whatever() # Type check OK (runtime error)
.. _type-guards:
User-Defined Type Guards
------------------------
Mypy supports User-Defined Type Guards (:pep:`647`).
A type guard is a way for programs to influence conditional
type narrowing employed by a type checker based on runtime checks.
Basically, a ``TypeGuard`` is a "smart" alias for a ``bool`` type.
Let's have a look at the regular ``bool`` example:
.. code-block:: python
def is_str_list(val: list[object]) -> bool:
"""Determines whether all objects in the list are strings"""
return all(isinstance(x, str) for x in val)
def func1(val: list[object]) -> None:
if is_str_list(val):
reveal_type(val) # Reveals list[object]
print(" ".join(val)) # Error: incompatible type
The same example with ``TypeGuard``:
.. code-block:: python
from typing import TypeGuard # use `typing_extensions` for Python 3.9 and below
def is_str_list(val: list[object]) -> TypeGuard[list[str]]:
"""Determines whether all objects in the list are strings"""
return all(isinstance(x, str) for x in val)
def func1(val: list[object]) -> None:
if is_str_list(val):
reveal_type(val) # list[str]
print(" ".join(val)) # ok
How does it work? ``TypeGuard`` narrows the first function argument (``val``)
to the type specified as the first type parameter (``list[str]``).
.. note::
Narrowing is
`not strict <https://www.python.org/dev/peps/pep-0647/#enforcing-strict-narrowing>`_.
For example, you can narrow ``str`` to ``int``:
.. code-block:: python
def f(value: str) -> TypeGuard[int]:
return True
Note: since strict narrowing is not enforced, it's easy
to break type safety.
However, there are many ways a determined or uninformed developer can
subvert type safety -- most commonly by using cast or Any.
If a Python developer takes the time to learn about and implement
user-defined type guards within their code,
it is safe to assume that they are interested in type safety
and will not write their type guard functions in a way
that will undermine type safety or produce nonsensical results.
Generic TypeGuards
~~~~~~~~~~~~~~~~~~
``TypeGuard`` can also work with generic types (Python 3.12 syntax):
.. code-block:: python
from typing import TypeGuard # use `typing_extensions` for `python<3.10`
def is_two_element_tuple[T](val: tuple[T, ...]) -> TypeGuard[tuple[T, T]]:
return len(val) == 2
def func(names: tuple[str, ...]):
if is_two_element_tuple(names):
reveal_type(names) # tuple[str, str]
else:
reveal_type(names) # tuple[str, ...]
TypeGuards with parameters
~~~~~~~~~~~~~~~~~~~~~~~~~~
Type guard functions can accept extra arguments (Python 3.12 syntax):
.. code-block:: python
from typing import TypeGuard # use `typing_extensions` for `python<3.10`
def is_set_of[T](val: set[Any], type: type[T]) -> TypeGuard[set[T]]:
return all(isinstance(x, type) for x in val)
items: set[Any]
if is_set_of(items, str):
reveal_type(items) # set[str]
TypeGuards as methods
~~~~~~~~~~~~~~~~~~~~~
A method can also serve as a ``TypeGuard``:
.. code-block:: python
class StrValidator:
def is_valid(self, instance: object) -> TypeGuard[str]:
return isinstance(instance, str)
def func(to_validate: object) -> None:
if StrValidator().is_valid(to_validate):
reveal_type(to_validate) # Revealed type is "builtins.str"
.. note::
Note, that ``TypeGuard``
`does not narrow <https://www.python.org/dev/peps/pep-0647/#narrowing-of-implicit-self-and-cls-parameters>`_
types of ``self`` or ``cls`` implicit arguments.
If narrowing of ``self`` or ``cls`` is required,
the value can be passed as an explicit argument to a type guard function:
.. code-block:: python
class Parent:
def method(self) -> None:
reveal_type(self) # Revealed type is "Parent"
if is_child(self):
reveal_type(self) # Revealed type is "Child"
class Child(Parent):
...
def is_child(instance: Parent) -> TypeGuard[Child]:
return isinstance(instance, Child)
Assignment expressions as TypeGuards
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Sometimes you might need to create a new variable and narrow it
to some specific type at the same time.
This can be achieved by using ``TypeGuard`` together
with `:= operator <https://docs.python.org/3/whatsnew/3.8.html#assignment-expressions>`_.
.. code-block:: python
from typing import TypeGuard # use `typing_extensions` for `python<3.10`
def is_float(a: object) -> TypeGuard[float]:
return isinstance(a, float)
def main(a: object) -> None:
if is_float(x := a):
reveal_type(x) # N: Revealed type is 'builtins.float'
reveal_type(a) # N: Revealed type is 'builtins.object'
reveal_type(x) # N: Revealed type is 'builtins.object'
reveal_type(a) # N: Revealed type is 'builtins.object'
What happens here?
1. We create a new variable ``x`` and assign a value of ``a`` to it
2. We run ``is_float()`` type guard on ``x``
3. It narrows ``x`` to be ``float`` in the ``if`` context and does not touch ``a``
.. note::
The same will work with ``isinstance(x := a, float)`` as well.
.. _typeis:
TypeIs
------
Mypy supports TypeIs (:pep:`742`).
A `TypeIs narrowing function <https://typing.readthedocs.io/en/latest/spec/narrowing.html#typeis>`_
allows you to define custom type checks that can narrow the type of a variable
in `both the if and else <https://docs.python.org/3.13/library/typing.html#typing.TypeIs>`_
branches of a conditional, similar to how the built-in isinstance() function works.
