1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
|
[case testAnnotateNonNativeAttribute]
from typing import Any
def f1(x):
return x.foo # A: Get non-native attribute "foo".
def f2(x: Any) -> object:
return x.foo # A: Get non-native attribute "foo".
def f3(x):
x.bar = 1 # A: Set non-native attribute "bar".
class C:
foo: int
def method(self) -> int:
return self.foo
def good1(x: C) -> int:
return x.foo
[case testAnnotateMethod]
class C:
def method(self, x):
return x + "y" # A: Generic "+" operation.
[case testAnnotateGenericBinaryOperations]
def generic_add(x):
return x + 1 # A: Generic "+" operation.
def generic_sub(x):
return x - 1 # A: Generic "-" operation.
def generic_mul(x):
return x * 1 # A: Generic "*" operation.
def generic_div(x):
return x / 1 # A: Generic "/" operation.
def generic_floor_div(x):
return x // 1 # A: Generic "//" operation.
def generic_unary_plus(x):
return +x # A: Generic unary "+" operation.
def generic_unary_minus(x):
return -x # A: Generic unary "-" operation.
def native_int_ops(x: int, y: int) -> int:
a = x + 1 - y
return x * a // y
[case testAnnotateGenericBitwiseOperations]
def generic_and(x):
return x & 1 # A: Generic "&" operation.
def generic_or(x):
return x | 1 # A: Generic "|" operation.
def generic_xor(x):
return x ^ 1 # A: Generic "^" operation.
def generic_left_shift(x):
return x << 1 # A: Generic "<<" operation.
def generic_right_shift(x):
return x >> 1 # A: Generic ">>" operation.
def generic_invert(x):
return ~x # A: Generic "~" operation.
def native_int_ops(x: int, y: int) -> int:
a = (x & 1) << y
return (x | a) >> (y ^ 1)
[case testAnnotateGenericComparisonOperations]
def generic_eq(x, y):
return x == y # A: Generic comparison operation.
def generic_ne(x, y):
return x != y # A: Generic comparison operation.
def generic_lt(x, y):
return x < y # A: Generic comparison operation.
def generic_le(x, y):
return x <= y # A: Generic comparison operation.
def generic_gt(x, y):
return x > y # A: Generic comparison operation.
def generic_ge(x, y):
return x >= y # A: Generic comparison operation.
def int_comparisons(x: int, y: int) -> int:
if x == y:
return 0
if x < y:
return 1
if x > y:
return 2
return 3
[case testAnnotateTwoOperationsOnLine]
def f(x):
return x.foo + 1 # A: Get non-native attribute "foo". Generic "+" operation.
[case testAnnotateNonNativeMethod]
from typing import Any
def f1(x):
return x.foo() # A: Call non-native method "foo" (it may be defined in a non-native class, or decorated).
def f2(x: Any) -> None:
x.foo(1) # A: Call non-native method "foo" (it may be defined in a non-native class, or decorated).
x.foo(a=1) # A: Call non-native method "foo" (it may be defined in a non-native class, or decorated).
t = (1, 'x')
x.foo(*t) # A: Get non-native attribute "foo". Generic call operation.
d = {"a": 1}
x.foo(*d) # A: Get non-native attribute "foo". Generic call operation.
class C:
def foo(self) -> int:
return 0
def g(c: C) -> int:
return c.foo()
[case testAnnotateGlobalVariableAccess]
from typing import Final
import nonnative
x = 0
y: Final = 0
def read() -> int:
return x # A: Access global "x" through namespace dictionary (hint: access is faster if you can make it Final).
def assign(a: int) -> None:
global x
x = a # A: Access global "x" through namespace dictionary (hint: access is faster if you can make it Final).
def read_final() -> int:
return y
def read_nonnative() -> int:
return nonnative.z # A: Get non-native attribute "z".
