MySQL++ v3.2.5 User Manual

Kevin Atkinson
Sinisa Milivojevic
Monty Widenius

Warren Young

Copyright © 1998-2001, 2005-2019 Kevin Atkinson (original author), MySQL AB, Educational Technology
Resources

July 21, 2019

Table of Contents

O 1 110 [F o o] o E TSRS PP TP UPPPTT 3
1.1. A Brief History Of MYSQL 4 .ouuiiiiiii st e et e e e e e e et e e e e e et e e eaeaenneaes 3
1.2, 1f YOU HAVE QUESHIONS... ...eeieiti ettt ettt e e e ettt et e e et e e et e et e e et e e e e e e etnaeeaaeaennaae 4
A O Y= oY1= PP 5
2.1. The CONNECION ODJECEvuuiieeit ettt ettt ettt e e ettt e et et e e e et e e e b 5
2.2. THE QUENY ODJECL ...ttt ettt e ettt e et e e e e et e e e e b s 5
2.3, RESUIT SEES ..ttt ettt ettt et e s 5
2., EXCEPIIONS ...ttt ettt et et et e e e r e 7
I 0o = PP PTTR 8
3.1 RUNNING the EXBMPIES ... ettt et e e e 8
3.2, A SIMPIE EXAMPIE ..ottt et et 9
3.3. A More Complicated EXAMPIEiieii ettt e 10
S EXCEPLIONS ...ttt ettt ettt et a et a et et enaans 11
3.5. QUOLING @NO ESCAPING ... eeetteeeeiti ettt ettt ettt ettt e et et e e e et e et r et e e e et e rba e e enaans 12
3.6. CH+ VS, SOL DA TYPES ..oevieeeieeet ettt ettt ettt et e e e ettt e s 13
3.7 HandliNg SQL NUILS ...ttt et ettt ettt et e e erb e e ennans 15
3.8. MySQL++'S SPECIAl SHNG TYPES .. eetie ettt ettt ettt ettt ettt et e e e e e e ennans 16
3.9. Dealing With BiNary D LAccuuuueiiiiiieieii ettt ettt ettt e et e e eeb e e ennans 17
3.10. USING TTANSACHIONS ... ceeettieeeett ettt e ettt ettt e ettt e et et s et e et e et e eb e et e et e et e eb e e e e nba e e e ennans 22
3.11. Which QUENY TYPE TO USE? ...ttt et ettt ettt e et e e e e e ennans 25
3.12. Conditional Result ROW HaNAINGcieiieiiiii et e 27
3.13. Executing Code for EaCh ROW IN@RESUIT SELvuiiiiiiiici e 29
3.14. CONNECLION OPLIONSeeettieeeett ettt et ettt ettt e et et r e et et e et e et e et e et e et e e e e e enba e e e ennans 30
3.15. Dealing With COonNECLION TIMEOULSciieieeeeiii et et ettt ettt et et et e e e e e e e ennans 34
3.16. Concurrent QUENES 0N @ CONNECLIONieuiiii et e e et e et e e e e et e e ea e eeenaas 35
3.17. Getting Field Meta-INfOrMELioNiiiiiiiiiei e e enaans 35
A, TEMPIELE QUETTES ...ttt ettt ettt ettt ettt ettt e et et e e et et e e et e n e e e et e e e eba s 38
4.1. Setting up TemMPlate QUETTES ittt ettt e et et eeeeaa s 39
4.2. Setting the Parameters at EXECULION TIMEiiiii e 40
4.3, DEFAUIT PAraMELENSieeei ettt ettt e ettt e ettt e e 40
A4, EITOr HaNGING ..ttt ettt 41
5. SPECialized SQL SITUCIUIES ... ieettieeeiit ettt ettt ettt et ettt et et et e et et e et r et e et e e e enae e e e ennans 42
T o o £ PO P TR PPPPTI 42
5.2. SSQLS Comparison and INItialiZatIONieieuueeiiii e e 43
5.3 REIMEVING GBI ...ttt et ettt ettt et e e e rb e e enaans 44
N Yo (o [T e = - RO P PRI 46

MySQL ++ v3.2.5 User Manual

LI 1Y Koo [Y o o - = LS 51
5.6. Storing SSQL SeS iN ASSOCIAtiVE CONLAINETSuuivveeiiieiiieeei e e et e e e e e e et e et e e e sateeeaeeeanaas 52
5.7. Changing the TADIE NGIME ... ccviii e e e e e e e e e e e s 54
5.8. Using an SSQLS in MUItIPIE MOAUIESciviniiiiici e e e e 54
5.9. Harnessing SSQLS INEINAIS . ..uuuiiiiiiiii e e e e e e e e e e s e e e e e e e e ean s 55
5.10. Having Different Field Namesin C++ and SQLcouuiiiiiiiiiiiieii e e e e e e 57
5.11. EXPanding SSQLS IMBEIOSuuiiiiieiiiieeiie et e e et e et e e et e e eaneeeenaas 58
5.12. Customizing the SSQLS MECNANISMiuuiiiii e e e e e e e e e e e e e e ean s 58
5.13. Deriving from an SSQLS ... covuiiii i 59
5.14. SSQLS and BLOB COIUMNScvvvuiiiiiieeeieeieiiiiee s e e e e e e eeaietas s e e e e e eaesasen s e seeaeaeasaennaaaeeeeaeennens 60
5.15. SSQLS and Visual C+ 2003cceviiiiiniiieeeiieiiiiiias s e e e eeeeeatet s s e e eeeeaesast s e aeeaeeaasaennaaaeeeaaeanrnns 62
6. Using Unicode With MYSQL A ... e e e e e e e e e e e e e et e e et e e et e esaneeeens 63
6.1. A Short HiStory Of UNICOOEcovniiiiieiii e e e e e e e e e e e e s 63
6.2, UNICOOE IN IMYSOL ..uiitiiiiiei et e e e e e e e e e e e et e et e e et e e et e e et eean e e et e eeaneeennans 63
6.3. UNICOAE 0N UNIXY SYSEEMSiiiiiiiieiiii et e e e e e e e e e e e e e e e e et e e et s e et e et e e et e e eaneeeenaas 64
6.4, UNICOOE ONWINUOWSeeeieiee et e e et s e et s e e et neeeaann e e e eaanns 64
6.5. FOr MOre INfOrMELION .. .ceeveieeiei e e e et s e e et e e e et e e e eaanns 65
7. Using MySQL++ in aMultithreaded Programooooiiiiiii e e e aeas 66
A =01 T =SSR 66
7.2. CONNECLION MaANAEMENTuuiiii e e e e e e e e e e e e et e e st e e et e e e e e et e e saneeeannas 67
G o 1= 1T gl g Tox o) P 71
7.4. Sharing MySQL 4+ Dat@ SIUCIUIESuuiiiieiiieeei et e e e e e e e e e e e e s e et e e e e et e e ean e eenaes 72
8. CONfIGUITNG MY SQL A ..ottt e et e e e e e e e e e et e et e e et e e e e e e e aa e e et e e st e eetn e eaneernans 73
8.1. The Location of the MySQL Development FilEScouuiiiiiiiiie e 73
8.2. The Maximum Number of FIeldSAIIOWEuuiiiiiiiiii e 73
8.3. BUried MYSQL C API HEAOEY'Sevvvviii et ettt s e e e et s e s e e e e e e aaat e e e e e e aaeannees 74
8.4. Building MySQL ++ on Systems Without Complete C99 SUPPOITccovveviiiiiiiieiiie e 74
9. UsiNg MYSOQL++ iNYOUr OWN PrOJECEciiiiiiiie e e e e e e e e e e e e e e et e et e e ean e eens 75
ST 1 U 3 SRR 75
9.2. Unixy Platforms; Linux, *BSD, OS X, Cygwin, SOlariS...ccccuiiiiiiiiiiieiiie e ee e e e 76
LSRG T 5 1) SRR 77
LS 3T PN 78
LS T o1 o P 78
10. Incompatible Library Changesco.uiiiiiiiiii it e e e e e e e e e e et e e e e aaaeees 79
O L o 3= o =PSRRI 79
O N = T I3 o = SPPPRRN 88
I = £ o P 91
11.1. GNU Lesser General PUBIIC LICENSEuuiiiiiiiieiiii ettt et eeeae e e eee 92
11.2. MySQL++ USer ManUal LICENSEiiviiiiii et e e e e e e e e e e e e e s 99

MySQL ++ v3.2.5 User Manual

1. Introduction

MySQL++ isa powerful C++ wrapper for MySQL's CAPI Lits purpose is to make working with queries as easy as
working with STL containers.

The latest version of MySQL ++ can be found at the official web site.

Support for MySQL ++ can be had on the mailing list. That page hosts the mailing list archives, and tells you how you
can subscribe.

1.1. A Brief History of MySQL++

MySQL ++ was created in 1998 by Kevin Atkinson. It started out MySQL -specific, but there were early effortsto try
and make it database-independent, and call it SQL++. Thisiswhere the old library name “sglplus’ came from. This
is also why the old versions prefixed some class names with “Mysgl” but not others: the others were supposed to be
the database-independent parts. All of Kevin's releases had pre-1.0 version numbers.

Thenin 1999, MySQL AB took over development of the library. In the beginning, Monty Widenius himself did some
of thework, but later gave it over to another MySQL employee, Sinisa Milivojevic. MySQL released versions 1.0 and
1.1, and then Kevin gave over maintenance to Sinisa officially with 1.2, and ceased to have any involvement with the
library’s maintenance. Sinisawent onto maintain thelibrary through 1.7.9, released in mid-2001. It seemsto be during
thistime that the dream of multiple-database compatibility died, for obvious reasons.

With version 1.7.9, MySQL ++ went into a period of stasis, lasting over three years. (Perhaps it was the ennui and
retrenchment following the collapse of the bubble that caused them to lose interest.) During thistime, Sinisaran the
MySQL++ mailing list and supported its users, but made no new releases. Contributed patches were either ignored or
put up on the MySQL ++ web site for users to try, without any official blessing.

The biggest barrier to using MySQL ++ during this period is that the popular C++ compilers of 2001 weren't all that
compatiblewith the C++ Standard. Asaresult, MySQL ++ used many nonstandard constructs, to allow for compatibility
with older compilers. Each new compiler released in the following years increased compliance, either warning about
or rejecting code using pre-Standard constructs. In particular, GCC was emerging from the mess following the EGCS
fork during thistime. The fork was healed officially in 1999, but there's always a delay of afew years between the
release of anew GCC and widespread adoption. The post-EGCS versions of GCC were only beginning to become
popular by 2001, when development on MySQL ++ halted. Asaresult, it becameincreasingly difficult to get MySQL ++
to build cleanly as newer compilers came out. Since MySQL ++ usestemplates heavily, this affected end user programs
aswell: MySQL ++ code got included directly in your program, so any warnings or errorsit caused became your
program’s problem.

Asaresult, most of the patches contributed to the MySQL ++ project during this period were to fix up standards
complianceissues. Because no onewas bothering to officially test and bless these patches, you ended up with the worst
aspects of a bazaar development model: complete freedom of development, but no guiding hand to select from the
good stuff and reject the rest. Many of the patches were mutually incompatible. Some would build upon other patches,
so0 you had to apply them in the proper sequence. Others did useful things, but didn’t give afully functional copy of
MySQL ++. Figuring out which patch(es) to use was an increasingly frustrating exercise as the years wore on, and
newer GCCs became popular.

