MySQL++ v3.2.1 User Manual

Kevin Atkinson
Sinisa Milivojevic
Monty Widenius

Warren Young

Copyright © 1998-2001, 2005-2010 Kevin Atkinson (original
author)MySQL ABEducational Technology Resources

December 10, 2013

Table of Contents

OO 1 oo [0 1o T TSP 3
1.1 A Brief History Of MYSQL 4 ouuuiiiiiiiiii i ee s e e e e e e e e e et e e e et e e et e e eanaas 3
1.2, 1T YOU Have QUESLIONS... ..uuiiiiiieiii et et e e e et e e e e e e e e e e e e e e et e e et e e et e e et e eateesaneaeanaes 4
P22 O Y= o P 5
2.1. The CONNECHION ODJECL ... iiuuiii it ee e e e e e e e e e e e e e e e e e e et e e et e e et e e e at e eaaeeatneeetnaeranaees 5
2.2. The QUENY ODJECE ..ouuiiii it e e e e e e e e et e e e e et e e et e e et e esta e eaaneeannaes 5
P R B (== U S T PP 5
(= o 1o 7
G N1 (o] 4 - PP 8
3.1 RUNNING the EXAMPIESeiii e e e e e e e e e e e et e eean s 8
3.2 A SIMPIE EXAMPIE ... it e e e e e e a e 9
3.3. A More Complicated EXAMPIEuuiiiiiieii e e e 10
G (= oo T 11
I @0 o) aTo =g Lo B =S o 1 oo 12
N A O Y S @ I DT v R Y/ o1 TP 13
G A o = o 1T o S N 14
3.8. MYSQL++"S SPECIAl SING TYPES 1ovuueiiteiiiieiiiee e et e e e e e e e e e e e e et e e st e e et e e st e eateesaneeenns 15
3.9. Dealing With BiNary Dalal........cccuuiiiiiiiii e et e e e e e e e e e e e e e et e e e e e et e e et e e et eeaneens 17
T80 O T £ o I = = 0L 22
3.11. Which QUENY TYPE 0 USE? ...ciiiiii it e e e e e e et e et e et e e ea e eaas 25
3.12. Conditional Result ROW HaNAliNgccuuiiiiiiiiiii e e 27
3.13. Executing Code for Each ROW IN @ RESUIT SELiivniiiii e 29
G300 S @ T 0= 1 o g @ 1] 31 30
3.15. Dealing With CoNNECLION TIMEOULSuuiiiieiii i e e e e e e e e e e e e e e e et e e et e e ean e eaneeeees 33
3.16. Concurrent QUENES 0N @ CONNECLIONvvuiiiii e e ee e e e e e e e et e et e e e e st eeaaneeeaneeeens 34
3.17. Getting Field MetarINfOrMationcoouniiiiieii e e e e e e e et e et e e et e e aanaees 35
= Tl (ST 0 L= = 38
4.1, Setting uUp TempPlate QUENIESiiii it e e e e e e e e e e e et e e et e e ean e eenaas 39
4.2, Setting the Parameters at EXECULION TIME ... cuvuiiiii e e e e e e e e e e e e eaa s 40
A.3. DEFBUIT PalMELEIS i iiieiii ettt ettt e ettt e e e et e e et e e e e et e e e e et e e e aatn e e aanans 40
(o gl o | o R 41
5. SPECIAliZEA SQL SITUCIUIES .. oeuiiii et et e e e e e e e e e e e e e e et e e et e et e e et e e et e e et eean e eatneeeaneeeannes 42
LI o | [(== (= PP 42
5.2. SSQLS Comparison and INitialiZationc.couuiiiiiiiiiiieei e e e e e e e e e e e e eeas 43
G = 1= V7 aTe o - - U N 43

MySQL

+
+

(V2 I RS AN o 9o I - - RO 46
0L T Y/ oo 1 YT 0 [=1 - P 51
Manual 5.6. Storing SSQLSes in ASSOCIatiVe CONTAINETSuuiiiiiiii e e e e e e e e e e e e e e et eeaaeees 52
T 5.7.Changing the TaIE NBIMEuvvviiiiii ittt e e e e e et e e e e e e e s s sebrbaaeeeeeas 53
5.8. Using an SSQLS in MUItiple MOQUIEScouuniiiiii e e s 54

5.9. Harnessing SSQLS INtEINAIScvueiiii i e e e e e e e e et e e et e e e eanaees 54

5.10. Having Different Field Namesin C++ and SQLcouiiiiiiiiiieiiii e e e e 57

5.11. EXPanding SSOLS MACIOS .. .cuuuiiuniiiiieiie e it ee et e e e e s e e e e et e et e e et e e et s e et e san e eateesaneeenns 57

5.12. Customizing the SSQLS MECNANISMivuiiiii e e e e e e e et e e e e aenas 58

5.13. DEVINg from @n SSOL S ...iiiiiiii i e 58

5.14. SSQLS and BLOB COlUMNSccevviiiitiiieeeeteeeiiiia s s e e eeeeaeatt s aeeeeaeaeastsnsaaaeeesesssennnaaaeaeeeenes 60

5.15. SSQLS and Visual CH+ 2003uuuuiieeeiiieiiiiiieieeeeeeetaiias s e e e eeeaastat s e aeaeeaaaasea e aeeeeeaesnnnnn 62

6. Using Unicode With IMYSOL++ ... e e e e e e e et e e e e et e e et e e et e e at e eeaneesanaes 63
6.1. A Short HiStory of UNICOOEccuuiiiiiiiiiii i e e e e e e e e et e e e e eaaas 63

6.2. UNIiCOdE 0N UNIXY SYSEEMScvviiiiiieiie e ee e e et e e e e s e e e et e et e e et e e et e e et e eaaneeeens 63

6.3. UNICOUE ON WINTOWSeiiiiieeeiii ettt e et e e e et s e e e et s e e e e ttneeeettn s e eeestnaeeeees 64

L o gV o= [) {0 g 1= (o) o PP 65

7. Using MySQL++ in a Multithreaded Programcooiiiiiii e e e e e e e 66
A5 = T] o = U 66

7.2. CONNECLION IMANAGEMENTiiiuiiii e et e et e et e e e e e e e et e e et e e et e e et e et e eat e e st e e st eesneesnereen 67

AT 1= T 1= gl W 0T 1T 71

7.4. Sharing MySQL++ Data SITUCIUIESuoiiiicii e e e e e e e e e e e e et e et e e et e e et e eanaeeanaes 72

8. CoNfIGUIING MY SOL At .ottt e e e e e e e et e e et e e et e e et e e et e e et e e eta e ean e eateeennaeeanaes 73
8.1. The Location of the MySQL Development FIlEScouuiiiiiiiiiii e 73

8.2. The Maximum Number of Fields AIIOWEoiiiiiiiiei e 73

8.3. Buried MySQL C APl HEAOEI'Suuuiiiieiiieiiiii et e e s e e e e s e e e e e e e ettt e s e e e e e aeaaeennnas 74

8.4. Building MySQL ++ on Systems Without Complete C99 SUPPOITccvvvieiiieiiii e 74

9. Using MySQL++ iN YOUFr OWN PrOJECEivuiiiiiiiiie e e e e e e e e e e e e e et e et e e aa e e aanas 75
LIS T T O SRR 75

9.2. Unixy Platforms: Linux, *BSD, OS X, Cygwin, SOIaris...c.ccuoeeiiiiiiiiiiiii e 76

LSRG T 1 SRS 77

0.4, IMIINGWV ... ittt e e e e et ettt e et e e e e e et e e e e e e et et — e e e e e et a e aes 77

LS T o T o1 = T 78

10. Incompatible Library Changesoiiiiiiiiii et e e e e e e e e e e e et 79
OIS N o I = 1o =SSP 79

O N T 4 o RSP 88

T o= 0= 1 o N 91
11.1. GNU Lesser General PUBDIIC LICENSE ...u.iiiiii it e e 92

11.2. MySQL++ USer ManUal LICENSEiviiiiiii i e e e e e e e e et e e e e eeas 99

MySQL
+

“E' Introduction

Manua
MySQL++ is a powerful C++ wrapper for MySQL’s C API Y. Its purpose is to make working with queries as easy as
working with STL containers.

The latest version of MySQL ++ can be found at the official web site.

Support for MySQL ++ can be had on the mailing list. That page hosts the mailing list archives, and tells you how
you can subscribe.

1.1. A Brief History of MySQL++

MySQL ++ was created in 1998 by Kevin Atkinson. It started out MySQL -specific, but there were early effortsto try
and make it database-independent, and call it SQL++. Thisis where the old library name “sglplus’ came from. This
is also why the old versions prefixed some class names with “Mysgl” but not others: the others were supposed to be
the database-independent parts. All of Kevin's releases had pre-1.0 version numbers.

Then in 1999, MySQL AB took over development of the library. In the beginning, Monty Widenius himself did
some of the work, but later gave it over to another MySQL employee, Sinisa Milivojevic. MySQL released versions
1.0 and 1.1, and then Kevin gave over maintenance to Sinisa officially with 1.2, and ceased to have any involvement
with the library’ s maintenance. Sinisawent on to maintain the library through 1.7.9, released in mid-2001. It seems
to be during this time that the dream of multiple-database compatibility died, for obvious reasons.

With version 1.7.9, MySQL ++ went into a period of stasis, lasting over three years. (Perhaps it was the ennui and
retrenchment following the collapse of the bubble that caused them to lose interest.) During thistime, Sinisaran the
MySQL++ mailing list and supported its users, but made no new releases. Contributed patches were either ignored
or put up on the MySQL ++ web site for usersto try, without any official blessing.

The biggest barrier to using MySQL ++ during this period is that the popular C++ compilers of 2001 weren't all
that compatible with the C++ Standard. As aresult, MySQL ++ used many nonstandard constructs, to allow for
compatibility with older compilers. Each new compiler released in the following years increased compliance, either
warning about or rejecting code using pre-Standard constructs. In particular, GCC was emerging from the mess
following the EGCS fork during thistime. The fork was healed officially in 1999, but there's always adelay of a
few years between the release of anew GCC and widespread adoption. The post-EGCS versions of GCC were only
beginning to become popular by 2001, when development on MySQL ++ halted. As aresult, it became increasingly
difficult to get MySQL ++ to build cleanly as newer compilers came out. Since MySQL ++ uses templates heavily,
this affected end user programs as well: MySQL ++ code got included directly in your program, so any warnings or
errorsit caused became your program’s problem.

As aresult, most of the patches contributed to the MySQL ++ project during this period were to fix up standards
compliance issues. Because no one was hothering to officially test and bless these patches, you ended up with the
worst aspects of a bazaar development model: complete freedom of development, but no guiding hand to select from
the good stuff and reject the rest. Many of the patches were mutually incompatible. Some would build upon other
patches, so you had to apply them in the proper sequence. Others did useful things, but didn’t give afully functional
copy of MySQL ++. Figuring out which patch(es) to use was an increasingly frustrating exercise as the years wore
on, and newer GCCs became popular.

In early August of 2004, Warren Y oung got fed up with this situation and took over. He released 1.7.10 later that
month, which did little more than make the code build with GCC 3.3 without warnings. Since then, with alittle help
from his friends on the Net, MySQL ++ has lost alot of bugs, gained alot of features, gained a few more bugs, lost
them again... MySQL ++ is alive and healthy now.

The MySQL C API is also known as Connector/C.

MySQL
+
+

“.2. If You Have Questions...

Mﬁﬂ%"u want to email someone to ask questions about this library, we greatly prefer that you send mail to the MySQL

++ mailing list. The mailing list is archived, so if you have questions, do a search to seeif the question has been
asked before.

Y ou may find peopl€’ sindividual email addresses in various files within the MySQL ++ distribution. Please do not
send mail to them unless you are sending something that isinherently personal. Not al of the principal developers
of MySQL ++ are still active in its development; those who have dropped out have no wish to be bugged about
MySQL++. Those of us still active in MySQL ++ devel opment monitor the mailing list, so you aren’t getting any
extra“coverage” by sending messages to additional email addresses.

MySQL
+

2 Overview

Manua
MySQL++ hasalot of complexity and power to cope with the variety of ways people use databases, but at bottom it
doesn’t work all that differently than other database access APIs. The usage pattern looks like this:

1. Open the connection

2. Form and execute the query

3. If successful, iterate through the result set
4. Else, dea with errors

Each of these steps correspondsto a MySQL ++ class or class hierarchy. An overview of each follows.

2.1. The Connection Object

A Connection object manages the connection to the MySQL server. You need at least one of these objects to do
anything. Because the other MySQL ++ objects your program will use often depend (at least indirectly) on the
Connect i on instance, the Connect i on object needsto live at least aslong as all other MySQL ++ objectsin
your program.

MySQL supports many different types of data connection between the client and the server: TCP/IP, Unix domain
sockets, and Windows named pipes. The generic Connect i on class supportsall of these, figuring out which one
you mean based on the parameters you passto Connect i on: : connect () . Butif you know in advance that
your program only needs one particular connection type, there are subclasses with simpler interfaces. For example,
there’s TCPConnection if you know your program will always use a networked database server.

2.2. The Query Object

Most often, you create SQL queries using a Query object created by the Connect i on object.

Query acts as a standard C++ output stream, so you can write datato it likeyouwouldto st d: : cout or
std:: ostringstream Thisisthe most C++ish way MySQL ++ provides for building up aquery string. The
library includes stream manipulators that are type-aware so it’s easy to build up syntactically-correct SQL .

Query aso has afeature called Template Queries which work something like C'spri nt f () function: you set up
afixed query string with tags inside that indicate where to insert the variable parts. If you have multiple queries that
are structurally similar, you simply set up one template query, and use that in the various locations of your program.

A third method for building queriesisto use Quer y with SSQLS. This feature lets you create C++ structures that
mirror your database schemas. Thesein turn give Quer y theinformation it needs to build many common SQL
gueriesfor you. It can INSERT, REPLACE and UPDATE rowsin atable given the datain SSQL S form. It can
also generate SELECT * FROM SomeT able queries and store the results as an STL collection of SSQL Ses.

2.3. Result Sets

Thefield datain aresult set are stored in aspecia st d: : st ri ng-like class called String. This class has
conversion operators that let you automatically convert these objects to any of the basic C data types. Additionally,
MySQL ++ defines classes like DateTime, which you can initialize from aMySQL DATETIME string. These
automatic conversions are protected against bad conversions, and can either set awarning flag or throw an
exception, depending on how you set the library up.

MySQL
+
+
vA2&fbr the result sets as awhole, MySQL ++ has a number of different ways of representing them:
User

M@uwieries That Do Not Return Data

Not all SQL queriesreturn data. An exampleis CREATE TABLE. For these types of queries, there is a special
result type (SimpleResult) that ssmply reports the state resulting from the query: whether the query was successful,
how many rows it impacted (if any), etc.

Queries That Return Data: MySQL++ Data Structures

The most direct way to retrieve aresult set isto use Quer y: : st or e() . This returns a StoreQueryResult object,
which derivesfrom st d: : vect or <nysql pp: : Row>, making it arandom-access container of Rows. In turn,
each Rowobjectislikeast d: : vect or of St ri ng objects, one for each field in the result set. Therefore, you can
treat St or eQuer yResul t asatwo-dimensional array: you can get the 5th field on the 2nd row by simply saying
resul t[1][4] .Youcanalso accessrow elements by field name, likethis: resul t [2] ["price"].

A lessdirect way of working with query resultsisto use Query: : use() , which returns a UseQueryResult object.
Thisclass acts like an STL input iterator rather than ast d: : vect or : you walk through your result set processing
one row at atime, always going forward. Y ou can't seek around in the result set, and you can’t know how many
results are in the set until you find the end. In payment for that inconvenience, you get better memory efficiency,
because the entire result set doesn’'t need to be stored in RAM. Thisis very useful when you need large result sets.

Queries That Return Data: Specialized SQL Structures

Accessing results through MySQL ++’ s data structures is a pretty low level of abstraction. It’s better than using the
MySQL C API, but not by much. Y ou can elevate things alittle closer to the level of the problem space by using

the SSQL S feature. This lets you define C++ structures that match the table structures in your database schema. In
addition, it's easy to use SSQL Ses with regular STL containers (and thus, agorithms) so you don’t have to deal with
the quirks of MySQL ++'s data structures.

The advantage of this method is that your program will require very little embedded SQL code. Y ou can simply
execute a query, and receive your results as C++ data structures, which can be accessed just as you would any other
structure. The results can be accessed through the Row object, or you can ask the library to dump the results into an
STL container — sequential or set-associative, it doesn't matter — for you. Consider this:

vect or <st ock> v;
query << "SELECT * FROM stock";
query.storein(v);

for (vector<stock>::iterator it = v.begin(); it !'=v.end(); ++it) {
cout << "Price: " << it->price << endl;

}

Isn't that slick?

If you don’t want to create SSQL Ses to match your table structures, as of MySQL ++ v3 you can now use Row here
instead:

vect or <nysql pp: : Row> v;

query << "SELECT * FROM stock";

query. storein(v);

for (vector<mysqglpp::Row>::iterator it = v.begin(); it !'=v.end(); ++it) {
cout << "Price: " << it->at("price") << endl;

}

It lacks a certain syntactic elegance, but it has its uses.

MySQL
+

2.4, Exceptions

Mg;yglefault, the library throws exceptions whenever it encounters an error. Y ou can ask the library to set an error
flag instead, if you like, but the exceptions carry more information. Not only do they include a string member telling
you why the exception was thrown, there are several exception types, so you can distinguish between different error
types within asingle try block.

MySQL
+

"3 Tutorial

Manua
The previous chapter introduced the major top-level mechanismsin MySQL++. Now we'll dig down alittle deeper
and get into real examples. We start off with the basics that every MySQL ++ program will have to deal with, then
work up to more complex topics that are still widely interesting. Y ou can stop reading the manual after this chapter
and still get alot out of MySQL ++, ignoring the more advanced parts we present in later chapters.

3.1. Running the Examples

All of the examples are complete running programs. If you built the library from source, the examples should have
been built aswell. If you use RPMs instead, the example programs' source code and asimplified Makef i | e are
inthenysql ++- devel package. They aretypically installed in/ usr/ shar e/ doc/ nysql ++- devel - */
exanpl es, but it can vary on different Linuxes.

Before you get started, please read through any of the READMVE* . t xt filesincluded with the MySQL ++
distribution that are relevant to your platform. We won’t repeat all of that here.

Most of the examples require atest database, created by r eset db. You can run it like so:

resetdb [-s server_addr] [-u user] [-p password]

Actualy, there's a problem with that. It assumes that the MySQL ++ library is aready installed in a directory that
the operating system’s dynamic linker can find. (MySQL ++ is amost never built statically.) Unless you're installing
from RPMs, you' ve had to build the library from source, and you should run at least a few of the examples before
installing the library to be sureit’s working correctly. Since your operating system’s dynamic linkage system can’t
find the MySQL ++ libraries without help until they’ re installed, we' ve created afew helper scripts to help run the
examples.

MySQL ++ comes with the exr un shell script for Unixy systems, and the exr un. bat batch file for Windows.
Y ou pass the example program and its arguments to the exr un helper, which sets up the library search path so that
it will use the as-yet uninstalled version of the MySQL ++ library in preference to any other on your system:

./exrun resetdb [-s server_addr] [-u user] [-p password]

That’ s the typical form for a Unixy system. Y ou leave off the ./ bit on Windows. Y ou can leave it off on a Unixy
system, too, if you have. inyour PATH. (Not a recommendation, just an observation.)

All of the program arguments are optional.

If youdon't give - s, the underlying MySQL C API (a.k.a. Connector/C) assumes the server is on the local machine.
It chooses one of several different IPC options based on the platform configuration. There are many different forms
you can giveasser ver _addr with - s to override this default behavior:

» localhost — thisisthe default; it doesn’t buy you anything
» On Windows, asimple period tells the underlying MySQL C API to use named pipes, if it's available.
e 172.20.0.252:12345 — this would connect to IP address 172. 20. 0. 252 on TCP port 12345.

* my.server.name:svc_name — thiswould first look up TCP service name svc_nane inyour system's
network services database (/ et ¢/ ser vi ces on Unixy systems, and something likec: \ wi ndows
\ systenB2\ dri ver s\ et c\ servi ces on modern Windows variants). If it finds an entry for the service, it
then tries to connect to that port on the domain name given.

For the TCP forms, you can mix names and numbers for the host and port/service parts in any combination. If the
server name doesn’t contain a colon, it uses the default port, 3306.

MySQL
+
+
vB3:du don’t give - u, it assumes your user name on the database server is the same as your login name on the local
Wsachine.

Manua
tfyou don’'t give- p, it will assume the MySQL user doesn’t have a password. (One hopesthisisn’t the case...)

When running r eset db, the user name needs to be for an account with permission to create the test database. Once
the database is created, you can use any account when running the other examples that has DELETE, INSERT,
SELECT and UPDATE permissions for the test database. The MySQL root user can do al this, of course, but you
might want to set up a separate user, having only the permissions necessary to work with the test database:

CREATE USER nysql pp_test @% | DENTI FI ED BY ' nunyabi nness' ;
GRANT ALL PRI VI LEGES ON nysql _cpp_data.* TO nysql pp_test@% ;

Y ou could then create the sample database with the following command:

./exrun resetdb -u nysql pp_test -p nunyabi nness
(Again, leave off the ./ bit on Windows.)
You may haveto re-runr eset db after running some of the other examples, as they change the database.

See README- exanpl es. t xt for more details on running the examples.

3.2. A Simple Example

The following example demonstrates how to open a connection, execute a simple query, and display the results. This
isexanpl es/ si npl el. cpp:

#i ncl ude "crdl i ne. h"
#i ncl ude "printdata. h"

#i ncl ude <nysql ++. h>

#i ncl ude <i ostreanp
#i ncl ude <i onani p>

usi ng nanespace std;

int
mai n(int argc, char *argv[])
{
/] CGet database access paraneters from command |ine
nysql pp: : exanpl es: : CommandLi ne cndl i ne(argc, argv);
if (crdline) {
return 1;

}

/1 Connect to the sanpl e database.
nysql pp: : Connecti on conn(fal se);
i f (conn.connect (nysql pp:: exanpl es: : db_name, cndline.server(),
crmdl i ne.user (), cndline.pass())) {
/1 Retrieve a subset of the sanple stock table set up by resetdb
/1 and display it.
nmysql pp: : Query query = conn. query("select itemfrom stock");
if (mysql pp::StoreQueryResult res = query.store()) {
cout << "W have:" << endl;
nysql pp: : StoreQueryResul t::const_iterator it;
for (it =res.begin(); it !'=res.end(); ++it) {
nysql pp: : Row row = *it;
cout << '"\t' << row 0] << endl;

MySQL

+
+
v3.2.1 }
User el se {
Manual cerr << "Failed to get itemlist: " << query.error() << endl;
- return 1;
}
return O;
}
el se {
cerr << "DB connection failed: " << conn.error() << endl;
return 1,
}
}

This example simply gets the entire "item" column from the example table, and prints those values out.

Notice that MySQL ++'s StoreQueryResult derivesfrom st d: : vect or, and Row provides an interface that makes
itavect or work-alike. This means you can access elements with subscript notation, walk through them with
iterators, run STL algorithms on them, etc.

Row provides alittle more in this areathan aplain old vect or : you can a so access fields by name using subscript
notation.

The only thing that isn’t explicit in the code above is that we delegate command line argument parsing to

par se_conmmand_l i ne() intheexcommobn module. Thisfunction exists to give the examples a consistent
interface, not to hide important details. Y ou can treat it like a black box: it takesar gc and ar gv asinputs and
sends back database connection parameters.

3.3. A More Complicated Example

Thesi npl el example above was pretty trivial. Let's get alittle deeper. Hereisexanpl es/ si npl e2. cpp:

#i ncl ude "crdl i ne. h"
#i ncl ude "printdata. h"

#i ncl ude <nysql ++. h>

#i ncl ude <i ostreanp
#i ncl ude <i onani p>

usi ng nanespace std;

int
mai n(int argc, char *argv[])
{
/1 CGet database access paraneters from comand |ine
nysql pp: : exanpl es: : CommandLi ne cndl i ne(argc, argv);
if (crdline) {
return 1;
}

/1 Connect to the sanpl e database.
nysql pp: : Connecti on conn(fal se);
i f (conn.connect (nysql pp:: exanpl es: : db_name, cndline. server(),
crmdl i ne.user (), cndline.pass())) {
/1 Retrieve the sanple stock table set up by resetdb
nysql pp: : Query query = conn. query("select * from stock");
nmysql pp: : StoreQueryResult res = query.store();

/1 Display results
if (res) {

MySQL

+
+
v3.2.1 /1 Display header
User cout.setf(ios::left);
cout << setw(31) << "lten <<
Mﬂjal setw(10) << "Numf' <<
setw(10) << "Weight" <<
setw(10) << "Price" <<
"Date" << endl << endl;
/]l Get each rowin result set, and print its contents
for (size_t i =0; i <res.numrows(); ++i) {
cout << setw(30) << res[i]["iten] << ' ' <<
setw(9) << res[i]["nun'] << ' ' <<
setw(9) << res[i]["weight"] << ' ' <<
setw(9) << res[i]["price"] << ' ' <<
setw9) << res[i]["sdate"] <<
endl ;
}
}
el se {
cerr << "Failed to get stock table: " << query.error() << endl;
return 1,
}
return O;
}
el se {
cerr << "DB connection failed: " << conn.error() << endl;
return 1;
}
}

The main point of this example is that we're accessing fields in the row objects by name, instead of index. Thisis
slower, but obvioudly clearer. We're also printing out the entire table, not just one column.

3.4. Exceptions

By default, MySQL ++ uses exceptions to signal errors. We' ve been suppressing thisin al the examples so far by
passing falseto Connect i on’s constructor. This kept these early examples simple at the cost of some flexibility
and power in error handling. In areal program, we recommend that you leave exceptions enabled. Y ou do this by
either using the default Connect i on constructor, or by using the create-and-connect constructor.

All of MySQL ++’s custom exceptions derive from a common base class, Exception. That in turn derives from
Standard C++'sst d: : except i on class. Sincethe library can indirectly cause exceptions to come from the
Standard C++ Library, it's possible to catch all exceptions from MySQL++ by just catching st d: : excepti on.
However, it's better to have individual catch blocks for each of the concrete exception types that you expect, and
add ahandler for either Excepti on or st d: : excepti on to act asa*catch-all” for unexpected exceptions.

When exceptions are suppressed, MySQL ++ signals errors by returning either an error code or an object that tests
asfalse, or by setting an error flag on the object. Classes that allow you to suppress exceptions derive from the
Optiona Exceptions interface. When an Opt i onal Except i ons derivative creates another object that also
derives from thisinterface, it passes on its exception flag. Since everything flows from the Connection object,
disabling exceptions on it at the start of the program disables all optional exceptions. Thisiswhy passing false
for the Connect i on constructor’s “throw exceptions’ parameter suppresses all optional exceptionsin the

si mpl e[1- 3] examples. It keeps them, well, simple.

This exception suppression mechanism is quite granular. It’'s possible to |eave exceptions enabled most of the time,
but suppress them in sections of the code where they aren’t helpful. To do this, put the section of code that you want
to not throw exceptions inside a block, and create a NoExceptions object at the top of that block. When created, it
saves the exception flag of the Opt i onal Except i ons derivative you passto it, and then disables exceptions on

11

MySQL
+
+
vB2A¥hen the NoExcept i ons object goes out of scope at the end of the block, it restores the exceptions flag to its
sevious state:

anua
mysql pp: : Connection con; // default ctor, so exceptions enabled

{
nysql pp: : NoExcepti ons ne(con);
if ('con.select_db("a_db_that_m ght_not_exist_yet")) {
/1 Qur DB doesn't exist yet, so create and select it here; no need
// to push handling of this case way off in an exception handler.

}
}

When one Opt i onal Except i ons derivative passes its exceptions flag to another such object, it isonly passing a
copy; the two objects flags operate independently. There’' s no way to globally enable or disable this flag on existing
objectsin asingle call. If you're using the NoExcept i ons feature and you're till seeing optional exceptions
thrown, you disabled exceptions on the wrong object. The exception thrower could be unrelated to the object you
disabled exceptions on, it could be its parent, or it could be a child created before you disabled optional exceptions.

MySQL ++ throws some exceptions unconditionally:

e MySQL++ checks array indices, always. For instance, if your code said “r ow{ 21] ” on arow containing only
5fields, you'd get aBadl ndex exception. If yousay “row "fred"]” onarow without a“fred” field, you
get aBadFi el dNane exception. In the past, MySQL ++ delegated some of itsindex checking to the STL
containers underpinning it, so you could get st d: : r ange_err or instead. Asof MySQL++ v3.0.7, this
should no longer happen, but there may be instances where it still does.

o String will always throw BadConversion when you ask it to do an improper type conversion. For example,
you'll get an exception if you try to convert “1.25” to int, but not when you convert “1.00" to int. In the latter
case, MySQL ++ knows that it can safely throw away the fractional part.

» If you use template queries and don’t pass enough parameters when instantiating the template, Quer y will
throw a BadParamCount exception.

» If you use a C++ datatypein aquery that MySQL ++ doesn’t know to convert to SQL, MySQL ++ will throw
a TypelL ookupFailed exception. It typically happens with Section 5, “ Specialized SQL Structures’, especially
when using data types other than the ones defined inl i b/ sgl _t ypes. h.