[file nonnative.py]
z = 2
[case testAnnotateNestedFunction]
def f1() -> None:
def g() -> None: # A: A nested function object is allocated each time statement is executed. A module-level function would be faster.
pass
g()
def f2() -> int:
l = lambda: 1 # A: A new object is allocated for lambda each time it is evaluated. A module-level function would be faster.
return l()
[case testAnnotateGetSetItem]
from typing import List, Dict
def f1(x, y):
return x[y] # A: Generic indexing operation.
def f2(x, y, z):
x[y] = z # A: Generic indexed assignment.
def list_get_item(x: List[int], y: int) -> int:
return x[y]
def list_set_item(x: List[int], y: int) -> None:
x[y] = 5
def dict_get_item(d: Dict[str, str]) -> str:
return d['x']
def dict_set_item(d: Dict[str, str]) -> None:
d['x'] = 'y'
[case testAnnotateStrMethods]
def startswith(x: str) -> bool:
return x.startswith('foo')
def islower(x: str) -> bool:
return x.islower() # A: Call non-native method "islower" (it may be defined in a non-native class, or decorated).
[case testAnnotateSpecificStdlibFeatures]
import functools
import itertools
from functools import partial
from itertools import chain, groupby, islice
def f(x: int, y: int) -> None: pass
def use_partial1() -> None:
p = partial(f, 1) # A: "functools.partial" is inefficient in compiled code.
p(2)
def use_partial2() -> None:
p = functools.partial(f, 1) # A: "functools.partial" is inefficient in compiled code.
p(2)
def use_chain1() -> None:
for x in chain([1, 3], [4, 5]): # A: "itertools.chain" is inefficient in compiled code (hint: replace with for loops).
pass
def use_chain2() -> None:
for x in itertools.chain([1, 3], [4, 5]): # A: "itertools.chain" is inefficient in compiled code (hint: replace with for loops).
pass
def use_groupby1() -> None:
for a, b in groupby([('A', 'B')]): # A: "itertools.groupby" is inefficient in compiled code.
pass
def use_groupby2() -> None:
for a, b in itertools.groupby([('A', 'B')]): # A: "itertools.groupby" is inefficient in compiled code.
pass
def use_islice() -> None:
for x in islice([1, 2, 3], 1, 2): # A: "itertools.islice" is inefficient in compiled code (hint: replace with for loop over index range).
pass
[case testAnnotateGenericForLoop]
from typing import Iterable, Sequence, Iterator, List
def f1(a):
for x in a: # A: For loop uses generic operations (iterable has type "Any").
pass
def f2(a: Iterable[str]) -> None:
for x in a: # A: For loop uses generic operations (iterable has the abstract type "typing.Iterable").
pass
def f3(a: Sequence[str]) -> None:
for x in a: # A: For loop uses generic operations (iterable has the abstract type "typing.Sequence").
pass
def f4(a: Iterator[str]) -> None:
for x in a: # A: For loop uses generic operations (iterable has the abstract type "typing.Iterator").
pass
def good1(a: List[str]) -> None:
for x in a:
pass
class C:
def __iter__(self) -> Iterator[str]:
assert False
def good2(a: List[str]) -> None:
for x in a:
pass
[case testAnnotateGenericComprehensionOrGenerator]
from typing import List, Iterable
def f1(a):
return [x for x in a] # A: Comprehension or generator uses generic operations (iterable has type "Any").
def f2(a: Iterable[int]):
return {x for x in a} # A: Comprehension or generator uses generic operations (iterable has the abstract type "typing.Iterable").
def f3(a):
return {x: 1 for x in a} # A: Comprehension uses generic operations (iterable has type "Any").
def f4(a):
return (x for x in a) # A: Comprehension or generator uses generic operations (iterable has type "Any").
def good1(a: List[int]) -> List[int]:
return [x + 1 for x in a]
[case testAnnotateIsinstance]
from typing import Protocol, runtime_checkable, Union
@runtime_checkable
class P(Protocol):
def foo(self) -> None: ...
class C: pass
class D(C):
def bar(self) -> None: pass
def bad1(x: object) -> bool:
return isinstance(x, P) # A: Expensive isinstance() check against protocol "P".
def bad2(x: object) -> bool:
return isinstance(x, (str, P)) # A: Expensive isinstance() check against protocol "P".
def good1(x: C) -> bool:
if isinstance(x, D):
x.bar()
return isinstance(x, D)
def good2(x: Union[int, str]) -> int:
if isinstance(x, int):
return x + 1
else:
return int(x + "1")
[typing fixtures/typing-full.pyi]
[case testAnnotateDeepcopy]
from typing import Any
import copy
def f(x: Any) -> Any:
return copy.deepcopy(x) # A: "copy.deepcopy" tends to be slow. Make a shallow copy if possible.