In early August of 2004, Warren Young got fed up with this situation and took over. He released 1.7.10 later that
month, which did little more than make the code build with GCC 3.3 without warnings. Since then, with alittle help
from his friends on the Net, MySQL ++ has lost alot of bugs, gained alot of features, gained afew more bugs, lost
them again... MySQL ++ is alive and healthy now.

The MySQL CAP!I isalso known as Connector/C.

MySQL ++ v3.2.5 User Manual

1.2. If You Have Questions...

If you want to email someone to ask questions about thislibrary, we greatly prefer that you send mail to the MySQL ++
mailing list. The mailing list is archived, so if you have questions, do a search to seeif the question has been asked

before.

You may find people’sindividual email addressesin various files within the MySQL ++ distribution. Please do not
send mail to them unless you are sending something that is inherently personal. Not al of the principal developers of
MySQL ++ are still activein its devel opment; those who have dropped out have no wish to be bugged about MySQL ++.
Those of us still active in MySQL ++ development monitor the mailing list, so you aren’t getting any extra“ coverage’
by sending messages to additional email addresses.

MySQL ++ v3.2.5 User Manual

2. Overview

MySQL++ has alot of complexity and power to cope with the variety of ways people use databases, but at bottom it
doesn’t work all that differently than other database access APIs. The usage pattern looks like this:

1. Open the connection

2. Form and execute the query

3. If successful, iterate through the result set
4. Else, ded with errors

Each of these steps corresponds to a MySQL ++ class or class hierarchy. An overview of each follows.

2.1.The Connection Object

A Connection object manages the connection to the MySQL server. You need at |east one of these objects to do
anything. Because the other MySQL ++ objects your program will use often depend (at least indirectly) on the
Connect i on instance, the Connect i on object needsto live at least aslong as all other MySQL ++ objectsin your
program.

MySQL supports many different types of data connection between the client and the server: TCP/IP, Unix domain
sockets, and Windows named pipes. The generic Connect i on class supports al of these, figuring out which one
you mean based on the parameters you passto Connect i on: : connect () . But if you know in advance that your
program only needs one particular connection type, there are subclasses with simpler interfaces. For example, there's
TCPConnection if you know your program will always use a hetworked database server.

2.2.The Query Object

Most often, you create SQL queries using a Query object created by the Connect i on object.

Query actsas a standard C++ output stream, so you can write datato it like you wouldto st d: : cout or
st d: : ostringst r eam Thisisthemost C++ish way MySQL ++ providesfor building up aquery string. Thelibrary
includes stream manipulators that are type-aware so it's easy to build up syntactically-correct SQL.

Quer y aso has afeature called Template Queries which work something like C'spri nt f () function: you set up a
fixed query string with tagsinside that indicate where to insert the variable parts. If you have multiple queries that are
structurally similar, you simply set up one template query, and use that in the various locations of your program.

A third method for building queriesisto use Quer y with SSQLS. This feature lets you create C++ structures that
mirror your database schemas. Thesein turn give Quer y theinformation it needsto build many common SQL queries
for you. It can INSERT, REPL ACE and UPDATE rowsin atable given the datain SSQL S form. It can also generate
SELECT * FROM SomeTable queries and store the results as an STL collection of SSQL Ses.

2.3. Result Sets

Thefield datain aresult set are stored in aspecial st d: : st ri ng-like class called String. This class has conversion
operators that let you automatically convert these objects to any of the basic C data types. Additionally, MySQL ++
defines classeslike DateTime, which you can initialize fromaMySQL DATETIM E string. These automatic conversions
are protected against bad conversions, and can either set awarning flag or throw an exception, depending on how you
set the library up.

MySQL ++ v3.2.5 User Manual

Asfor the result sets as awhole, MySQL ++ has a number of different ways of representing them:

Queries That Do Not Return Data

Not all SQL queriesreturn data. An exampleis CREATE TABLE. For these types of queries, thereis a specia result
type (SimpleResult) that simply reportsthe state resulting from the query: whether the query was successful, how many
rows it impacted (if any), etc.

Queries That Return Data: MySQL++ Data Structures

The most direct way to retrieve aresult set isto use Quer y: : st or e() . Thisreturns a StoreQueryResult object,
which derivesfromst d: : vect or <nysql pp: : Row>, making it arandom-access container of Rows. In turn, each
Rowobjectislikeast d: : vect or of St ri ng objects, one for each field in the result set. Therefore, you can treat
St or eQuer yResul t asatwo-dimensional array: you can get the 5th field on the 2nd row by simply saying
resul t[1][4] .You can also access row elements by field name, likethis: resul t[2] ["price"].

A less direct way of working with query resultsisto use Quer y: : use(), which returns a UseQueryResult object.
Thisclass acts like an STL input iterator rather than ast d: : vect or : you walk through your result set processing
onerow at atime, aways going forward. You can’t seek around in the result set, and you can’t know how many results
areinthe set until you find the end. In payment for that inconvenience, you get better memory efficiency, because the
entire result set doesn’t need to be stored in RAM. Thisis very useful when you need large result sets.

Queries That Return Data: Specialized SQL Structures

Accessing results through MySQL ++'s data structures is a pretty low level of abstraction. It's better than using the
MySQL C AP, but not by much. You can elevate things alittle closer to the level of the problem space by using the
SSQL Sfeature. Thisletsyou define C++ structures that match the table structuresin your database schema. |n addition,
it's easy to use SSQL Seswith regular STL containers (and thus, algorithms) so you don’t have to deal with the quirks
of MySQL ++'s data structures.

The advantage of thismethod isthat your program will require very little embedded SQL code. You can simply execute
aquery, and receive your results as C++ data structures, which can be accessed just as you would any other structure.
Theresults can be accessed through the Row object, or you can ask thelibrary to dump theresultsinto an STL container
— sequential or set-associative, it doesn’t matter — for you. Consider this:

vect or <st ock> v;
query << "SELECT * FROM stock";
query.storein(v);

for (vector<stock>::iterator it = v.begin(); it !'=v.end(); ++it) {
cout << "Price: " << it->price << endl;

}

Isn't that dlick?

If you don’t want to create SSQL Ses to match your table structures, as of MySQL ++ v3 you can now use Row here
instead:

vect or <nysgl pp: : Row> v;

query << "SELECT * FROM stock";

query.storein(v);

for (vector<nysqlpp::Row>::iterator it = v.begin(); it !'=v.end(); ++it) {
cout << "Price: " << it->at("price") << endl;

}

It lacks a certain syntactic elegance, but it has its uses.

MySQL ++ v3.2.5 User Manual

2.4. Exceptions

By default, the library throws exceptions whenever it encounters an error. You can ask the library to set an error flag
instead, if you like, but the exceptions carry more information. Not only do they include a string member telling you
why the exception was thrown, there are several exception types, so you can distinguish between different error types

within asingle try block.

MySQL ++ v3.2.5 User Manual

3. Tutorial

The previous chapter introduced the major top-level mechanismsin MySQL++. Now we'll dig down alittle deeper
and get into real examples. We start off with the basics that every MySQL ++ program will have to deal with, then
work up to more complex topics that are still widely interesting. You can stop reading the manual after this chapter
and still get alot out of MySQL ++, ignoring the more advanced parts we present in later chapters.

3.1. Running the Examples

All of the examples are complete running programs. If you built the library from source, the examples should have
been built aswell. If you use RPMs instead, the example programs’ source code and asimplified Makefi | e arein
themysql ++- devel package. They aretypically installed in

[usr/ share/ doc/ nmysql ++- devel - */ exanpl es, but it can vary on different Linuxes.

Before you get started, please read through any of the README* . t xt filesincluded with the MySQL ++ distribution
that are relevant to your platform. We won't repeat all of that here.

Most of the examples require atest database, created by r eset db. You canrunit like so:

resetdb [-s server_addr] [-u user] [-p password]

Actualy, there's a problem with that. It assumes that the MySQL ++ library is already installed in a directory that the
operating system’s dynamic linker can find. (MySQL ++ isamost never built statically.) Unlessyou'reinstalling from
RPMs, you've had to build the library from source, and you should run at least afew of the examples before installing
the library to be sure it’s working correctly. Since your operating system’s dynamic linkage system can't find the
MySQL ++ libraries without help until they’re installed, we've created afew helper scriptsto help run the examples.

MySQL ++ comes with the exr un shell script for Unixy systems, and the exr un. bat batch file for Windows. You
pass the example program and its arguments to the exr un helper, which sets up the library search path so that it will
use the as-yet uninstalled version of the MySQL ++ library in preference to any other on your system:

./exrun resetdb [-s server_addr] [-u user] [-p password]

That’s the typical form for a Unixy system. You leave off the ./ bit on Windows. You can leave it off on a Unixy
system, too, if you have . inyour PATH. (Not arecommendation, just an observation.)

All of the program arguments are optional.

If you don't give - s, the underlying MySQL C API (a.k.a. Connector/C) assumes the server is on the local machine.
It chooses one of several different IPC options based on the platform configuration. There are many different forms
you can giveasser ver _addr with - s to override this default behavior:

* localhost — thisisthe default; it doesn’t buy you anything
* On Windows, asimple period tells the underlying MySQL C API to use named pipes, if it's available.
e 172.20.0.252:12345 — thiswould connect to IP address 172. 20. 0. 252 on TCP port 12345.

» my.server.name:svc_name — thiswould first look up TCP service name svc_nane in your system’s network
services database (/ et ¢/ ser vi ces on Unixy systems, and something like
c: \wi ndows\ syst enB2\ dri ver s\ et c\ ser vi ces on modern Windows variants). If it finds an entry for
the service, it then tries to connect to that port on the domain name given.

For the TCP forms, you can mix names and numbers for the host and port/service partsin any combination. If the
server name doesn’'t contain a colon, it uses the default port, 3306.

MySQL ++ v3.2.5 User Manual

If you don't give - u, it assumes your user name on the database server is the same as your login name on the local
machine.

If you don't give - p, it will assume the MySQL user doesn’t have a password. (One hopes thisisn’t the case...)

When running r eset db, the user name needs to be for an account with permission to create the test database. Once
the databaseis created, you can use any account when running the other examplesthat has DELETE, INSERT, SELECT
and UPDATE permissions for the test database. The MySQL root user can do al this, of course, but you might want
to set up a separate user, having only the permissions necessary to work with the test database:

CREATE USER nysql pp_test @ % | DENTI FI ED BY ' nunyabi nness';
GRANT ALL PRI VI LEGES ON nysql _cpp_data.* TO nysql pp_test@% ;

You could then create the sample database with the following command:

./exrun resetdb -u nysql pp_test -p nunyabi nness
(Again, leave off the ./ bit on Windows.)
You may haveto re-run r eset db after running some of the other examples, as they change the database.

See README- exanpl es. t xt for more details on running the examples.