It's educational to modify the examplesto force exceptions. For instance, misspell afield name, use an out-of-range
index, or change atypeto forcea St ri ng conversion error.

3.5. Quoting and Escaping

SQL syntax often requires certain data to be quoted. Consider this query:

SELECT * FROM stock WHERE item = ' Hotdog Buns'

Because the string “Hotdog Buns’ contains a space, it must be quoted. With MySQL ++, you don’'t have to add these
guote marks manually:

string s = "Hotdog Buns";
query << "SELECT * FROM stock WHERE item = " << quote_only << s;

That code produces the same query string as in the previous example. We used the MySQL ++ quote_only

mani pulator, which causes single quotes to be added around the next item inserted into the stream. This works for
any type of data that can be converted to MySQL ++'s SQL TypeAdapter type, plus the Set template. SSQLS also
uses these manipulatorsinternally.

12

MySQL
+
+
vBAding is pretty simple, but SQL syntax also often requires that certain characters be “escaped”. Imagineif the
Utseng in the previous example was “Frank’s Brand Hotdog Buns® instead. The resulting query would be;
Manua

SELECT * FROM stock WHERE item = 'Frank's Brand Hotdog Buns'

That's not valid SQL syntax. The correct syntax is:

SELECT * FROM stock WHERE item = 'Frank''s Brand Hot dog Buns'

As you might expect, MySQL ++ provides that feature, too, through its escape manipulator. But here, we want both
quoting and escaping. That brings us to the most widely useful manipulator:

string s = "Frank’s Brand Hotdog Buns";
query << "SELECT * FROM stock WHERE item = " << quote << s;

The quote manipulator both quotes strings and escapes any characters that are special in SQL.
MySQL ++ provides other manipulators as well. See the manip.h page in the reference manual.

It'simportant to realize that MySQL ++' s quoting and escaping mechanism is type-aware. Manipulators have no
effect unless you insert the manipulator into a Quer y or SQL QueryParms stream. 2 Also, values are only quoted
and/or escaped if they are of a data type that may need it. For example, Date must be quoted but never needs to
be escaped, and integer types need neither quoting nor escaping. Manipulators are suggestions to the library, not
commands: MySQL ++ will ignore these suggestions if it knows it won't result in syntactically-incorrect SQL.

It's also important to realize that quoting and escaping in Quer y streams and template queriesis never implicit.3
Y ou must use manipulators and template query flags as necessary to tell MySQL ++ where quoting and escaping

is necessary. It would be nice if MySQL++ could do quoting and escaping implicitly based on datatype, but this
isn't possiblein all cases.* Since MySQL ++ can't reliably guess when quoting and escaping is appropriate, and the
programmer doesn’t need to°, MySQL ++ makes you tell it.

3.6. C++ vs. SQL Data Types

The C++ and SQL data type systems have several differences that can cause problems when using MySQL ++, or
any other SQL based system, for that matter.

Most of the data types you can storein a SQL database are either numbers or text strings. If you' re only looking
at the data going between the database server and your application, there aren’t even numbers: SQL is atextual
language, so numbers and everything el se gets transferred between the client and the database server in text string
form.® Consequently, MySQL ++ has alot of special support for text strings, and can trandlate to several C++
numeric data types transparently.

2SQ_QJer yPar s is used as a stream only as an implementation detail within the library. End user code simply seesit asastd: : vect or

derivative.

3By contrast, the Quer y methods that take an SSQL S do add quotes and escape stringsimplicitly. It can do this because SSQL S knows al the SQL
code and data types, so it never has to guess whether quoting or escaping is appropriate.

4Unlelssyou’ re smarter than | am, you don’'t immediately see why explicit manipulators are necessary. We can tell when quoting and escaping is
not appropriate based on type, so doesn’t that mean we know when it is appropriate? Alas, no. For most data types, it is possible to know, or at
least make an awfully good guess, but it’'s a complete toss-up for C strings, const char*. A C string could be either aliteral string of SQL code, or
it can be avalue used in a query. Since there's no easy way to know and it would damage the library’ s usability to mandate that C strings only be
used for one purpose or the other, the library requires you to be explicit.

One hopes the programmer knows.

5y es, we' re aware that there is afeaturein MySQL that letsyou transfer row datain abinary form, but we don’t support thisyet. We may, someday,
probably as an extension to SSQLS. The only real reason to do so isto shave off some of the data translation overhead, which istypically neglibible
in practice, swamped by the far greater disk and network 1/0 overheads inherent in use of a client-server database system like MySQL.

13

MySQL
+
+
v&@de people worry that this trandation via an intermediate string form will cause data loss. Obviously the text
Useng data types are immune from problems in this regard. We're also confident that MySQL ++ translates BLOB
Mandahteger data types losslessly.

The biggest worry iswith floating-point numbers. (The FLOAT and DOUBLE SQL datatypes.) We did have a
problem with thisin older versions of MySQL ++, but we believe we fixed it completely in v3.0.2. No one has since
proven dataloss via this path. Thereis still aknown problem 7 with the SQL DECIMAL type, which is somewhat
related to the floating-point issue, but it’s apparently rarely encountered, which iswhy it hasn't been fixed yet.

The best way to avoid problems with data trandation is to always use the special MySQL ++ data types defined in

i b/sqgl _types. h corresponding to your SQL schema. These typedefs begin with sgl_ and end with alowercase
version of the standard SQL type name, with spaces replaced by underscores. There are variants ending in _null that

wrap these base types so they’ re compatible with SQL null. For instance, the SQL type TINYINT UNSIGNED NOT
NULL isrepresented in MySQL++ by nysql pp: : sql _ti nyi nt _unsi gned. If you drop the NOT NULL part,
the corresponding C++ typeisnysql pp: : sql _ti nyi nt _unsi gned_nul | .

MySQL ++ doesn't force you to use these typedefs. It tries to be flexible with regard to data conversions, so you
could probably useint anywhere you use mysql pp: : sql _tinyi nt _unsi gned, for example. That said, the
MySQL ++ typedefs give several advantages:

» Space efficiency: the MySQL ++ types are no larger than necessary to hold the MySQL data.

» Portability: if your program has to run on multiple different system types (even just 32- and 64-bit versions of
the same operating system and processor type) using the MySQL ++ typedefs insulates your code from platform
changes.

e Clarity: using C++ types named similarly to the SQL types reduces the risk of confusion when working with
code in both languages at the same time.

e Compatibility: using the MySQL ++ types ensures that data conversions between SQL and C++ forms are
compatible. Naive use of plain old C++ types can result in data truncation, Typel ookupFailed exceptions, and
worse.

Type compatibility isimportant not just at the time you write your program, it also helps forward compatibility:
we occasionally change the definitions of the MySQL ++ typedefs to reduce the differences between the C++
and SQL type systems. We'll be fixing the DECIMAL issue brought up above this way, for instance; if your
program usessql _deci mal instead of the current underlying type, double, your program will pick up this
improvement automatically with just arecompile.

Most of these typedefs use standard C++ datatypes, but afew are aliases for a MySQL ++ specific type. For
instance, the SQL type DATETI ME is mirrored in MySQL ++ by nysql pp: : Dat eTi ne. For consistency,
sql _types. hincludes atypedef diasfor Dat eTi ne caled mysql pp: : sql _dateti ne.

MySQL ++ doesn’'t have typedefs for the most exatic data types, like those for the geospatial types. Patchesto
correct thiswill be thoughtfully considered.

3.7. Handling SQL Nulls

Both C++ and SQL have things in them called NULL, but they differ in several ways. Consequently, MySQL ++ has
to provide specia support for this, rather than just wrap native C++ facilities asit can with most data type issues.

’SQL’sDECIMAL datatypeisaconfigurable-precision fixed-point number format. MySQL ++ currently transl ates these to double, afl oating-point
data format, the closest thing available in the C++ type system. Since the main reason to use DECIMAL is to get away from the weird roundoff
behavior of floating-point numbers, this could be viewed as a serious problem. The thing is, though, in al the years MySQL ++ has been around, |
don’t remember anyone actually complaining about it. Apparently there’ s either no one using DECIMAL with MySQL ++, or they’ re ignoring any
roundoff errors they get as aresult. Until this wheel squeaks, it’s not likely to be greased. To fix this, we'll have to create a new custom data type
to hold such column values, which will be alot of work for apparently little return.

14

MySQL
+

VL%L NULL is atype modifier

MaRggbrimary distinction is one of type. In SQL, “NULL" is atype modifier, which affects whether you can legally
storeanull value in that column. There’'s simply nothing like it in C++.

To emulate SQL NULL, MySQL ++ provides the Null template to allow the creation of distinct “nullable”’ versions
of existing C++ types. So for example, if you have a TINYINT UNSIGNED column that can have nulls, the proper
declaration for MySQL ++ would be:

mysql pp: : Nul | <nmysqgl pp: : sql _tinyint_unsigned> nyfield;
Asof MySQL++ 3.1, we aso provide shorter aliases for such types:

nmysql pp: :sqgl _tinyint_unsigned_null nyfield;
Thesetypesaredeclaredinl i b/ sql _t ypes. h. You might want to scan through that to see what all is available.

Template instantiations are first-class types in the C++ language, so there’ s no possible confusion between this
feature of MySQL ++ and C++'s native NULL concept.

SQL NULL is aunique value

There' s asecondary distinction between SQL null and anything available in the standard C++ type system: SQL null
isadistinct value, equal to nothing else. We can't use C++ s NULL for this because it is ambiguous, being equal to
0 in integer context. MySQL ++ providesthe global nul | object, which you can assignto aNul | template instance
to makeit equal to SQL null:

nyfield = nysql pp::null;

If you insert aMySQL ++ field holding a SQL null into a C++ |Ostream, you get “(NULL)", something fairly
unlikely to bein anormal output string, thus reasonably preserving the uniqueness of the SQL null value.

MySQL ++ also tries to enforce the uniqueness of the SQL null value at compile time in assignments and data
conversions. If you try to store a SQL null in afield type that isn't wrapped by Nul | or try to assignaNul | -
wrapped field value to a variable of the inner non-wrapped type, the compiler will emit some ugly error message,
yelling about CannotConvertNull ToAnyOtherDataType. (The exact message is compiler-dependent.)

If you don't like these behaviors, you can change them by passing a different value for the second parameter to
template Nul | . By default, this parameter is NulllsNull, meaning that we should enforce the uniqueness of SQL
null. To relax the distinctions, you can instantiate the Nul | template with a different behavior type: NulllsZero or
NulllsBlank. Consider this code:

mysql pp: : Nul | <unsi gned char, nysql pp:: NulllsZero> nyfield(nysql pp::null);
cout << nyfield << endl;
cout << int(nmyfield) << endl;

Thiswill print “0” twice. If you had used the default for the second Nul | template parameter, the first output
statement would have printed “(NULL)”, and the second wouldn’t even compile.

3.8. MySQL++’s Special String Types

MySQL ++ has two classes that work likest d: : st ri ng to some degree: String and SQL TypeAdapter. These
classes exist to provide functionality that st d: : st ri ng doesn’t provide, but they are neither derivatives of nor
complete supersets of st d: : stri ng. Asaresult, end-user code generally doesn’t deal with these classes directly,
because st d: : st ri ng isabetter general-purpose string type. In fact, MySQL ++ itself usesst d: : st ri ng most

15

MySQL
+
+
vBf2he time, too. But, the places these specialized stringish types do get used are so important to the way MySQL ++
Wsarks that it's well worth taking the time to understand them.
Manua

SQLTypeAdapter
The simpler of thetwo is SQLTypeAdapt er, or STA for short.®

Asits name suggests, its only purposeis to adapt other data typesto be used with SQL. It has a whole bunch of
conversion constructors, one for all data types we expect to be used with MySQL ++ for valuesin queries. SQL
gueries are strings, so constructors that take stringish types just make a copy of that string, and all the others
“stringize” the value in the format needed by SQL 2 The conversion constructors preserve type information, so this
stringization process doesn’t throw away any essential information.

STA s used anywhere MySQL ++ needs to be able to accept any of several datatypesfor usein a SQL query. Major
users are Quer y’s template query mechanism and the Quer y stream quoting and escaping mechanism. Y ou care
about STA because any time you pass a data value to MySQL ++ to be used in building a SQL query, it goes through
STA. STAisone of the key piecesin MySQL ++ that makes it easy to generate syntactically-correct SQL queries.

String

If MySQL++ can be said to have its own generic string type, it's St r i ng, but it’s not really functional enough
for general use. It s possible that in future versions of MySQL ++ we' |l expand its interface to include everything
std: :string does, sothat'swhy it's called that.'°

Thekey thing St r i ng providesover st d: : stri ng isconversion of stringsin SQL value formatsto their plain
old C++ datatypes. For example, if you initialize it with the string “2007-11-19", you can assignthe St r i ng

to a Date, not because Dat e knows how to initidize itself from St r i ng, but thereverse: St r i ng has abunch
of implicit conversion operators defined for it, so you can use it in any type context that makes sense in your
application.

Because Row:. : oper at or[] returns St ri ng, you can say things like this:
int x =row"x"];

Inavery real sense, St ri ng istheinverse of STA: St ri ng converts SQL value strings to C++ data types, and
STA converts C++ data types to SQL value strings.*

St ri ng hastwo main uses.

By far the most common useis as the field value type of Row, as exemplified above. It's not just the return type
of Row. : oper at or [], though: it's actually the value type used within Row sinternal array. As aresult, any
time MySQL ++ pulls data from the database, it goes through St r i ng when converting it from the string form
used in SQL result setsto the C++ data type you actually want the datain. It’s the core of the structure population
mechanism in the SSQL S feature, for example.

Because St ri ng isthelast pristine form of datain aresult set before it gets out of MySQL ++'sinternals where
end-user code can seeit, MySQL++'s sgl_blob and related typedefs are aliases for St r i ng. Using anything else

8In version 2 of MySQL++ and earlier, SQLTypeAdapt er was called SQLSt ri ng, but it was confusing because its name and the fact that it
derived from st d: : st ri ng suggested that it was a general-purpose string type. MySQL++ even used it thisway in afew places internaly. In
v3, we made it asimple base class and renamed it to reflect its proper limited function.

9SQ_Ty peAdapt er doesn’t do quoting and escaping itself. That happens elsewhere, right at the point that the STA gets used to build aquery.
10 you used MySQL++ before v3, St ri ng used to be called Col Dat a. It was renamed because starting in v2.3, we began using it for holding
more than just column data. | considered renaming it SQLSt r i ng instead, but that would have confused old MySQL ++ users to no end. Instead,
| followed the example of Set , MySQL++'s specialized st d: : set variant.

11During the development of MySQL++ v3.0, | tried merging SQLTypeAdapt er and St ri ng into asingle class to take advantage of this. The
resulting class gave the C++ compiler the freedom to tie itself up in knots, because it was then allowed to convert amost any data type to almost
any other. You'd get atangle of ambiguous data type conversion errors from the most innocent code.

16

MySQL
+
+
v@/audd require copies; while the whole “ networked database server” thing means most of MySQL ++ can be quite
Weefficient and still not affect benchmark results meaningfully, BLOBSs tend to be big, so making unnecessary copies
Meauiakally make a difference. Which brings usto...

Reference Counting

To avoid unnecessary buffer copies, both STA and St r i ng areimplemented in terms of a reference-counted
copy-on-write buffer scheme. Both classes share the same underlying mechanism, and so are interoperable. This
means that if you construct one of these objects from another, it doesn’t actually copy the string data, it only
copies a pointer to the data buffer, and increments its reference count. If the object has new data assigned to it or
it's otherwise modified, it decrementsits reference count and creates its own copy of the buffer. This hasalot

of practical import, such as the fact that even though Row: : oper at or [] returnsSt r i ngsby value, it’ s still
efficient.

3.9. Dealing with Binary Data

Historically, there was no way to hold arbitrary-sized blocks of raw binary datain an SQL database. There was
resistance to adding such a feature to SQL for along time because it’ s better, where possible, to decompose blocks
of raw binary datainto a series of numbers and text strings that can be stored in the database. This lets you query,
address and manipulate elements of the data block individually.

A classic SQL newbie mistake istrying to treat the database server as afile system. Some embedded platforms use a
database engine as afile system, but MySQL doesn’t typically live in that world. When your platform already has a
perfectly good file system, you should use it for big, nondecomposable blocks of binary datain most cases.

A common example people use when discussing this isimages in database-backed web applications. If you store
the image in the database, you have to write code to retrieve the image from the database and send it to the client;
there’ s more overhead, and less efficient use of the system’s I/O caching system. If you store the image in the
filesystem, all you have to do is point the web server to the directory where the images live, and put a URL for that
image in your generated HTML . Because you' re giving the web server adirect path to afile on disk, operation is far
more efficient. Web servers are very good at slurping whole files off of disk and sending them out to the network,
and operating systems are very good at caching file accesses. Plus, you avoid the overhead of pushing the data
through the high-level language your web app is written in, which istypically an interpreted language, not C++.
Some people still hold out on this, claiming that database engines have superior security features, but | call bunk on
that, too. Operating systems and web servers are capable of building access control systems every bit as granular and
secure as a database system.

Occasionaly you really do need to store a nondecomposable block of binary datain the database. For such cases,
modern SQL database servers support BLOB datatypes, for Binary Large OBject. Thisis often just called binary
data, though of course al datain a modern computer is binary at some level.

The tricky part about dealing with binary datain MySQL++ isto ensure that you don’t ever treat the dataasaC
string, which isreally easy to do accidentally. C strings treat zero bytes as special end-of-string characters, but
they’re not specid at all in binary data. We've made alot of improvements to the way MySQL ++ handles string
datato avoid this problem, but it’ s still possible to bypass these features, wrecking your BLOBs. These examples
demonstrate correct techniques.

Loading a binary file into a BLOB column

Above, | opined that it’s usually incorrect to store image data in a database, particularly with web apps, of which
CGl isaprimitive form. Still, it makes a nice, smple example.

Instead of a single example program, we have here a matched pair. The first example takes the name of a JPEG file
on the command line along with all the other common example program parameters, loads that file into memory,
and storesit in aBLOB column in the database.

MySQL
+
+
v3hid example also demonstrates how to retrieve the value assigned to an auto-increment column in the previous
Wssertion. This example uses that feature in the typical way, to create unique IDs for rows as they’re inserted.
Manua
Hereisexanpl es/ | oad_j peg. cpp:

#i ncl ude "cndl i ne. h"
#i ncl ude "i mages. h"
#i ncl ude "printdata. h"

#i ncl ude <fstreane

usi ng nanespace std;
usi ng nanmespace nysql pp;

/1 This is just an inplenentation detail for the exanple. Skip down to
/1 main() for the concept this exanple is trying to denonstrate. You
/1 can sinply assune that, given a BLOB containing a valid JPEG it

/] returns true.

static bool

i s_jpeg(const nysql pp::sql _blob& ing, const char** whynot)

{

/1 See http://stackoverflow conf questions/2253404/ for
/] justification for the various tests.
const unsigned char* idp =
reinterpret_cast<const unsigned char*>(ing.data());
if (inmg.size() < 125) {
*whynot = "a valid JPEG nust be at |east 125 bytes";

}
else if ((idp[0] '= OxFF) || (idp[1] != 0xD8)) {
*whynot = "file does not begin with JPEG sigil bytes";

}
else if ((mencnp(idp + 6, "JFIF", 4) '=0) &&
(mencnp(idp + 6, "Exif", 4) '=0)) {

*whynot = "file does not contain JPEG type word";
}
el se {

*whynot = O;

return true;
}

return fal se;

/1 Skip to main() before studying this. This is alittle too

/1 lowlevel to bother with on your first pass thru the code.

static bool

| oad_j peg_fil e(const nysql pp:: exanpl es: : CommandLi ne& cndl i ne,
i mages& i ng, string& ing_nane)

{

if (crmdline.extra_args().size() == 0) {
/1 Nothing for us to do here. Caller will insert NULL BLOB.
return true;

}

/] Got a file's nane on the conmmand |ine, so open it.

img_name = cndline.extra_args()[0];

ifstreaming file(ing_nanme.c_str(), ios::binary);

if (ing_file) {
/1 Slurp file contents into RAMwi th m ni num copyi ng. (Idiom
/1 explained here: http://stackoverflow conl questions/116038/)
11

MySQL

+

+
v3.2.1 /1 By loading the file into a C++ string (stringstream:str())
User // and assigning that directly to a nysql pp::sqgl_blob, we avoid

Manual /1 truncating the binary data at the first null character.
— i my. data.data = static_cast<const stringstreant>(
&(stringstream() << ing_file.rdbuf()))->str();

/1 Check JPEG data for sanity.

const char* error;

if (is_jpeg(ing.data.data, &error)) {
return true;

}
el se {
cerr << '"' << ing_name << "\" isn't a JPEG " <<
error << 'l' << endl;
}

}

cmdl i ne. print_usage("[jpeg_file]l");
return fal se;

int
mai n(int argc, char *argv[])
{
/| Get database access paraneters from comand |ine
nmysql pp: : exanpl es: : ConmandLi ne cndl i ne(argc, argv);
if (crdline) {
return 1,
}

try {
/1 Establish the connection to the database server.

nmysql pp: : Connecti on con(nysql pp: : exanpl es: : db_nane,
cndl i ne.server(), cndline.user(), cndline.pass());

/1 Load the file named on the conmand |ine

i mges ing(nysql pp::null, nysqglpp::null);

string inmg_name("NULL");

if (load_jpeg_file(cndline, ing, ing_name)) {
/1 Insert image data or SQL NULL into the inmmges.data BLOB
/1 colum. The key here is that we're holding the raw
/1 binary data in a mysql pp::sqgl _blob, which avoi ds data
/| conversion problens that can lead to treating BLOB data
/1 as C strings, thus causing null-truncation. The fact
// that we're using SSQS here is a side issue, sinply
/1 denobnstrating that nysqgl pp:: Null <nysql pp::sql _blob> is
/1 now legal in SSQLS, as of MySQ++ 3.0.7.
Query query = con.query();
query.insert(ing);
Si npl eResult res = query. execute();

/1 Report successful insertion
cout << "Inserted \"" << ing_nanme <<
"\" into inmages table, " << ing.data.data.size() <<
bytes, ID" << res.insert_id() << endl;
}
}
catch (const BadQuery& er) {
/1 Handl e any query errors

cerr << "Query error: " << er.what() << endl;
return -1;

MySQL

+
+
v3.2.1catch (const BadConversion& er) {
User /1 Handl e bad conversions
Manual cerr << "Oonver;i on error: << er.what () << endl <<
— "\tretrieved data size: " << er.retrieved <<
", actual size: " << er.actual _size << endl;
return -1,
}
catch (const Exception& er) {
/] Catch-all for any other MySQ.++ exceptions
cerr << "Error: " << er.what() << endl;
return -1;
}
return O;
}

Notice that we used the escape manipulator when building the INSERT query above. Thisis because
mysqglpp::sgl_blobisjust an aias for one of the special MySQL ++ string types, which don’t do automatic quoting
and escaping. They can't, because MySQL ++ also uses these data types to hold raw SQL query strings, which
would break due to doubled quoting and/or escaping if it were automatic.

Serving images from BLOB column via CGI

The other examplein this pair is rather short, considering how much it does. It parses a CGI query string giving
theimage ID, uses that to retreive data loaded into the database by | oad_j peg, and writesit out in the form a
web server wants when processing a CGlI call, all with adequate real-world error handling. Thisisexanpl es/

cgi _j peg. cpp:

#i ncl ude "cndl i ne. h"
#i ncl ude "i mages. h"

#define CRLF “\r\n"
#defi ne CRLF2 "\r\n\r\n"
int

mai n(int argc, char* argv[])

{

/] CGet database access paraneters fromcommand line if present, else
/1 use hard-coded val ues for true CA case.
nmysql pp: : exanpl es: : ConmandLi ne cndl i ne(argc, argv, "root",
"nunyabi nness");
if (crdline) {
return 1;

}

/1l Parse CE query string environnent variable to get inage ID
unsigned int ing_id = 0;
char* cgi _query = getenv("QUERY_STRING');
if (cgi_query) {
if ((strlen(cgi_query) < 4) || nmencnp(cgi_query, "id=", 3)) {
std::cout << "Content-type: text/plain" << std::endl << std::endl;
std::cout << "ERROR: Bad query string" << std::endl;

return 1;
}
el se {
img_id = atoi(cgi_query + 3);
}
}
el se {

std::cerr << "Put this programinto a web server's cgi-bin "
"directory, then" << std::endl;

MySQL

+
+
v3.2.1 std::cerr << "invoke it with a URL like this:" << std::endl;
User std::cerr << std::endl;
Manual std::cerr <.<- . http://server.nanme. conl cgi -bi n/cgi _j peg?i d=2" <<
- std::endl;
std::cerr << std::endl;
std::cerr << "This will retrieve the image with ID 2." << std::endl;
std::cerr << std::endl;
std::cerr << "You will probably have to change sone of the #defines "
"at the top of" << std::endl;
std::cerr << "exanpl es/cgi_jpeg.cpp to allow the | ookup to work." <<
std::endl;
return 1;
}
/1l Retrieve image fromDB by ID
try {
nmysql pp: : Connecti on con(nysql pp: : exanpl es: : db_nane,
cmdl i ne.server(), cndline.user(), cndline.pass());
nmysql pp: : Query query = con. query();
query << "SELECT * FROM images WHERE id = " << ing_id;
mysql pp: : StoreQueryResult res = query.store();
if (res & res.numrows()) {
images ing = res[0];
if (ing.data.is_null) {
std::cout << "Content-type: text/plain" << CRLF2;
std::cout << "No inmge content!" << CRLF;
}
el se {
std::cout << "X-lmage-1d: " << ing_id << CRLF; // for debugging
std::cout << "Content-type: image/jpeg" << CRLF;
std::cout << "Content-length: " <<
i ng. data. data.l ength() << CRLF2;
std::cout << ing.data;
}
}
el se {
std::cout << "Content-type: text/plain" << CRLF2;
std::cout << "ERROR No image with ID" << ing_id << CRLF;
}
}
catch (const nysql pp: : BadQuery& er) {
/1 Handl e any query errors
std::cout << "Content-type: text/plain" << CRLF2;
std::cout << "QUERY ERROR " << er.what() << CRLF;
return 1,
}
catch (const nysql pp:: Exception& er) {
/| Catch-all for any other MySQL++ exceptions
std::cout << "Content-type: text/plain" << CRLF2;
std::cout << "GENERAL ERROR " << er.what() << CRLF;
return 1,
}
return O;
}

While you can run it by hand, it's best to install thisin aweb server’s CGI program directory, then call it with a
URL likehtt p: // my. server. coni cgi - bi n/ cgi _j peg?i d=1. That retrieves the JPEG with ID 1 from
the database and returnsit to the web server, which will send it on to the browser.

We've included an image with MySQL ++ that you can use with this example pair, exanpl es/ | ogo. j pg.

MySQL
+

3:10. Using Transactions

Manual

Fhe Transaction class makes it easier to use SQL transactions in an exception-safe manner. Normally you create the
Transact i on object on the stack before you issue the queries in your transaction set. Then, when all the queries
in the transaction set have been issued, you call Tr ansacti on: : commi t (), which commits the transaction

set. If the Tr ansact i on object goes out of scope before you call conmi t () , the transaction set is rolled back.
This ensures that if some code throws an exception after the transaction is started but before it is committed, the

transaction isn’t left unresolved.

exanpl es/ transacti on. cpp illustratesthis:

#i ncl ude "cndl i ne. h"
#i ncl ude "printdata. h"
#i ncl ude "stock. h"

#i ncl ude <i ostreanp
#i ncl ude <cstdi o>

usi ng nanespace std;

int
mai n(int argc, char *argv[])
{
/] CGet database access paraneters from comand |ine
nysql pp: : exanpl es: : ComrandLi ne cndl i ne(argc, argv);
if (crdline) {
return 1;

}

try {
/! Establish the connection to the database server.

mysql pp: : Connecti on con(nysqgl pp: : exanpl es: : db_nane,

crmdl i ne. server (), cndline.user(), cndline.pass());

/1 Show initial state

nmysql pp: : Query query = con. query();

cout << "lInitial state of stock table:" << endl;
print_stock_tabl e(query);

/1 Insert a fewrows in a single transaction set

{

/1 Use a higher level of transaction isolation than MySQ
[/ offers by default. This trades sone speed for nore

/] predictable behavior. W've set it to affect all

/] transactions started through this DB server connection,
/1 so it affects the next block, too, even if we don't

/] commit this one.

nmysql pp: : Transaction trans(con,
nysql pp: : Transacti on: : serial i zabl e,
nmysql pp: : Transacti on: : sessi on);

stock row "Sauerkraut", 42, 1.2, 0.75,

nysql pp: : sql _dat e("2006-03-06"), mysqlpp::null);

query.insert(row;
query. execute();

cout << "\nRow inserted, but not commtted." << endl;

cout << "Verify this with another program (e.g.
"then hit Enter." << endl;
getchar();

MySQL

v3.2.1 cout << "\nCommitting transaction gives us:" << endl;
User trans.comit();

Manual print_stock_tabl e(query);
— }

/1 Now let's test auto-roll back

{

// Start a new transaction, keeping the sane isolation |evel
/1 we set above, since it was set to affect the session.
nysql pp: : Transaction trans(con);

cout << "\nNow addi ng catsup to the database..." << endl;

stock row"Catsup", 3, 3.9, 2.99,

nysql pp: : sgl _dat e("2006-03-06"), nysqgl pp::null);
query.insert(row;
query. execute();

}
cout << "\nNo, yuck! W don't like catsup. Rolling it back:" <<

endl ;
print_stock_tabl e(query);

}

catch (const nysql pp:: BadQuery& er) {
// Handl e any query errors
cerr << "Query error: " << er.what() << endl;
return -1;

}
catch (const nysql pp: : BadConversi on& er) {

/1 Handl e bad conversions

cerr << "Conversion error: " << er.what() << endl <<
"\tretrieved data size: " << er.retrieved <<
", actual size: " << er.actual _size << endl;

return -1;

}

catch (const nysql pp:: Exception& er) {
/| Catch-all for any other MySQL++ exceptions
cerr << "Error: " << er.what() << endl;
return -1;

}

return O;

}

One of the downsides of transactions is that the locking it requires in the database server is prone to deadlocks.
The classic case where this happens is when two programs both want access to the same two rows within asingle
transaction each, but they modify them in opposite orders. If the timing is such that the programs interleave their
lock acquisitions, the two come to an impasse: neither can get access to the other row they want to modify until the
other program commits its transaction and thus release the row locks, but neither can finish the transaction because
they’ re waiting on row locks the database server is holding on behalf of the other program.