[case testAnnotateContextManager]
from typing import Iterator
from contextlib import contextmanager
@contextmanager
def slow_ctx_manager() -> Iterator[None]:
yield
class FastCtxManager:
def __enter__(self) -> None: pass
def __exit__(self, a, b, c) -> None: pass
def f1(x) -> None:
with slow_ctx_manager(): # A: "slow_ctx_manager" uses @contextmanager, which is slow in compiled code. Use a native class with "__enter__" and "__exit__" methods instead.
x.foo # A: Get non-native attribute "foo".
def f2(x) -> None:
with FastCtxManager():
x.foo # A: Get non-native attribute "foo".
[case testAnnotateAvoidNoiseAtTopLevel]
from typing import Final
class C(object):
x = "s"
y: Final = 1
x = "s"
y: Final = 1
def f1() -> None:
x = object # A: Get non-native attribute "object".
[case testAnnotateCreateNonNativeInstance]
from typing import NamedTuple
from dataclasses import dataclass
from nonnative import C
def f1() -> None:
c = C() # A: Creating an instance of non-native class "C" is slow.
c.foo() # A: Call non-native method "foo" (it may be defined in a non-native class, or decorated).
class NT(NamedTuple):
x: int
y: str
def f2() -> int:
o = NT(1, "x") # A: Creating an instance of non-native class "NT" is slow.
return o.x
def f3() -> int:
o = NT(x=1, y="x") # A: Creating an instance of non-native class "NT" is slow.
a, b = o
return a
@dataclass
class D:
x: int
def f4() -> int:
o = D(1) # A: Class "D" is only partially native, and constructing an instance is slow.
return o.x
class Nat:
x: int
class Deriv(Nat):
def __init__(self, y: int) -> None:
self.y = y
def good1() -> int:
n = Nat()
d = Deriv(y=1)
return n.x + d.x + d.y
[file nonnative.py]
class C:
def foo(self) -> None: pass
[case testAnnotateGetAttrAndSetAttrBuiltins]
def f1(x, s: str):
return getattr("x", s) # A: Dynamic attribute lookup.
def f2(x, s: str):
setattr(x, s, None) # A: Dynamic attribute set.
[case testAnnotateSpecialAssignments]
from typing import TypeVar, NamedTuple, List, TypedDict, NewType
# Even though these are slow, we don't complain about them since there is generally
# no better way (and at module top level these are very unlikely to be bottlenecks)
A = List[int]
T = TypeVar("T", bound=List[int])
NT = NamedTuple("NT", [("x", List[int])])
TD = TypedDict("TD", {"x": List[int]})
New = NewType("New", List[int])
[typing fixtures/typing-full.pyi]
[case testAnnotateCallDecoratedNativeFunctionOrMethod]
from typing import TypeVar, Callable, Any
F = TypeVar("F", bound=Callable[..., Any])
def mydeco(f: F) -> F:
return f
@mydeco
def d(x: int) -> int:
return x
def f1() -> int:
return d(1) # A: Calling a decorated function ("d") is inefficient, even if it's native.
class C:
@mydeco
def d(self) -> None:
pass
def f2() -> None:
c = C()
c.d() # A: Call non-native method "d" (it may be defined in a non-native class, or decorated).
[case testAnnotateCallDifferentKindsOfMethods]
from abc import ABC, abstractmethod
class C:
@staticmethod
def s() -> None: ...
@classmethod
def c(cls) -> None: ...
@property
def p(self) -> int:
return 0
@property
def p2(self) -> int:
return 0
@p2.setter
def p2(self, x: int) -> None:
pass
def f1() -> int:
c = C()
c.s()
c.c()
c.p2 = 1
return c.p + c.p2
class A(ABC):
@abstractmethod
def m(self) -> int:
raise NotImplementedError # A: Get non-native attribute "NotImplementedError".
class D(A):
def m(self) -> int:
return 1
def f2() -> int:
d = D()
return d.m()
|