3.2. A Simple Example

The following example demonstrates how to open a connection, execute a simple query, and display the results. This
isexanpl es/ si npl el. cpp:

#i ncl ude "cmdl i ne. h"
#i ncl ude "printdata. h"

#i ncl ude <nysql ++. h>

#i ncl ude <i ostreanp
#i ncl ude <i omani p>

usi ng nanespace std,

int
mai n(int argc, char *argv[])
{
/] Get database access paraneters from comand |ine
mysql pp: : exanpl es: : ConmandLi ne cndl i ne(argc, argv);
if (cmdline) {
return 1;

}

/1 Connect to the sanpl e database.
nysql pp: : Connecti on conn(fal se);
i f (conn.connect (nysql pp:: exanpl es: : db_name, cndline. server(),
cndl i ne.user(), cndline.pass())) {
/1l Retrieve a subset of the sanple stock table set up by resetdb
// and display it.
nmysql pp: : Query query = conn. query("select itemfrom stock");
if (mysql pp::StoreQueryResult res = query.store()) {
cout << "W have:" << endl;
nysql pp: : StoreQueryResul t::const_iterator it;
for (it =res.begin(); it !'=res.end(); ++it) {
nysql pp: : Row row = *it;

MySQL ++ v3.2.5 User Manual

cout << '"\t' << row 0] << endl;

}
}
el se {
cerr << "Failed to get itemlist: " << query.error() << endl
return 1;
}
return O;
}
el se {
cerr << "DB connection failed: " << conn.error() << endl
return 1,
}

}

This example simply gets the entire "item" column from the example table, and prints those values out.

Notice that MySQL ++'s StoreQueryResult derivesfrom st d: : vect or , and Row provides an interface that makes
itavect or work-alike. This meansyou can access €l ements with subscript notation, walk through them with iterators,
run STL algorithms on them, etc.

Row provides alittle more in thisareathan aplain old vect or : you can aso access fields by name using subscript
notation.

The only thing that isn’t explicit in the code above is that we del egate command line argument parsing to

par se_comrand_| i ne() intheexconmon module. Thisfunction existsto give the examplesaconsistent interface,
not to hide important details. You can treat it like a black box: it takesar gc and ar gv as inputs and sends back
database connection parameters.

3.3. A More Complicated Example

Thesi npl el example above was pretty trivial. Let’s get alittle deeper. Hereisexanpl es/ si npl e2. cpp:

#i ncl ude "crdline. h"
#i ncl ude "printdata. h"

#i ncl ude <nysql ++. h>

#i ncl ude <i ostreanp
#i ncl ude <i omani p>

usi ng nanespace std

int
mai n(int argc, char *argv[])
{
/] CGet database access paraneters from comand |ine
mysql pp: : exanpl es: : ConmandLi ne cndl i ne(argc, argv);
if (cmdline) {
return 1,

}

/1 Connect to the sanpl e database
mysql pp: : Connection conn(fal se);
i f (conn.connect (nysql pp: : exanpl es: : db_name, cndline. server(),
cndl i ne.user(), cndline.pass())) {
/]l Retrieve the sanple stock table set up by resetdb
mysql pp: : Query query = conn.query("select * from stock");
nmysql pp: : StoreQueryResult res = query.store();

10

MySQL ++ v3.2.5 User Manual

// Display results
if (res) {
// Display header
cout.setf(ios::left);
cout << setw(31) << "ltent <<
setw(10) << "Nunf' <<
setw(10) << "Weight" <<
setw(10) << "Price" <<
"Dat e" << endl << endl;

/] Get each rowin result set, and print its contents

for (size_t i =0; i <res.numrows(); ++i) {
cout << setw(30) << res[i]["iten] << ' ' <<
setw9) << res[i]["num'] << ' ' <<
setw(9) << res[i]["weight"] << ' ' <<
setw(9) << res[i]["price"] << ' ' <<
setw(9) << res[i]["sdate"] <<
endl ;
}
}
el se {
cerr << "Failed to get stock table: " << query.error() << endl;
return 1;
}
return O;
}
el se {
cerr << "DB connection failed: " << conn.error() << endl;
return 1;
}

}

The main point of this example isthat we're accessing fields in the row objects by name, instead of index. Thisis
slower, but obvioudly clearer. We're also printing out the entire table, not just one column.

3.4. Exceptions

By default, MySQL ++ uses exceptions to signal errors. We've been suppressing thisin all the examples so far by
passing falseto Connect i on’s constructor. This kept these early examples simple at the cost of some flexibility and
power in error handling. In areal program, we recommend that you |leave exceptions enabled. You do this by either
using the default Connect i on constructor, or by using the create-and-connect constructor.

All of MySQL ++’s custom exceptions derive from acommon base class, Exception. That in turn derivesfrom Standard
C++'sst d: : except i on class. Since thelibrary can indirectly cause exceptions to come from the Standard C++
Library, it's possible to catch all exceptions from MySQL++ by just catching st d: : except i on. However, it's
better to have individual catch blocks for each of the concrete exception types that you expect, and add a handler for
either Excepti onorstd: : excepti on toact asa*“catch-all” for unexpected exceptions.

When exceptions are suppressed, MySQL ++ signals errors by returning either an error code or an object that tests as
false, or by setting an error flag on the object. Classes that allow you to suppress exceptions derive from the

Optiona Exceptions interface. When an Qpt i onal Except i ons derivative creates another object that also derives
from thisinterface, it passes on its exception flag. Since everything flows from the Connection object, disabling
exceptions on it at the start of the program disables all optional exceptions. Thisiswhy passing false for the

Connect i on constructor’s “throw exceptions’ parameter suppresses all optional exceptionsinthesi npl e[1- 3]
examples. It keeps them, well, smple.

11

MySQL ++ v3.2.5 User Manual

This exception suppression mechanism is quite granular. It's possible to |eave exceptions enabled most of the time,
but suppress them in sections of the code where they aren’t helpful. To do this, put the section of code that you want
to not throw exceptionsinside ablock, and create a NoExceptions object at the top of that block. When created, it saves
the exception flag of the Opt i onal Except i ons derivative you passto it, and then disables exceptions on it. When
the NoExcept i ons object goes out of scope at the end of the block, it restores the exceptions flag to its previous
state:

mysql pp: : Connection con; // default ctor, so exceptions enabl ed

{
nysql pp: : NoExcepti ons ne(con);
if (!con.select_db("a_db_that_mi ght_not_exist_yet")) {
/1 Qur DB doesn't exist yet, so create and select it here; no need
/1 to push handling of this case way off in an exception handler.

}
}

When one Opt i onal Except i ons derivative passes its exceptions flag to another such object, it isonly passing a
copy; the two objects’ flags operate independently. There's no way to globally enable or disable this flag on existing
objectsinasinglecall. If you'reusingtheNoExcept i ons feature and you're still seeing optional exceptionsthrown,
you disabled exceptions on the wrong object. The exception thrower could be unrelated to the object you disabled
exceptions on, it could be its parent, or it could be a child created before you disabled optional exceptions.

MySQL ++ throws some exceptions unconditionally:

» MySQL++ checks array indices, always. For instance, if your code said “r ow 21] ” on arow containing only 5
fields, you'd get aBadl ndex exception. If you say “row| "fred"]” onarow without a“fred” field, you get a
BadFi el dNane exception. In the past, MySQL ++ delegated some of itsindex checking to the STL containers
underpinning it, so you could get st d: : range_er r or instead. As of MySQL++ v3.0.7, this should no longer
happen, but there may be instances where it still does.

 String will always throw BadConversion when you ask it to do an improper type conversion. For example, you'll
get an exceptionif youtry to convert “1.25" to int, but not when you convert “1.00” toint. In thelatter case, MySQL ++
knows that it can safely throw away the fractional part.

* If you use template queries and don't pass enough parameters when instantiating the template, Quer y will throw
a BadParamCount exception.

« If you use a C++ datatype in aquery that MySQL++ doesn’t know to convert to SQL, MySQL ++ will throw a
TypelLookupFailed exception. It typically happens with Section 5, “ Specialized SQL Structures’, especially when
using data types other than the ones defined inl i b/ sql _t ypes. h.

It's educational to modify the examples to force exceptions. For instance, misspell afield name, use an out-of-range
index, or change atypeto forcea St ri ng conversion error.

3.5. Quoting and Escaping

SQL syntax often requires certain data to be quoted. Consider this query:

SELECT * FROM stock WHERE item = ' Hotdog Buns'

Because the string “Hotdog Buns’ contains a space, it must be quoted. With MySQL ++, you don’t have to add these
guote marks manually:

12

MySQL ++ v3.2.5 User Manual

string s = "Hotdog Buns";
query << "SELECT * FROM stock WHERE item = " << quote_only << s;

That code produces the same query string asin the previous example. We used the MySQL ++ quote_only manipulator,
which causes single quotes to be added around the next item inserted into the stream. This works for any type of data
that can be converted to MySQL ++'s SQLTypeAdapter type, plusthe Set template. SSQL S al so uses these manipulators
internally.

Quoting is pretty simple, but SQL syntax also often requiresthat certain characters be “escaped”. Imagineif the string
in the previous example was “Frank’s Brand Hotdog Buns’ instead. The resulting query would be:

SELECT * FROM stock WHERE item = 'Frank's Brand Hotdog Buns'

That's not valid SQL syntax. The correct syntax is:

SELECT * FROM stock WHERE item = 'Frank''s Brand Hotdog Buns'

Asyou might expect, MySQL ++ provides that feature, too, through its escape manipulator. But here, we want both
quoting and escaping. That brings us to the most widely useful manipulator:

string s = "Frank’s Brand Hot dog Buns";
query << "SELECT * FROM stock WHERE item = " << quote << s;

The quote manipulator both quotes strings and escapes any characters that are special in SQL.
MySQL ++ provides other manipulators as well. See the manip.h page in the reference manual.

It'simportant to realize that MySQL ++'s quoting and escaping mechanism istype-aware. Manipulators have no effect
unless you insert the manipulator into a Quer y or SQL QueryParms stream. 2 Also, values are only quoted and/or
escaped if they are of adatatype that may need it. For example, Date must be quoted but never needs to be escaped,
and integer types need neither quoting nor escaping. Manipulators are suggestions to the library, not commands:
MySQL ++ will ignore these suggestions if it knows it won't result in syntactically-incorrect SQL.

It's aso important to realize that quoting and escaping in Quer y streams and template queriesis never implicit.3You
must use manipul ators and template query flags as necessary to tell MySQL ++ where quoting and escaping is necessary.
It would be nice if MySQL ++ could do quoting and escaping implicitly based on data type, but thisisn't possiblein
all cases.* Since MySQL ++ can’t reliably guess when quoting and escaping is appropriate, and the programmer doesn’t
need to°, MySQL ++ makes you tell it.

3.6. C++ vs. SQL Data Types

The C++ and SQL data type systems have several differencesthat can cause problems when using MySQL ++, or any
other SQL based system, for that matter.

2SQLQuer yPar 175 is used as a stream only as an implementation detail within the library. End user code simply seesitasast d: : vect or de-
rivative.

3By contrast, the Quer y methods that take an SSQL S do add quotes and escape strings implicitly. It can do this because SSQL S knows al the SQL
code and data types, so it never has to guess whether quoting or escaping is appropriate.

4Unleasyou’ re smarter than | am, you don’t immediately see why explicit manipulators are necessary. We can tell when quoting and escaping is
not appropriate based on type, so doesn't that mean we know when it is appropriate? Alas, no. For most data types, it is possible to know, or at least
make an awfully good guess, but it's a complete toss-up for C strings, const char*. A C string could be either aliteral string of SQL code, or it can
be avalue used in a query. Since there’s no easy way to know and it would damage the library’s usability to mandate that C strings only be used
for one purpose or the other, the library requires you to be explicit.

50ne hopes the programmer knows.

13

MySQL ++ v3.2.5 User Manual

Most of the data types you can store in a SQL database are either numbers or text strings. If you're only looking at the
data going between the database server and your application, there aren’t even numbers. SQL is atextual language,
so numbers and everything else gets transferred between the client and the database server in text string form.®
Consequently, MySQL++ has alot of specia support for text strings, and can trandate to several C++ numeric data
types transparently.