The MySQL server is smart enough to detect this condition, but the best it can do is abort the second transaction.
This breaks the impasse, allowing the first program to complete its transaction.

The second program now has to deal with the fact that its transaction just got aborted. There’ sa subtlety in
detecting this situation when using MySQL ++. By default, MySQL ++ signals errors like these with exceptions.

In the exception handler, you might expect to get ER_ LOCK DEADLOCK from Quer y: : errnun{() (or
Connecti on: : errnun(), samething), but what you'll ailmost certainly get instead is 0, meaning “no error.”
Why? It's because you're probably using aTr ansact i on object to get automatic roll-backs in the face of
exceptions. In this case, the roll-back happens before your exception handler is called by issuing aROLLBACK
guery to the database server. Thus, Quer y: : er r num() returnsthe error code associated with this roll-back query,
not the deadlocked transaction that caused the exception.

23

MySQL
+
+

v3@.4void this problem, afew of the exception objects as of MySQL ++ v3.0 include this last error number in the
@=eeption object itsalf. It's populated at the point of the exception, so it can differ from the value you would get
MaamalQuer y: : errnun() later on when the exception handler runs.

The example exanpl es/ deadl ock. cpp demonstrates the problem:
#i ncl ude "cmdl i ne. h"

#i ncl ude <nysql ++. h>
#i ncl ude <nysql d_error. h>

#i ncl ude <i ostreanr
usi ng nanespace std;

/1 Bring in global holding the value given to the -mswitch
extern int run_node;

int
mai n(int argc, char *argv[])
{
/| Get database access paraneters from comand |ine
mysql pp: : exanpl es: : ConmandLi ne cndl i ne(argc, argv);
if (cmdline) {
return 1,
}

/1 Check that the npde paraneter was al so given and it nakes sense
const int run_node = cndline.run_node();
if ((run_node !'= 1) && (run_node != 2)) {
cerr << argv[0] << " nust be run with -mlL or -n2 as one of "
"its conmand-line argunents." << endl;

return 1;
}
nmysql pp: : Connecti on con;
try {

/] Establish the connection to the database server
mysql pp: : Connecti on con(nysqgl pp: : exanpl es: : db_nane,
crmdl i ne. server (), cndline.user(), cndline.pass());

/] Start a transaction set. Transactions create nmutex | ocks on
/1 nmodified rows, so if two prograns both touch the sane pair of
/1 rows but in opposite orders at the wong time, one of the two
/1 prograns will deadl ock. The MySQL server knows how to detect
/1 this situation, and its error return causes MySQ.++ to throw
/1 a BadQuery exception. The point of this exanple is that if
/1 you want to detect this problem you would check the val ue of
/1 BadQuery::errnun(), not Connection::errnunm(), because the

/1 transaction rollback process executes a query which succeeds,
/] setting the MyYSQL C API's "last error nunmber" value to O.

/1 The exception object carries its own copy of the error nunber
/] at the point the exception was thrown for this very reason.
nysql pp: : Query query = con. query();

nmysql pp: : Transaction trans(con);

/] Build and run the queries, with the order depending on the -m
/1 flag, so that a second copy of the programw || deadl ock if
/1 run while the first is waiting for Enter.
char dummy[100];
for (int i =0; i <2; ++i) {

int lock = run_node + (run_nmode == 1?2 i : -i);

MySQL

+
+
v3.2.1 cout << "Trying lock " << lock << "..." << endl;
User
Manual query << "select * from deadl ock_test" << |ock <<
- " where x = " << lock << " for update";
query.store();
cout << "Acquired lock " << lock << ". Press Enter to "
cout << (i == 0 ? "try next lock" : "exit");
cout << ": " << flush;
cin.getline(dunmry, sizeof(dumy));
}
}
catch (nysql pp:: BadQuery e) {
if (e.errnun() == ER _LOCK_DEADLOCK) {
cerr << "Transaction deadl ock detected!" << endl;
cerr << "Connection::errnum= " << con.errnun() <<
BadQuery::errnum= " << e.errnun() << endl;
}
el se {
cerr << "Unexpected query error: " << e.what() << endl;
}
return 1;
}
catch (nysql pp:: Exception e) {
cerr << "Ceneral error: " << e.what() << endl;
return 1;
}
return O;
}

This example works a little differently than the others. Y ou run one copy of the example, then when it pauses
waiting for you to press Enter, you run another copy. Then, depending on which one you press Enter in, one of
the two will abort with the deadlock exception. Y ou can see from the error message you get that it matters which
method you call to get the error number. What you do about it is up to you as it depends on your program’s design
and system architecture.

3.11. Which Query Type to Use?

There are three major ways to execute aquery in MySQL++: Query: : execut e(), Query: :store(),and
Query: : use() . Which should you use, and why?

execut e() isfor queriesthat do not return data per se. For instance, CREATE INDEX. Y ou do get back

some information from the MySQL server, which execut e() returnsto itscaller in a SimpleResult object. In
addition to the obvious — aflag stating whether the query succeeded or not — this object also contains things like
the number of rows that the query affected. If you only need the success status, it's alittle more efficient to call
Query: : exec() instead, asit simply returns bool.

If your query does pull data from the database, the ssmplest optionisst or e() . (All of the examples up to this
point have used this method.) This returns a StoreQueryResult object, which contains the entire result set. It's
especially convenient because St or eQuer yResul t derivesfrom st d: : vect or <mysql pp: : Row>, soiit
opens the whole panoply of STL operations for accessing the rows in the result set. Access rows randomly with
subscript notation, iterate forwards and backwards over the result set, run STL agorithms on the set...it all works
naturally.

If you like the idea of storing your resultsin an STL container but don’t want to use st d: : vect or , you can call
Query: :storein() instead. It lets you store the results in any standard STL container (yes, both sequentia and
set-associative types) instead of using St or eQuer yResul t . You do miss out on some of the additional database
information held by St or eQuer yResul t 's other base class, ResultBase, however.

25

MySQL
+
+
v32dr e* () queries are convenient, but the cost of keeping the entire result set in main memory can sometimes
Wedoo high. It can be surprisingly costly, in fact. A MySQL database server stores data compactly on disk, but it
Megtuahs query data to the client in atextual form. Thisresultsin akind of data bloat that affects numeric and BLOB
types the most. MySQL ++ and the underlying C AP library also have their own memory overheads in addition to
this. So, if you happen to know that the database server stores every record of a particular tablein 1 KB, pulling
amillion records from that table could easily take several GB of memory with ast or e() query, depending on
what’s actually stored in that table.

For these large result sets, the superior optionisause() query. This returns a UseQueryResult object, whichis
similar to St or eQuer yResul t, but without all of the random-access features. Thisis because a“use’ query
tells the database server to send the results back one row at atime, to be processed linearly. It's analogousto a C
++ stream’ sinput iterator, as opposed to a random-access iterator that a container like vector offers. By accepting
this limitation, you can process arbitrarily large result sets. This technique is demonstrated in exanpl es/

si npl e3. cpp:

#i ncl ude "crdl i ne. h"
#i ncl ude "printdata. h"

#i ncl ude <nysql ++. h>

#i ncl ude <i ostreanp
#i ncl ude <i onani p>

usi ng namespace std;

int
mai n(int argc, char *argv[])
{
/] CGet database access paraneters from command |ine
nysql pp: : exanpl es: : ComrandLi ne cndl i ne(argc, argv);
if (crdline) {
return 1;

}

/1 Connect to the sanpl e database.
nmysql pp: : Connecti on conn(fal se);
i f (conn.connect (nysql pp:: exanpl es: : db_name, cndline.server(),
crmdl i ne.user (), cndline.pass())) {
/1 Ask for all rows fromthe sanple stock table and display
/1 them Unlike sinple2 exanple, we retreive each row one at
/1 a time instead of storing the entire result set in nenory
// and then iterating over it.
nmysql pp: : Query query = conn. query("select * from stock");
if (nysql pp::UseQueryResult res = query.use()) {
/1 Display header
cout.setf(ios::left);
cout << setw(31) << "lten <<
setw(10) << "Nunt <<
setw(10) << "Weight" <<
setw(10) << "Price" <<
"Date" << endl << endl;

/]l Get each rowin result set, and print its contents
while (nysql pp::Row row = res.fetch_row()) {

cout << setw(30) << row["itenm'] << ' ' <<
setw(9) << row "nunf'] << ' ' <<
setw(9) << row "weight"] << ' ' <<
setw(9) << row "price"] << ' ' <<
setw9) << row "sdate"] <<
endl ;

MySQL

+
+
v3.2.1
User /1 Check for error: can't distinguish "end of results" and
Manual {/ error cases in return fromfetch_row) otherw se.
- if (conn.errnun()) {
cerr << "Error received in fetching a row " <<
conn.error() << endl
return 1,
}
return O;
}
el se {
cerr << "Failed to get stock item " << query.error() << endl
return 1,
}
}
el se {
cerr << "DB connection failed: " << conn.error() << endl
return 1;
}
}

This example does the same thing as si npl e2, only with a“use” query instead of a“store” query.

Valuableasuse() queriesare, they should not be the first resort in solving problems of excessive memory use.
It's better if you can find away to simply not pull as much data from the database in the first place. Maybe you're
saying SELECT * even though you don't immedidately need all the columns from the table. Or, maybe you're
filtering the result set with C++ code after you get it from the database server. If you can do that filtering with a
more restrictive WHERE clause on the SELECT, it'll not only save memory, it’ll save bandwidth between the
database server and client, and can even save CPU time. If the filtering criteria can’t be expressed inaWHERE
clause, however, read on to the next section.

3.12. Conditional Result Row Handling

Sometimes you must pull more data from the database server than you actually need and filter it in memory. SQL’s
WHERE clause is powerful, but not as powerful as C++. Instead of storing the full result set and then picking over
it to find the rows you want to keep, use Quer y: : store_i f (). Thisisexanpl es/ store_i f. cpp:

#i ncl ude "cndl i ne. h"
#i ncl ude "printdata. h"
#i ncl ude "stock. h"

#i

ncl ude <nysql ++. h>

#i ncl ude <i ostreanp

#i ncl ude <mat h. h>

/1 Define a functor for testing primality.
struct is_prime

{

bool operator()(const stock& s)

{
if ((s.num==2) || (s.num== 3)) {
return true; /1 2 and 3 are trivial cases

}
else if ((s.num< 2) || ((s.num%2) == 0)) {
return fal se; /] can't be prine if < 2 or even

}

el se {

MySQL

+
+
v3.2.1 /1 The only possibility left is that it's divisible by an
User // odd nunber that's less than or equal to its square root.
for (int i =3; i <= sqrt(double(s.nunm); i += 2) {
Manual if ((s.num%i) == 0) {
return fal se;
}
}
return true;
}
}
b
int
mai n(int argc, char *argv[])
{
/] Get database access paranmeters from comrand |ine
nysql pp: : exanpl es: : CommandLi ne cndl i ne(argc, argv);
if ('crdline) {
return 1;
}
try {
/| Establish the connection to the database server.
mysql pp: : Connecti on con(nysql pp: : exanpl es: : db_nane,
cmdl i ne.server(), cndline.user(), cndline.pass());
/1 Collect the stock itens with prinme quantities
std::vector<stock> results;
nysql pp: : Query query = con. query();
query.store_if(results, stock(), is_prime());
/1 Show the results
print_stock_header(results.size());
std::vector<stock>::const_iterator it;
for (it =results.begin(); it !=results.end(); ++it) {
print_stock_rowit->itemc_str(), it->num it->weight,
it->price, it->sDate);
}
}
catch (const nysql pp: : BadQuery& e) {
/1 Sonmething went wong with the SQ query.
std::cerr << "Query failed: " << e.what() << std::endl;
return 1;
}
catch (const nysql pp:: Excepti on& er) {
/] Catch-all for any other MySQL++ exceptions
std::cerr << "Error: " << er.what() << std::endl;
return 1,
}
return O;
}

| doubt anyone really needsto select rows from atable that have a prime number in agiven field. This exampleis
meant to be just barely more complex than SQL can manage, to avoid obscuring the point. That point being, the
Query::store_if() cal heregivesyou acontainer full of results meeting a criterion that you probably can’t
expressin SQL. You will no doubt have much more useful criteriain your own programs.

If you need a more complex query thanthe onest ore_i f () knows how to build when given an SSQLS
examplar, there are two overloads that et you use your own query string. One overload takes the query string
directly, and the other uses the query string built with Quer y’s stream interface.

28

MySQL
+

"3.13. Executing Code for Each Row In a Result Set

M@%Lalis more than just a database query language. Modern database engines can actually do some cal cul ations on
the data on the server side. But, thisisn’t aways the best way to get something done. When you need to mix code
and aquery, MySQL++'sQuery: : f or _each() facility might bejust what you need. Thisisexanpl es/
for_each. cpp:

#i ncl ude "cndl i ne. h"
#i ncl ude "printdata. h"
#i ncl ude "stock. h"

#i ncl ude <nysql ++. h>
#i ncl ude <i ostreanp

#i ncl ude <math. h>

/1 Define a functor to collect statistics about the stock table
class gather_stock_stats

{
public:
gat her _stock_stats()
items_(0),
wei ght _(0),
cost_(0)
{
}
voi d operator()(const stock& s)
{
itens_ += s.num
wei ght _ += (s.num* s.weight);
cost_ += (s.num* s.price.data);
}
private:
nysql pp: :sqgl _bigint items_;
nmysql pp: : sql _doubl e wei ght _, cost_;
friend std::ostream& operator<<(std::ostrean& os,
const gather_stock_stats& ss);
H

/1 Dunp the contents of gather_stock_stats to a streamin human-readabl e
/1 form

std::ostream&

operator<<(std::ostrean& os, const gather_stock_stats& ss)

{
0S << ss.items_ << " itens " <<
"wei ghing " << ss.weight_ << " stone and " <<
"costing " << ss.cost_ << " cowrie shells";
return os;
}
int

mai n(int argc, char *argv[])

/1 CGet database access paraneters from command |ine
nysql pp: : exanpl es: : ComrandLi ne cndl i ne(argc, argv);

MySQL

+
+
v3.21if (fcmdline) {
User return 1;
Manual}
try {
/! Establish the connection to the database server.
mysql pp: : Connection con(nysql pp: : exanpl es: : db_nane,
cmdl i ne.server(), cndline.user(), cndline.pass());
/1 Gather and display the stats for the entire stock table
nmysql pp: : Query query = con. query();
std::cout << "There are " << query.for_each(stock(),
gather _stock_stats()) << '.' << std::endl;
}
catch (const nysql pp: : BadQuery& e) {
/1 Sonmething went wong with the SQ query.
std::cerr << "Query failed: " << e.what() << std::endl;
return 1;
}
catch (const nysql pp:: Excepti on& er) {
/] Catch-all for any other MySQ.++ exceptions
std::cerr << "Error: " << er.what() << std::endl;
return 1;
}
return O;
}

Y ou only need to read the mai n() function to get a good idea of what the program does. The key line of

code passes an SSQL S examplar and afunctor to Query: : for _each().for _each() usesthe SSQLS
instanceto buildasel ect * from TABLE query, st ock inthiscase. It runsthat query internally, calling
gat her _st ock_st at s oneach row. Thisis apretty contrived example; you could actually do thisin SQL, but
we're trying to prevent the complexity of the code from getting in the way of the demonstration here.

Just aswith st ore_i f (), described above, there are two other overloads for f or _each() that let you use your
own query string.

3.14. Connection Options

MySQL has alarge number of options that control how it makes the connection to the database server, and how that
connection behaves. The defaults are sufficient for most programs, so only one of the MySQL ++ example programs
make any connection option changes. Hereisexanpl es/ nul ti query. cpp:

#i ncl ude "cndline. h"
#i ncl ude "printdata. h"

#i ncl ude <nysql ++. h>

#i ncl ude <i ostreanr

#i ncl ude <i omani p>

#i ncl ude <vector>

usi ng namespace std;

usi ng nanespace nysql pp;

typedef vector<size_t> |ntVectorType;

static void
print_header (1 ntVector Type& wi dths, StoreQueryResult& res)

30

MySQL

+
+
v8.2.1
User Cout << " [" << setfill (" ");
Manuar‘or (size_t i =0; i <res.field_names()->size(); i++) {
— cout << " " << setw(widths.at(i)) << res.field_nane(int(i)) << "
}
cout << endl;
}

static void
print_row(l ntVectorType& wi dt hs, Row& row)

{
cout << " |" << setfill (" ");
for (size_t i =0; i <rowsize(); ++i) {
cout << " " << setw(widths.at(i)) << rowint(i)] <<" |";
}
cout << endl;
}

static void
print _row_separator (I ntVect or Type& wi dt hs)

{
cout << " +" << setfill('-");
for (size_t i =0; i <wdths.size(); i++) {
cout << "-" << setwm(widths.at(i)) << '-' << "-+";
}
cout << endl;
}

static void
print_result(StoreQueryResult& res, int index)
{
/1 Show how many rows are in result, if any
StoreQueryResul t::size_type numresults = res.size();
if (res & (numresults > 0)) {
cout << "Result set " << index << " has " << numresults <<

" row' << (numresults == 1 ? "" : "s") << ':' << endl;
}
el se {
cout << "Result set " << index << " is enpty." << endl;
return;
}

/1 Figure out the widths of the result set's colums
I nt Vect or Type wi dt hs;
size_t size = res.numfields();
for (size_t i =0; i < size; i++) {
wi dt hs. push_back(max(
res.field(i).max_|length(),
res.field_name(i).size()));

}

/1 Print result set header
print _row_separator (wi dths);
print_header (w dths, res);
print _row_separator (wi dths);

// Display the result set contents

for (StoreQueryResult::size_type i =0; i < numresults; ++i) {
print_rowmw dths, res[i]);

}

MySQL

+
+
v3.2.1

User // Print result set footer

Mjfaﬂ,lapri nt

_row_separator(w dt hs);

static void
print_multiple_results(Query& query)

{

int

11

Execute query and print all result sets

StoreQueryResult res = query.store();
print_result(res, 0);
for (int i =1; query.nmore_results(); ++i) {

res = query.store_next();
print_result(res, i);

mai n(int argc, char *argv[])

{

/1 Get connection paraneters fromcomand |ine
nysql pp: : exanpl es: : ComrandLi ne cndl i ne(argc, argv);
if ('crdline) {

return 1;
}
try {

// Enable nulti-queries. Notice that you al nost al ways set
/1 MySQ.++ connection options before establishing the server
/] connection, and options are always set using this one

/1 interface. |If you're fanmliar with the underlying C API,
/1 you know that there is poor consistency on these matters;

/1 MySQ++ abstracts these differences away.
Connection con;
con. set _option(new Mil ti StatenentsOption(true));

/1 Connect to the database

if (!con.connect(nysql pp::exanpl es::db_name, cndline.server(),

cndl i ne.user(), cndline.pass())) {
return 1;

}

/1 Set up query with nmultiple queries.

Query query = con. query();

query << "DROP TABLE | F EXI STS test_table; " <<
"CREATE TABLE test_table(id INT); " <<
"I NSERT I NTO test _tabl e VALUES(10); " <<
" UPDATE test_table SET i d=20 WHERE i d=10;
"SELECT * FROM test_table; " <<
"DROP TABLE test _table";

cout << "Multi-query: " << endl << query << endl;

/1 Execute statenment and display all result sets.
print_multiple_results(query);

f MYSQL_VERSI ON_| D >= 50000

/1 1f it's MySQ v5.0 or higher, also test stored procedures,

<<

// return their results the same way nulti-queries do.

query << "DROP PROCEDURE | F EXI STS get_stock; " <<

" CREATE PROCEDURE get _stock" <<
"(i_itemvarchar(20)) " <<

whi ch

MySQL

v3.2.1 "BEG N " <<
User "SET i _item = concat('%, i_item "%); " <<
Manual "SELECT * FROM stock WHERE |l ower(iten) like lower(i_item; " <<
— "END; "
cout << "Stored procedure query: " << endl << query << endl;

/] Create the stored procedure.
print_multiple_results(query);

// Call the stored procedure and display its results.
query << "CALL get_stock('relish")";
cout << "Query: " << query << endl;
print_multiple_results(query);

#endi f

return O;

}

catch (const BadOption& err) {
cerr << err.what() << endl;
cerr << "This exanple requires MWSQ 4.1.1 or later." << endl;
return 1;

}

catch (const ConnectionFailed& err) {
cerr << "Failed to connect to database server: " <<
err.what () << endl;
return 1;

}

catch (const Exception& er) {
/] Catch-all for any other MySQ.++ exceptions
cerr << "Error: " << er.what() << endl;
return 1,

}

Thisisafairly complex example demonstrating the multi-query and stored procedure features in newer versions
of MySQL. Because these are new features, and they change the communication between the client and server,
you have to enable these features in a connection option. The key lineisright up at the top of mai n() , whereit
creates a Multi StatementsOption object and passesit to Connect i on: : set _opti on() . That method will
take a pointer to any derivative of Option: you just create such an object on the heap and passit in, which gives
Connect i on the data valuesit needs to set the option. Y ou don’t need to worry about releasing the memory used
by the Opt i on objects; it's done automatically.

The only tricky thing about setting optionsis that only afew of them can be set after the connection is up. Most
need to be set just as shown in the example above: create an unconnected Connect i on object, set your connection
options, and only then establish the connection. The option setting mechanism takes care of applying the options at
the correct time in the connection establishment sequence.

If you're familiar with setting connection options in the MySQL C API, you'll have to get your head around the
fact that MySQL ++' s connection option mechanism is a much simpler, higher-level design that doesn’t resemble
the C API in any way. The C APl has something like half a dozen different mechanisms for setting options that
control the connection. The flexibility of the C++ type system allows usto wrap al of these up into a single high-
level mechanism while actually getting greater type safety than the C APl allows.

3.15. Dealing with Connection Timeouts

By default, current MySQL servers have an 8 hour idle timeout on connections. Thisis not a problem if your
program never has to run for more than 8 hours or reliably queries the database more often than that. And, it'sa
good thing for the database server, because even an idle connection takes up server resources.

MySQL
+
+
vB/2rdy programs must run continually, however, and may experience long idle periods, such as nights and weekends
Wdeen no oneis around to make the program issue database queries. It's therefore common for people writing such
Mprogtams to get a bug report from the field complaining that the program died overnight or over along weekend,
usually with some error message about the database server going away. They then check the DB server, find that
it's still running and never did restart and scratch their heads wondering what happened. What happened is that the
server’s connection idle timeout expired, so it closed the connection to the client.

Y ou cannot detect this condition by calling Connect i on: : connect ed() . When that returns true, it just means
that either the connect-on-create constructor or theconnect () call succeeded and that we haven't observed the
connection to be down since then. When the database server closes an idle connection, you won't know it until after
you try to issue aquery. Thisis simply due to the nature of network programming.

One way around this problem is to configure MySQL to have alonger idle timeout. Thistimeout isin seconds, so
the default of 8 hoursis 28,800 seconds. Y ou would want to figure out the longest possible time that your program
could be left idle, then pick avalue somewhat longer than that. For instance, you might decide that the longest
reasonable idle time is along 4-day weekend — 345,600 seconds — which you could round up to 350,000 or
400,000 to alow for alittle bit of additional idle time on either end of that period.

Another way around this, on a per-connection basis from the client side, would be to set the ReconnectOption
connection option. Thiswill cause MySQL ++ to reconnect to the server automatically if it drops the connection.
Beware that unless you're using MySQL 5.1.6 or higher, you have to set this only after the connection is established,
or it won’t take effect. This means there' s a potential race condition: it’s possible the connection could drop shortly
enough after being established that you don’t have time to apply the option, so it won’t come back up automatically.
MySQL 5.1.6+ fixes this by allowing this option to be set before the connection is established.

A completely different way to tackle this, if your program doesn't block forever waiting on 1/O whileidle, isto
periodicaly call Connecti on: : pi ng(). 12 This sends the smallest possible amount of data to the database
server, which will reset itsidle timer and cause it to respond, so pi ng() returnstrue. If it returns false instead, you
know you need to reconnect to the server. Periodic pinging is easiest to do if your program uses asynchronous |/

O, threads, or some kind of event loop to ensure that you can call something periodically even while the rest of the
program has nothing to do.

An interesting variant on this strategy is to ping the server before each query, or, better, before each group of queries
within alarger operation. It has an advantage over pinging during idle timein that the client is about to use far more
server resources to handle the query than it will take to handle the ping, so the ping time getslost in the overhead.
On the other hand, if the client issues queries frequently when not idle, it can result in alot more pings than would
happen if you just pinged every N hours whileidle.

Finally, some programmers prefer to wrap the querying mechanism in an error handler that catches the * server has
gone away” error and tries to reestablish the connection and reissue the query. This adds some complexity, but it
makes your program more robust without taking up unnecessary resources. If you did this, you could even change
the server to drop idle connections more often, thus tying up fewer TCP/IP stack resources.

3.16. Concurrent Queries on a Connection

An important limitation of the MySQL C API library — which MySQL ++ is built atop, so it shares thislimitation
— isthat you can only have one query in progress on each connection to the database server. If you try to issue a
second query while oneis till in progress, you get an obscure error message about “ Commands out of sync” from
the underlying C API library. (Y ou normally get this message in aMySQL ++ exception unless you have exceptions
disabled, in which case you get afailure code and Connect i on: : error () returnsthis message.)

There are lots of ways to run into this limitation:

2pont ping the server too often! It takes a tiny amount of processing capability to handle a ping, which can add up to a significant amount if
done often enough by aclient, or even just rarely by enough clients. Also, alower ping frequency can let your program ride through some types of
network faults — a switch reboot, for instance — without needing a reconnect. | like to ping the DB server no more often than half the connection
timeout. With the default of 8 hours, then, I’d ping between every 4 and 7 hours.

3%

MySQL

+
+

v8.2.

The easiest way isto try to use a single Connection object in a multithreaded program, with more than one

Usetthread attempting to use it to issue queries. Unless you put in alot of work to synchronize access, thisis almost
Manugliaranteed to fail at some point, giving the dread “ Commands out of sync” error.

3.

Y ou might then think to give each thread that issues queriesits own Connect i on object. You can till run into
trouble if you pass the data you get from queries around to other threads. What can happen is that one of these
child objectsindirectly calls back to the Connect i on at atime whereit’sinvolved with another query. Thisis
properly covered elsewhere, in Section 7.4, “ Sharing MySQL ++ Data Structures”.)

One way to run into this problem without using threadsis with “use” queries, discussed above. If you don’t
consume al rows from a query before you issue another on that connection, you are effectively trying to have
multiple concurrent queries on a single connection. Here' s arecipie for this particular disaster:

UseQueryResult rl1 = query.use("sel ect garbage from plink where foobie='tamagotchi'");
UseQueryResult r2 = query.use("select blah frombonk where bletch="snurf'");

Thesecond use() cal fails because thefirst result set hasn't been consumed yet.

Still another way to run into thislimitation is if you use MySQL’s multi-query feature. Thislets you give
multiple queriesin asingle call, separated by semicolons, and get back the results for each query separately.

If you issue three queries using Quer y: : st or e() , you only get back the first query’s results with that

call, and then haveto call st or e_next () to get the subsequent query results. MySQL ++ provides
Query::nore_resul ts() soyouknow whether you're done, or need to call st or e_next () again. Until
you reach the last result set, you can’t issue another query on that connection.

Finally, there’saway to run into this that surprises aimost everyone sooner or later: stored procedures. MySQL
normally returns at least two result sets for a stored procedure call. The simple case isthat the stored procedure
contains asingle SQL query, and it succeeds: you get two results, first the results of the embedded SQL query,
and then the result of the call itself. If there are multiple SQL queries within the stored procedure, you get more
than two result sets. Until you consume them all, you can’t start a new query on the connection. As above, you
want to have aloop calling nor e_r esul t s() andst ore_next () towork your way through all of the
result sets produced by the stored procedure call.