TypeIs is new in Python 3.13 — for use in older Python versions, use the backport
from `typing_extensions <https://typing-extensions.readthedocs.io/en/latest/>`_
Consider the following example using TypeIs:
.. code-block:: python
from typing import TypeIs
def is_str(x: object) -> TypeIs[str]:
return isinstance(x, str)
def process(x: int | str) -> None:
if is_str(x):
reveal_type(x) # Revealed type is 'str'
print(x.upper()) # Valid: x is str
else:
reveal_type(x) # Revealed type is 'int'
print(x + 1) # Valid: x is int
In this example, the function is_str is a type narrowing function
that returns TypeIs[str]. When used in an if statement, x is narrowed
to str in the if branch and to int in the else branch.
Key points:
- The function must accept at least one positional argument.
- The return type is annotated as ``TypeIs[T]``, where ``T`` is the type you
want to narrow to.
- The function must return a ``bool`` value.
- In the ``if`` branch (when the function returns ``True``), the type of the
argument is narrowed to the intersection of its original type and ``T``.
- In the ``else`` branch (when the function returns ``False``), the type of
the argument is narrowed to the intersection of its original type and the
complement of ``T``.
TypeIs vs TypeGuard
~~~~~~~~~~~~~~~~~~~
While both TypeIs and TypeGuard allow you to define custom type narrowing
functions, they differ in important ways:
- **Type narrowing behavior**: TypeIs narrows the type in both the if and else branches,
whereas TypeGuard narrows only in the if branch.
- **Compatibility requirement**: TypeIs requires that the narrowed type T be
compatible with the input type of the function. TypeGuard does not have this restriction.
- **Type inference**: With TypeIs, the type checker may infer a more precise type by
combining existing type information with T.
Here's an example demonstrating the behavior with TypeGuard:
.. code-block:: python
from typing import TypeGuard, reveal_type
def is_str(x: object) -> TypeGuard[str]:
return isinstance(x, str)
def process(x: int | str) -> None:
if is_str(x):
reveal_type(x) # Revealed type is "builtins.str"
print(x.upper()) # ok: x is str
else:
reveal_type(x) # Revealed type is "Union[builtins.int, builtins.str]"
print(x + 1) # ERROR: Unsupported operand types for + ("str" and "int") [operator]
Generic TypeIs
~~~~~~~~~~~~~~
``TypeIs`` functions can also work with generic types:
.. code-block:: python
from typing import TypeVar, TypeIs
T = TypeVar('T')
def is_two_element_tuple(val: tuple[T, ...]) -> TypeIs[tuple[T, T]]:
return len(val) == 2
def process(names: tuple[str, ...]) -> None:
if is_two_element_tuple(names):
reveal_type(names) # Revealed type is 'tuple[str, str]'
else:
reveal_type(names) # Revealed type is 'tuple[str, ...]'
TypeIs with Additional Parameters
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
TypeIs functions can accept additional parameters beyond the first.
The type narrowing applies only to the first argument.
.. code-block:: python
from typing import Any, TypeVar, reveal_type, TypeIs
T = TypeVar('T')
def is_instance_of(val: Any, typ: type[T]) -> TypeIs[T]:
return isinstance(val, typ)
def process(x: Any) -> None:
if is_instance_of(x, int):
reveal_type(x) # Revealed type is 'int'
print(x + 1) # ok
else:
reveal_type(x) # Revealed type is 'Any'
TypeIs in Methods
~~~~~~~~~~~~~~~~~
A method can also serve as a ``TypeIs`` function. Note that in instance or
class methods, the type narrowing applies to the second parameter
(after ``self`` or ``cls``).
.. code-block:: python
class Validator:
def is_valid(self, instance: object) -> TypeIs[str]:
return isinstance(instance, str)
def process(self, to_validate: object) -> None:
if Validator().is_valid(to_validate):
reveal_type(to_validate) # Revealed type is 'str'
print(to_validate.upper()) # ok: to_validate is str
Assignment Expressions with TypeIs
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
You can use the assignment expression operator ``:=`` with ``TypeIs`` to create a new variable and narrow its type simultaneously.
.. code-block:: python
from typing import TypeIs, reveal_type
def is_float(x: object) -> TypeIs[float]:
return isinstance(x, float)
def main(a: object) -> None:
if is_float(x := a):
reveal_type(x) # Revealed type is 'float'
# x is narrowed to float in this block
print(x + 1.0)
Limitations
-----------
Mypy's analysis is limited to individual symbols and it will not track
relationships between symbols. For example, in the following code
it's easy to deduce that if :code:`a` is None then :code:`b` must not be,
therefore :code:`a or b` will always be an instance of :code:`C`,
but Mypy will not be able to tell that:
.. code-block:: python
class C:
pass
def f(a: C | None, b: C | None) -> C:
if a is not None or b is not None:
return a or b # Incompatible return value type (got "C | None", expected "C")
return C()
Tracking these sort of cross-variable conditions in a type checker would add significant complexity
and performance overhead.
You can use an ``assert`` to convince the type checker, override it with a :ref:`cast <casts>`
or rewrite the function to be slightly more verbose:
.. code-block:: python
def f(a: C | None, b: C | None) -> C:
if a is not None:
return a
elif b is not None:
return b
return C()
|