Some people worry that this translation via an intermediate string form will cause data loss. Obviously the text string
datatypes areimmune from problemsin thisregard. We're also confident that MySQL ++ translates BL OB and integer
datatypeslossiessly.

The biggest worry iswith floating-point numbers. (The FLOAT and DOUBLE SQL datatypes.) We did have aproblem
with thisin older versions of MySQL ++, but we believe we fixed it completely in v3.0.2. No one has since proven
dataloss viathis path. Thereis still aknown problem 7 with the SQL DECIMAL type, which is somewhat related to
the floating-point issue, but it's apparently rarely encountered, which iswhy it hasn’t been fixed yet.

The best way to avoid problems with data translation is to always use the special MySQL ++ data types defined in

i b/sqgl_types. h corresponding to your SQL schema. These typedefs begin with sgl_and end with alowercase
version of the standard SQL type name, with spaces replaced by underscores. There are variants ending in _null that

wrap these base types so they’re compatible with SQL null. For instance, the SQL type TINYINT UNSIGNED NOT
NULL isrepresented in MySQL++ by mysql pp: : sql _ti nyi nt _unsi gned. If you drop the NOT NULL part,
the corresponding C++ typeisnysql pp: : sql _ti nyi nt _unsi gned_nul | .

MySQL ++ doesn’t force you to use these typedefs. It tries to be flexible with regard to data conversions, so you could
probably useint anywhereyouusenysql pp: : sgl _ti nyi nt _unsi gned, for example. That said, the MySQL ++
typedefs give several advantages:

 Space efficiency: the MySQL ++ types are no larger than necessary to hold the MySQL data.

« Portability: if your program has to run on multiple different system types (even just 32- and 64-bit versions of the
same operating system and processor type) using the MySQL ++ typedefsinsul ates your code from platform changes.

 Clarity: using C++ types named similarly to the SQL types reduces the risk of confusion when working with code
in both languages at the same time.

e Compatibility: using the MySQL ++ types ensures that data conversions between SQL and C++ formsare compatible.
Naive use of plain old C++ types can result in data truncation, Typel ookupFailed exceptions, and worse.

Type compatibility isimportant not just at the time you write your program, it also helps forward compatibility: we
occasionally change the definitions of the MySQL ++ typedefs to reduce the differences between the C++ and SQL
type systems. We'll be fixing the DECIMAL issue brought up above this way, for instance; if your program uses
sql _deci mal instead of the current underlying type, double, your program will pick up thisimprovement
automatically with just arecompile.

Most of these typedefs use standard C++ data types, but afew are aliases for aMySQL ++ specific type. For instance,
the SQL type DATETI ME ismirrored in MySQL++ by mysql pp: : Dat eTi ne. For consistency, sql _t ypes. h
includes atypedef aliasfor Dat eTi ne caled mysql pp: : sql _dat eti ne.

5Yes, we're aware that thereis afeaturein MySQL that letsyou transfer row datain a binary form, but we don’t support this yet. We may, someday,
probably as an extension to SSQLS. The only real reason to do so isto shave off some of the data translation overhead, which istypically neglibible
in practice, swamped by the far greater disk and network |1/O overheads inherent in use of a client-server database system like MySQL.

"SQL’s DECIMAL datatype is aconfigurable-precision fixed-point number format. MySQL++ currently translates these to double, afloating-point
data format, the closest thing available in the C++ type system. Since the main reason to use DECIMAL is to get away from the weird roundoff
behavior of floating-point numbers, this could be viewed as a serious problem. The thing is, though, in all the years MySQL ++ has been around, |
don’t remember anyone actually complaining about it. Apparently there's either no one using DECIMAL with MySQL ++, or they're ignoring any
roundoff errors they get as aresult. Until this wheel squeaks, it's not likely to be greased. To fix this, we'll have to create a new custom data type
to hold such column values, which will be alot of work for apparently little return.

14

MySQL ++ v3.2.5 User Manual

MySQL++ doesn’t have typedefs for the most exotic data types, like those for the geospatial types. Patches to correct
thiswill be thoughtfully considered.

3.7. Handling SQL Nulls

Both C++ and SQL have thingsin them called NULL, but they differ in several ways. Consequently, MySQL ++ has
to provide special support for this, rather than just wrap native C++ facilities as it can with most data type issues.

SQL NULL is atype modifier

The primary distinction is one of type. In SQL, “NULL” is atype modifier, which affects whether you can legally
store anull value in that column. There's simply nothing likeit in C++.

To emulate SQL NULL, MySQL++ provides the Null template to allow the creation of distinct “nullable” versions of
existing C++ types. So for example, if you have a TINYINT UNSIGNED column that can have nulls, the proper
declaration for MySQL ++ would be:

nysql pp: : Nul | <nysql pp: :sql _tinyint_unsi gned> nyfield;

Asof MySQL++ 3.1, we also provide shorter aliases for such types:

nysql pp: :sql _tinyint_unsigned_null nyfield,;
Thesetypesaredeclaredinl i b/ sql _t ypes. h.You might want to scan through that to see what all is available.

Template instantiations are first-class typesin the C++ language, so there’s no possible confusion between thisfeature
of MySQL ++ and C++'s native NULL concept.

SQL NULL is aunique value

There's a secondary distinction between SQL null and anything available in the standard C++ type system: SQL null
isadistinct value, equal to nothing else. We can’t use C++'s NULL for this because it is ambiguous, being equal to 0
in integer context. MySQL ++ providesthe global nul | object, which you can assignto aNul | template instance to
make it equal to SQL null:

nmyfield = nysql pp::null;

If youinsert aMySQL ++ field holding a SQL null into a C++ 10stream, you get “(NULL)”, something fairly unlikely
to bein anormal output string, thus reasonably preserving the uniqueness of the SQL null value.

MySQL ++ al so triesto enforce the uniqueness of the SQL null value at compiletimein assignmentsand data conversions.
If you try to storea SQL null in afield type that isn’'t wrapped by Nul | or try to assign aNul | -wrapped field value
to avariable of the inner non-wrapped type, the compiler will emit some ugly error message, yelling about
CannotConvertNull ToAnyOtherDataType. (The exact message is compiler-dependent.)

If you don’t like these behaviors, you can change them by passing adifferent valuefor the second parameter to template
Nul | . By default, this parameter is NulllsNull, meaning that we should enforce the uniqueness of SQL null. To relax
the distinctions, you can instantiate the Nul | template with a different behavior type: NulllsZero or NulllsBlank.
Consider this code:

nmysql pp: : Nul | <unsi gned char, nmnysql pp:: Nul |l sZero> nyfield(nysql pp::null);
cout << nyfield << endl;
cout << int(myfield) << endl;

15

MySQL ++ v3.2.5 User Manual

Thiswill print “0” twice. If you had used the default for the second Nul | template parameter, thefirst output statement
would have printed “(NULL)”, and the second wouldn’t even compile.

3.8. MySQL++'s Special String Types

MySQL ++ hastwo classesthat work likest d: : st ri ng to somedegree: String and SQLTypeAdapter. These classes
exist to provide functionality that st d: : st ri ng doesn’t provide, but they are neither derivatives of nor complete
supersetsof st d: : st ri ng. Asaresult, end-user code generally doesn’t deal with these classes directly, because
st d: : string isabetter general-purpose string type. In fact, MySQL++ itself usesst d: : st ri ng most of the
time, too. But, the places these specialized stringish types do get used are so important to the way MySQL ++ works
that it's well worth taking the time to understand them.

SQLTypeAdapter
The simpler of thetwo is SQLTypeAdapt er, or STAfor short.®

Asits name suggests, its only purposeis to adapt other data types to be used with SQL. It has awhole bunch of
conversion constructors, onefor all datatypes we expect to be used with MySQL ++ for valuesin queries. SQL queries
are strings, so constructors that take stringish types just make a copy of that string, and all the others “stringize” the
value in the format needed by SQL.° The conversion constructors preserve type information, so this stringization
process doesn't throw away any essential information.

STAisused anywhere MySQL ++ needs to be able to accept any of several datatypesfor usein a SQL query. Major
users are Quer y’stemplate query mechanism and the Quer y stream quoting and escaping mechanism. You care
about STA because any time you pass a data value to MySQL ++ to be used in building a SQL query, it goes through
STA. STAisone of the key piecesin MySQL ++ that makes it easy to generate syntactically-correct SQL queries.

String

If MySQL++ can be said to have its own generic string type, it's St r i ng, but it’s not really functional enough for
general use. It's possible that in future versions of M 3/SQL ++ we'll expand its interface to include everything
std: :string does, sothat'swhy it's called that.”

Thekey thing St r i ng providesover st d: : stri ng isconversion of stringsin SQL value formatsto their plain old
C++ data types. For example, if you initialize it with the string “2007-11-19”, you can assign the St r i ng to a Date,
not because Dat e knows how to initializeitself from St r i ng, but the reverse: St r i ng has abunch of implicit
conversion operators defined for it, so you can use it in any type context that makes sense in your application.

Because Row. : operat or[] returns St ri ng, you can say things like this:
int x =row"x"];

Inavery real sense, St ri ng istheinverse of STA: St ri ng converts SQL value stringsto C++ data types, and STA
converts C++ datatypes to SQL value strings. ™

8In version 2 of MySQL++ and earlier, SQLTypeAdapt er was called SQLSt ri ng, but it was confusing because its name and the fact that it
derived from st d: : st ri ng suggested that it was a general-purpose string type. MySQL++ even used it this way in afew places internally. In
v3, we made it asimple base class and renamed it to reflect its proper limited function.

9SQ_Ty peAdapt er doesn’t do quoting and escaping itself. That happens elsewhere, right at the point that the STA gets used to build a query.
10 you used MySQL ++ before v3, St ri ng used to be called Col Dat a. It was renamed because starting in v2.3, we began using it for holding
more than just column data. | considered renaming it SQLSt r i ng instead, but that would have confused old MySQL ++ users to no end. Instead,
| followed the example of Set , MySQL++'s specialized st d: : set variant.

11During the development of MySQL ++ v3.0, | tried merging SQLTypeAdapt er and St ri ng into asingle class to take advantage of this. The
resulting class gave the C++ compiler the freedom to tie itself up in knots, because it was then allowed to convert amost any data type to almost
any other. You'd get a tangle of ambiguous data type conversion errors from the most innocent code.

16

MySQL ++ v3.2.5 User Manual

St ri ng hastwo main uses.

By far the most common use is as the field value type of Row, as exemplified above. It's not just the return type of
Row: : oper at or [], though: it's actually the value type used within Row s internal array. As aresult, any time
MySQL ++ pulls data from the database, it goesthrough St r i ng when converting it from the string form used in SQL
result setsto the C++ data type you actually want the datain. It’s the core of the structure population mechanismin
the SSQL S feature, for example.

Because St ri ng isthe last pristine form of datain aresult set before it gets out of MySQL ++'s internals where
end-user code can seeit, MySQL ++'ssqgl_blob and related typedefsarealiasesfor St r i ng. Using anything elsewould
require copies, while the whole “networked database server” thing means most of MySQL ++ can be quite inefficient
and still not affect benchmark results meaningfully, BLOBs tend to be big, so making unnecessary copies can really
make a difference. Which brings us to...