17. Getting Field Meta-Information

The following example demonstrates how to get information about the fields in a result set, such as the name of the
field and the SQL type. Thisisexanpl es/ fi el di nf. cpp:

#i ncl ude "crdline. h"
#i ncl ude "printdata. h"

#i ncl ude <i ostreanp
#i ncl ude <i omani p>

us

int
mai

{

ng nanmespace std

n(int argc, char *argv[])

/] Get database access paraneters from command |ine
nmysql pp: : exanpl es: : ConmandLi ne cndl i ne(argc, argv);
if (cmdline) {

return 1;

}

try {
/! Establish the connection to the database server

MySQL

+
+
v3.2.1 nmysql pp: : Connecti on con(nysqgl pp: : exanpl es: : db_nane,
User cmdl i ne.server(), cndline.user(), cndline.pass());
Manual

[/ Get contents of main exanple table
nmysql pp: : Query query = con.query("select * from stock");
nysql pp: : StoreQueryResult res = query.store();

/1 Show info about each field in that table
char widths[] = { 12, 22, 46 };
cout.setf(ios::left);
cout << setw(widths[0]) << "Field" <<
setw(wi dths[1]) << "SQL Type" <<
setw(wi dths[2]) << "Equival ent C++ Type" <<

endl ;
for (size_t i =0; i < sizeof(widths) / sizeof(widths[0]); ++i) {
cout << string(widths[i] - 1, '=") << ' ';

}

cout << endl;

for (size_t i =0; i <res.field_names()->size(); i++) {

/1 Suppress C++ type nane outputs when run under dtest,

// as they're systemspecific.

const char* cnane = res.field_type(int(i)).nanme();

nysql pp: : Fi el dTypes: :val ue_type ft = res.field_type(int(i));

ostringstream os;

0s << ft.sqgl_name() << " (" << ft.id() << ')"';

cout << setw(widths[0]) << res.field_name(int(i)).c_str() <<
setw(wi dths[1]) << os.str() <<
setw(wi dths[2]) << cnanme <<
endl ;

}

cout << endl;

/1 Sinmple type check
if (res.field_type(0) == typeid(string)) {
cout << "SQL type of 'item field nost closely resenbles "
"the C++ string type." << endl;

}

/1 Tricky type check: the "if' path shouldn't happen because the
/1 description field has the NULL attribute. W need to dig a
/1 little deeper if we want to ignore this in our type checks.
if (res.field_type(5) == typeid(string)) {

cout << "Should not happen! Type check failure." << endl;

}
else if (res.field_type(5) == typeid(nysql pp::sql_blob_null)) {
cout << "SQ type of 'description' field resenbles "
"a nullable variant of the C++ string type." << endl;

}
el se {
cout << "Weird: fifth field' s type is now" <<
res.field_type(5).name() << endl;
cout << "Did sonething recently change in resetdb?" << endl;
}

}

catch (const nysql pp:: BadQuery& er) ({
/1 Handl e any query errors
cerr << "Query error: " << er.what() << endl;
return -1,

}

catch (const nysql pp:: Exception& er) {
[/ Catch-all for any other MySQL++ exceptions
cerr << "Error: " << er.what() << endl;

MySQL

+
+
v3.2.1 return -1;
User }
Mﬂjalr eturn O;
}

MySQL
+

‘% Template Queries

Manual
Another powerful feature of MySQL ++ is being able to set up template queries. These are kind of like C's

printf () facility: you give MySQL++ astring containing the fixed parts of the query and placeholders for the
variable parts, and you can later substitute in values into those placeholders.

The following program demonstrates how to use this feature. Thisisexanpl es/ t queryl. cpp:

#i ncl ude "crdline. h"
#i ncl ude "printdata. h"

#i ncl ude <i ostreanp
usi ng namespace std;

int
mai n(int argc, char *argv[])
{
/] CGet database access paraneters from comand |ine
nysql pp: : exanpl es: : ComrandLi ne cndl i ne(argc, argv);
if (cmdline) {
return 1;

}

try {
/! Establish the connection to the database server.

mysql pp: : Connecti on con(nysql pp: : exanpl es: : db_nane,
cmdl i ne.server(), cndline.user(), cndline.pass());

// Build a tenplate query to retrieve a stock itemgiven by
/1 item name.
nysql pp: : Query query = con. query(
"select * fromstock where item= %q");
query. parse();

/] Retrieve an item added by resetdb; it won't be there if
/1 tquery* or ssqgls3 is run since resetdb.
nysql pp: : StoreQueryResult resl = query.store("Nirnberger Brats");
if (resl.enpty()) {
throw nysql pp: : BadQuery("UTF-8 bratwurst itemnot found in "
"table, run resetdb");

}

/] Replace the proper German nane with a 7-bit ASC I

/1 approximation using a different tenplate query.

query.reset(); /1 forget previous tenplate query data

query << "update stock set item= 9%q where item = %q";

query. parse();

mysql pp: : Si npl eResult res2 = query. execut e("Nuerenberger Bratwurst",
resl[0][0].c_str());

/1 Print the new table contents.
print_stock_tabl e(query);
}
catch (const nysql pp:: BadQuery& er) {
/1 Handl e any query errors
cerr << "Query error: " << er.what() << endl;
return -1;
}
catch (const nysql pp:: BadConversi on& er) {
/1 Handl e bad conversions
cerr << "Conversion error: " << er.what() << endl <<

MySQL

+

+
v3.2.1 "\tretrieved data size: " << er.retrieved <<
User ", actual size: " << er.actual _size << endl;

Manual} return -1;

catch (const nysql pp:: Exception& er) {
[/ Catch-all for any other MySQL++ exceptions
cerr << "Error: " << er.what() << endl;
return -1;

}

return O;

}

Thelinejust beforethecall to query. par se() setsthetemplate, and the parse call putsit into effect. From that
point on, you can re-use this query by calling any of several Query member functions that accept query template
parameters. In this example, we'reusing Quer y: : execut e() .

Let'sdiginto this feature alittle deeper.

4.1. Setting up Template Queries

To set up atemplate query, you simply insert it into the Query object, using numbered placehol ders wherever you
want to be able to change the query. Then, you call the parse() function to tell the Query object that the query string
isatemplate query, and it needs to parseit:

query << "select (9:fieldl, 93:field2) fromstock where %:wheref = %q: what";
query. parse();

The format of the placeholder is:

%t (modi fier) (:nane)(:)

Where “####' is anumber up to three digits. It isthe order of parameters given to a SQL QueryParms object, starting
from O.

“modifier” can be any one of the following:

% Print an actual “%”
" Don't quote or escape no matter what.

q Thiswill escape the item using the MySQL

C API function mysql-escape-string and add
single quotes around it as necessary, depending
on the type of the value you use.

Q Quote but don't escape based on the same rules
asfor “qg". This can save a bit of processing
timeif you know the strings will never need
quoting

“:name” isfor an optional name which aidsin filling SQL QueryParms. Name can contain any alpha-numeric
characters or the underscore. Y ou can have atrailing colon, which will beignored. If you need to represent an actual
colon after the name, follow the name with two colons. The first one will end the name and the second one won't be
processed.

39

MySQL
+

"#.2. Setting the Parameters at Execution Time

Manual
Fo-specify the parameters when you want to execute aquery simply use Quer y: : st ore(const SQ.Stri ng

&arnD, [..., const SQLString &parmll]). Thistype of multiple overload also exists for
Query::storein(),Query::use() andQuery: : execut e()."“pamQ” correspondsto the first parameter,
etc. Y ou may specify up to 25 parameters. For example:

StoreQueryResult res = query.store("Dinner Rolls", "itenm, "iteni, "price")

with the template query provided above would produce:

select (item price) fromstock where item= "D nner Rolls"

The reason we didn’t put the template parametersin numeric order...

select (%0:fieldl, %:field2) fromstock where %:wheref = %3q: what

...will become apparent shortly.

4.3. Default Parameters

The template query mechanism allows you to set default parameter values. You simply assign avalue for the
parameter to the appropriate position inthe Quer y: : t enpl at e_def aul t s array. You can refer to the
parameters either by position or by name:

query.tenplate_defaults[1] = "itent;
query.tenpl ate_defaul ts["wheref"] = "itent;

Both do the same thing.

This mechanism works much like C++' s default function parameter mechanism: if you set defaults for the
parameters at the end of the list, you can call one of Quer y’s query execution methods without passing all of the
values. If the query takes four parameters and you' ve set defaults for the last three, you can execute the query using
aslittle as just one explicit parameter.

Now you can see why we numbered the template query parameters the way we did a few sections earlier. We
ordered them so that the ones less likely to change have higher numbers, so we don’t always have to pass them. We
can just give them defaults and take those defaults when applicable. Thisis most useful when some parametersin a
template query vary less often than other parameters. For example:

"itent;
"price";

query.tenpl ate_defaul ts["fiel dl"]
query.tenplate_defaul ts["fiel d2"]
StoreQueryResult resl = query.store("Hanburger Buns", "itenl);
StoreQueryResult res2 = query.store(1l.25, "price");

This stores the result of the following queriesinr es1 and r es2, respectively:

select (item price) fromstock where item = "Hanburger Buns"
select (item price) fromstock where price = 1.25

Default parameters are useful in this example because we have two queriesto issue, and parameters 2 and 3 remain
the same for both, while parameters 0 and 1 vary.

40

MySQL
+
+
v&@ie have been tempted into using this mechanism as away to set al of the template parametersin a query:
User

Méaﬂg‘rﬂy.terrpl ate_defaul ts["what"] = "Hanburger Buns";

query.tenpl ate_defaul ts["wheref"] = "itent;
query.tenplate_defaults["fieldl"] = "itent;
query.tenplate defaults["field2"] = "price";

StoreQueryResult resl = query.store();

This can work, but it is not designed to. In fact, it’s known to fail horribly in one common case. Y ou will not get
sympathy if you complain on the mailing list about it not working. If your code doesn’t actively reuse at |east one of
the parameters in subsequent queries, you're abusing MySQL ++, and it islikely to take its revenge on you.

4.4. Error Handling

If for some reason you did not specify all the parameters when executing the query and the remaining parameters
do not have their values set viaQuer y: : t enpl at e_def aul t s, the query object will throw a BadParamCount
object. If this happens, you can get an explanation of what happened by calling BadPar anCount : : what (), like
SO

query.tenpl ate_defaul ts["fiel dl"] "itent;
query.tenplate_defaul ts["fiel d2"] "price";
StoreQueryResult res = query.store(l.25);

Thiswould throw BadPar amCount because the wher ef isnot specified.

In theory, this exception should never be thrown. If the exception is thrown it probably alogic error in your
program.

MySQL
+

‘B Specialized SQL Structures

Manua
The Specialized SQL Structure (SSQLS) feature lets you easily define C++ structures that match the form of your
SQL tables. At the most superficial level, an SSQL S has a member variable corresponding to each field in the SQL
table. But, an SSQL S a so has severa methods, operators, and data members used by MySQL ++'sinternalsto
provide neat functionality, which we cover in this chapter.

Y ou define SSQL Ses using the macros defined inssql s. h. Thisisthe only MySQL ++ header not automatically
included for you by mysql ++. h. You havetoincludeit in code modules that use the SSQL S feature.

5.1. sql_create

Let’s say you have the following SQL table:

CREATE TABLE stock (
i tem CHAR(30) NOT NULL,
num Bl G NT NOT NULL,
wei ght DOUBLE NOT NULL,
price DECI MAL(6,2) NOT NULL,
sdat e DATE NOT NULL,
description MEDI UMIEXT NULL)

Y ou can create a C++ structure corresponding to this table like so:

sql _create_6(stock, 1, 6,
nmysql pp: :sqgl _char, item
nysql pp: :sql _bigint, num
nmysql pp: : sql _doubl e, wei ght,
nysql pp: : sql _deci mal, price,
nmysql pp: : sgl _date, sdate,
nysql pp: : Nul | <nysqgl pp: : sql _nmedi unt ext>, description)

Thisdeclaresthe st ock structure, which has a data member for each SQL column, using the same names. The
structure also has a number of member functions, operators and hidden data members, but we won’t go into that just
now.

The parameter before each field nameinthesql _cr eat e_# call isthe C++ data type that will be used to hold that
value in the SSQLS. While you could use plain old C++ datatypes for most of these columns (long int instead of
mysqlpp::sql_bigint, for example) it’s best to use the MySQL ++ typedefs.

Sometimes you have no choice but to use special MySQL ++ data types to fully express the database schema.
Consider thedescri pti on field. MySQL++'ssgl_mediumtext typeisjust an alias for std::string, since we don’t
need anything fancier to hold a SQL MEDIUMTEXT value. It'sthe SQL NULL attribute that causes trouble: it has
no equivalent in the C++ type system. MySQL ++ offers the Null template, which bridges this difference between
the two type systems.

The general format of this macrois:

sql _creat e_#(NAME, COVPCOUNT, SETCOUNT, TYPE1l, |TEML, ... TYPE#, |TEM{)

where # is the number of member variables, NAME is the name of the structure you wish to create, TYPEX isthe type
of amember variable, and | TEMK isthat variable’ s name.

The COVPCOUNT and SETCOUNT arguments are described in the next section.

42

MySQL
+

vggz. SSQLS Comparison and Initialization

Mﬂ%aéql _creat e_# macro adds member functions and operators to each SSQL S that allow you to compare one
SSQL Sinstance to another. These functions compare the first COMPCOUNT fieldsin the structure. In the example
above, COVPCOUNT is 1, so only thei t emfield will be checked when comparing two st ock structures.

This feature works best when your table's “key” fields are the first onesin the SSQL S and you set COVPCOUNT
equal to the number of key fields. That way, a check for equality between two SSQL S structures in your C++ code
will give the same results as a check for equality in SQL.

COVPCOUNT must be at least 1. The current implementation of sql _cr eat e_# cannot create an SSQL S without
comparison member functions.

Because our st ock structure is less-than-comparable, you can use it in STL algorithms and containers that require
this, such as STL's associative containers:

std::set<stock> result;
query.storein(result);
cout << result.|ower_bound(stock("Hanmburger"))->item << endl;

Thiswill print the first item in the result set that begins with “Hamburger.”

Thethird parameter tosql _cr eat e_# is SETCOUNT. If thisis nonzero, it adds an initialization constructor and
aset () member function taking the given number of arguments, for setting the first N fields of the structure. For
example, you could change the above example like so:

sql _create_6(stock, 1, 2,
nmysql pp: :sqgl _char, item
nysql pp: :sql _bigint, num
nmysql pp: : sql _doubl e, wei ght,
nysql pp: : sql _deci mal, price,
nmysql pp: : sgl _date, sdate,
nysql pp: : Nul | <nysqgl pp: : sql _nmedi unt ext>, description)

stock foo("Hotdog", 52);

In addition to this 2-parameter constructor, this version of the st ock SSQLS will have a similar 2-parameter
set () member function.

The COMPCOUNT and SETCOUNT values cannot be equal. If they are, the macro will generate two initialization
constructors with identical parameter lists, whichisillegal in C++. Y ou might be asking, why does there need
to be a constructor for comparison to begin with? It's often convenient to be able to say something likex ==
st ock(" Hot dog") . Thisrequires that there be a constructor taking COMPCOUNT arguments to create the
temporary st ock instance used in the comparison.

Thislimitation is not a problem in practice. If you want the same number of parametersin theinitialization
constructor as the number of fields used in comparisons, pass 0 for SETCOUNT. This suppresses the duplicate
constructor you'd get if you used the COMPCOUNT value instead. Thisis most useful in very small SSQL Ses, since
it's easier for the number of key fields to equal the number of fields you want to compare on:

sql _create_1(stock_item 1, 0, nysqlpp::sqgl_char, item

5.3. Retrieving data

Let'sput SSQLSto use. Thisisexanpl es/ ssql s1. cpp:

#i ncl ude "cndl i ne. h"

MySQL
+
+

v8iht! ude "printdata. h"
#eac! ude "stock. h"

Manu .
Qﬂngll ude <iostreane
#i ncl ude <vector>

usi ng nanespace std;

int
mai n(int argc, char *argv[])
{
/| Get database access paranmeters from comrand |ine
nmysql pp: : exanpl es: : ConmandLi ne cndl i ne(argc, argv);
if (crdline) {
return 1;
}
try {
/1 Establish the connection to the database server.
nmysql pp: : Connection con(nysql pp: : exanpl es: : db_nane,
cndl i ne.server(), cndline.user(), cmdline.pass());
/'l Retrieve a subset of the stock table's columms, and store
/1 the data in a vector of 'stock' SSQS structures. See the
/1 user manual for the consequences arising fromthis quiet
/] ability to store a subset of the table in the stock SSQS.
mysql pp: : Query query = con.query("select itemdescription fromstock");
vect or <st ock> res;
query.storein(res);
/1 Display the itens
cout << "We have:" << endl;
vector<stock>::iterator it;
for (it =res.begin(); it !=res.end(); ++it) {
cout << "\t' << it->item
if (it->description != nysqglpp::null) {
cout << " (" << it->description << ")";
}
cout << endl;
}
}
catch (const nysql pp: : BadQuery& er) {
/1 Handl e any query errors
cerr << "Query error: " << er.what() << endl;
return -1;
}
catch (const nysql pp:: BadConversi on& er) {
/1 Handl e bad conversions; e.g. type m smatch popul ati ng ' stock’
cerr << "Conversion error: " << er.what() << endl <<
"\tretrieved data size: " << er.retrieved <<
", actual size: " << er.actual _size << endl;
return -1;
}
catch (const nysql pp:: Excepti on& er) {
/] Catch-all for any other MySQ.++ exceptions
cerr << "Error: " << er.what() << endl;
return -1;
}
return O;
}

Here is the stock.h header used by that example, and by several others below:

44

MySQL
+
+
v8iht! ude <nysqgl ++. h>
#eac! ude <ssqls. h>

Mﬁﬁj?ke following is calling a very conplex macro which will create
/1 "struct stock", which has the nenber vari abl es:

11

/1 sql _char item

I

/1 sql _medi unt ext _nul | description;
11

/1 plus nmethods to help populate the class froma MySQL row. See the
/1 SSQ.S sections in the user nmanual for further details.
sql _create_6(stock,
1, 6, // The neaning of these values is covered in the user nanual
mysql pp: :sql _char, item
nysql pp: : sgl _bi gint, num
nmysql pp: : sql _doubl e, wei ght,
nysql pp: : sgl _doubl e_nul |, price,
nmysql pp: : sql _date, sDate, /] SSQS isn't case-sensitive!
nysql pp: : sgl _nmedi unt ext _nul |, description)

This example produces the same output as si npl e1. cpp (see Section 3.2, “A Simple Example”), but it uses
higher-level data structures paralleling the database schema instead of MySQL ++’s lower-level generic data
structures. It also uses MySQL ++' s exceptions for error handling instead of doing everything inline. For small
example programs like these, the overhead of SSQL S and exceptions doesn’t pay off very well, but in areal
program, they end up working much better than hand-rolled code.

Notice that we are only pulling asingle column from the st ock table, but we are storing therowsin a
std::vector<stock>. It may strike you as inefficient to have five unused fields per record. It's easily remedied by
defining a subset SSQLS:

sql _create_1(stock_subset,
1, 0,
string, item

vect or <st ock_subset > res;
query.storein(res);
/1 ...etc...

MySQL ++ is flexible about populating SSQL Ses.* It works much like the Web, a design that' s enabled the
development of the largest distributed system in the world. Just as a browser ignores tags and attributes it doesn’t
understand, you can populate an SSQL S from a query result set containing columns that don’t exist in the SSQLS.
And as a browser uses sensible defaults when the page doesn’t give explicit values, you can have an SSQL S with
more fields defined than are in the query result set, and these SSQL S fields will get default values. (Zero for
numeric types, false for bool, and a type-specific default for anything more complex, like mysglpp::DateTime.)

In more concrete terms, the example above is able to populate the st ock objects using as much information as
it has, and leave the remaining fields at their defaults. Conversely, you could also stuff the results of SELECT *
FROM st ock intothest ock_subset SSQLS declared above; the extrafields would just be ignored.

We're trading run-time efficiency for flexibility here, usually the right thing in a distributed system. Since MySQL
is anetworked database server, many uses of it will qualify as distributed systems. Y ou can’t count on being able
to update both the server(s) and all the clients at the same time, so you have to make them flexible enough to cope
with differences while the changes propagate. Aslong as the new database schemaisn't too grossly different from
the old, your programs should continue to run until you get around to updating them to use the new schema.

13Programs built against versions of MySQL++ prior to 3.0 would crash at almost any mismatch between the database schema and the SSQLS
definition. It's no longer necessary to keep the data design in lock-step between the client and database server. A mismatch can result in data loss,
but not a crash.

MySQL
+
+
v3Bete' s adanger that this quiet coping behavior may mask problems, but considering that the previous behavior
Weas for the program to crash when the database schema got out of synch with the SSQLS definition, it'slikely to be
Mtk as an improvement.

5.4. Adding data

MySQL ++ offers several waysto insert datain SSQL S form into a database table.

Inserting a Single Row

The simplest optionisto insert asinglerow at atime. Thisisexanpl es/ ssql s2. cpp:

#i ncl ude "cndl i ne. h"
#i ncl ude "printdata. h"
#i ncl ude "stock. h"

#i ncl ude <i ostreanp
#include <limts>

usi ng nanespace std;

int

mai n(int argc, char *argv[])

{
/| Get database access paraneters from comand |ine
mysql pp: : exanpl es: : ConmandLi ne cndl i ne(argc, argv);
if ('crdline) {

return 1,
}
try {
/] Establish the connection to the database server.
nysql pp: : Connecti on con(nysqgl pp: : exanpl es: : db_nane,
cndl i ne.server(), cndline.user(), cndline.pass());
/1 Create and popul ate a stock object. W could al so have used
/1 the set() menber, which takes the sanme paraneters as this
/1 constructor.
stock row "Hot Dogs", 100, 1.5,
nuneric_limts<double>: :infinity(), // "priceless," hal
nysql pp: : sql _dat e("1998-09-25"), nysql pp::null);
/! Formthe query to insert the rowinto the stock table.
nmysql pp: : Query query = con. query();
query.insert(row);
/1 Show the query about to be executed.
cout << "Query: " << query << endl;
/1 Execute the query. W use execute() because | NSERT doesn't
/] return a result set.
query. execute();
/1l Retrieve and print out the new table contents.
print_stock_tabl e(query);
}

catch (const nysql pp: : BadQuery& er) {
/1 Handl e any query errors
cerr << "Query error: " << er.what() << endl;
return -1,

MySQL

+
+

v3.2.1catch (const nysql pp:: BadConversi on& er) {

User /1 Handl e bad conversions

Manual cerr << "Oonver;i on error: << er.what () << endl <<
— "\tretrieved data size: " << er.retrieved <<

", actual size: " << er.actual _size << endl;
return -1;

}
catch (const nysql pp:: Exception& er) {
/] Catch-all for any other MySQ.++ exceptions

cerr << "Error: " << er.what() << endl;
return -1,

}

return O;

}

That's all thereisto it! MySQL++ even takes care of quoting and escaping the data when building queries from
SSQL S structures. It’ s efficient, too: MySQL++ is smart enough to quote and escape data only for those data types
that actualy require it.

Inserting Many Rows

Inserting asingle row is useful, to be sure, but you might want to be able to insert many SSQL Ses or Row objects at
once. MySQL ++ knows how to do that, too, sparing you the necessity of writing the loop. Plus, MySQL ++ uses an
optimized implementation of this algorithm, packing everything into asingle SQL query, eliminating the overhead
of multiple calls between the client and server. It'sjust a different overload of i nsert (), which accepts a pair of
iteratorsinto an STL container, inserting every row in that range:

vect or<st ock> lots_of _stuff;
...popul ate the vector sonehow. ..
query.insert(lots_of stuff.begin(), lots_ of stuff.end()).execute();

By the way, notice that you can chain Quer y operations like in the last line above, because its methods return *this
where that makes sense.

Working Around MySQL’s Packet Size Limit

Thetwo-iterator form of i nsert () hasan associated risk: MySQL has alimit on the size of the SQL query it will
process. The default limit is 1 MB. Y ou can raise the limit, but the reason the limit is configurable is not to allow
huge numbers of insertsin a single query. They made the limit configurable because a single row might be bigger
than 1 MB, so the default would prevent you from inserting anything at all. If you raise the limit simply to be able
to insert more rows at once, you' re courting disaster with no compensating benefit: the more datayou send at a
time, the greater the chance and cost of something going wrong. Worse, thisis pure risk, because by the time you hit
1 MB, the per-packet overhead is such a small fraction of the data being transferred that increasing the packet size
buys you essentially nothing.

Let’'ssay you haveavect or containing several megabytes of data; it will get even bigger when expressed in SQL
form, so there’ s no way you can insert it al in a single query without raising the MySQL packet limit. One way to
cope would be to write your own naive loop, inserting just one row at atime. Thisis slow, because you’re paying
the per-query cost for every row in the container. Then you might realize that you could use the two iterator form of
i nsert (), passing iterators expressing sub-ranges of the container instead of trying to insert the whole container
in one go. Now you' ve just got to figure out how to calcul ate those sub-ranges to get efficient operation without
exceeding the packet size limit.

MySQL ++ aready knows how to do that, too, with Query: : i nsert fron().Wegaveit adifferent name
instead of adding yet another i nsert () overload because it doesn't merely build the INSERT query, which you

47

MySQL
+
+
vBeriexecut e() . It'smorelike st or ei n() , inthat it wraps the entire operation up in asingle call. This feature
sdemonstrated in exanpl es/ ssql s6. cpp:

Manual
#include "cndl i ne. h"
#i ncl ude "printdata. h"
#i ncl ude "stock. h"

#i ncl ude <fstreanr

usi ng namespace std;

/1 Breaks a given text line of tab-separated fields up into a list of
/1 strings.

static size_t
tokeni ze_l i ne(const string& line, vector<nysqlpp::String>& strings)

{
string field;
strings.clear();
istringstreamiss(line);
while (getline(iss, field, "\t")) {
strings. push_back(nmysql pp::String(field));
}
return strings.size();
}

/] Reads a tab-delimted text file, returning the data found therein
/1 as a vector of stock SSQS objects.

static bool

read_stock_itens(const char* filenane, vector<stock>& stock_vector)

{
ifstreaminput (fil enane);
if (linput) {
cerr << "Error opening input file '" << filename << "'" << endl;
return fal se;
}
string line;
vect or <nysql pp: : String> strings;
while (getline(input, line)) {
if (tokenize_line(line, strings) == 6) {
stock_vector. push_back(stock(string(strings[0]), strings[1],
strings[2], strings[3], strings[4], strings[5]));
}
el se {
cerr << "Error parsing input line (doesn't have 6 fields) " <<
"infile '" << filename << "'" << endl;
cerr << "invalid line: '" << line << "'" << endl;
}
}
return true;
}
int

mai n(int argc, char *argv[])

I/ Get database access paraneters from comand |ine
nmysql pp: : exanpl es: : ConmandLi ne cndl i ne(argc, argv);

MySQL
+
+

v3.2.1if (lcrmdline) {
User return 1;

Mﬂ.lal}

/l Read in a tab-delimted file of stock data

vect or <st ock> st ock_vector;

if (!read_stock_itens("exanpl es/stock.txt", stock_vector)) {
return 1;

}

try {
/! Establish the connection to the database server.

mysql pp: : Connection con(nysql pp: : exanpl es: : db_nane,
cmdl i ne.server(), cndline.user(), cndline.pass());

/1 Cear all existing rows fromstock table, as we're about to
/1 insert a bunch of new ones, and we want a clean slate.

nysql pp: : Query query = con. query();

query. exec(" DELETE FROM st ock");

/1 Insert data read fromthe CSV file, allowing up to 1000

// characters per packet. W're using a small size in this

/1 example just to force nmultiple inserts. |In a real program

// you'd want to use |arger packets, for greater efficiency.

mysql pp: : Query: : MaxPacket | nsert Pol i cy<> insert_policy(1000);

query.insertfrom(stock_vector.begin(), stock_vector.end(),
insert_policy);

/1 Retrieve and print out the new table contents.
print_stock_tabl e(query);
}
catch (const nysql pp:: BadQuery& er) ({
/1 Handl e any query errors
cerr << "Query error: " << er.what() << endl;
return -1,
}
catch (const nysql pp:: BadConversi on& er) {
/1 Handl e bad conversions
cerr << "Conversion error: " << er.what() << endl <<
"\tretrieved data size: " << er.retrieved <<
, actual size: " << er.actual _size << endl;
return -1;

}
catch (const nysql pp:: BadlnsertPolicy& er) {
/1 Handl e bad conversions
cerr << "InsertPolicy error: " << er.what() << endl;
return -1;
}
catch (const nysql pp:: Exception& er) {
/| Catch-all for any other MySQL++ exceptions
cerr << "Error: " << er.what() << endl;
return -1;

}

return O;

Most of the complexity in this example goesto just reading in the data from afile; we have to get our test data from
somewhere. There are only two key lines of code: create an insertion policy object, and passit along with an STL
container full of row datato Query: :insertfrom().

MySQL
+
+
v3Rid policy object isthe main thing that differentiatesi nsert fron{) from the two-iterator formof i nsert ().
Wseontrolshow i nsert f ron() buildsthe query strings, primarily controlling how large each query gets before
Miamsabr t f r om() executesit and starts building a new query. We designed it to use policy objects because thereis
no single “right” choice for the decisions it makes.

MySQL ++ ships with three different insertion policy classes, which should cover most situations.

MaxPacket | nsert Pol i cy, demonstrated in the example above, does things the most obvious way: when you
create it, you pass the maximum packet size, which it usesto prevent queries from going over the size limit. It builds
up aquery string row by row, checking each time through the loop whether adding another insert statement to the
query string would make the packet size go over the limit. When that happens, or it getsto the end of theiteration
range, it executes the query and starts over if it’s not yet at the end. Thisis robust, but it has adownside: it hasto
build each insert query in advance of knowing that it can append it to the larger query. Any time an insert query
would push the packet over the limit, it hasto throw it away, causing the library to do more work than is strictly
necessary.

Imagine you' ve done some benchmarking and have found that the point of diminishing returnsis at about 20 KB
per query in your environment; beyond that point, the per-query overhead ceases to be an issue. Let’'s also say you
know for afact that your largest row will always be lessthan 1 MB — less 20 KB — when expressed as a SQL
insert statement. In that case, you can use the more efficient Si zeThr eshol dl nsert Pol i cy. It differsfrom
MaxPacket | nsert Pol i cy inthatitalowsi nsertfron() toinsert rowsblindly into the query string until
the built query exceeds the threshold, 20 KB in this example. Then it ships the packet off, and if successful, starts
anew query. Thus, each query (except possibly the last) will be at least 20 KB, exceeding that only by as much as
one row’ sworth of data, minus one byte. Thisis quite appropriate behavior when your rows are relatively small, as
istypical for tables not containing BLOB data. It is more efficient than MaxPacket | nser t Pol i cy because it
never has to throw away any SQL fragments.

The simplest policy object typeis RowCount | nsert Pol i cy. Thislets you simply say how many rows at
atimeto insert into the database. This works well when you have a good handle on how big each row will be,

S0 you can calculate in advance how many rows you can insert at once without exceeding some given limit.

Say you know your rows can’t be any bigger than about 1 KB. If we stick with that 20 KB target, passing
RowCount I nsert Pol i cy<>(20) for the policy object would ensure we never exceed the size threshold. Or,
say that maximum size value aboveis still true, but we also know the average row size is only 200 bytes. Y ou could
pass RowCount | nsert Pol i cy<>(100) for the policy, knowing that the average packet size will be around

20 KB, and the worst case packet size 100 KB, still nowhere near the default 1 MB packet size limit. The code for
this policy isvery simple, so it makes your program alittle smaller than if you used either of the above policies.
Obviously it's abad choice if you aren’t able to predict the size of your rows accurately.

If one of the provided insert policy classes doesn’t suit your needs, you can easily create a custom one. Just study the
implementationinl i b/ i nsertpolicy. *.

Interaction with Transactions

These policy classes are all templates, taking a parameter that defaults to Transaction. This means that, by defaullt,

i nsertfrom() wrapstheentire operationin a SQL transaction, so that if any of the insertions fail, the database
server rollsthem all back. This prevents an error in the middle of the operation from leaving just part of the
container’s data inserted in the database, which you usually don’t want any more than you’ d want half asingle row
to be inserted.

There are good reasons why you might not want this. Perhaps the best reasonisif thei nsert fronm() call istobe
part of alarger transaction. MySQL doesn’t support nested transactions, sothei nsert fronm() call will fail if it
tries to start one of its own. You can passNoTr ansact i ons for the insert policy’ s template parameter to make it
suppress the transaction code.

MySQL
+
+

%.5. Modifying data

Manual
ftamost as easy to modify datawith SSQLS asto add it. Thisisexanpl es/ ssql s3. cpp:

#i nclude "cndl i ne. h"
#i ncl ude "printdata. h"
#i ncl ude "stock. h"

#i ncl ude <i ostreans
usi ng nanespace std;

int
mai n(int argc, char *argv[])
{
/] CGet database access paraneters from comand |ine
mysql pp: : exanpl es: : ConmandLi ne cndl i ne(argc, argv);
if (cmdline) {
return 1,

}

try {
/1 Establish the connection to the database server.

nmysql pp: : Connecti on con(nysqgl pp: : exanpl es: : db_nane,
cndl i ne.server(), cndline.user(), cndline.pass());

/] Build a query to retrieve the stock itemthat has Uni code

/1 characters encoded in UTF-8 form

nmysql pp: : Query query = con.query("select * fromstock ");

query << "where item =" << nysql pp::quote << "Nirnberger Brats";

/1l Retrieve the row, throwing an exception if it fails.
mysql pp: : StoreQueryResult res = query.store();
if (res.empty()) {
t hrow nysql pp: : BadQuery("UTF-8 bratwurst itemnot found in "
"table, run resetdb");

}

/1 Because there should only be one rowin the result set,

/1 there's no point in storing the result in an STL contai ner.
/1 W can store the first rowdirectly into a stock structure
/1 because one of an SSQ.S's constructors takes a Row obj ect.
stock row = res[0];

/] Create a copy so that the replace query knows what the
/1 original values are.
stock orig_row = row,

/1 Change the stock object's itemto use only 7-bit ASCI|, and
/1 to deliberately be wider than normal colum wi dths printed
/1 by print_stock_table().

row. i tem = "Nuerenberger Bratwurst";

/1 Formthe query to replace the rowin the stock table.
query. update(orig_row, row;

/1 Show the query about to be executed.
cout << "Query: " << query << endl;

/1 Run the query with execute(), since UPDATE doesn't return a
/] result set.
query. execute();

MySQL
+
+

v3.2.1
User // Retrieve and print out the new table contents.

Manual} print_stock_tabl e(query);

catch (const nysql pp:: BadQuery& er) {
// Handl e any query errors
cerr << "Query error: " << er.what() << endl;
return -1;
}
catch (const nysql pp:: BadConversi on& er) {
/1 Handl e bad conversions
cerr << "Conversion error: " << er.what() << endl <<
"\tretrieved data size: " << er.retrieved <<
", actual size: " << er.actual _size << endl;
return -1;
}
catch (const nysql pp:: Exception& er) {
/| Catch-all for any other MySQL++ exceptions

cerr << "Error: " << er.what() << endl;
return -1;

}

return O;

}

Don't forget to run r eset db after running the example.

5.6. Storing SSQLSes in Associative Containers

One of the requirements of STL’s associative containers on data stored in them is that the data type hasto be
less-than comparable. That is, it hasto have an oper at or < defined. SSQL S does optionally give you this, as
demonstrated in exanpl es/ ssql s4. cpp:

#i ncl ude "cndl i ne. h"
#i ncl ude "printdata. h"
#i ncl ude "stock. h"

#i ncl ude <i ostreanp
usi ng nanespace std;

int
mai n(int argc, char *argv[])
{
/] CGet database access paraneters from command |ine
nysql pp: : exanpl es: : ComrandLi ne cndl i ne(argc, argv);
if (crdline) {
return 1;

}

try {
/! Establish the connection to the database server.

nmysql pp: : Connecti on con(nysql pp: : exanpl es: : db_nane,
crmdl i ne. server (), cndline.user(), cndline.pass());

/!l Retrieve all rows fromthe stock table and put themin an

/] STL set. Notice that this works just as well as storing them
// in a vector, which we did in ssqlsl.cpp. It works because

/1 SSQS objects are | ess-than conparabl e.

nysql pp: : Query query = con.query("select * from stock");

set <stock> res;

query.storein(res);

MySQL

v3.2.1
User // Display the result set. Since it is an STL set and we set up
Manual /1 the SSQS to conpare based on the itemcolum, the rows will
—_— // be sorted by item

print_stock_header(res.size());

set<stock>::iterator it;

cout . preci sion(3);

for (it =res.begin(); it !=res.end(); ++it) {

print_stock_rowit->temc_str(), it->num it->weight,
it->price, it->sDate);

}

/1 Use set's find nethod to ook up a stock itemby item nane.
/1 This also uses the SSQS conparison setup.
it = res.find(stock("Hotdog Buns"));
if (it I=res.end()) {
cout << endl << "Currently " << it->num <<
' hotdog buns in stock." << endl;

}
el se {

cout << endl << "Sorry, no hotdog buns in stock." << endl;
}

}
catch (const nysql pp:: BadQuery& er) ({
/1 Handl e any query errors
cerr << "Query error: " << er.what() << endl;
return -1,
}
catch (const nysql pp:: BadConversi on& er) {
/1 Handl e bad conversions

cerr << "Conversion error: " << er.what() << endl <<
"\tretrieved data size: " << er.retrieved <<
actual size: " << er.actual_size << endl;

return -1;

}
catch (const nysql pp:: Exception& er) {
/] Catch-all for any other MySQ.++ exceptions

cerr << "Error: " << er.what() << endl;
return -1,

}

return O;

}

Thefind() cal works because of the way the SSQL S was declared. It’'s properly covered elsewhere, but suffice
it to say, the“1” in the declaration of st ock abovetellsit that only the first field needs to be checked in comparing
two SSQL Ses. In database terms, this makes it the primary key. Therefore, when searching for a match, our
exemplar only had to have itsfirst field populated.

5.7. Changing the Table Name

Another feature you might find a use for is changing the table name MySQL ++ uses to build queries involving
SSQL Ses. By default, the database server table is assumed to have the same name as the SSQL S structure type. But
if thisisinconvenient, you can globally change the table name used in queries like this:

stock: :tabl e("MySt ockDat a") ;

It's also possible to change the name of atable on a per-instance basis:

stock s;

MySQL
+
+

v8.2.mst ance_t abl e(" Al ternat eTabl e") ;

M%ﬁ%"s useful when you have an SSQL S definition that is compatible with multiple tables, so the table name to
tse for each instance is different. This feature saves you from having to define a separate SSQL S for each table.
It isalso useful for mapping a class hierarchy onto a set of table definitions. The common SSQL S definition isthe
“superclass’ for agiven set of tables.

Strictly speaking, you only need to use this feature in multithreaded programs. Changing the static table name before
using each instance is safe if all changes happen within asingle thread. That said, it may still be convenient to
change the name of the table for an SSQL S instance in a single-threaded program if it gets used for many operations
over an extended span of code.

5.8. Using an SSQLS in Multiple Modules

It's convenient to define an SSQL S in a header file so you can useit in multiple modules. Y ou run into a bit of

a problem, though, because each SSQL S includes a few static data members to hold information common to al
structures of that type. (The table name and the list of field names.) When you #include that header in more than one
module, you get a multiply-defined symbol error at link time.

The way around thisisto define the preprocessor macro MYSQLPP_SSQ.S NO STATI CSin all but one of
the modules that use the header definining the SSQL S. When this macro is defined, it suppresses the static data
membersin any SSQL S defined thereafter.

Imagine we have afilermy_ssql s. h whichincludesasql _cr eat e_Nmacro cal to define an SSQLS, and that
that SSQLSisused in at least two modules. Onewe'll call f 0o. cpp, and we'll say it’sjust auser of the SSQLS;
it doesn’t “own” it. Another of the modules, my_ssql s. cpp usesthe SSQLS more heavily, so we' ve called it the
owner of the SSQLS. If there aren’t very many modules, this works nicely:

/1 File foo.cpp, which just uses the SSQS, but doesn’t "own" it:
#defi ne MYSQLPP_SSQ.S NO STATI CS
#i ncl ude "ny_ssqls. h"

/1l File nmy_ssqls.cpp, which owns the SSQS, so we just #include it directly
#i nclude "ny_ssqls. h"

If there are many modules that need the SSQL S, adding all those #defines can be apain. In that case, it's easier if
you flip the above pattern on its head:

/1 File ny_ssqls.h:

#if 1defined(EXPAND MY _SSQLS STATI CS)

define MYSQLPP_SSQS NO STATI CS

#endi f

sql _create_X(Y, Z....) // the SSQS definition

/1 File foo.cpp, a nere user of the SSQS:
#i ncl ude "ny_ssqls. h"

/1 File nmy_ssqls.cpp, which owns the SSQS:
#def i ne EXPAND _MY_SSQLS STATI CS
#i ncl ude "ny_ssqls. h"

5.9. Harnessing SSQLS Internals

The sql_create macros define several methods for each SSQL S. These methods are mostly for use within the
library, but some of them are useful enough that you might want to harness them for your own ends. Here is some

54

MySQL
+
+

vBs2ddocode showing how the most useful of these methods would be defined for the stock structure used in all the
Wsagl s*. cpp examples:
Manual

/] Basic form

tenpl ate <cl ass Mani p>

stock_val ue_I| i st <Mani p> val ue_Il i st(cchar *d
Mani p m = nysql pp: : quote) const;

tenpl ate <cl ass Mani p>
stock_field_list<manip> field_list(cchar *d
Mani p m = nysql pp: : do_not hi ng) const;

tenpl ate <cl ass Mani p>
stock_equal _I i st <Mani p> equal _|ist(cchar *d =", ",
cchar *e =" =", Manip m = nysql pp::quote) const;

/1 Bool ean argument form

tenpl ate <cl ass Mani p>

stock_cus_val ue_Il i st <Mani p> val ue_list([cchar *d, [Manip m]]
bool i1, bool i2 =false, ... , bool i5 = false) const;

/1 List form

tenpl ate <cl ass Mani p>

stock_cus_val ue_I| i st <Mani p> value_list([cchar *d, [Manip m]]
stock_enumil, stock_enumi?2 = stock_ NULL, ...,
stock_enumi5 = stock NULL) const;

/1 Vector form

tenpl ate <cl ass Mani p>

stock_cus_val ue_I| i st <Mani p> value_list([cchar *d, [Manip m]]
vect or<bool > *i) const;

...Plus the obvious equivalents for field_|list() and equal _list()

Rather than try to learn what all of these methods do at once, let’ s ease into the subject. Consider this code:

stock s("Dinner Rolls", 75, 0.95, 0.97, sql_date("1998-05-25"));

cout << "Value list: " << s.value_list() << endl;
cout << "Field list: " << s.field_list() << endl;
cout << "Equal list: " << s.equal _list() << endl;

That would produce something like:

Value list: 'Dinner Rolls’',75,0.95,0.97,' 1998-05-25'
Field list: itemnum weight, price, sdate
Equal list: item= "Dinner Rolls’,num= 75, weight = 0.95, price = 0.97,sdate = '1998- 05- 25

That is, a“vauelist” isalist of data member values within a particular SSQL S instance, a“field list” isalist of the
fields (columns) within that SSQLS, and an “equal list” isalist in the form of an SQL equals clause.

Just knowing that much, it shouldn’t surprise you to learn that Quer y: : i nsert () isimplemented moreor less
like this:

*this << "INSERT INTO " << v.table() << " (" << v.field_list() <<
") VALUES (" << v.value_list() << ")";

where ‘v’ isthe SSQLS you' re asking the Query object to insert into the database.

MySQL
+
+
vBI2w let’s look at a complete example, which uses one of the more complicated forms of equal _|i st (). This
égemple builds a query with fewer hard-coded strings than the most obvious technique requires, which makes it
Mamara robust in the face of change. Hereisexanpl es/ ssql s5. cpp:

#i ncl ude "cndl i ne. h"
#i ncl ude "printdata. h"
#i ncl ude "stock. h"

#i ncl ude <i ostreans
#i ncl ude <vector>

usi ng nanespace std;

int
mai n(int argc, char *argv[])
{
/|l Get database access paraneters from comand |ine
nmysql pp: : exanpl es: : ConmandLi ne cndl i ne(argc, argv);
if (cmdline) {
return 1,
}
try {
/] Establish the connection to the database server.
nysql pp: : Connection con(nysql pp: : exanpl es: : db_nane,
cndl i ne.server(), cndline.user(), cmdline.pass());
/1 Get all the rows in the stock table.
nysql pp: : Query query = con. query("select * from stock");
vect or <st ock> res;
query.storein(res);
if (res.size() > 0) {
/1 Build a select query using the data fromthe first row
I/ returned by our previous query.
query << "select * fromstock where " <<
res[0].equal _list(" and ", stock_weight, stock_price);
// Display the finished query.
cout << "Custom query:\n" << query << endl;
}
}
catch (const nysql pp:: BadQuery& er) ({
/1 Handl e any query errors
cerr << "Query error: " << er.what() << endl;
return -1,
}
catch (const nysql pp:: BadConversi on& er) {
/1 Handl e bad conversions
cerr << "Conversion error: " << er.what() << endl <<
"\tretrieved data size: " << er.retrieved <<
", actual size: " << er.actual _size << endl;
return -1;
}
catch (const nysql pp:: Exception& er) {
/] Catch-all for any other MySQL++ exceptions
cerr << "Error: " << er.what() << endl;
return -1,
}
return O;
}

MySQL
+
+
vIBidexample usesthelist form of equal _|i st (). Theargumentsst ock_wei ght andst ock_pri ce are
@eem values equal to the position of these columns within the stock table. sgl_create # generates this enum for you
Mant@hatically.

The boolean argument form of that equal _| i st () call would look likethis:

query << "select * fromstock where " <<
res[0].equal list(" and ", false, false, true, true, false);

It's alittle more verbose, as you can see. And if you want to get really complicated, use the vector form:

vect or <bool > v(5, false);

v[stock_weight] = true;

v[stock _price] = true;

query << "select * fromstock where " <<
res[0].equal list(" and ", v);

This form makes the most sense if you are building many other queries, and so can re-use that vector object.

Many of these methods accept manipulators and custom delimiters. The defaults are suitable for building SQL
queries, but if you' re using these methods in a different context, you may need to override these defaults. For
instance, you could use these methods to dump data to atext file using different delimiters and quoting rules than

SQL.

At this point, we' ve seen all the major aspects of the SSQL S feature. The final sections of this chapter ook at some
of the peripheral aspects.

5.10. Having Different Field Names in C++ and SQL

There’ samore advanced SSQL S creation macro, which all the others are built on top of. Currently, the only feature
it adds over what's described above isthat it lets you name your SSQL S fields differently from the names used by
the database server. Perhaps you want to use Hungarian notation in your C++ program without changing the SQL
database schema:

sql _create_conplete_5(stock, 1, 5,
nysql pp: :sql _char, mslitem "itent,
nmysql pp: :sqgl _bigint, mnNum "nun,
nysql pp: : sql _doubl e, m fWeight, "weight",
nmysql pp: : sql _decimal, mfPrice, "price",
nysql pp: : sql _date, mDate, "sdate")

Note that you don’'t have to use this mechanism if the only difference in your SQL and C++ field namesis case.
SSQL S field name lookups are case-insensitive as of MySQL ++ 3.1. Y ou can see thisin the examples: some parts
of the code deliberately refer to the st ock. sdat e sampletablefield asst ock. sDat e to exercise this feature.

5.11. Expanding SSQLS Macros

If you ever need to see the code that a given SSQL S declaration expands out to, use the utility doc/ ssql s-
pretty,likeso:

doc/ssql s-pretty < nyprog.cpp | |ess

This Perl script locates the first SSQL S declaration in that file, then uses the C++ preprocessor to expand that macro.
(The script assumes that your system'’s preprocessor is called cpp, and that its command line interface follows Unix
conventions.)

57

MySQL
+
+
vB3idu run it from the top MySQL ++ directory, as shown above, it will use the header filesin the distribution’s| i b
sbdirectory. Otherwise, it assumes the MySQL ++ headers are in their default location, / usr /i ncl ude/ nysql
Marudf you want to use headers in some other location, you’ll need to change the directory namein the -1 flag at the
top of the script.

5.12. Customizing the SSQLS Mechanism

The SSQL S header ssql s. h isautomatically generated by the Perl script ssql s. pl . Although it is possible to
change this script to get additional functionality, most of the timeit's better to just derive a custom class from the
generated SSQL Sto add functionality to it. (See the next section to see how to do this correctly.)

That said, ssql s. pl does have afew configurables you might want to tweak.

Thefirst configurable value sets the maximum number of data members allowed in an SSQLS. Thisis discussed
elsewhere, in Section 8.2, “The Maximum Number of Fields Allowed”. Beware the warnings there about increasing
this value too much.

The second configurable is the default floating point precision used for comparison. As described above

(Section 5.2, “SSQL S Comparison and Initialization”) SSQL Ses can be compared for equality. The only place this
istricky iswith floating-point numbers, since rounding errors can make two “equal” values compare as distinct.
This property of floating-point numbers means we almost never want to do exact comparison. MySQL ++ lets you
specify the precision you want it to use. If the difference between two valuesis under a given threshold, MySQL +
+ considers the values equal. The default threshold is 0.00001. This threshold works well for “human” scale values,
but because of the way floating-point numbers work, it can be wildly inappropriate for very large or very small
quantities like those used in scientific applications.

There are actually two ways to change this threshold. If you need a different system-wide default, edit ssql s. pl
and changethe $f p_mi n_del t a variable at the top of thefile, then rebuild ssql s. h as described below. If you
need different thresholds per file or per project, it’s better to set the C macro MYSQLPP_FP_M N_DELTA instead.
The Perl variable sets this macro’ s default; if you give adifferent value before #including ssql s. h, it will use that
instead.

Torebuildssql s. h after changing ssql s. pl , you'll need a Perl interpreter. The only modern Unixy system
I’'m aware of where Perl isn't installed by default is Cygwin, and it'sjust aset up. exe choice away there. You'll
probably only have to download and install a Perl interpreter if you' re on Windows and don’t want to use Cygwin.

If you're on a system that uses autoconf, building MySQL ++ automatically updatesssql s. h any timessql s. pl
changes. Otherwise, you'll need to run the Perl interpreter by hand:

c:\nmysql++> cd |ib
c:\lib> perl ssqls.pl

5.13. Deriving from an SSQLS

Specialized SQL Structures make good base classes. They’' re smple, and have few requirements on any class that
derives from them. There are some gotchas to ook out for, however.

Consider this:

sql _create_2(
Base, 1, 2,
nmysql pp: : sql _varchar, a,
nysql pp::sqgl_int, b

)i

class Derived : public Base

{

58

MySQL
+
+
vBuhlLi c:
Usé constructor
Man i ved(mysql pp: : sql _varchar _a, nysql pp::sql _int _b)
ase(_a, _b)

{
}

[/ functionality added to the SSQLS through inheritance
bool do_sonething_interesting(int data);

H
We've derived aclass from an SSQLS in order to add amethod to it. Easy, right?

Sadly, too easy. The code has arather large flaw which makes our derived class unusable as an SSQLS. In C++, if
aderived class has a function of the same name as one in the base class, the base class versions of that function are
all hidden by those in the derived class. This appliesto constructors, too: an SSQL S defines several constructors, but
our derived class defines only one, causing that one to hide all of the ones in the base class. Many of the MySQL +

+ mechanisms that use SSQL Ses rely on having these contructors, so our Der i ved above is-not-aBase, and so it
isn't an SSQLS. If youtry to use Der i ved asan SSQLS, you'll get compiler errors wherever MySQL ++ tries to
access one of these other constructors.

There's another minor flaw, as well. Our lone constructor above takes its parameters by value, but the corresponding
constructor in the SSQL S takes them by const reference. Our derived class has technically hidden afourth base class
constructor this way, but this particular case is more amatter of efficiency than correctness. Code that needs the full-
creation constructor will still work with our code above, but passing stringish typeslikesql _var char by value
instead of by const reference isinefficient.

Thisisthe corrected version of the above code:

sql _create_2(
Base, 1, 2,
nmysql pp: : sql _varchar, a,
nysql pp::sqgl_int, b

)i

class Derived : public Base
{
public:
/! default constructor'*
Derived()
Base()
{
}

/1 for-conparison constructor?®®
Derived(const mnysql pp::sqgl _varchar& _a)
Base(_a)

{

}

/1 full creation constructor

Derived(const mysql pp::sqgl _varchar& _a, const mnysql pp::sqgl_int& _b)
Base(_a, _b)

{

}

/1 popul ation constructor®

needed by mechanismslike Quer y: : st or ei n() ; anything using an STL container, which usually require default ctors for contained data structures
Btakes the COMPCOUNT subset of the SSQLS s data members, used for maki ng comparison exemplars, used with Quer y: : updat e() and similar mechanisms; see S
Bysed in taking raw row data from a SQL result set and converting it to SSQLS form

59

MySQL
+
+
v3.D&rived(const nysql pp:: Row& row) :
Us&ase(row)
Mﬂ;al

/1 functionality added to the SSQS through inheritance
bool do_sonething_interesting(int data);

3
Now Der i ved is-an SSQLS.

Y ou might wonder if you can use protected inheritance above to redefine the SSQL S's public interface. For
instance, OO purists might object to the public data membersin an SSQLS. Y ou could encapsul ate these public data
membersin the derived class by using protected inheritance, exposing access to the base class' s data members with
public accessor methods. The problem with thisisthat each SSQL S has dozens of public member functions. These
are needed by MySQL ++ internal's, so unless you re-exposed al of them as we did with the constructors above,

you' d again have an SSQL S derivative that is-not-an SSQLS. Simply put, only public inheritance is practical with

SSQL Ses.
5.14. SSQLS and BLOB Columns

It takes special careto use SSQL S with BLOB columns. It's safest to declare the SSQL S field as of type
nmysql pp: : sql _bl ob. Thisiscurrently atypedef aliasfor String, which is the form the dataisin just before
the SSQL S mechanism popul ates the structure. Thus, when the datais copied from the internal MySQL ++ data
structuresinto your SSQL S, you get adirect copy of the St r i hg object’s contents, without interference.

Because C++ strings handle binary data just fine, you might think you can use st d: : st ri ng instead of

sql _bl ob, but the current design of St ri ng convertstost d: : stri ng viaaC string. Asaresult, the BLOB
dataistruncated at the first embedded null character during population of the SSQLS. There' s no way to fix that
without completely redesigning either St r i ng or the SSQL S mechanism.

Thesqgl _bl ob typedef may be changed to alias adifferent type in the future, so using it instead of St ri ng
ensures that your code tracks these library changes automatically. Besides, St ri ng isonly intended to be an
internal mechanism within MySQL ++. The only reason the layering is so thin hereis because it’ s the only way to
prevent BLOB data from being corrupted while avoiding that looming redesign effort.

You can see thistechnique in actioninthecgi _j peg example:

#i ncl ude "cndl i ne. h"
#i ncl ude "i nages. h"

#define CRLF "\r\n"
#define CRLF2 "\r\n\r\n"

int
mai n(int argc, char* argv[])
{
/1 Get database access paraneters fromconmmand line if present, else
/1 use hard-coded values for true C3 case.
nysql pp: : exanpl es: : ComrandLi ne cndl i ne(argc, argv, "root",
"nunyabi nness") ;
if ('crdline) {
return 1,
}

/| Parse CA query string environnent variable to get image ID
unsigned int ing_id = 0;
char* cgi_query = getenv("QUERY_STRING');
if (cgi_query) {
if ((strlen(cgi_query) < 4) || mencnp(cgi _query, "id=", 3)) {

MySQL

+
+
v3.2.1 std::cout << "Content-type: text/plain" << std::endl << std::endl;
User std::cout << "ERROR Bad query string" << std::endl;
Manual } return 1,
el se {
im_id = atoi (cgi _query + 3);
}
}
el se {
std::cerr << "Put this programinto a web server's cgi-bin "
"directory, then" << std::endl;
std::cerr << "invoke it with a URL like this:" << std::endl;
std::cerr << std::endl;
std::cerr << " http://server.nane. coni cgi - bi n/cgi _j peg?i d=2" <<
std::endl;
std::cerr << std::endl;
std::cerr << "This will retrieve the inage with ID 2." << std::endl;
std::cerr << std::endl;
std::cerr << "You will probably have to change sonme of the #defines "
"at the top of" << std::endl;
std::cerr << "exanples/cgi _jpeg.cpp to allow the |ookup to work." <<
std::endl;
return 1,
}
/] Retrieve image fromDB by ID
try {
nysql pp: : Connecti on con(nysqgl pp: : exanpl es: : db_nane,
cndl i ne.server(), cndline.user(), cndline.pass());
nysql pp: : Query query = con. query();
query << "SELECT * FROM inmages WHERE id = " << ing_id;
nysql pp: : StoreQueryResult res = query.store();
if (res & res.numrows()) {
images inmg = res[0];
if (inmg.data.is_null) {
std::cout << "Content-type: text/plain" << CRLF2;
std::cout << "No image content!" << CRLF;
}
el se {
std::cout << "X-Image-1d: " << ing_id << CRLF; // for debugging
std::cout << "Content-type: image/jpeg" << CRLF;
std::cout << "Content-length: " <<
i mg. data. data. |l ength() << CRLF2;
std::cout << ing.data;
}
}
el se {
std::cout << "Content-type: text/plain" << CRLF2;
std::cout << "ERROR. No image with ID " << ing_id << CRLF;
}
}

catch (const nysql pp:: BadQuery& er) ({
/1 Handl e any query errors
std::cout << "Content-type: text/plain" << CRLF2;
std::cout << "QUERY ERROR " << er.what() << CRLF;
return 1;

}

catch (const nysql pp:: Exception& er) {
/] Catch-all for any other MySQL++ exceptions
std::cout << "Content-type: text/plain" << CRLF2;
std::cout << "GENERAL ERROR " << er.what() << CRLF;
return 1;

MySQL

+
+
v3.2.1
User

return O;

Mhnual
5.15. SSQLS and Visual C++ 2003

SSQL Sworks on al platforms supported by MySQL ++ except for Visual C++ 2003. (Because the rest of MySQL +
+ worksjust fine with Visual C++ 2003, we haven’t removed this platform from the supported list entirely.)