Reference Counting

To avoid unnecessary buffer copies, both STA and St ri ng are implemented in terms of a reference-counted
copy-on-write buffer scheme. Both classes share the same underlying mechanism, and so areinteroperable. Thismeans
that if you construct one of these objects from another, it doesn’t actually copy the string data, it only copies a pointer
to the databuffer, and incrementsitsreference count. If the object has new dataassignedtoit or it’'s otherwise modified,
it decrements its reference count and creates its own copy of the buffer. This has alot of practical import, such asthe
fact that even though Row: : oper at or [] returns St ri ngsby value, it's still efficient.

3.9. Dealing with Binary Data

Historically, therewas no way to hold arbitrary-sized blocks of raw binary datain an SQL database. Therewasresistance
to adding such afeatureto SQL for along time becauseit’s better, where possible, to decompose blocks of raw binary
datainto a series of numbers and text strings that can be stored in the database. This lets you query, address and
manipul ate elements of the data block individually.

A classic SQL newbie mistake istrying to treat the database server as afile system. Some embedded platforms use a
database engine as afile system, but MySQL doesn’t typically live in that world. When your platform already has a
perfectly good file system, you should use it for big, nondecomposable blocks of binary datain most cases.

A common example people use when discussing thisisimagesin database-backed web applications. If you store the
image in the database, you have to write code to retrieve the image from the database and send it to the client; there's
more overhead, and less efficient use of the system’s 1/0O caching system. If you store the image in the filesystem, all
you have to do is point the web server to the directory where the images live, and put a URL for that image in your
generated HTML. Because you're giving the web server adirect path to afile on disk, operation is far more efficient.
Web servers are very good at slurping whole files off of disk and sending them out to the network, and operating
systems are very good at caching file accesses. Plus, you avoid the overhead of pushing the data through the high-level
language your web app is written in, which istypically an interpreted language, not C++. Some people till hold out
on this, claiming that database engines have superior security features, but | call bunk on that, too. Operating systems
and web servers are capable of building access control systems every bit as granular and secure as a database system.

Occasionally you really do need to store a nondecomposable block of binary datain the database. For such cases,
modern SQL database servers support BLOB datatypes, for Binary Large OBject. Thisis often just called binary data,
though of course all datain a modern computer is binary at some level.

Thetricky part about dealing with binary datain MySQL ++ isto ensure that you don’t ever treat the dataas a C string,
which isreally easy to do accidentally. C strings treat zero bytes as special end-of-string characters, but they’re not
specia at al in binary data. We've made alot of improvements to the way MySQL ++ handles string datato avoid this
problem, but it’s still possible to bypass these features, wrecking your BLOBSs. These examples demonstrate correct
techniques.

17

MySQL ++ v3.2.5 User Manual

Loading a binary file into a BLOB column

Above, | opined that it's usually incorrect to store image datain a database, particularly with web apps, of which CGlI

isaprimitive form. Still, it makes a nice, simple example.

Instead of a single example program, we have here a matched pair. The first example takes the name of a JPEG file
on the command line along with all the other common example program parameters, loads that file into memory, and

storesit in aBLOB column in the database.

Thisexample a so demonstrates how to retrieve the val ue assigned to an auto-increment column in the previousinsertion.
This example uses that feature in the typical way, to create unique IDs for rows as they're inserted.

Hereisexanpl es/ | oad_j peg. cpp:
#i ncl ude "crdl i ne. h"

#i ncl ude "images. h"

#i ncl ude "printdata. h"

#i ncl ude <fstreane

usi ng nanespace std;
usi ng namespace nysql pp;

/1 This is just an inplenentation detail for the exanple. Skip down to

/1 main() for the concept this exanple is trying to denonstrate.
/1 can sinply assune that, given a BLOB containing a valid JPEG
/1 returns true.

static bool

i s_jpeg(const mysqgl pp::sqgl _bl ob& ing, const char** whynot)

{

/1 See http://stackoverfl ow. conf questions/ 2253404/ for
/] justification for the various tests.
const unsigned char* idp =
reinterpret_cast<const unsigned char*>(ing.data());
if (inmg.size() < 125) {
*whynot = "a valid JPEG nust be at |east 125 bytes";

}
else if ((idp[0] '= OxFF) || (idp[1] != 0xD8)) {
*whynot = "file does not begin with JPEG sigil bytes";

}
else if ((mencnp(idp + 6, "JFIF", 4) '=0) &&
(mencnp(idp + 6, "Exif", 4) '=0)) {

*whynot = "file does not contain JPEG type word";
}
el se {

*whynot = O;

return true;
}

return fal se;

/1 Skip to main() before studying this. This is alittle too

/1 lowlevel to bother with on your first pass thru the code.

static bool

| oad_j peg_fil e(const nysql pp:: exanpl es: : CommandLi ne& cndl i ne,
i mges& i ng, string& ing_namne)

{

if (crmdline.extra_args().size() == 0) {

You
it

18

MySQL ++ v3.2.5 User Manual

/1 Nothing for us to do here. Caller will insert NULL BLOB.

return true,

}

/] Got a file's nane on the conmmand |ine, so open it.
img_name = cndline.extra args()[0];
ifstreaming_file(ing_name.c_str(), ios::binary);
if (inmg_file) {

/1 Slurp file contents into RAM with m ni num copyi ng.

(1diom

/1 explained here: http://stackoverflow conl questions/116038/)

11

/1 By loading the file into a C++ string (stringstream:str())
/1 and assigning that directly to a nysql pp::sql _blob, we avoid
/] truncating the binary data at the first null character.

inmg.data.data = static_cast<const stringstreant>(
&(stringstream) << ing_file.rdbuf()))->str();

/1 Check JPEG data for sanity.

const char* error;

if (is_jpeg(ing.data.data, &error)) {
return true;

}
el se {
cerr << '"' << inmg_nane << "\" isn't a JPEG " <<
error << '1' << endl;
}

}

cndl i ne. print_usage("[jpeg_file]l");
return fal se;

i nt
mai n(int argc, char *argv[])
{
/] Get database access paraneters from command |ine
nmysql pp: : exanpl es: : ConmandLi ne cndl i ne(argc, argv);
if (cmdline) {
return 1;

}

try {
/1 Establish the connection to the database server.

mysql pp: : Connecti on con(nysql pp: : exanpl es: : db_nane,

cndl i ne.server(), cndline.user(), cmdline.pass());

/1 Load the file named on the conmand |ine

i mges ing(nysql pp::null, nysqglpp::null);
string inmg_name("NULL");

if (load_jpeg_file(cndline, inmg, inmg_nane)) {

/1 Insert inmage data or SQL NULL into the inmges.data BLOB
/1 colum. The key here is that we're holding the raw

/1 binary data in a nmysql pp::sqgl _blob, which avoi ds data
/1 conversion problenms that can lead to treating BLOB data
/1 as C strings, thus causing null-truncation. The fact

// that we're using SSQS here is a side issue, sinply

/1 denobnstrating that nysqgl pp:: Null <nysql pp::sql _blob> is

/1 now legal in SSQS, as of MySQ.++ 3.0.7.
Query query = con.query();
query.insert(ing);

Si npl eResult res = query. execute();

19

MySQL ++ v3.2.5 User Manual

/1 Report successful insertion
cout << "Inserted \"" << ing_nanme <<
"\" into inmages table, " << ing.data.data.size() <<
bytes, ID" << res.insert_id() << endl;
}
}
catch (const BadQuery& er) {
/1 Handl e any query errors
cerr << "Query error: " << er.what() << endl;
return -1;
}
catch (const BadConversion& er) {
/1 Handl e bad conversions

cerr << "Conversion error: " << er.what() << endl <<
"\tretrieved data size: " << er.retrieved <<
", actual size: " << er.actual _size << endl;
return -1,

}
catch (const Exception& er) {
/] Catch-all for any other MySQ.++ exceptions

cerr << "Error: " << er.what() << endl;
return -1;

}

return O;

}

Notice that we used the escape mani pul ator when building the INSERT query above. Thisis because mysqglpp::sql_blob
isjust an alias for one of the special MySQL ++ string types, which don’t do automatic quoting and escaping. They
can't, because MySQL ++ al so uses these data types to hold raw SQL query strings, which would break due to doubled
quoting and/or escaping if it were automatic.

Serving images from BLOB column via CGI

The other examplein this pair israther short, considering how much it does. It parses a CGI query string giving the
image I D, usesthat to retreive dataloaded into the database by | oad_j peg, and writesit out in theform aweb server
wantswhen processing aCGil call, all with adequate real-world error handling. Thisisexanpl es/ cgi _j peg. cpp:

#i ncl ude "crmdl i ne. h"
#i ncl ude "i mages. h"

#define CRLF "\r\n"
#define CRLF2 "\r\n\r\n"
int

mai n(int argc, char* argv[])

{

/] CGet database access paraneters fromcomand line if present, else
// use hard-coded values for true CAd case.
nmysql pp: : exanpl es: : ConmandLi ne cndl i ne(argc, argv, "root",
"nunyabi nness") ;
if ('crdline) {
return 1;

}

/1 Parse CE query string environnent variable to get inage ID
unsigned int ing_id = 0;
char* cgi _query = getenv("QUERY_STRING');
if (cgi_query) {
if ((strlen(cgi_query) < 4) || nmencnp(cgi_query, "id=", 3)) {
std::cout << "Content-type: text/plain" << std::endl << std::endl;

20

MySQL ++ v3.2.5 User Manual

std::cout << "ERROR Bad query string" << std::endl;

return 1;
}
el se {
img_id = atoi(cgi_query + 3);
}
}
el se {
std::cerr << "Put this programinto a web server's cgi-bin "
"directory, then" << std::endl;
std::cerr << "invoke it with a URL like this:" << std::endl;
std::cerr << std::endl;
std::cerr << " http://server.nanme. conm cgi -bi n/cgi _j peg?i d=2" <<
std::endl;
std::cerr << std::endl;
std::cerr << "This will retrieve the inage with ID 2." << std::endl;
std::cerr << std::endl;
std::cerr << "You will probably have to change sone of the #defines "
"at the top of" << std::endl;
std::cerr << "exanples/cgi_jpeg.cpp to allow the | ookup to work." <<
std::endl;
return 1;
}

/1l Retrieve image fromDB by ID
try {
mysql pp: : Connecti on con(nysql pp: : exanpl es: : db_nane,
cndl i ne.server(), cndline.user(), cndline.pass());
mysql pp: : Query query = con. query();
query << "SELECT * FROM inmages WHERE id = " << ing_id;
mysql pp: : StoreQueryResult res = query.store();
if (res & res.numrows()) {
images ing = res[0];
if (inmg.data.is_null) {
std::cout << "Content-type: text/plain" << CRLF2;
std::cout << "No image content!" << CRLF;

}
el se {
std::cout << "X-lmage-ld: " << ing_id << CRLF; // for debuggi ng
std::cout << "Content-type: inage/jpeg" << CRLF;
std::cout << "Content-length: " <<
i ng. data. data.length() << CRLFZ;
std::cout << ing.data;
}
}
el se {
std::cout << "Content-type: text/plain" << CRLF2;
std::cout << "ERROR. No image with ID" << ing_id << CRLF;
}

}

catch (const nysql pp:: BadQuery& er) {
/1 Handl e any query errors
std::cout << "Content-type: text/plain" << CRLF2,
std::cout << "QUERY ERROR " << er.what() << CRLF;
return 1;

}

catch (const nysql pp:: Exception& er) {
/] Catch-all for any other MySQ.++ exceptions
std::cout << "Content-type: text/plain" << CRLF2,
std::cout << "GENERAL ERROR " << er.what() << CRLF;
return 1;

21

MySQL ++ v3.2.5 User Manual

return O;

}

While you can run it by hand, it's best to install thisin aweb server's CGI program directory, then call it with a URL
likehtt p: // ny. server.coni cgi-bin/cgi_jpeg?i d=1.Thatretrievesthe JJEGwith D 1from thedatabase
and returns it to the web server, which will send it on to the browser.