If yo

1

u do need SSQL S and are currently on Visual C++ 2003, you have these options:

The simplest option is to upgrade to a newer version of Visual C++. The compiler limitations that break
SSQL S aredl fixed in Visual C++ 2005 and newer. Visual C++ Expressisfree and is apparently here to stay;
coupled with the free wxWidgets library, it lacks little compared to Visual C++ Professional. A bonus of using
wxWidgetsisthat it's cross-platform and better-supported than MFC.

If you can’t upgrade your compiler, you may be able to downgrade to MySQL ++ v2.x. The SSQL S featurein
these older versions worked with Visual C++ 2003, but didn’t let you use a given SSQL S in more than one
module in aprogram. If you can live with that limitation and have a Per| interpreter on your system, you can
re-generatel i b/ ssql s. h to remove the multiple-module SSQL S support. To do this, you run the command
perl ssgls.pl -v from within MySQL++'s | i b subdirectory before you build and install the library.

There' saplan to replace the current SSQL S mechanism with an entirely new code base. Although thisis being
done primarily to get new features that are too difficult to add within the current design, it also means we'll
have the chance to test step-by-step along the way that we don’t reintroduce code that Visual C++ 2003 doesn't
support. This may happen without you doing anything, but if there’'s someone on the team who cares about this,
that will naturally increase the chances that it does happen.

MySQL
+

‘B, Using Unicode with MySQL++

Manual

6.1. A Short History of Unicode

...with a focus on relevance to MySQL++

In the old days, computer operating systems only dealt with 8-bit character sets. That only allows for 256 possible
characters, but the modern Western languages have more characters combined than that alone. Add in all the other
languages of the world plus the various symbols people use in writing, and you have areal mess!

Since no standards body held sway over things like international character encoding in the early days of computing,
many different character sets were invented. These character sets weren't even standardized between operating
systems, so heaven help you if you needed to move localized Greek text on a DOS box to a Russian Macintosh! The
only way we got any international communication done at all was to build standards on top of the common 7-bit
ASCII subset. Either people used approximations like aplain “c¢” instead of the French “¢”, or they invented things
like HTML entities (“ç” in this case) to encode these additional characters using only 7-bit ASCII.

Unicode solves this problem. It encodes every character used for writing in the world, using up to 4 bytes per
character. The subset covering the most economically valuable cases takes two bytes per character, so many
Unicode-aware programs only support this subset, storing characters as 2-byte values, rather than use 4-byte
characters so asto cover all possible cases, however rare. This subset of Unicode is called the Basic Multilingual
Plane, or BMP.

Unfortunately, Unicode was invented about two decades too late for Unix and C. Those decades of legacy created

an immense inertia preventing a widespread move away from 8-bit characters. MySQL and C++ come out of these
older traditions, and so they share the same practical limitations. MySQL ++ currently doesn't have any codein it for
Unicode conversions; it just passes data al ong unchanged from the underlying MySQL C AP, so you still need to be
aware of these underlying issues.

During the development of the Plan 9 operating system (a kind of successor to Unix) Ken Thompson invented the
UTF-8 encoding. UTF-8 isasuperset of 7-bit ASCII and is compatible with C strings, since it doesn’t use 0 bytes
anywhere as multi-byte Unicode encodings do. As aresult, many programs that deal in text will cope with UTF-8
data even though they have no explicit support for UTF-8. (Follow the last link above to see how the design of
UTF-8 dlows this.) Thus, when explicit support for Unicode was added in MySQL v4.1, they chose to make UTF-8
the native encoding, to preserve backward compatibility with programs that had no Unicode support.

6.2. Unicode on Unixy Systems

Linux and Unix have system-wide UTF-8 support these days. If your operating system is of 2001 or newer vintage,
it probably has such support.

On such a system, the terminal 1/0 code understands UTF-8 encoded data, so your program doesn’t require any
special code to correctly display a UTF-8 string. If you aren’'t sure whether your system supports UTF-8 natively,
justrunthesi npl el example: if the first item has two high-ASCII charactersin place of the“U” in “Nurnberger
Brats’, you know it's not handling UTF-8.

If your Unix doesn’'t support UTF-8 natively, it likely doesn’t support any form of Unicode at all, for the historical
reasons | gave above. Therefore, you will have to convert the UTF-8 data to the local 8-bit character set. The
standard Unix functioni conv() can help here. If your system doesn’t have thei conv() facility, thereisafree
implementation available from the GNU Project. Another library you might check out isIBM’sICU. Thisis rather
heavy-weight, so if you just need basic conversions, i conv() should suffice.

MySQL

+
+

"%.3. Unicode on Windows

M

Enagﬁ Windows API function that takes a string actually comes in two versions. One version supports only 1-byte
“ANSI"” characters (a superset of ASCII), so they end in 'A'. Windows also supports the 2-byte subset of Unicode
called UCS-2Y. Some call these “wide” characters, so the other set of functionsend in "W'. The Mess ageBox()
AP, for instance, is actually amacro, not areal function. If you define the UNICODE macro when building your
program, the MessageBox () macro evaluatesto MessageBox W) ; otherwise, to MessageBoxA() .

Since MySQL uses the UTF-8 Unicode encoding and Windows uses UCS-2, you must convert data when passing
text between MySQL ++ and the Windows API. Since there’ s no point in trying for portability — no other OS1'm
aware of uses UCS-2 — you might as well use platform-specific functionsto do this translation. Since version 2.2.2,
MySQL ++ ships with two Visual C++ specific examples showing how to do thisin a GUI program. (In earlier
versions of MySQL ++, we did Unicode conversion in the console mode programs, but this was unrealistic.)

How you handle Unicode data depends on whether you’ re using the native Windows API, or the newer .NET API.
First, the native case:

/1 Convert a Cstring in UTF-8 format to UCS-2 fornmat.
voi d ToUCS2(LPTSTR pcQut, int nCQutLen, const char* kpcln)

{
}

/1 Convert a UCS-2 string to C string in UTF-8 format.
voi d ToUTF8(char* pcQut, int nQutlLen, LPCWSTR kpcln)

{
}

Mul ti Byt eToW deChar (CP_UTF8, 0, kpcln, -1, pcQut, nQutLen);

W deChar ToMul ti Byt e(CP_UTF8, 0, kpcln, -1, pcQut, nQutLen, 0, 0);

These functions |eave out some important error checking, so see exanpl es/ vst udi o/ nf ¢/ nf c_dl g. cpp for
the complete version.

If you're building a.NET application (such as, perhaps, because you’ re using Windows Forms), it's better to use
the .NET libraries for this:

// Convert a Cstring in UTF-8 format to a . NET String in UCS-2 fornat.
String® ToUCS2(const char* utf8)

{
}

// Convert a .NET String in UCS-2 fornmat to a C string in UTF-8 fornat.
System : Voi d ToUTF8(char* pcQut, int nCQutlLen, String® sln)

return gcnew String(utf8, 0, strlen(utf8), System: Text::Encoding::UTF8);

{
array<Byte>" bytes = System : Text::Encodi ng:: UTF8- >CGet Byt es(sln);
nCutLen = Math::Mn(nQutLen - 1, bytes->Length);
System : Runti me:: | nteropServices:: Marshal : : Copy(bytes, O,
IntPtr(pcQut), nCutlLen);
pcQut [nCutLen] = '\0';
}

Unlike the native API versions, these examples are complete, since the .NET platform handles alot of things behind
the scenes for us. We don’t need any error-checking code for such simple routines.

Since Windows X P, Windows actual ly uses the UTF-16 encoding, not UCS-2. This means that if you use characters beyond the 16-bit “BMP”
range, they get encoded as 4-byte characters. But again, since the most economically valuable subset of Unicode isthe BMP, many programsignore
this distinction and treat modern Windows as supporting 2-byte characters.

64

MySQL
+

+
vAN.bf this assumes you're using Windows NT or one of its direct descendants. Windows 2000, Windows XP,

We¥endows Vista, Windows 7, or any “Server” variant of Windows. Windows 95 and its descendants (98, ME, and
Matit)atlo not support Unicode. They still have the 'W' APIs for compatibility, but they just smash the data down to 8-

bit and call the'A" version for you.

6.4. For More Information

The Unicode FAQs page has copious information on this complex topic.

When it comes to Unix and UTF-8 specific items, the UTF-8 and Unicode FAQ for Unix/Linux isaquicker way to
find basic information.

MySQL

+

‘% Using MySQL++ in a Multithreaded Program

Manual
MySQL++ isnot “thread safe” in any meaningful sense. MySQL ++ contains very little code that actively prevents

trouble with threads, and all of it is optional. We have done some work in MySQL ++ to make thread safety
achievable, but it doesn’t come for free.

The main reason for thisisthat MySQL ++ is generally 1/0-bound, not processor-bound. That is, if your program’s
bottleneck is MySQL ++, the ultimate cause is usually the 1/0O overhead of using a client-server database. Doubling
the number of threads will just let your program get back to waiting for I/O twice as fast. Since threads are evil

and generally can't help MySQL++, the only optional thread awareness features we turn on in the shipping
version of MySQL ++ are those few that have no practical negative consequences. Everything elseis up to you, the
programmer, to evaluate and enable as and when you need it.

We're going to assume that you are reading this chapter because you find yourself needing to use threads for some
other reason than to speed up MySQL access. Our purpose hereis limited to setting down the rules for avoiding
problems with MySQL ++ in a multi-threaded program. We won'’t go into the broader issues of thread safety outside
the scope of MySQL ++. Y ou will need agrounding in threads in general to get the full value of this advice.

7.1. Build Issues

Before you can safely use MySQL ++ with threads, there are several things you must do to get a thread-aware build:

1

Build MySQL++ itself with thread awareness turned on.

On Linux, Cygwin and Unix (OS X, *BSD, Solaris...), passthe - - enabl e- t hr ead- check flag to the
conf i gur e script. Beware, thisisonly arequest to the conf i gur e script to look for thread support on your
system, not arequirement to do or die; if the script doesn’t find what it needs to do threading, MySQL ++ will
just get built without thread support. See README- Uni x. t xt for more details.

On Windows, if you use the Visual C++ project files or the MinGW M akefile that comes with the MySQL ++
distribution, threading is always turned on, due to the nature of Windows.

If you build MySQL ++ in some other way, such as with Dev-Cpp (based on MinGW) you' re on your own to
enable thread awareness.

Link your program to a thread-aware build of the MySQL C API library.

If you use abinary distribution of MySQL on Unixy systems, you usually get two different versions

of the MySQL C AP library, one with thread support and one without. These are typically called
Iibmysqgl client andlibnysql client_r,thelatter being the thread-safe one. (The“_r ” means
reentrant.)

If you're using the Windows binary distribution of MySQL, you should have only one version of the C AP
library, which should be thread-aware. If you have two, you probably just have separate debug and optimized
builds. See READVE- Vi sual - C++. t xt or README- M nGW t xt for details.

If you build MySQL from source, you might only get one version of the MySQL C API library, and it can have
thread awareness or not, depending on your configuration choices. Thisis the case with Cygwin, where you
currently have no choice but to build the C API library from source. (See READMVE- Cygwi n. t xt .)

Enable threading in your program’s build options.

Thisisdifferent for every platform, but it’s usually the case that you don’t get thread-aware builds by default.
Depending on the platform, you might need to change compiler options, linker options, or both. See your
development environment’ s documentation, or study how MySQL ++ itself turns on thread-aware build options
when requested.

MySQL
+

2. Connection Management

Mfﬂ%"’“ﬂ ySQL C API underpinning MySQL ++ does not allow multiple concurrent queries on a single connection.
You can run into this problem in a single-threaded program, too, which is why we cover the details elsewhere, in
Section 3.16, “ Concurrent Queries on a Connection”. It's athornier problem when using threads, though.

The simplefix isto just create a separarate Connection object for each thread that needs to make database
gueries. Thisworks well if you have a small number of threads that need to make queries, and each thread usesits
connection often enough that the server doesn’t time out waiting for queries.

If you have lots of threads or the frequency of queriesislow, the connection management overhead will be
excessive. To avoid that, we created the ConnectionPool class. It manages apool of Connect i on objectslike
library books: athread checks one out, uses it, and then returnsit to the pool as soon asit’s done with it. This keeps
the number of active connections low. We suggest that you keep each connection’ s use limited to asingle variable
scope for RAII reasons; we created alittle helper called ScopedConnection to make that easy.

Connect i onPool hasthree methods that you need to override in a subclass to makeit concrete: cr eat e() ,
destroy(),andnmax_idl e_tinme().Theseoverrides let the base class delegate operations it can’t successfully
doitself toits subclass. The Connect i onPool can’'t know how tocr eat e() the Connect i on objects,
because that depends on how your program gets login parameters, server information, etc. Connect i onPool aso
makes the subclassdest r oy () the Connect i on objectsit created; it could assume that they’ re simply allocated
on the heap with new, but it can’t be sure, so the base class delegates destruction, too. Finally, the base class can’t
know which connection idle timeout policy would make the most sense to the client, so it asks its subclass viathe
max_idle_tinme() method.

Connect i onPool also alowsyouto overrider el ease() , if needed. For simple uses, it’s not necessary to
override this.

In designing your Connect i onPool derivative, you might consider making it a Singleton, since there should only
be one pool in a program.

Another thing you might consider doing is passing a ReconnectOption object to Connect i on: : set _opti on()
inyour cr eat e() override before returning the new Connect i on pointer. Thiswill cause the underlying
MySQL C API to try to reconnect to the database server if a query fails because the connection was dropped by the
server. This can happen if the DB server is alowed to restart out from under your application. In many applications,
thisisn't allowed, or if it does happen, you might want your code to be able to detect it, so MySQL ++ doesn’t set
this option for you automatically.

Here is an example showing how to use connection pools with threads:

#i ncl ude "cndl i ne. h"
#i ncl ude "threads. h"

#i ncl ude <i ostreanp

usi ng nanespace std

#i f defi ned(HAVE_THREADS)
/1 Define a concrete ConnectionPool derivative. Takes connection
/] parameters as inputs to its ctor, which it uses to create the
/1 connections we're called upon to nake. Note that we al so declare
/1 a global pointer to an object of this type, which we create soon
/] after startup; this should be a conmbn usage pattern, as what use
/1 are multiple pools?
class Sinpl eConnectionPool : public mysql pp:: Connecti onPoo
{
public:
/1 The object's only constructor

MySQL

+
+

v3.2.1Si npl eConnect i onPool (nysql pp: : exanpl es: : ComrandLi ne& cl)
User conns_in_use_(0),

M anuafj

b_(nysql pp: : exanpl es: : db_nane),
server_(cl.server()),

user _(cl.user()),

password_(cl . pass())

{

}

/1 The destructor. W _nust_ call ConnectionPool::clear() here,
/1 because our superclass can't do it for us.
~Si npl eConnect i onPool ()

clear();

}

/1 Do a sinple formof in-use connection limting: wait to return
/1 a connection until there are a reasonably |ow nunber in use

/] already. Can't do this in create() because we're interested in
[/ connections actually in use, not those created. Al so note that
/1 we keep our own count; ConnectionPool::size() isn't the sane!
nysql pp: : Connecti on* grab()

{

while (conns_in_use_ > 8) {
cout.put('R); cout.flush(); // indicate waiting for rel ease
sl eep(1);

}

++conns_i n_use_;
return mysgl pp: : Connecti onPool : : grab();
}

/1 OQher half of in-use conn count limt
voi d rel ease(const mnysql pp:: Connecti on* pc)

{
nysql pp: : Connecti onPool : : rel ease(pc);
--conns_i n_use_;
}
pr ot ect ed:

/1 Supercl ass overrides
nysql pp: : Connecti on* create()

/1 Create connection using the paranmeters we were passed upon
/1 creation. This could be sonething much nmore conpl ex, but for
/1 the purposes of the exanple, this suffices.
cout.put('C); cout.flush(); // indicate connection creation
return new nysql pp: : Connecti on(

db_.enpty() ? 0 : db_.c_str(),

server_.enpty() ? O : server_.c_str(),

user _.enpty() ? 0 : user_.c_str(),

password_.enpty() ? "" : password_.c_str());
}
voi d destroy(nysql pp:: Connecti on* cp)
{
/1 Qur superclass can't know how we created the Connection, so
/1 it delegates destruction to us, to be safe.
cout.put('D); cout.flush(); // indicate connection destruction
del ete cp;
}

unsigned int max_idle_tinme()

MySQL

+
+
v3.2.1{
User /1 Set our idle time at an exanple-friendly 3 seconds. A real
Manual /1 pool would return sone fraction of the server's connection
— // idle timeout instead.
return 3;
}
private:
/1 Nunber of connections currently in use
unsi gned int conns_in_use_;
// Qur connection paraneters
std::string db_, server_, user_, password_;
b

Si npl eConnecti onPool * pool ptr = 0;

static thread_return_t CALLBACK_SPECI FI ER

wor ker _t hread(thread_arg_t running_fl ag)

{
/1 Ask the underlying C APl to allocate any per-thread resources it
// needs, in case it hasn't happened already. In this particular
/1 program it's alnpst guaranteed that the safe_grab() call bel ow
/1 will create a new connection the first tine through, and thus
/1 allocate these resources inplicitly, but there's a nonzero chance
// that this won't happen. Anyway, this is an exanple program
/1 meant to show good style, so we take the high road and ensure the
// resources are allocated before we do any queries.
nmysql pp: : Connection::thread_start();
cout.put('S); cout.flush(); // indicate thread started

// Pull data fromthe sanple table a bunch of tinmes, releasing the
/1 connection we use each tine.
for (size_t i =0; i <6; ++i) {
/1 Go get a free connection fromthe pool, or create a new one
/1 if there are no free conns yet. Uses safe_grab() to get a
/1 connection fromthe pool that will be autonmatically returned
/1 to the pool when this loop iteration finishes.
nmysql pp: : ScopedConnecti on cp(*pool ptr, true);
if (tep) {
cerr << "Failed to get a connection fromthe pool!" << endl;
br eak;

}

/1 Pull a copy of the sanple stock table and print a dot for
/] each rowin the result set.
nmysql pp: : Query query(cp->query("select * fromstock"));
nysql pp: : StoreQueryResult res = query.store();
for (size_t j =0; j <res.numrows(); ++) {
cout.put('.");
}

/1 Delay 1-4 seconds before doing it again. Because this can
// delay longer than the idle timeout, we'll occasionally force
/1 the creation of a new connection on the next |oop.
sleep(rand() %4 + 1);

}

/1 Tell main() that this thread is no |onger running
*reinterpret_cast<bool *>(running_flag) = fal se;
cout.put('E); cout.flush(); // indicate thread ended

/1 Release the per-thread resources before we exit

MySQL

+
+
v3.2.1nysql pp: : Connection::thread_end();
User . o
M;aﬂ,lalre urn O;
#endi f
int
mai n(int argc, char *argv[])
{
#i f defi ned(HAVE_THREADS)

/| Get database access paraneters from comand |ine
nmysql pp: : exanpl es: : ConmandLi ne cndl i ne(argc, argv);
if ('crdline) {

return 1,

// Create the pool and grab a connection. W do it partly to test
/1 that the paraneters are good before we start doing real work, and
/| partly because we need a Connection object to call thread_aware()
/1 on to check that it's okay to start doing that real work. This
/1l latter check should never fail on Wndows, but will fail on nost
/1 other systens unless you take positive steps to build with thread
/| awareness turned on. See README-*.txt for your platform
pool ptr = new Si npl eConnecti onPool (cndl i ne);
try {

nmysql pp: : ScopedConnecti on cp(*pool ptr, true);

if (!cp->thread_aware()) {

cerr << "MySQL++ wasn't built with thread awareness! " <<
argv[0] << " can't run without it." << endl;
return 1,
}
}
catch (nysql pp:: Exception& e) {
cerr << "Failed to set up initial pooled connection: " <<
e.what () << endl;
return 1,
}

/1 Setup conplete. Now let's spin sone threads...
cout << endl << "Pool created and working correctly. Now to do "
"sonme real work..." << endl;
srand((unsigned int)tinme(0));
bool running[] = {
true, true, true, true, true, true, true,
true, true, true, true, true, true, true };
const size_t numthreads = sizeof (running) / sizeof(running[0]);
size t i;
for (i =0; i < numthreads; ++i) {
if (int err = create_thread(worker_thread, running + i)) {
cerr << "Failed to create thread " << i <<
error code " << err << endl;
return 1,

}

/1 Test the 'running' flags every second until we find that they're
// all turned off, indicating that all threads are stopped.
cout.put('W); cout.flush(); // indicate waiting for conpletion
do {

sleep(l);

i =0;

while (i < numthreads && !running[i]) ++i;

MySQL
+
+
v3.2.1}
User While (i < numthreads);
ManuaFOUt << endl << "All threads stopped!" << endl;

/1 Shut it all down...
del ete pool ptr;
cout << endl;

#el se

(void)argc; /1 warni ng squisher

cout << argv[0] << " requires that threads be enabled!" << endl;
#endi f

return O;
}

The example works with both Windows native threads and with POSI X threads.'® Because thread-enabled builds
are only the default on Windows, it’s quite possible for this program to do nothing on other platforms. See above for
instructions on enabling a thread-aware build.

If you write your code without checks for thread support like you see in the code above and link it to a build of
MySQL ++ that isn’t thread-aware, it will still try to run. The threading mechanisms fall back to a single-threaded
mode when threads aren’t available. A particular danger is that the mutex lock mechanism used to keep the pool’ s
internal data consistent while multiple threads access it will just quietly become ano-op if MySQL++ is built
without thread support. We do it this way because we don’'t want to make thread support a MySQL ++ prerequisite.
And, although it would be of limited value, thislets you use Connect i onPool in single-threaded programs.

Y ou might wonder why we don't just work around this weakness in the C API transparently in MySQL ++ instead of
suggesting design guidelines to avoid it. We'd like to do just that, but how?

If you consider just the threaded case, you could argue for the use of mutexes to protect a connection from trying to
execute two queries at once. The cure is worse than the disease: it turns adesign error into a performance sap, asthe
second thread is blocked indefinitely waiting for the connection to free up. Much better to let the program get the
“Commands out of sync” error, which will guide you to this section of the manual, which tells you how to avoid the
error with a better design.

Another option would beto bury Connect i onPool functionality within MySQL ++ itself, so the library could
create new connections at need. That’s no good because the above example is the most complex in MySQL ++, so if
it were mandatory to use connection pools, the whole library would be that much more complex to use. The whole
point of MySQL ++ isto make using the database easier. MySQL ++ offers the connection pool mechanism for those
that really need it, but an option it must remain.

7.3. Helper Functions

Connect i on has several thread-related static methods you might care about when using MySQL ++ with threads.

You cancal Connecti on: : t hread_awar e() to determine whether MySQL ++ and the underlying C API
library were both built to be thread-aware. | want to stress that thread awareness is not the same thing as thread

safety: it’s still up to you to make your code thread-safe. If this method returns true, it just meansit’s possible to
achieve thread-safety, not that you actually haveit.

If your program’s connection-management strategy allows athread to use aConnect i on object that another
thread created, you need to know about Connecti on: : t hread_start (). Thisfunction sets up per-thread
resources needed to make MySQL server calls. You don't need to call it when you use the simple Connect i on-
per-thread strategy, because this function isimplicitly called the first time you create a Connect i on in athread.
It's not harmful to call this function from athread that previously created aConnect i on, just unnecessary. The

BThefile exanpl es/ t hr eads. h contains afew macros and such to abstract away the differences between the two threading models.

71

MySQL
+
+
vBryltime it's necessary is when athread can make calls to the database server on aConnect i on that another
ltreexad created and that thread hasn’t already created a Connect i on itself.

Manua
If'you use Connect i onPool , youshouldcal t hr ead_start () atthe start of each worker thread because

you probably can’t reliably predict whether your gr ab() call will create anew Connect i on or will return one
previously returned to the pool from another thread. It's possible to conceive of situations where you can guarantee
that each pool user always creates afresh Connect i on thefirsttimeit callsgr ab() , but thread programming is
complex enough that it’'s best to take the safe path and awayscal t hr ead_st art () early in each worker thread.

Finally, there' s the complementary method, Connecti on: : t hr ead_end() . Strictly speaking, it's not
necessary to call this. The per-thread memory allocated by the C APl issmall, it doesn’t grow over time, and a
typical thread is going to need this memory for its entire run time. Memory debuggers aren’t smart enough to know
all this, though, so they will gripe about amemory leak unless you call this from each thread that uses MySQL ++
before that thread exits.

Although its name suggests otherwise, Connecti on: : t hread_i d() hasnothing to do with anything in this
chapter.

7.4. Sharing MySQL++ Data Structures

WEe're in the process of making it safer to share MySQL ++' s data structures across threads. Although things are
getting better, it's highly doubtful that all problems with this are now fixed. By way of illustration, allow me explain
one aspect of this problem and how we solved it in MySQL++ 3.0.0.

When you issue a database query that returns rows, you also get information about the columns in each row. Since
the column information is the same for each row in the result set, older versions of MySQL ++ kept this information
in the result set object, and each Row kept a pointer back to the result set object that created it so it could accessthis
common data at need. Thiswas fine as long as each result set object outlived the Row objectsit returned. It required
uncommon usage patterns to run into trouble in this areain a single-threaded program, but in a multi-threaded
program it was easy. For example, there' s frequently a desire to let one connection do the queries, and other threads
process the results. Y ou can see how avoiding lifetime problems here would require a careful locking strategy.

We got around thisin MySQL++ v3.0 by giving these shared data structures a lifetime independent of the result
set object that intitially createsit. These shared data structures stick around until the last object needing them gets
destroyed.

Although thisis now a solved problem, | bring it up because there are likely other similar lifetime and sequencing
problems waiting to be discovered inside MySQL ++. If you would like to help us find these, by all means, share
data between threads willy-nilly. We welcome your crash reports on the MySQL ++ mailing list. But if you'd prefer
to avoid problems, it’s better to keep all data about a query within a single thread. Between this and the advicein
prior sections, you should be able to use threads with MySQL ++ without trouble.

MySQL
+

‘&, Configuring MySQL ++

Manual
The default configuration of MySQL ++ is suitable for most purposes, but there are a few things you can change to
make it meet special needs.

8.1. The Location of the MySQL Development Files

MySQL ++ is built on top of the MySQL C API. (Now called Connector/C.) MySQL ++ relies on this low-level
library for all communication with the database server. Consequently, the build process for MySQL ++ may fail if it
can't find the C API headers and library.

On platforms that use Autoconf'®, the conf i gur e script can usually figure out the location of the C API
development files by itself20 It simply tries a bunch of common installation locations until it finds one that works.
If your MySQL server was installed in a nonstandard location, you will haveto tell the conf i gur e script where
these files are with some combination of the- - wi t h-mysql ,--wi t h-nysql -i ncl ude, and - - wi t h-
nysql -1 i b flags. See READVE- Uni x. t xt for details.

No other platform allows this sort of auto-discovery, so the build files for these platforms simply hard-code the
default installation location for the current GA version of Connector/C at the time that version of MySQL ++ was
released. For example, the Visual C++ project files currently assume MySQL isinc: \ Program Fi | es\ MySQL
\ MySQL Server 5. 1.If you'reusing some other release of MySQL or you installed it somewhere else, you will
have to modify the build files. How you do this, exactly, varies based on platform and what tools you have on hand.
See README- Vi sual - C++. t xt , README- M nGW t xt , or README- Mac- OS- X. t xt , as appropriate.

8.2. The Maximum Number of Fields Allowed

MySQL ++ offers two ways to automatically build SQL queries at run time: Template Queriesand SSQLS. There'sa
limit on the number of fields these mechanisms support, defaulting to 25 fields in the official MySQL ++ pac:kages21
The files embodying these limitsarel i b/ quer ydef . handl i b/ ssql s. h, each generated by Perl scripts of the
same name but with a. pl extension.

The default quer ydef . h issmall and its size only increases linearly with respect to maximum field count.

ssqgl s. hiisatotaly different story. The default 25 field limit makesssql s. pl generateanssql s. h over
1 MB. Worse, thefield limit to file size relation is quadratic.?? This has a number of bad effects:

e Generating header files to support more fields than you actually require is awaste of space and bandwidth.

» Some compilers have arbitrary limits on the size of macros they’ re able to parse. Exceeding these limits usually
causes the compiler to misbehave badly, rather than fail gracefully.

» Becauseit increases the size of two key files used in building MySQL ++ itself and programs built on it, it
increases compile times significantly. One test | did here showed atripling of compile time from quadrupling the
field limit.

» Morethan 25 fieldsin atableisagood sign of a bad database design, most likely a denormalization problem.

9 inux, Solaris, the BSDs, Mac OS X command line (as opposed to the Xcode IDE), Cygwin... Basically, Unix or anything that works like it.

2 don't say “Connector/C” here because the name change generally hasn’t percolated out to Unixy systems. It's more commonly used on Windows
systems, since the separate Connector/C download lets them avoid installing a MySQL server just to get development headers and libraries.