We've included an image with MySQL ++ that you can use with this example pair, exanpl es/ | ogo. j pg.

3.10. Using Transactions

The Transaction class makesit easier to use SQL transactions in an exception-safe manner. Normally you create the
Transact i on object on the stack before you issue the queries in your transaction set. Then, when all the queriesin
the transaction set have been issued, you call Tr ansacti on: : commi t (), which commits the transaction set. If
theTr ansact i on object goesout of scopebeforeyoucall conmi t () , thetransaction setisrolled back. Thisensures
that if some code throws an exception after the transaction is started but before it is committed, the transaction isn't
left unresolved.

exanpl es/transacti on. cpp illustratesthis:

#i ncl ude "cndl i ne. h"
#i ncl ude "printdata. h"
#i ncl ude "stock. h"

#i ncl ude <i ostreanp
#i ncl ude <cstdi o>

usi ng nanespace std;

i nt
mai n(int argc, char *argv[])
{
/] CGet database access paraneters from command |ine
nmysql pp: : exanpl es: : ConmandLi ne cndl i ne(argc, argv);
if (cmdline) {
return 1;

}

try {
/1 Establish the connection to the database server.

mysql pp: : Connecti on con(nysql pp: : exanpl es: : db_nane,
cndl i ne.server(), cndline.user(), cndline.pass());

/1l Show initial state

mysql pp: : Query query = con. query();

cout << "lnitial state of stock table:" << endl;
print_stock_tabl e(query);

/1 Insert a fewrows in a single transaction set
{
/1 Use a higher level of transaction isolation than MySQ
/] offers by default. This trades sone speed for nore
/] predictable behavior. W've set it to affect all
/] transactions started through this DB server connection,
/1 so it affects the next block, too, even if we don't
/1 conmt this one.
nysql pp: : Transacti on trans(con,
nmysql pp: : Transaction: :serializabl e,
mysql pp: : Transacti on: : sessi on);

22

MySQL ++ v3.2.5 User Manual

stock row "Sauerkraut", 42, 1.2, 0.75,

nysql pp: : sql _dat e("2006-03-06"), mysqlpp::null);

query.insert(row;
query. execute();

cout << "\nRow inserted, but not comitted." << endl;

cout << "Verify this with another program (e.g.
"then hit Enter." << endl;
getchar();

cout << "\nCommitting transaction gives us:" << endl;

trans.commt();
print_stock_tabl e(query);

}

/1 Now let's test auto-rollback

{
/] Start a new transaction, keeping the sane isolation |evel
/1 we set above, since it was set to affect the session.
mysql pp: : Transaction trans(con);
cout << "\nNow addi ng catsup to the database..." << endl;
stock row"Catsup", 3, 3.9, 2.99,

nmysql pp: : sgl _dat e("2006-03-06"), nysql pp::null);

query.insert(row;
query. execute();

}

cout << "\nNo, yuck! We don't like catsup. Rolling it back:" <<

endl ;
print_stock_tabl e(query);

}
catch (const nysql pp:: BadQuery& er) {
/1 Handl e any query errors
cerr << "Query error: " << er.what() << endl;
return -1;
}
catch (const nysql pp: : BadConversi on& er) {
/1 Handl e bad conversions

cerr << "Conversion error: " << er.what() << endl <<
"\tretrieved data size: " << er.retrieved <<
", actual size: " << er.actual _size << endl;
return -1;

}
catch (const nysql pp:: Exception& er) {
/] Catch-all for any other MySQ.++ exceptions

cerr << "Error: " << er.what() << endl;
return -1,

}

return O;

}

One of the downsides of transactionsis that the locking it requires in the database server is prone to deadlocks. The
classic case where this happensiswhen two programs both want access to the same two rowswithin asingle transaction
each, but they modify them in opposite orders. If thetiming is such that the programsinterleave their lock acquisitions,
thetwo cometo an impasse: neither can get accessto the other row they want to modify until the other program commits
its transaction and thus release the row locks, but neither can finish the transaction because they’re waiting on row

locks the database server is holding on behalf of the other program.

The MySQL server is smart enough to detect this condition, but the best it can do is abort the second transaction. This

breaks the impasse, allowing the first program to complete its transaction.

23

MySQL ++ v3.2.5 User Manual

The second program now has to deal with the fact that its transaction just got aborted. There's a subtlety in detecting

this situation when using MySQL ++. By default, MySQL ++ signals errors like these with exceptions. In the exception
handler, you might expect toget ER LOCK DEADLOCK fromQuery: : er r num() (or Connecti on:: errnumn),
same thing), but what you'll almost certainly get instead is 0, meaning “no error.” Why? It's because you're probably
usingaTr ansact i on object to get automatic roll-backsin the face of exceptions. In this case, the roll-back happens
before your exception handler is called by issuing a ROLLBACK query to the database server. Thus,

Query: :errnum) returnsthe error code associated with this roll-back query, not the deadlocked transaction that
caused the exception.

To avoid this problem, afew of the exception objects as of MySQL++ v3.0 include this last error number in the
exception object itself. It's populated at the point of the exception, so it can differ from the value you would get from
Query: :errnun{() later on when the exception handler runs.

The example exanpl es/ deadl ock. cpp demonstrates the problem:

#i ncl ude "cndl i ne. h"

#i ncl ude <nysql ++. h>
#i ncl ude <nysql d_error. h>

#i ncl ude <i ostreanp
usi ng nanespace std;

/1 Bring in global holding the value given to the -mswitch
extern int run_node;

int
mai n(int argc, char *argv[])
{
/] CGet database access paraneters from comand |ine
nysql pp: : exanpl es: : CommandLi ne cndl i ne(argc, argv);
if (cmdline) {
return 1,
}

/1 Check that the npde paraneter was al so given and it nakes sense
const int run_node = cndline.run_node();
if ((run_nmode !'= 1) && (run_node != 2)) {
cerr << argv[0] << " nust be run with -nmlL or -nR2 as one of "
"its comuand-line argunments." << endl;
return 1;

}

nmysql pp: : Connection con;
try {
/] Establish the connection to the database server
mysql pp: : Connecti on con(nmysql pp: : exanpl es: : db_nane,
cndl i ne.server(), cndline.user(), cmdline.pass());

/] Start a transaction set. Transactions create nmutex | ocks on
/1 rmodified rows, so if two prograns both touch the sane pair of
/1 rows but in opposite orders at the wong tine, one of the two
/1 prograns will deadl ock. The MySQL server knows how to detect
/1 this situation, and its error return causes MySQL++ to throw
/1 a BadQuery exception. The point of this exanple is that if
/1 you want to detect this problem you would check the val ue of
/1 BadQuery::errnun(), not Connection::errnunm(), because the

/1 transaction roll back process executes a query which succeeds,
/1 setting the MWSQL C API's "last error number" value to O.

24

MySQL ++ v3.2.5 User Manual

/1 The exception object carries its own copy of the error nunber
// at the point the exception was thrown for this very reason.
nmysql pp: : Query query = con. query();

nysql pp: : Transacti on trans(con);

/1 Build and run the queries, with the order depending on the -m
/1 flag, so that a second copy of the programwi || deadl ock if

/1 run while the first is waiting for Enter.

char dummy[100];

for (int i =0; i <2; ++i) {
int lock = run_node + (run_mode == 1?2 i : -i);
cout << "Trying lock " << lock << "..." << endl;

query << "select * from deadl ock_test" << |ock <<
' where x =" << lock << " for update";
query.store();

cout << "Acquired lock " << lock << ". Press Enter to ";
cout << (i == 0 ? "try next lock" : "exit");
cout << ": " << flush;

cin.getline(dumy, sizeof(dumy));
}
}
catch (nysql pp:: BadQuery e) {
if (e.errnunm() == ER_LOCK_DEADLOCK) {
cerr << "Transaction deadl ock detected!" << endl;

cerr << "Connection::errnum= " << con.errnum) <<
", BadQuery::errnum=" << e.errnun() << endl;
}
el se {
cerr << "Unexpected query error: " << e.what() << endl;
}
return 1,
}
catch (nysql pp: : Exception e) {
cerr << "Ceneral error: " << e.what() << endl;
return 1,
}
return O;

}

This example works alittle differently than the others. You run one copy of the example, then when it pauses waiting
for you to press Enter, you run another copy. Then, depending on which one you press Enter in, one of the two will
abort with the deadlock exception. You can see from the error message you get that it matters which method you call
to get the error number. What you do about it isup to you asit depends on your program’s design and system architecture.

3.11. Which Query Type to Use?

There are three major ways to execute aquery in MySQL++: Query: : execut e(), Query: :store(),and
Query: : use() . Which should you use, and why?

execut e() isfor queriesthat do not return data per se. For instance, CREATE INDEX. You do get back some
information from the MySQL server, which execut e() returnsto its caller in a SimpleResult object. In addition to
the obvious — aflag stating whether the query succeeded or not — this object also contains things like the number of
rows that the query affected. If you only need the success status, it's alittle more efficient to call Query: : exec()
instead, as it simply returns bool.

If your query does pull datafrom the database, the simplest optionisst or e() . (All of the examples up to this point
have used this method.) This returns a StoreQueryResult object, which contains the entire result set. It's especially

25

MySQL ++ v3.2.5 User Manual

convenient because St or eQuer yResul t derivesfromst d: : vect or <nysql pp: : Row>, so it opensthe whole
panoply of STL operations for accessing the rows in the result set. Access rows randomly with subscript notation,
iterate forwards and backwards over the result set, run STL algorithms on the set...it all works naturally.

If you like the idea of storing your resultsin an STL container but don't want touse st d: : vect or, you can call
Query: :storein() instead. It lets you store the resultsin any standard STL container (yes, both sequential and
set-associative types) instead of using St or eQuer yResul t . You do miss out on some of the additional database
information held by St or eQuer yResul t 's other base class, ResultBase, however.

st or e* () queriesare convenient, but the cost of keeping the entire result set in main memory can sometimes be too
high. It can be surprisingly costly, in fact. A MySQL database server stores data compactly on disk, but it returns query
datato the client in atextual form. Thisresultsin akind of data bloat that affects numeric and BLOB types the most.
MySQL ++ and the underlying C API library also have their own memory overheads in addition to this. So, if you
happen to know that the database server stores every record of a particular tablein 1 KB, pulling a million records
from that table could easily take several GB of memory with ast or e() query, depending on what’s actually stored
in that table.

For theselargeresult sets, the superior optionisause() query. ThisreturnsaUseQueryResult object, whichissimilar
to St or eQuer yResul t , but without all of the random-accessfeatures. Thisisbecausea® use” query tellsthe database
server to send the results back one row at atime, to be processed linearly. It's analogous to a C++ stream’s input
iterator, as opposed to arandom-access iterator that a container like vector offers. By accepting this limitation, you
can process arbitrarily large result sets. Thistechnique is demonstrated in exanpl es/ si npl e3. cpp:

#i ncl ude "cmdl i ne. h"
#i ncl ude "printdata. h"

#i ncl ude <nysql ++. h>

#i ncl ude <i ostreanp
#i ncl ude <i omani p>

usi ng nanespace std,;

int
mai n(int argc, char *argv[])
{
/] CGet database access paraneters from comand |ine
nysql pp: : exanpl es: : CommandLi ne cndl i ne(argc, argv);
if (tcrdline) {
return 1;

}

/1 Connect to the sanpl e database.
nysql pp: : Connecti on conn(fal se);
i f (conn.connect (nysql pp:: exanpl es: : db_name, cndline. server(),
crmdl i ne.user (), cndline.pass())) {
/1 Ask for all rows fromthe sanple stock table and display
/1 them Unlike sinple2 exanple, we retreive each row one at
/1 a time instead of storing the entire result set in nenory
// and then iterating over it.
nmysql pp: : Query query = conn. query("select * from stock");
if (mysql pp::UseQueryResult res = query.use()) {
/1 Display header
cout.setf(ios::left);
cout << setw(31) << "ltenl <<
setw(10) << "Nunf' <<
setw(10) << "Weight" <<
setw(10) << "Price" <<
"Date" << endl << endl;

26

MySQL ++ v3.2.5 User Manual

/]l Get each rowin result set, and print its contents
while (nmysqgl pp::Row row = res.fetch_row()) {

cout << setw(30) << row["itenm'] << ' ' <<
setw(9) << row "nunf'] << ' ' <<
setw(9) << row "weight"] << ' ' <<
setw(9) << row "price"] << ' ' <<
setw9) << row "sdate"] <<
endl ;

}

/1 Check for error: can't distinguish "end of results" and
/1 error cases in return fromfetch row) otherw se.
if (conn.errnum()) {
cerr << "Error received in fetching a row " <<
conn.error() << endl;

return 1;
}
return O;
}
el se {
cerr << "Failed to get stock item " << query.error() << endl;
return 1;
}
}
el se {
cerr << "DB connection failed: " << conn.error() << endl;
return 1,
}

}

This example does the samething assi npl e2, only with a“use” query instead of a*“store” query.

Valuableasuse() queriesare, they should not be the first resort in solving problems of excessive memory use. It's
better if you can find away to simply not pull as much data from the database in the first place. Maybe you're saying
SELECT * even though you don’t immedidately need all the columns from the table. Or, maybe you're filtering the
result set with C++ code after you get it from the database server. If you can do that filtering with a more restrictive
WHERE clause onthe SELECT, it'll not only save memory, it'll save bandwidth between the database server and
client, and can even save CPU time. If the filtering criteria can’t be expressed in aWHERE clause, however, read on
to the next section.

3.12. Conditional Result Row Handling

Sometimes you must pull more data from the database server than you actually need and filter it in memory. SQL's
WHERE clause is powerful, but not as powerful as C++. Instead of storing the full result set and then picking over it
to find the rows you want to keep, use Quer y: : store_i f (). Thisisexanpl es/ store_i f. cpp:

#i ncl ude "cndl i ne. h"
#i ncl ude "printdata.h"
#i ncl ude "stock. h"

#i ncl ude <nysql ++. h>
#i ncl ude <i ostreanp

#i ncl ude <mat h. h>

/1 Define a functor for testing primality.
struct is_prinme

{

27

MySQL ++ v3.2.5 User Manual

bool operator()(const stock& s)

{
if ((s.num==2) || (s.num== 3)) {
return true; /! 2 and 3 are trivial cases
}
elseif ((s.num< 2) || ((s.num%2) == 0)) {
return false; /1 can't be prime if < 2 or even
}
el se {
/1 The only possibility left is that it's divisible by an
/1 odd nunber that's less than or equal to its square root.
for (int i =3; i <= sqrt(double(s.num); i += 2) {
if ((s.num%i) == 0) {
return fal se;
}
}
return true;
}
}
}
int
mai n(int argc, char *argv[])
{
/] CGet database access paraneters from comand |ine
mysql pp: : exanpl es: : ConmandLi ne cndl i ne(argc, argv);
if (cmdline) {
return 1;
}
try {
/] Establish the connection to the database server.
nmysql pp: : Connecti on con(nysql pp: : exanpl es: : db_nane,
cndl i ne.server(), cndline.user(), cndline.pass());
/] Collect the stock itens with prinme quantities
std::vector<stock> results;
mysql pp: : Query query = con. query();
query.store_if(results, stock(), is_prine());
/1 Show the results
print_stock_header(results.size());
std::vector<stock>::const_iterator it;
for (it =results.begin(); it !=results.end(); ++it) {
print_stock _rowmit->itemc_str(), it->num it->weight,
it->price, it->sDate);
}
}
catch (const nysql pp: : BadQuery& e) {
/1 Sonmething went wong with the SQ query.
std::cerr << "Query failed: " << e.what() << std::endl;
return 1;
}
catch (const nysql pp:: Exception& er) {
/] Catch-all for any other MySQ.++ exceptions
std::cerr << "Error: " << er.what() << std::endl;
return 1;
}
return O;
}

28

MySQL ++ v3.2.5 User Manual

| doubt anyone really needs to select rows from atable that have a prime number in agiven field. This exampleis
meant to be just barely more complex than SQL can manage, to avoid obscuring the point. That point being, the
Query::store_if() cal heregivesyou acontainer full of results meeting a criterion that you probably can’'t
expressin SQL. You will no doubt have much more useful criteriain your own programs.

If you need a more complex query thantheonest ore_i f () knows how to build when given an SSQL S examplar,
there are two overloads that |et you use your own query string. One overload takes the query string directly, and the
other uses the query string built with Quer y’s stream interface.

3.13. Executing Code for Each Row In a Result Set

SQL is more than just a database query language. Modern database engines can actually do some calculations on the
data on the server side. But, thisisn’t always the best way to get something done. When you need to mix code and a
query, MySQL++'sQuery: : for _each() facility might bejust what you need. Thisis

exanpl es/ f or _each. cpp:

#i ncl ude "cndl i ne. h"
#i ncl ude "printdata. h"
#i ncl ude "stock. h"

#i ncl ude <nysql ++. h>
#i ncl ude <i ostreanp

#i ncl ude <mat h. h>

/1 Define a functor to collect statistics about the stock table
class gather_stock_stats

{

public:
gat her _stock_stats()
itens_(0),
wei ght _(0),
cost_(0)
{
}
voi d operator()(const stock& s)
{
itens_ += s.num
wei ght _ += (s.num* s.weight);
cost _ += (s.num?* s.price.data);
}
private:

nmysql pp: :sqgl _bigint itens_;
nysql pp: : sql _doubl e wei ght _, cost_;

friend std::ostream& operator<<(std::ostreanm& os,
const gather_stock_statsé& ss);

/1 Dunp the contents of gather_stock_stats to a streamin human-readabl e
/1 form

std::ostream&

operator<<(std::ostreanm& os, const gather_stock_stats& ss)

{

0S << ss.itenms_ << " itens " <<

29

MySQL ++ v3.2.5 User Manual

"weighing " << ss.weight_ << " stone and " <<
"costing " << ss.cost_ << " cowie shells";

return os;
}
int
mai n(int argc, char *argv[])
{
/] Get database access paraneters from comand |ine
nmysql pp: : exanpl es: : ConmandLi ne cndl i ne(argc, argv);
if (cmdline) {
return 1;
}
try {
/1 Establish the connection to the database server
mysql pp: : Connecti on con(nysqgl pp: : exanpl es: : db_nane,
cndl i ne.server(), cndline.user(), cndline.pass())
/1 Gather and display the stats for the entire stock table
nmysql pp: : Query query = con. query();
std::cout << "There are " << query.for_each(stock(),
gat her _stock_stats()) << '.' << std::endl;
}
catch (const nysql pp: : BadQuery& e) {
/1 Something went wong with the SQ query.
std::cerr << "Query failed: " << e.what() << std::endl
return 1;
}
catch (const nysql pp:: Exception& er) {
/] Catch-all for any other MySQ.++ exceptions
std::cerr << "Error: " << er.what() << std::endl
return 1;
}
return O;
}

You only need to read the mai n() function to get agood idea of what the program does. The key line of code passes
an SSQL S examplar and afunctor to Query: : for _each().for_each() usesthe SSQLS instanceto build a
sel ect * from TABLEquery, st ock inthiscase. Itrunsthat query internally, callinggat her _st ock_stats
on each row. Thisis apretty contrived example; you could actually do thisin SQL, but we're trying to prevent the
complexity of the code from getting in the way of the demonstration here.

Just aswith st ore_i f (), described above, there are two other overloadsfor f or _each() that let you use your
own query string.

3.14. Connection Options

MySQL has alarge number of options that control how it makes the connection to the database server, and how that
connection behaves. The defaults are sufficient for most programs, so only one of the MySQL ++ example programs
make any connection option changes. Hereisexanpl es/ mul ti query. cpp:

#i ncl ude "crdl i ne. h"
#i ncl ude "printdata. h"

#i ncl ude <nysql ++. h>

#i ncl ude <al gorithne

30

MySQL ++ v3.2.5 User Manual

#i ncl ude <i ostreanp
#i ncl ude <i onani p>
#i ncl ude <vector>

usi ng nanespace std;
usi ng nanespace nysql pp;

typedef vector<size_t> |ntVectorType;

static void
print_header (I nt Vector Type& wi dths, StoreQueryResult& res)
{

cout << " |" << setfill(" ');
for (size.t i =0; i <res.field nanmes()->size(); i++) {

cout << " " << setw(widths.at(i)) << res.field_nane(int(i)) << " |";
}

cout << endl;

static void
print_row(l ntVector Type& wi dt hs, Row& row)

{
cout << " |" << setfill (" ");
for (size_t i =0; i <rowsize(); ++) {
cout << " " << setw(widths.at(i)) << rowint(i)] << " [|";
}
cout << endl;
}

static void
print_row separator (I ntVectorType& wi dt hs)

{
cout << " +" << setfill('-");
for (sizet i =0; i <wdths.size(); i++) {
cout << "-" << setwm(widths.at(i)) << '-' << "-+";
}
cout << endl;
}

static void
print_result(StoreQueryResult& res, int index)
{
/1 Show how many rows are in result, if any
StoreQueryResult::size_type numresults = res.size();
if (res & (numresults > 0)) {
cout << "Result set " << index << " has " << numresults <<

" row' << (numresults == 1 ? "" : "s") << ':' << endl;
}
el se {
cout << "Result set " << index << " is enpty." << endl;
return;
}

/1 Figure out the widths of the result set's colums
I nt Vect or Type wi dt hs;
size_t size = res.numfields();
for (size_t i =0; i < size; i++) {
wi dt hs. push_back(max(

31

MySQL ++ v3.2.5 User Manual

res.field(i).max_|length(),
res.field nane(i).size()));

}

/1 Print result set header
print_row separator (w dths);
print_header (w dths, res);
print_row separator (w dths);

/1 Display the result set contents

for (StoreQueryResult::size_type i =0; i < numresults; ++i) {
print_row(w dths, res[i]);

}

/1 Print result set footer
print_row separator (w dt hs);

static void
print_multiple_results(Query& query)

{
/1 Execute query and print all result sets
StoreQueryResult res = query.store();
print_result(res, 0);
for (int i =1; query.nore_results(); ++i) {
res = query.store_next();
print_result(res, i);
}
}
int
mai n(int argc, char *argv[])
{

/1 Get connection paraneters fromcommand |ine
mysql pp: : exanpl es: : ConmandLi ne cndl i ne(argc, argv);
if (cmdline) {

return 1,

}

try {
/1 Enable multi-queries. Notice that you al nost al ways set

/1 MySQ.++ connection options before establishing the server
/1 connection, and options are always set using this one

/1 interface. |If you're famliar with the underlying C API,
/1 you know that there is poor consistency on these matters;
/1 MySQ.++ abstracts these differences away.