2t you're using a third-party MySQL++ package, its maintainer may have increased these field counts so the resulting headers more closely
approach the size limit of the compiler the package was built with. In that case, you can look at the top of each generated header file to find out
how many fields each supports.

ZThefilesize equation, for you amateur mathematicians out there, iS Njines = 18.5f2 + 454.5f + 196.4, wheref isthefield count.

73

MySQL
+
+
v3Beldefault limits try to mitigate against all of these factors while still being high enough to be useful with most DB
dssigns.
Manua
Tfyou're building MySQL ++ from source on a platform that uses Autoconf, the easiest way to change these limitsis
at configuration time:

./configure --with-field-1imt=50

That causes the configuration script to pass the -f flag to the two Perl scripts named above, overriding the default
of 25 fields. Obviously you need a Perl interpreter on the system for this to work, but Perl isusually installed by
default on systems MySQL ++ supports via Autoconf.

On dl other platforms, you'll have to give the -f flag to these scripts yourself. This may require installing Perl and
putting it in the command path first. Having done that, you can do something like thisto raise the limits:

cd lib
perl ssqls.pl -f 50
perl querydef.pl -f 50

Note the need to run these commands within thel i b subdirectory of the MySQL ++ source tree. (This is done for
you automatically on systems where you are able to use the Autoconf method.)

8.3. Buried MySQL C API Headers

It's common these days on Unixy systemsto install the MySQL C API headersinanysql directory under some
common i ncl ude directory. If the C APl headersarein/ usr /i ncl ude/ nysql , we say they are “buried”
underneath the system’ s main include directory, / usr /i ncl ude. Since the MySQL ++ headers depend on these C
API headers, it can be useful for MySQL ++ to know this fact.

When MySQL ++ includes one of the C API headers, it normally does so in the obvious way:

#i ncl ude <mysql . h>

But, if you define the MYSQLPP_MYSQL_HEADERS BURI ED macro, it switches to this style:

#i ncl ude <nysql/ mysql . h>

In common situations likethe/ usr /i ncl ude/ mysql one, this simplifies the include path options you pass to
your compiler.

8.4. Building MySQL++ on Systems Without Complete
C99 Support

MySQL ++ uses the C99 header st di nt . h for portable fixed-size integer typedefs where possible. The C99
extensions aren’t yet officially part of the C++ Standard, so there are still some C++ compilersthat don't offer this
header. MySQL ++ works around the lack of this header where it knows it needs to, but your platform might not be
recognized, causing the build to break. If this happens, you can define the MYSQLPP_NO_STDI NT_H macro to
make MySQL ++ use its best guess for suitable integer types instead of relying on st di nt . h.

MySQL ++ also uses C99's long long data type where available. MySQL ++ has workarounds for platforms where
thisis known not to be available, but if you get errorsin conmon. h about this type, you can define the macro
MYSQLPP_NO LONG_LONGS to make MySQL ++ fall back to portable constructs.

MySQL
+

‘¥ Using MySQL++ in Your Own Project

Manua
Up to now, this manual has only discussed MySQL ++ in conjunction with the example programs that come with the
library. This chapter covers the steps you need to take to incorporate MySQL ++ into your own projects.

Thefirst thing you have to doisinclude mysql ++. h in each module that uses MySQL ++. In modules that use
SSQLSV1, you also need toinclude ssql s. h. %

At this point, your project probably still won't compile, and it certainly won't link. The remaining steps are
dependent on the operating system and tools you are using. The rest of this chapter is broken up into several
sections, one for each major platform type. Y ou can skip over the sections for platforms you don’t use.

9.1. Visual C++
Using MySQL++ in an MFC Project

If you don't already have a project set up, open Visua Studio, say File | New | Project, then choose Visual C++ |
MFC | MFC Application. Go through the wizard setting up the project as you seefit.

Once you have your project open, right click on your top-level executable in the Solution Explorer, choose
Properties, and make the following changes. (Where it doesn’'t specify Debug or Release, make the same change to
both configurations.)

* Append the following to C/C++ | General | Additional Include Directories: C: \ Progr am Fi | es\ MySQL
\MySQ. Server 5.0\include, C\mysgl++\include

* Under C/C++ | Code Generation change “Runtime Library” to “Multi-threaded Debug DLL (/MDd)” for the
Debug configuration. For the Release configuration, make it “Multi-threaded DLL (/MD)”.

» Append the following to Linker | General | Additional Library Directories for the Debug configuration: C:
\ Program Fi | es\ MySQL\ MySQL Server 5.0\Ilib\debug, C \nysql++\ vc\debug

For the Release configuration, make it the same, but change the “debug” directory namesto “opt”.

e Under Linker | Input add the following to “ Additional Dependencies’ for the Debug configuration:
Iibrmysqgl.lib wsock32.1ib nysqlpp _d.lib

...and then for the Release configuration: | i brysql . i b wsock32.1ib nysqlpp.lib

This difference is because MySQL ++'s Debug DLL and import library have a_d suffix so you can have both in
the same directory without conflicts.

Y ou may want to study exanpl es\ vst udi o\ nf c\ nf c. vcpr o] to seethisin action. Note that some of the
paths will be different, because it can use relative pathsfor nysql pp. di | .

Using MySQL++ in a Windows Forms C++/CLI Project

Before you start work on getting MySQL ++ working with your own program, you need to make some changesto
the MySQL ++ build settings. Open nysql pp. sl n, then right-click on the mysqglpp target and select Properties.
Make the following changes for both the Debug and Release configurations:

» Under Configuration Properties | General, change “Common Language Runtime support” to the /clr setting.

23MySQL++ has many header files, but the only one that isn’t intertwined with therest isssql s. h. nysql ++. h bringsin al of the othersin
the correct order. Some have tried to speed their build times by finding a subset of MySQL ++ headersto include, but mysql ++. h aready does as
much of thisasis practical. MySQL ++'s monolithic nature rules out finding atrue subset of the library headers.

75

MySQL
+
+
v8.2.Under C/C++ | Code Generation, change “ Enable C++ Exceptions’ from “Yes (/EHsc)” to “Y es With SEH
UserExceptions (/EHa)”

Manua
tfyou have aready built MySQL ++, be sure to perform a complete rebuild after changing these options. The

compiler will emit several C4835 warnings after making those changes, which are harmless when using the DLL
with a C++/CLI| program, but which warn of real problems when using it with unmanaged C++. Thisiswhy
MySQL++ sWindowsinstaler (i nst al | . ht a) offersthe option to install the CLR version into a separate
directory; useit if you need both managed and unmanaged versionsinstalled!

For the same reason, you might give some thought about where you install mysql pp. dl I onyour end user's
machines when distributing your program. My recommendation isto install it in the same directory asthe . exe file
that uses it, rather than installing into a system directory where it could conflict withanysql pp. dl | built with
different settings.

Once you have MySQL ++ built with CLR support, open your program’s project. If you don’t already have a project
set up, open Visual Studio, say File | New | Project, then choose Visual C++ | CLR | Windows Forms Application.
Go through the wizard setting up the project as you seefit.

The configuration process isn’t much different from that for an MFC project, so go through the list above first.
Then, make the following changes particular to .NET and C++/CLI:

» Under Configuration Properties | General change the setting from /clr:pure to /clr. (Y ou need mixed assembly
support to allow a C++/CLI program to use aplain C++ library like MySQL ++.)

» For the Linker | Input settings, you don’t need wsock32. | i b. The mere fact that you're using .NET takes care
of that dependency for you.

In the MFC instructions above, it said that you need to build it using the Multi-threaded DLL version of the C++
Runtime Library. That’s not strictly true for MFC, but it’s an absolute requirement for C++/CL 1. See the Remarksin
the MSDN article on the /clr switch for details.

Y ou may want to study exanpl es\ vst udi o\ wf or ns\ wf or ns. vcpr oj toseeadl thisin action. Note that
some of the paths will be different, because it can use relative pathsfor nysql pp_d. dl | and nmysql pp. dl I .

9.2. Unixy Platforms: Linux, *BSD, OS X, Cygwin,
Solaris...

There are lots of ways to build programs on Unixy platforms. We'll cover just the most generic way here,
Makef i | es. We'll useavery simple example soit’s clear how to translate this to more sophisticated build systems
such as GNU Autotools or Bakefile.

“Hello, world!” for MySQL ++ might look something like this:

#i ncl ude <nysql ++. h>

int main()

{
nmysql pp: : String greeting("Hello, world!");
std::cout << greeting << std::endl
return O;

}
Here'saMakef i | e for building that program:

CXXFLAGS : = -1/usr/include/nysql -I/usr/local/include/nysql++
LDFLAGS := -L/usr/local/lib
LDLIBS := -1 nysqgl pp -1 nysqglclient

EXECUTABLE : = hello

MySQL
+
+

v3.2.1
@5bi $(EXECUTABLE)
Mangh,

rm-f $(EXECUTABLE) *.o

The* FLAGS lines are where all of the assumptions about file and path names are laid out. Probably at least one of
these assumptionsisn’t true for your system, and so will require changing.

Thetrickiest lineisthe LDLI BS one. MySQL ++ programs need to get built against both the MySQL and MySQL +
+ libraries, because MySQL++ is built on top of the MySQL C AP library®* If you' re building a threaded program,
use- | nysql client_r instead of - | nysql cl i ent here. (See Section 7, “Using MySQL ++ in a Multithreaded
Program” for more details on building thread-aware programs.)

On some systems, the order of librariesin the LDLI BS lineisimportant: these linkers collect symbols from right to
left, so the rightmost library needs to be the most generic. In this example, MySQL ++ depends on MySQL, so the
MySQL C AP library is rightmost.

Y ou might need to add more librariesto the LDLI BSline. - | nsl , -1 z and - | mare common. If you study how
MySQL ++ itself gets built on your system, you can see what it uses, and emulate that.

Y ou may be wondering why we have used both LDLI BS and LDFLAGS here. Some Makef i | es you have seen
probably try to collect both types of flagsin asingle variable. Whether that works or not depends on where on

the command line those flags appear. Since we' re depending on the standard mak e rules here, we know have to
separatethe - | and - L flags due to the place they’ re inserted into the link command. If you were writing your own
compilation rules, you could write them in such away that you didn’t have to do this.

Beyond that, we have a pretty vanillaMakef i | e, thanksin large part to the fact that the default nake rules are fine
for such a simple program.

9.3.0S X

Makefiles
The generic Makef i | e instructions above cover most of what you need to know about using Makefiles on OS X.

One thing that may trip you up on OS X isthat it uses an uncommon dynamic linkage system. The easiest way to
cope with thisisto link your executables with the compiler, rather than call | d directly.

Another tricky bit on OS X is the concept of Universal binaries. See READVE- Mac- OS- X. t xt for detailson
building a Universal version of the MySQL ++ library, if you need one. By default, you only get aversion tuned for
the system type you build it on.

Xcode

| have no information on how to incorporate MySQL ++ in an X code project. Send a message to the MySQL ++
mailing list if you can help out here.

9.4. MinGW

Makefiles

The generic Makef i | e instructions above apply to MinGW'’ s version of GNU nake aswell. You will have some
differences due to the platform, so here' s the adjusted Makef i | e:

#The MySQL C API library ismost commonly called | i brrysqgl ¢l i ent on Unixy systems, though it is also known as Connector/C.

77

MySQL
+
+
vSIELL : = $(COVSPEC)
WY¥§Q_DIR := "c:/Program Fi |l es/ MySQL/ \WSQ Connector C 6.1"

Mééﬁﬁl_AGS = -1 $(MYSQL_DIR)/include -1c:/MSQ++/include
AGS := -L$(MYSQL_DIR)/1lib/opt -Lc:/MSQ++/1ib/MnGNV
LDLIBS := -lnysqglclient -1mysql pp

EXECUTABLE : = hello
al | : $(EXECUTABLE)

cl ean:
del $(EXECUTABLE)

Note that I’ ve used del instead of rm in the clean target. In the past, at least, MinGW nake had some funny rules
about whether commands in target rules would get run with sh. exe or withcnd. exe. | can’t currently get my
installation of MinGW to do anything but use sh. exe by default, but that may be because | have Cygwin installed,
which providessh. exe. Thisexplainsthefirst linein the file, which overrides the default shell with cnd. exe,
purely to get consistent behavior across platforms. If you knew all your platforms would have a better shell, you'd
probably want to use that instead.

Note the use of forward slashes in the path to the MySQL Connector/C development files. GNU nake uses the
backslash as an escape character, so you'd have to double them if you're unwilling to use forward slashes.

Third-Party MinGW IDEs (Dev-C++, Code::Blocks...)

I have no information on how to do this. We've received reports on the mailing list from people that have made it
work, but no specifics on what all needs to be done. The Makef i | e discussion above should give you some hints.

9.5. Eclipse

Asfar as| cantell, the simplest way to build a C++ project with Eclipseisto set up aMakef i | e for it as described
above, then add an external run configuration for your local make tool. Get the project building from the command
line with make, then go to Run | External Tools | Open External Tools Dialog and add a new launch configuration.

For example, on my OS X system | use/ usr / bi n/ gnunake for the program location and pick the project root
with the Browse Workspace button to set the working directory.

MySQL
+
+

'£0. Incompatible Library Changes

Manua
This chapter documents those library changes since the epochal 1.7.9 release that break end-user programs. Y ou can
dig this stuff out of the Changel og, but the Changelog focuses more on explaining and justifying the facets of each
change, while this section focuses on how to migrate your code between these library versions.

Since pure additions do not break programs, those changes are still documented only in the Changelog.

10.1. API Changes

This section documents files, functions, methods and classes that were removed or changed in an incompatible way.
If your program uses the changed item, you will have to change something in your program to get it to compile after
upgrading to each of these versions.

v1.7.10

Removed Row. : oper at or[] () overloads except the one for size type, and added

Row: : | ookup_by name() to provide the “subscript by string” functionality. In practical terms, this change
meansthat ther ow[" fi el d"] syntax no longer works; you must use the new | ookup_by nane method
instead.

Renamed the generated library on POSIX systemsfrom| i bsql pl us tol i bnysql pp.

v1.7.19

Removed SQLQuer y: : oper at or =() , and the same for its Quer y subclass. Use the copy constructor instead, if
you need to copy one query to another query object.

v1.7.20

Thelibrary used to have two names for many core classes: a short one, such as Row and alonger one, Mysql Row.
Thelibrary now uses the shorter names exclusively.

All symbols within MySQL++ arein the nysql pp namespace now if you use the new nysql ++. h header. If you
usethe older sql pl us. hh or mysqgl ++. hh headers, these symbols are hoist up into the global namespace. The
older headers cause the compiler to emit warnings if you use them, and they will go away someday.

v2.0.0

Connection class changes

* Connection::create_db() anddrop_db() returntrue on success. They returned falsein v1.7.x! This
change will only affect your code if you have exceptions disabled.

* Renamed Connecti on: : real _connect () toconnect (), made several more of its parameters default,
and removed the old connect () method, asit’s now astrict subset of the new one. The only practical
consequence isthat if your programwasusingr eal _connect (), you will haveto changeitto connect () .

* Replaced Connecti on: :read_option() withnewset opti on() mechanism. In addition to changing
the name, programs using this function will have to use the new Connect i on: : Opt i on enumerated values,
accept atrue return value as meaning success instead of 0, and use the proper argument type. Regarding the
latter, r ead_opt i on() took aconst char* argument, but because it was just a thin wrapper over the MySQL

MySQL

+

v3.2.C API function mysql-options, the actual value being pointed to could be any of several types. This new
Usemrmechanism is properly type-safe.

Manua
EXception-related changes

Classes Connect i on, Query, Resul t , ResUse, and Row now derive from Optional Exceptions

which gives these classes a common interface for disabling exceptions. In addition, ailmost all of the per-
method exception-disabling flags were removed. The preferred method for disabling exceptions on these
objectsisto create an instance of the new NoExceptions class on the stack, which disables exceptions on an
Opt i onal Excepti ons subclassaslong asthe NoExcept i ons instanceisin scope. You can instead call
di sabl e_excepti ons() onany of these objects, but if you only want them disabled temporarily, it's easy
to forget to re-enable them later.

In the previous version of MySQL ++, those classes that supported optional exceptions that could create
instances of other such classes were supposed to pass this flag on to their children. That is, if you created a
Connect i on object with exceptions enabled, and then asked it to create aQuer y object, the Quer y object
also had exceptions disabled. The problem is, thisdidn’t happen in all cases where it should haveinv1.7. This
bug isfixed in v2.0. If your program begins crashing due to uncaught exceptions after upgrading to v2.0, thisis
the most likely cause. The most expeditious fix in this situation is to use the new NoExcept i ons featureto
return these code paths to the v1.7 behavior. A better fix isto rework your program to avoid or deal with the new
exceptions.

All custom MySQL ++ exceptions now derive from the new Exception interface. The practical upshot of thisis
that the variability between the various exception types has been eliminated. For instance, to get the error string,
the BadQuer y exception had a string member called er r or plus amethod called what () . Both did the same
thing, and thewhat () method is more common, so the error string was dropped from the interface. None of the
example programs had to be changed to work with the new exceptions, so if your program handles MySQL ++
exceptions the same way they do, your program won't need to change, either.

Renamed SQLQuer yNEPar ans exception to BadPar anmCount to match style of other exception names.

Added BadOption, ConnectionFailed, DBSelectionFailed, EndOfResults, EndOfResultSets, LockFailed, and
ObjectNotlnitialized exception types, to fix overuse of BadQuer y. Now the latter is used only for errors

on query execution. If your program has a“catch-all” block taking ast d: : except i on for each try block
containing MySQL ++ statements, you probably won't need to change your program. Otherwise, the new
exceptions will likely show up as program crashes due to unhandled exceptions.

Query class changes

In previous versions, Connect i on had aquerying interface similar to class Quer y’s. These methods were
intended only for Quer y’s use; no example ever used this interface directly, so no end-user codeis likely to be
affected by this change.

A more likely problem arising from the above change is code that tests for query success by calling the
Connecti on object’'ssuccess() method or by casting it to bool. Thiswill now give misleading resullts,
because queries no longer go through the Connect i on object. Class Quer y has the same success-testing
interface, so useit instead.

Query now derivesfrom st d: : ostr eaminstead of st d: : stri ngstream

Result/ResUse class changes

Renamed ResUse: : nysql _result() toraw resul t () soit'sdatabase server neutral.

Removed ResUse: : eof (), asit wrapped the deprecated and unnecessary MySQL C API function mysg|l-eof.
Seethesi npl e3 and usequer y examples to see the proper way to test for the end of aresult set.

MySQL
+
+
VRO class changes
User

Manugtemoved “field name” form of Row: : fi el d_I i st () . It was pointless.

» Rowsubscripting works more like v1.7.9: one can subscript a Rowwith astring (e.g. r ow "nyfi el d"]), or
with aninteger (e.g.r ow| 5]). | ookup_by_name() wasremoved. Becauser owf 0] isambiguous (0 could
mean thefirst field, or be anull pointer to const char*), thereis now Row: : at () , which can look up any field
by index.

Miscellaneous changes

* Where possible, all distributed Makefiles only build dynamic libraries. (Shared objects on most Unices, DLLS
on Windows, etc.) Unless your program is licensed under the GPL or LGPL, you shouldn’t have been using the
static libraries from previous versions anyway.

* Removed the backwards-compatibility headerssql pl us. hh and nysql ++. hh. If you were still using these,
you will have to changeto nysql ++. h, which will put all symbolsin namespace mysglpp.

» Can no longer use arrow operator (->) on theiteratorsintothe Fi el ds, Resul t and Row containers.

v2.2.0

Code like thiswill have to change:

query << "delete from nytabl e where nyfiel d=%®: nyval ue";
query. parse();

query.def["nyval ue"] = sone_val ue

query. execute();

...to something more like this:

query << "del ete from nytabl e where nyfiel d=90";
query. parse();
query. execut e(sonme_val ue);

Thefirst code snippet abuses the default template query parameter mechanism (Quer y: : def) tofill out the
template instead of using one of the overloaded forms of execut e(), st ore() oruse() taking one or more
SQLSt ri ng parameters. The purpose of Quer y: : def isto allow for default template parameters over multiple
queries. In the first snippet above, there is only one parameter, so in order to justify the use of template queriesin
the first place, it must be changing with each query. Therefore, itisn’t really a“default” parameter at all. We did not
make this change maliciously, but you can understand why we are not in any hurry to restore this “feature”.

(Incidentally, this change was made to allow better support for BLOB columns.)

v2.3.0

Connection: :set_option() calsnow set the connection option immediately, instead of waiting until

just before the connnection is actually established. Code that relied on the old behavior could see unhandled
exceptions, since option setting errors are now thrown from a different part of the code. Y ou want to wrap the actual
set _option() cal now, not Connecti on: : connect ()

Fi el dNanes and Fi el dTypes are no longer exported from the library. If you are using these classes directly
from Visual C++ or MinGW, your code won't be able to dynamically link to aDLL version of the library any more.
These are internal classes, however, so no one should be using them directly.

81

MySQL
+

+
v§310.0
User
M&ks name changes
Several classes changed namesin this release:

* Col Dataisnow Stri ng.

* NullisBlankisnow Nul I I sBI ank. (Notethe capital 1.) Similar changesfor Nul | i sNul | and
Nul | i sZer o.

* ResNSel isnow Si npl eResul t.

* Result isnow St oreQueryResul t.
» ResUseisnow UseQueryResul t.

e SQLStringisnow SQLTypeAdapt er.

When first building existing code against this version, you may find it helpful to define the macro
MYSQLPP_OLD_CLASS NANMES in your program’s build options. Thiswill turn on some macros that set up aliases
for the new class names matching their corresponding old names. Then, when you’ ve fixed up any other issues that
may prevent your program from building with the new MySQL ++, you can turn it back off and fix up any class
name differences.

If you were only using Col Dat a inaBLOB context, you should use sql _bl ob or one of the related typedefs
definedinl i b/ sql _t ypes. h instead, to insulate your code from changes like these.

The SQLSt r i ng change shouldn't affect you, as this class was not designed to be used by end user code. But, due
to the old name and the fact that it used to derive from st d: : st r i ng, some might have been tempted to useit as
an enhanced st d: : st ri ng. Such code will undoubtedly break, but can probably be fixed by just changing it to
usestd::stringinstead.

Connection class changes

The option setting mechanism has been redesigned. (Y es, again.) There used to be an enum in Connect i on with a
value for each option we understood, and an overload of Connecti on: : set _opti on() for each argument type
we understood. It was possible to pass any option valueto any set _opti on() overload, and the problem would
only be detected at run time. Now each option is represented by a class derived from the new Opt i on abstract base
class,andset _opti on() simply takes apointer to one of these objects. See exanpl es/ nul ti query. cpp
for the syntax. Since each Opt i on subclass takes only the parameter typesiit actually understands, it’s now
completely type-safe at compile time.

The new option setting mechanism also has the virtue of being more powerful so it let us replace several existing
things within Connect i on with new options:

» Replaced enabl e_ssl () with Ssl Opti on.

» Replaced theconpr ess parameter to the Connect i on create-and-connect constructor and
Connecti on: : connect () method with Conpr essOpt i on.

* Replacedtheconnect _ti meout parameter with Connect Ti neout Opt i on.

» Defined Opt i on subclasses for each of the flags you would previously set usingthecl i ent _fl ag
parameter. There are about a dozen of these, so instead of listing them, look inl i b/ opti ons. h for something
with asimilar name.

MySQL
+
+
vBallbpsed Connect i on’shost , port, andsocket _nane parameters down into a new combined ser ver
aeameter which is parsed to determine what kind of connection you mean. These interfaces are still compatible
Muaritialv2.3 and earlier up through the port parameter.

Moved Connection: :affected rows(),info() andi nsert i d() methodsto class Query, asthey
relate to the most recently-executed query.

Changed the return type of Connect i on: : pi ng() fromintto bool. If you were calling pi ng() in bool context
or using its return value in bool context, you will need to reverse the sense of the test because the previous return
code used zero to mean success. Now it returns true to indicate success.

Renamed several methods:

* Useclient_version() instead of api _version() orclient_info().

* Useipc_version() instead of host _i nfo().

* Useprotocol _version() instead of proto_i nfo().

e Useserver_version() instead of server _info().

e Usestatus() insteadof stat ().

Also, removed cl ose() infavor of di sconnect (), which has always done the same thing.
Date and Time class changes

The sgl_timestamp typedef is now an diasfor Dat eTi ne, not Ti ne.

There used to be implicit conversion constructors from Col Dat a (now St ri ng), st d: : st ri ng and const char*
for the Dat e, Dat eTi e, and Ti e classes. It s still possible to do these conversions, but only explicitly. (This
had to be done to make Nul | <T> work in SSQL Ses.)

The most likely place to run into problems as a result of this change isin code like this:

voi d some_function(const nysql pp:: DateTi me& dt);
some_function("2007-12-22");

The function call needs to be changed to:

sone_function(nysql pp:: Dat eTi ne("2007- 12-22"));
Exception changes

If an error occurs during the processing of a“use” query (as opposed to the initial execution) we throw the new
UseQuer yErr or exceptioninstead of BadQuery.

If you pass bad values to the Row ctor so that it can’t initialize itself properly, it throws the
Obj ectNotlInitialized exceptioninstead of BadQuery.

Together, these two changes mean that BadQuer y isnow used solely to indicate a problem executing the actual
SQL query statement.

Field and Fields class changes

Fi el disnow area C++ class, not just atypedef for the corresponding C API class. Mgjor portability impacts are:

83

MySQL
+
+
v8.2.1t has no public data members. Where sensible, there is a public accessor function of the same name as the
Usercorresponding field in the C API structure.

Manua
s Themain exceptionto thisisthef | ags data member. Thisisabitfield in the C API data structure and you

had to use MySQL -specific constants to break values out of it. MySQL++'snew Fi el d class provides apublic
member function returning bool for each of these flags.

* Thenew class doesn’t include all of the data members from the C API version. We left out those that aren’t
used within MySQL ++ or its examples, or whose function we couldn’t understand. Basically, if we couldn’t
document areason to use it, we left it out.

Fi el ds usedtobeast d: : vect or work-alike which worked with the C API to accessfields and return them as
though they were simply contained directly within the Fi el ds object. Now that we have areal MySQL ++ classto
hold information about each field without reference to the C API, we were able to replace the Fi el ds classwith:

typedef std::vector<Field> Fields;

If anything, this should give a pure superset of the old functionality, but it's possible it could break end user code.
Query class changes

If you were using char as an 8-bit integer in query building, there are several placesin MySQL++ v3 where it
will now be treated as a single-character string. MySQL++ hashad thet i ny i nt classfor many years now
specifically to provide atrue 8-bit integer without the semantic confusion surrounding the old C char type. Either
useti ny_i nt, or usethe SQL type aliases sgl_tinyint and sgl_tinyint_unsigned instead.

The‘r and ‘R’ template query parameter modifiers were removed. They made the library do quoting and both
guoting and escaping (respectively) regardless of the data type of the parameter. There are no corresponding Quer y
stream manipulators, so for symmetery we had to decide whether to add such manipulators or remove the tquery
modifiers. There should never be areason to force quoting or escaping other than to work around a MySQL ++ bug,
and it’ s better to just fix the bug than work around it, so removed the tquery modifiers.

Query::store_next() andResul t::fetch_row) nolonger throw the EndCf Resul t s and
EndOf Resul t Set s exceptions; these are not exceptional conditions! These methods simply return false when
you hit the end of the result set now.

Renamed Query: : def toQuery: :t enpl at e_def aul t s to make its purpose clearer.

Removed Query: : previ ew() . The most direct replacement for this set of overloaded methods is the parallel set
of st r () methods, which werejust aliases before. (Chosest r () over previ ew() becauseit’s standard C++
nomenclature.) But if you're just looking to get a copy of a built query string and you aren’t using template queries,
you can now insert the Quer y into a stream and get the same resullt.

For example, alot of code in the examples that used to say thingslike:

cout << query.preview() << endl;

now looks like this:

cout << query << endl;
Result, ResUse, and ResNSel class changes
In addition to the class name changes described above, UseQuer yResul t isnolonger St or eQuer yResul t’s

base class. Thereis anew abstract class called Resul t Base containing much of what used to bein ResUse, and

84

MySQL

+
+

vB.Bskhe base of both of these concrete result set types. This should only affect your code if you were using ResUse
Wsksrencesto refer to Resul t objects.

Manual
Removed a bunch of duplicate methods:

Usenum fi el ds() instead of col ums() .
Usefiel d_names() instead of nanes() .
Usenum rows() instead of r ows() .

Usefiel d_types() insteadof t ypes() .

Renamed several methods for “grammar” reasons. For example, some methods returned a single object but had a
“plural” name, implying that it returned a container of objects. In cases like this, we changed the name to agree with

the

return value. Some of these also fall into the duplicate method category above:

Usefi el d(unsigned int) insteadof fi el ds(unsigned int).

Usefiel d _num(const std::string&) instead of nanes(const std::string&).
Usefiel d_name(int) instead of names(int).

Usefiel d_type(int) insteadof t ypes(int).

Removed severa “smelly” methods:

pur ge() : was an internal implementation detail, not something for end user code to call

raw_resul t () : end user code shouldn't be digging down to the C API data structures, but if you really
need something like this, look at the implementation of Query: : st or ei n() . Itsworkings will probably be
educational.

reset _names() : noreason to cal this, especially now that the field name list isinitialized once at startup and
then never changed

reset field names():justanaliasfor previous
reset types():sameargument asforreset nanes()

reset _field_types():justanaliasfor previous

ResUse: : fi el d_nun{) would unconditionally throw a BadFi el dName exception when you asked for afield
that doesn’t exist. Now, if exceptions are disabled on the object, it just returns -1.

Si npl eResul t 'smember variables are all now private, and have read-only accessor functions of the same name.

Code like this used to work:

nys
nys
for

/

}

gl pp: : Row row;
gl pp: : Result::size_type i;

(i =0; row=res[i]; ++) {
/ Do sonmething with row here

That is, indexing past the end of a“store” result set would just return an empty row object, which tests as false
in bool context, so it ends the loop. Now that St or eQuer yResul t isast d: : vect or derivative, this either

85

MySQL
+
+
vBrashes your program or causes the standard library to throw an exception, depending on what debugging features
yser version of STL has. The proper techniqueis:
Manual
nysql pp: : Row r ow;
nmysql pp: : StoreQueryResul t::size_type i;
for (i =0; i <res.numrows(); ++i) {
row = res[i];
/1 Do sonething with row here

}

...0r, inamore C++ish idiom:

nysql pp: : Row r ow;
nmysql pp: : StoreQueryResul t::const __iterator it;
for (it =res.begin(); it !=res.end(); ++it) {
row = *it;
// Do something with row here

}
Row class changes

Removed Row. : raw _data(),raw si ze() andraw_st ri ng() . These were useful with BLOB data back
when MySQL ++ didn’t handle embedded null characters very well, and when copies of Col Dat a objects were
expensive. Neither is true now, so they have no value any more. Equivalent cals are:

nysql pp::String s = row 0] ;

s.data(); /1 raw_data() equival ent
s.length(); /1 raw_size() equival ent
std::string(s.data(), s.length()); // raw_string() equivalent

Row: : operator[] (const char*) would unconditionally throw aBadFi el dNane exception when you
asked for afield that doesn’t exist. Now, if exceptions are disabled on the Row object, it just returns areference to
an empty St ri ng object. You can tell when this happens because such an object tests as false in bool context.

Specialized SQL Structure (SSQLS) changes

Renamed cust ont to ssql s*. Thereisabackwards-compatibility header cust om h which includesssql s. h
for you, but it will go away in afuture version of MySQL ++.

SSQL Ses get populated by field name now, not by field order. In v2, it was absolutely required that your SSQLS
had its fields declared in exactly the same order as the fields in the database server, and there could be no gaps. An
ALTER TABLE command would almost always necessitate redefining the corresponding SSQL S and rebuilding
your program. Some alterations actually made using SSQL S impossible. For the most part, this change just gives
your program additional flexibility in the face of future changes. However, code that was taking advantage of this
low-level fact will break when moving to v3. Before | explain how, let’s go over the high-level functional changes
you'll find in v3's SSQL S mechanism.

Because MySQL ++ no longer needs the SSQL S field order to match the SQL field order, the

sql _create_c_order_* SSQLS creation macro was dropped in v3. We were a so able to drop the ordering
parametersfromsql _creat e_conpl et e_*. That in turn means thereis no longer a difference between
theway itand sql _creat e_c_nanes_* work, so the latter was also dropped. Thus, there are now only

two groups of SSQL S creation macros left: sgl _cr eat e_*, which works pretty much as it always has, and
sql _create_conpl et e_*, which isthe same except for the lack of ordering parameters.

In general, you should beusing sql _cr eat e_* for all SSQL Ses unless you need to use different
names for data members in C++ than you use for the corresponding columnsin SQL. In that case, use
sql _create_conpl ete_* instead.

86

MySQL
+
+
VB2, it was possible to have different SQL column names than SSQL S data member names while still using
Wedr _creat e * if you only used SSQLS for data retrieval. 2 Inv3, youmust usesql _create_conplete_*
Mémuabsolutely all uses of SSQL S when you want the C++ field names to differ from the SQL column names.

Thenew Nul | <T> support in SSQL Ses causes an internal compiler error in Visua C++ 2003. (VC++ 2005 and
newer have no trobule with it.) A poll on the mailing list says there aren’t many people still stuck on this version, so
we just ifdef’ d out the SSQL S mechanism and all the examplesthat use it when built with VC++ 2003. If this affects
you, see Section 5.15, “SSQL S and Visual C++ 2003" for suggestions on ways to cope.

If you are using types other than MySQL++'s sgl_* ones Bin your SSQL Ses, code that previously worked

may now see TypeLookupFai | ed exceptions. (This can be thrown even if exceptions are otherwise disabled
in MySQL++.) This version of MySQL ++ is stricter about mapping SQL to C++ type information, and vice
versa. If the library can’t find a suitable mapping from one type system to the other, it throws this exception,
because its only other option would be to crash or raise an assertion. This typically happens when building SQL
gueries, so you can probably handle it the same way as if the subsequent query excecution failed. If you're
catching the generic nysql pp: : Except i on, your error handling code might not need to change. If you see
this exception, it does mean you need to look into your use of data types, though. The table that controls this
isnysqgl _type_info::types,definedatthetopoflib/type_ i nfo.cpp.Everydatatypeinli b/
sql _types. h hasacorresponding record in thistable, so if you stick to those types, you'll be fine. It's al'so okay
to use types your C++ compiler can convert directly to these predefined types.

The _t abl e static member variable for each SSQL S is now private. The recommended way to access this remains
unchanged: thet abl e() static member function.

t abl e() used to return a modifiable reference to the table name. Now there are two overloads, one which returns
an unmodifiable pointer to the table name, and the other which takes const char* so you can override the default
table name. So, the code we used to recommend for changing the SSQL S' s table name;

my_ssqgl s_type::table() = "MTabl eNane";

now needs to be:

my_ssqgl s_type: :tabl e("MTabl eNanme");
Miscellaneous changes

MySQL ++ does quoting and escaping much more selectively now. Basically, if the library can tell you're

not building a SQL query using one of the standard methods, it assumes you' re outputting values for human
consumption, so it disables quoting and SQL escaping. If you need to build your own mechanism to replace this,
guoting iseasy to do, and Quer y: : escape_stri ng() cando SQL escaping for you.

Removed success() inConnecti on, Query and Si npl eResul t (neé ResNSel) and simply made these
classes testable in bool context to get the same information. An additional changein Connect i on isthat it used to
be considered “unsuccessful” when the connection was down. Since the sense of thistest is now whether the object
isin agood state, it only returns false when the connection attempt fails. Call Connecti on: : i s_connect ed()
if you just want to test whether the connection is up.

The debug mode build of the library now hasa"_d" suffix for Visual C++, and Xcode. Thislets you have both
versions installed without conflict. The release build uses the current naming scheme. If you have an existing

BIn MySQL ++v2, dataretreival (Query: : st orei n(),SSQLS(const Row& ot her), etc.) worked fine regardless of whether your SSQLS
field names matched those in the corresponding SQL table, because the SSQL S was populated by position, not by field name. Thus, if al you
used SSQL S for was data retrieval, you could define your structureswith sql _cr eat e_* inv2. This was never recommended, because such an
SSQL S wouldn’t work with other features of MySQL++ like Query: : i nsert () because they depend on being able to map names from C++
to SQL and back. You needed to use sql _cr eat e_c_nanes_* to make these features work in v2 in the face of a naming scheme difference
between C++ and SQL.

These typedefs have been available since MySQL ++ v2.1.

87

MySQL
+
+
vBradram building against MySQL ++ on these platforms, you' [l need to change your build options to use the new
Waene in debug mode.

Manua
Renamed NO_LONG_LONGS to MYSQLPP_NO_LONG_LONGS to avoid arisk of collision in the global macro

namespace.

v3.0.7

Most MySQL ++ classeswith at () oroperator [] () methods now throw the new Badlindex exception
when you pass an out-of-range index. These methods variously either did not check their indices, or threw
st d: : out _of _range when passed abad index.

| say “most” becausethereis at least one MySQL ++ class that doesn't follow thisrule. Fi el ds isjust atypedef for
aspecialization of st d: : vect or, and the Standard hasits own rules for index checking.

10.2. ABI Changes

This section documents those library changes that require you to rebuild your program so that it will link with the
new library. Most of the items in the previous section are also ABI changes, but this section is only for those items
that shouldn’t require any code changesin your program.

If you were going to rebuild your program after installing the new library anyway, you can probably ignore this
section.

v1.7.18

The Quer y classes now subclassfrom st r i ngst r eaminstead of the deprecated st r st r eam

v1.7.19

Fixed several const-incorrectnessesin the Quer y classes.

v1.7.22

Removed “reset query” parameters from several Quer y class members. Thisis not an API change, because the
parameters were given default values, and the library would ignore any value other than the default. So, any program
that tried to make them take another value wouldn’t have worked anyway.

v1.7.24

Some freestanding functions didn’t get moved into namespace mysglpp when that namespace was created. This
release fixed that. It doesn’t affect the API if your program’s C++ source files say using namespace mysglpp within
them.

v2.0.0

Removed Connecti on: ;i nfoo() . (I'dcal thisan API changeif | thought there were any programs out there
actually using this...)

Collapsed the Connect i on constructor taking a bool (for setting the throw_exceptions flag) and the default
constructor into asingle constructor using a default for the parameter.

Classes Connect i on and Quer y are now derived from the Lockabl e interface, instead of implementing their
own lock/unlock functions.

MySQL
+
+
vB2sveral instances, functions that took objects by value now take them by const reference, for efficiency.

User
Mbferged SQLQuer y class's membersinto class Quer y.

Merged RowTenpl at e class's members into class Row.

Reordered member variable declarations in some classes. The most common instance is when the private section
was declared before the public section; it is now the opposite way. This can change the object’ s layout in memory,
so aprogram linking to the library must be rebuilt.

Simplified the date and time class hierarchy. Date used to derive from nysql _dat e, Time used to derive from
nmysql _ti me, and DateTime used to derive from both of those. All three of these classes used to derive from
nmysql _dt _base. All of thenysql _* classes functionality and data has been folded into the leaf classes,
and now the only thing shared between them istheir dependence on the DThase template. Since the leaf classes
interface has not changed and end-user code shouldn’t have been using the other classes, this shouldn’t affect the
APl in any practical way.

nysql _type_i nf o now awaysinitializesits private nummember. Previously, this would go uninitialized if you
used the default constructor. Now thereis no default ctor, but the ctor taking one argument (which setsnun) hasa
default.

v3.0.0

Removed r eset _quer y parameters from Quer y member functions. None of these have been honored at least
going back to v1.7.9, so thisis not an API change. As of thisversion, Quer y now automatically detects when it can
safely reset itself after executing a query, so it’s not necessary to ask for areset except when using template queries.

Removed overloads of Query: : execute(),store(),anduse() that takeonly aconst char*. Thisisnot an
API change because there was an equivalent call chain for this already. This change just snaps alayer of indirection.

Query: :error () isnow const and returns const char* instead of ast d: : st ri ng by value.

Removed Lockabl e mechanism asit was conceptually flawed. Connect i on and Quer y consequently no longer
derivefrom Lockabl e. Sinceit was basically uselessin prior versions, it can’t be construed as an APl change.

v3.0.1

Connection::thread aware(),thread_start() andthread_end() arenow static methods, so a
program can call them before creating a connection. Ditto for DBDr i ver methods of the same name.

Connecti onPool : : rel ease() isnow virtual, so a subclass can override it.

v3.0.2

Connect i onPool : : grab() isnow virtual; same reason as above.

Query can now betested in bool context, as was intended for v3.0.0. Had to change the “safe bool” method
signature to make it happen, so technically it'san API change, but it’s still used the same way.

v3.1.0

The addition of afew new virtual methodsto Connect i onPool inadvertently changed the library ABI. | knew
adding fields changed the ABI, but erroneously assumed that the inverse of that truth — that adding methods was
always safe — was also true. Adding normal methods is safe, but adding virtual methods breaks the ABI because it
changes the class' s vtable size.

89

MySQL
+
+
v3Bat |eft us with two bad choices: either we could come out with a 3.1.1 that removed these methods to restore the
Wsmr ABI, or we could just declare thisthe “new ABI” and move on, resolving not to fall into this trap again. We've
Mehosén the latter path.

MySQL
+

+
‘%i. Licensing
Manual
The primary copyright holders on the MySQL ++ library and its documentation are Kevin Atkinson (1998), MySQL
AB (1999 through 2001) and Educational Technology Resources, Inc. (2004 through the date of thiswriting).
There are other contributors, who also retain copyrights on their additions; see the Changel og file in the MySQL ++
distribution tarball for details.

The MySQL ++ library and its Reference Manual are released under the GNU Lesser General Public License
(LGPL), reproduced below.

The MySQL ++ User Manual — excepting some example code from the library reproduced within it — is offered
under alicense closely based on the Linux Documentation Project License (LDPL) v2.0, included below. (The
MySQL ++ documentation isn’t actually part of the Linux Documentation Project, so the main changes areto LDP-
related language. Also, generic language such as “author’s (or authors')” has been replaced with specific language,
because the license applies to only this one document.)

These licenses basically state that you are free to use, distribute and modify these works, whether for personal or
commercial purposes, as long as you grant the same rights to those you distribute the works to, whether you changed
them or not. See the licenses below for full details.

MySQL
+
+

v3.2.1

U4 .1. GNU Lesser General Public License

MM o 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA Everyoneis permitted to copy and distribute verbatim copies of this license document, but changing it is not
allowed.

[Thisisthefirst released version of the Lesser GPL. It also counts as the successor of the GNU Library Public
License, version 2, hence the version number 2.1.]

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU
General Public Licenses are intended to guarantee your freedom to share and change free software--to make sure the
software isfreefor al its users.

Thislicense, the Lesser General Public License, applies to some specially designated software packages--typically
libraries--of the Free Software Foundation and other authors who decide to useit. Y ou can use it too, but we suggest
you first think carefully about whether this license or the ordinary General Public License is the better strategy to
usein any particular case, based on the explanations below.

When we speak of free software, we are referring to freedom of use, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if
you wish); that you receive source code or can get it if you want it; that you can change the software and use pieces
of it in new free programs; and that you are informed that you can do these things.

To protect your rights, we need to make restrictions that forbid distributors to deny you these rights or to ask you to
surrender these rights. These restrictions trandate to certain responsibilities for you if you distribute copies of the
library or if you modify it.

For example, if you distribute copies of the library, whether gratis or for afee, you must give the recipients all the
rights that we gave you. Y ou must make sure that they, too, receive or can get the source code. If you link other
code with the library, you must provide complete object files to the recipients, so that they can relink them with the
library after making changes to the library and recompiling it. And you must show them these terms so they know
their rights.

We protect your rights with a two-step method: (1) we copyright the library, and (2) we offer you thislicense, which
givesyou legal permission to copy, distribute and/or modify the library.

To protect each distributor, we want to make it very clear that there is no warranty for the free library. Also, if the
library is modified by someone else and passed on, the recipients should know that what they have is not the original
version, so that the original author’s reputation will not be affected by problems that might be introduced by others.

Finally, software patents pose a constant threat to the existence of any free program. We wish to make sure that
acompany cannot effectively restrict the users of a free program by obtaining arestrictive license from a patent
holder. Therefore, weinsist that any patent license obtained for aversion of the library must be consistent with the
full freedom of use specified in thislicense.

Most GNU software, including some libraries, is covered by the ordinary GNU General Public License. This
license, the GNU Lesser General Public License, appliesto certain designated libraries, and is quite different from
the ordinary General Public License. We use this license for certain libraries in order to permit linking those libraries
into non-free programs.

When aprogram is linked with alibrary, whether statically or using a shared library, the combination of the two
islegally speaking a combined work, a derivative of the original library. The ordinary General Public License

92

MySQL
+
+
vERrgfore permits such linking only if the entire combination fitsits criteria of freedom. The Lesser General Public
Wseense permits more lax criteriafor linking other code with the library.

Manua
We call thislicense the “Lesser” General Public License because it does Less to protect the user’ s freedom than

the ordinary General Public License. It also provides other free software devel opers Less of an advantage over
competing non-free programs. These disadvantages are the reason we use the ordinary General Public License for
many libraries. However, the Lesser license provides advantages in certain special circumstances.

For example, on rare occasions, there may be a specia need to encourage the widest possible use of a certain library,
so that it becomes a de-facto standard. To achieve this, non-free programs must be allowed to use the library. A
more frequent caseis that afreelibrary does the same job aswidely used non-free libraries. In this case, there is
little to gain by limiting the free library to free software only, so we use the Lesser General Public License.

In other cases, permission to use a particular library in non-free programs enables a greater number of people to
use alarge body of free software. For example, permission to use the GNU C Library in non-free programs enables
many more people to use the whole GNU operating system, aswell asits variant, the GNU/Linux operating system.

Although the Lesser General Public Licenseis Less protective of the users’ freedom, it does ensure that the user of
aprogram that is linked with the Library has the freedom and the wherewithal to run that program using a modified
version of the Library.

The precise terms and conditions for copying, distribution and modification follow. Pay close attention to the
difference between a“work based on the library” and a “work that uses the library”. The former contains code
derived from the library, whereas the latter must be combined with the library in order to run.

GNU LESSER GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library or other program which contains a notice placed by the
copyright holder or other authorized party saying it may be distributed under the terms of this Lesser General Public
License (also called “this License”). Each licensee is addressed as “you”.

A “library” means a collection of software functions and/or data prepared so as to be conveniently linked with
application programs (which use some of those functions and data) to form executables.

The“Library”, below, refersto any such software library or work which has been distributed under these terms.
A “work based on the Library” means either the Library or any derivative work under copyright law: that is

to say, awork containing the Library or a portion of it, either verbatim or with modifications and/or trandated
straightforwardly into another language. (Hereinafter, trandlation is included without limitation in the term
“modification”.)

“Source code” for awork means the preferred form of the work for making modificationsto it. For alibrary,
complete source code means al the source code for all modulesit contains, plus any associated interface definition
files, plus the scripts used to control compilation and installation of the library.

Activities other than copying, distribution and modification are not covered by this License; they are outside its
scope. The act of running a program using the Library is not restricted, and output from such a program is covered
only if its contents constitute awork based on the Library (independent of the use of the Library in atool for writing
it). Whether that is true depends on what the Library does and what the program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library’s complete source code as you receiveit, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice
and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty;
and distribute a copy of this License along with the Library.

Y ou may charge afee for the physical act of transferring a copy, and you may at your option offer warranty
protection in exchange for afee.

93

MySQL
+
+
v3.2YIu may modify your copy or copies of the Library or any portion of it, thus forming awork based on the
Wsbrary, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you
Makmoaeet all of these conditions:

a) The modified work must itself be a software library.

b) Y ou must cause the files modified to carry prominent notices stating that you changed the files
and the date of any change.

¢) You must cause the whole of the work to be licensed at no charge to all third parties under the
terms of this License.

d) If afacility in the modified Library refersto afunction or atable of datato be supplied by an
application program that uses the facility, other than as an argument passed when the facility is
invoked, then you must make a good faith effort to ensure that, in the event an application does
not supply such function or table, the facility till operates, and performs whatever part of its
purpose remains meaningful.

(For example, afunction in alibrary to compute square roots has a purpose that is entirely well-
defined independent of the application. Therefore, Subsection 2d requires that any application-
supplied function or table used by this function must be optional: if the application does not
supply it, the square root function must still compute square roots.)

These requirements apply to the modified work as awhole. If identifiable sections of that work are not derived from
the Library, and can be reasonably considered independent and separate works in themselves, then this License, and
itsterms, do not apply to those sections when you distribute them as separate works. But when you distribute the
same sections as part of awhole which is awork based on the Library, the distribution of the whole must be on the
terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every
part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather,
the intent is to exercise the right to control the distribution of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the Library (or with awork based on
the Library) on avolume of a storage or distribution medium does not bring the other work under the scope of this
License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead of this Licenseto agiven
copy of the Library. To do this, you must alter al the notices that refer to this License, so that they refer to the
ordinary GNU General Public License, version 2, instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify that version instead if you wish.) Do not
make any other change in these notices.

Once this change is made in agiven copy, it isirreversible for that copy, so the ordinary GNU General Public
License applies to all subsequent copies and derivative works made from that copy.

This option is useful when you wish to copy part of the code of the Library into a program that is not alibrary.

4. Y ou may copy and distribute the Library (or a portion or derivative of it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2 above provided that you accompany it with the complete
corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above
on amedium customarily used for software interchange.

If distribution of object code is made by offering access to copy from a designated place, then offering equivalent
access to copy the source code from the same place satisfies the requirement to distribute the source code, even
though third parties are not compelled to copy the source along with the object code.

94

MySQL
+
+
v3.241program that contains no derivative of any portion of the Library, but is designed to work with the Library
Wgebeing compiled or linked with it, is called a“work that uses the Library”. Such awork, inisolation, isnot a
Maexisiative work of the Library, and therefore falls outside the scope of this License.

However, linking a“work that uses the Library” with the Library creates an executable that is a derivative of the
Library (because it contains portions of the Library), rather than a“work that uses the library”. The executableis
therefore covered by this License. Section 6 states terms for distribution of such executables.

When a“work that usesthe Library” uses material from a header file that is part of the Library, the object code
for the work may be a derivative work of the Library even though the source code is not. Whether thisistrueis
especialy significant if the work can be linked without the Library, or if the work isitself alibrary. The threshold
for thisto be true is not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and accessors, and small macros and
small inline functions (ten lines or less in length), then the use of the object file is unrestricted, regardless of whether
it islegally aderivative work. (Executables containing this object code plus portions of the Library will still fall
under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code for the work under the terms
of Section 6. Any executables containing that work also fall under Section 6, whether or not they are linked directly
with the Library itself.

6. As an exception to the Sections above, you may also combine or link a“work that uses the Library” with the
Library to produce awork containing portions of the Library, and distribute that work under terms of your choice,
provided that the terms permit modification of the work for the customer’s own use and reverse engineering for
debugging such modifications.

Y ou must give prominent notice with each copy of the work that the Library isused in it and that the Library and

its use are covered by this License. Y ou must supply acopy of this License. If the work during execution displays
copyright notices, you must include the copyright notice for the Library among them, as well as a reference directing
the user to the copy of this License. Also, you must do one of these things:

a) Accompany the work with the compl ete corresponding machine-readable source code for the
Library including whatever changes were used in the work (which must be distributed under
Sections 1 and 2 above); and, if the work is an executable linked with the Library, with the
complete machine-readable “work that uses the Library”, as object code and/or source code, so
that the user can modify the Library and then relink to produce a modified executable containing
the modified Library. (It is understood that the user who changes the contents of definitions
filesin the Library will not necessarily be able to recompile the application to use the modified
definitions.)

b) Use a suitable shared library mechanism for linking with the Library. A suitable mechanismis
one that (1) uses at run time a copy of the library already present on the user’s computer system,
rather than copying library functions into the executable, and (2) will operate properly with a
modified version of the library, if the user installs one, as long as the modified version isinterface-
compatible with the version that the work was made with.

¢) Accompany the work with awritten offer, valid for at least three years, to give the same user
the material s specified in Subsection 6a, above, for a charge no more than the cost of performing
this distribution.

d) If distribution of the work is made by offering access to copy from a designated place, offer
equivalent access to copy the above specified materials from the same place.

€) Verify that the user has already received a copy of these materials or that you have already sent
this user a copy.

MySQL
+
+
vB@.ln executable, the required form of the “work that uses the Library” must include any data and utility programs
Wseded for reproducing the executable from it. However, as a special exception, the materials to be distributed
Maeedinot include anything that is normally distributed (in either source or binary form) with the major components
(compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself
accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other proprietary libraries that do not
normally accompany the operating system. Such a contradiction means you cannot use both them and the Library
together in an executable that you distribute.

7. You may place library facilities that are awork based on the Library side-by-side in asingle library together with
other library facilities not covered by this License, and distribute such a combined library, provided that the separate
distribution of the work based on the Library and of the other library facilities is otherwise permitted, and provided
that you do these two things:

a) Accompany the combined library with a copy of the same work based on the Library,
uncombined with any other library facilities. This must be distributed under the terms of the
Sections above.

b) Give prominent notice with the combined library of the fact that part of it isawork based on
the Library, and explaining where to find the accompanying uncombined form of the same work.

8. Y ou may not copy, modify, sublicense, link with, or distribute the Library except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense, link with, or distribute the Library is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or rights, from
you under this License will not have their licenses terminated so long as such parties remain in full compliance.

9. You are not required to accept this License, since you have not signed it. However, nothing else grants you
permission to modify or distribute the Library or its derivative works. These actions are prohibited by law if you
do not accept this License. Therefore, by modifying or distributing the Library (or any work based on the Library),
you indicate your acceptance of this License to do so, and al its terms and conditions for copying, distributing or
modifying the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the recipient automatically receives
alicense from the original licensor to copy, distribute, link with or modify the Library subject to these terms and
conditions. Y ou may not impose any further restrictions on the recipients exercise of the rights granted herein. Y ou
are not responsible for enforcing compliance by third parties with this License.

11. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited
to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict
the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute
so asto satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a
conseguence you may not distribute the Library at all. For example, if a patent license would not permit royalty-free
redistribution of the Library by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the
section is intended to apply, and the section as awhole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to
contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free
software distribution system which isimplemented by public license practices. Many people have made generous
contributions to the wide range of software distributed through that system in reliance on consistent application
of that system; it is up to the author/donor to decide if he or she iswilling to distribute software through any other
system and alicensee cannot impose that choice.

96

MySQL
+
+
v3hid section isintended to make thoroughly clear what is believed to be a consequence of the rest of this License.

User
M&guH the distribution and/or use of the Library isrestricted in certain countries either by patents or by copyrighted

interfaces, the original copyright holder who places the Library under this License may add an explicit geographical
distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if written in the body of this License.

13. The Free Software Foundation may publish revised and/or new versions of the Lesser General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Library specifies a version number of this License
which appliesto it and “any later version”, you have the option of following the terms and conditions either of that
version or of any later version published by the Free Software Foundation. If the Library does not specify alicense
version number, you may choose any version ever published by the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose distribution conditions are
incompatible with these, write to the author to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision
will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE ISNO WARRANTY FOR THE
LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED
IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY “AS

IS’ WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT

NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK ASTO THE QUALITY AND PERFORMANCE OF THE
LIBRARY ISWITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE
THE LIBRARY ASPERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE

OR INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR
DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIESOR A
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER
OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Libraries

If you develop anew library, and you want it to be of the greatest possible use to the public, we recommend making
it free software that everyone can redistribute and change. Y ou can do so by permitting redistribution under these
terms (or, alternatively, under the terms of the ordinary General Public License).

To apply these terms, attach the following notices to the library. It is safest to attach them to the start of each source
file to most effectively convey the exclusion of warranty; and each file should have at least the “copyright” line and
apointer to where the full noticeis found.

<onelineto givethelibrary’s name and a brief idea of what it does.>

MySQL

v3.2.1 Copyright © <year> <name of author>
User
Manual Thislibrary isfree software; you can redistribute it and/or modify it under the terms of the GNU
- Lesser General Public License as published by the Free Software Foundation; either version 2.1 of
the License, or (at your option) any later version.

Thislibrary is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESSFOR A
PARTICULAR PURPOSE. Seethe GNU Lesser General Public License for more details.

Y ou should have received a copy of the GNU Lesser General Public License along with this
library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

Y ou should also get your employer (if you work as a programmer) or your school, if any, to sign a*“copyright
disclaimer” for thelibrary, if necessary. Here is a sample; alter the names:

Y oyodyne, Inc., hereby disclaims all copyright interest in the library “Frob' (alibrary for tweaking
knobs) written by James Random Hacker.

<signature of Ty Coon>, 1 April 1990
Ty Coon, President of Vice

That'sdl thereisto it!

MySQL

v3.2.1
WM 2. MySQL++ User Manual License
I. COPYRIGHT

The copyright to the MySQL++ User Manual is owned by its authors.

[I. LICENSE

The MySQL ++ User Manua may be reproduced and distributed in whole or in part, in any medium physical or
electronic, provided that this license notice is displayed in the reproduction. Commercial redistribution is permitted
and encouraged. Thirty days advance notice via email to the authors of redistribution is appreciated, to give the
authors time to provide updated documents.

A. REQUIREMENTS OF MODIFIED WORKS

All modified documents, including translations, anthologies, and partial documents, must meet the following
requirements.

1. Themodified version must be labeled as such.

2. The person making the modifications must be identified.

3. Acknowledgement of the original author must be retained.

4. Thelocation of the original unmodified document be identified.

5. Theoriginal authors' names may not be used to assert or imply endorsement of the resulting document without
the original authors’ permission.

In addition it is requested that:
1. Themodifications (including deletions) be noted.

2. Theauthors be notified by email of the modification in advance of redistribution, if an email addressis
provided in the document.

Mere aggregation of the MySQL++ User Manual with other documents or programs on the same media shall not
cause this license to apply to those other works.

All trandlations, derivative documents, or modified documents that incorporate the MySQL ++ User Manual may
not have more restrictive license terms than these, except that you may require distributors to make the resulting
document available in source format.