Connection con;

con. set _option(new Mil ti StatenentsOption(true));

/1 Connect to the database
if (!con.connect(nysql pp::exanpl es::db_nane, cndline.server(),
cndl i ne.user(), cndline.pass())) {
return 1;

}

/1 Set up query with nultiple queries.

Query query = con. query();

query << "DROP TABLE |F EXISTS test_table; " <<
"CREATE TABLE test_table(id INT); " <<
"I NSERT | NTO test_table VALUES(10); " <<
"UPDATE test_table SET i d=20 WHERE i d=10; " <<

32

MySQL ++ v3.2.5 User Manual

"SELECT * FROM test_table; " <<
"DROP TABLE test _table";
cout << "Multi-query: " << endl << query << endl;

/] Execute statement and display all result sets.
print_multiple_results(query);

#i f MYSQ._VERSI ON_|I D >= 50000
/1 1f it's MyYSQ v5.0 or higher, also test stored procedures, which
/1 return their results the sanme way nulti-queries do.
query << "DROP PROCEDURE | F EXI STS get_stock; " <<
" CREATE PROCEDURE get stock" <<

"(i_itemvarchar(20)) " <<
"BEA N " <<
"SET i _item= concat('%, i_item "%); " <<
"SELECT * FROM stock WHERE lower(item) like lower(i_item; " <<
“END, " :
cout << "Stored procedure query: " << endl << query << endl;

/] Create the stored procedure.
print_multiple_results(query);

/1 Call the stored procedure and display its results.
query << "CALL get_stock('relish")";
cout << "Query: " << query << endl;
print_multiple_results(query);

#endi f

return O;
}
catch (const BadOption& err) {
cerr << err.what() << endl;
cerr << "This exanple requires MWSQ 4.1.1 or later." << endl;

return 1;
}
catch (const ConnectionFailed& err) {
cerr << "Failed to connect to database server: " <<
err.what () << endl;
return 1;
}

catch (const Exception& er) {
/1 Catch-all for any other MySQ.++ exceptions
cerr << "Error: " << er.what() << endl;
return 1;

}

Thisisafairly complex example demonstrating the multi-query and stored procedure featuresin newer versions of
MySQL . Because these are new features, and they change the communication between the client and server, you have
to enabl e these features in a connection option. The key line isright up at the top of nmai n() , whereit createsa
Multi StatementsOption object and passesit to Connect i on: : set _opti on() . That method will take apointer to
any derivative of Option: you just create such an object on the heap and passit in, which gives Connect i on the data
values it needs to set the option. You don’t need to worry about releasing the memory used by the Opt i on objects;
it's done automatically.

The only tricky thing about setting optionsis that only afew of them can be set after the connection is up. Most need
to be set just as shown in the exampl e above: create an unconnected Connect i on object, set your connection options,
and only then establish the connection. The option setting mechanism takes care of applying the options at the correct
time in the connection establishment sequence.

33

MySQL ++ v3.2.5 User Manual

If you're familiar with setting connection optionsin the MySQL C AP, you'll have to get your head around the fact
that MySQL ++'s connection option mechanism is a much simpler, higher-level design that doesn’t resemble the C
API in any way. The C API has something like half a dozen different mechanisms for setting options that control the
connection. Theflexihility of the C++ type system allows usto wrap all of these up into asingle high-level mechanism
while actually getting greater type safety than the C API alows.

3.15. Dealing with Connection Timeouts

By default, current MySQL servers have an 8 hour idle timeout on connections. Thisis not a problem if your program
never hasto run for more than 8 hours or reliably queries the database more often than that. And, it's agood thing for
the database server, because even an idle connection takes up server resources.

Many programs must run continually, however, and may experience long idle periods, such as nights and weekends
when no oneis around to make the program issue database queries. It’'s therefore common for people writing such
programs to get a bug report from the field complaining that the program died overnight or over along weekend,
usually with some error message about the database server going away. They then check the DB server, find that it's
till running and never did restart and scratch their heads wondering what happened. What happened isthat the server’s
connection idle timeout expired, so it closed the connection to the client.

You cannot detect this condition by calling Connect i on: : connect ed() . When that returnstrue, it just means
that either the connect-on-create constructor or theconnect () call succeeded and that we haven't observed the
connection to be down since then. When the database server closes an idle connection, you won't know it until after
you try to issue aquery. Thisis simply due to the nature of network programming.

One way around this problem isto configure MySQL to have alonger idle timeout. Thistimeout isin seconds, so the
default of 8 hoursis 28,800 seconds. You would want to figure out the longest possible time that your program could
be left idle, then pick avalue somewhat longer than that. For instance, you might decide that the longest reasonable
idletimeisalong 4-day weekend — 345,600 seconds — which you could round up to 350,000 or 400,000 to allow
for alittle bit of additional idle time on either end of that period.

Another way around this, on a per-connection basisfrom the client side, would be to set the ReconnectOption connection
option. Thiswill cause MySQL ++ to reconnect to the server automatically if it drops the connection. Beware that
unless you're using MySQL 5.1.6 or higher, you have to set this only after the connection is established, or it won’t
take effect. This means there's a potential race condition: it's possible the connection could drop shortly enough after
being established that you don’t have time to apply the option, so it won't come back up automatically. MySQL 5.1.6+
fixes this by alowing this option to be set before the connection is established.

A completely different way to tackle this, if your program doesn’t block forever waiting on 1/O whileidle, isto
periodically call Connect i on: : pi ng() . ? This sends the smallest possible amount of datato the database server,
which will reset itsidle timer and cause it to respond, so pi ng() returnstrue. If it returns false instead, you know
you need to reconnect to the server. Periodic pinging is easiest to do if your program uses asynchronous |/O, threads,
or some kind of event loop to ensure that you can call something periodically even while the rest of the program has
nothing to do.

An interesting variant on this strategy is to ping the server before each query, or, better, before each group of queries
within alarger operation. It has an advantage over pinging during idle timein that the client is about to use far more
server resources to handle the query than it will take to handle the ping, so the ping time getslost in the overhead. On
the other hand, if the client issues queries frequently when not idle, it can result in alot more pings than would happen
if you just pinged every N hourswhileidle.

2pon't ping the server too often! It takes atiny amount of processing capability to handle a ping, which can add up to a significant amount if done
often enough by aclient, or even just rarely by enough clients. Also, alower ping frequency can let your program ride through some types of network
faults — a switch reboot, for instance — without needing a reconnect. | like to ping the DB server no more often than half the connection timeout.
With the default of 8 hours, then, 1'd ping between every 4 and 7 hours.

MySQL ++ v3.2.5 User Manual

Finally, some programmers prefer to wrap the querying mechanism in an error handler that catches the “server has
goneaway” error and tries to reestablish the connection and reissue the query. This adds some complexity, but it makes
your program more robust without taking up unnecessary resources. |f you did this, you could even change the server
to drop idle connections more often, thus tying up fewer TCP/IP stack resources.

3.16. Concurrent Queries on a Connection

An important limitation of the MySQL C API library — which MySQL ++ is built atop, so it shares this limitation —
isthat you can only have one query in progress on each connection to the database server. If you try to issue a second
query whileoneisstill in progress, you get an obscure error message about “ Commands out of sync” from the underlying
CAPI library. (You normally get this messagein aMySQL ++ exception unless you have exceptions disabled, in which
case you get afailure code and Connecti on: : error () returnsthis message.)

There arelots of waysto run into thislimitation:

» Theeasiest way isto try to use a single Connection object in a multithreaded program, with more than one thread
attempting to useit to issue queries. Unlessyou put in alot of work to synchronize access, thisis almost guaranteed
to fail at some point, giving the dread “ Commands out of sync” error.

 You might then think to give each thread that issues queriesits own Connect i on object. You can still runinto
trouble if you pass the data you get from queries around to other threads. What can happen isthat one of these child
objectsindirectly calls back to the Connect i on at atime whereit’sinvolved with another query. Thisis properly
covered elsewhere, in Section 7.4, “ Sharing MySQL ++ Data Structures”.)

» Oneway toruninto this problem without using threadsiswith “use” queries, discussed above. If you don’t consume
al rows from a query before you issue another on that connection, you are effectively trying to have multiple
concurrent queries on a single connection. Here's arecipie for this particular disaster:

UseQueryResult rl1 = query.use("sel ect garbage from plink where foobie="tamagotchi'");
UseQueryResult r2 = query.use("select blah frombonk where bletch="snmurf'");

The second use() call fails because the first result set hasn’t been consumed yet.

« Still another way to run into thislimitation isif you use MySQL’'s multi-query feature. This lets you give multiple
queriesin asingle call, separated by semicolons, and get back the results for each query separately. If you issue
three queriesusing Quer y: : st or e(), you only get back thefirst query’s results with that call, and then have to
call st ore_next () to get the subsequent query results. MySQL ++ provides Quer y: : more_resul t s() so
you know whether you're done, or need to call st or e_next () again. Until you reach thelast result set, you can’t
issue another query on that connection.

 Finally, there’'saway to run into this that surprises almost everyone sooner or later: stored procedures. MySQL
normally returns at least two result sets for a stored procedure call. The ssimple case is that the stored procedure
contains asingle SQL query, and it succeeds. you get two results, first the results of the embedded SQL query, and
then the result of the call itself. If there are multiple SQL queries within the stored procedure, you get more than
two result sets. Until you consume them all, you can’t start a new query on the connection. As above, you want to
have aloop callingnore_resul t s() andst ore_next () towork your way through al of the result sets
produced by the stored procedure call.

3.17. Getting Field Meta-Information

The following example demonstrates how to get information about the fieldsin aresult set, such as the name of the
field and the SQL type. Thisisexanpl es/ fi el di nf. cpp:

35

MySQL ++ v3.2.5 User Manual

#i ncl ude "cndline. h"
#i ncl ude "printdata.h"

#i ncl ude <i ostreans
#i ncl ude <i omani p>

usi ng nanespace std;

int
mai n(int argc, char *argv[])
{
/] CGet database access paraneters from command |ine
nmysql pp: : exanpl es: : CommandLi ne cndl i ne(argc, argv);
if (cmdline) {
return 1;

}

try {
/! Establish the connection to the database server.

mysql pp: : Connecti on con(nysql pp: : exanpl es: : db_nane,
cndl i ne.server(), cndline.user(), cmdline.pass());

/1 Get contents of main exanple table
nmysql pp: : Query query = con.query("select * from stock");
nmysql pp: : StoreQueryResult res = query.store();

/1 Show i nfo about each field in that table
char widths[] = { 12, 22, 46 };
cout.setf(ios::left);
cout << setw(widths[0]) << "Field" <<
setw(wi dths[1]) << "SQ Type" <<
setw(wi dt hs[2]) << "Equival ent C++ Type" <<

endl ;
for (size_t i =0; i < sizeof(widths) / sizeof(widths[0]); ++i) {
cout << string(widths[i] - 1, '=') << ' ';

}

cout << endl;

for (size_t i =0; i <res.field_nanmes()->size(); i++) {

/'l Suppress C++ type nane outputs when run under dtest,

/1 as they're systemspecific.

const char* cnane = res.field_type(int(i)).name();

nmysql pp: : Fi el dTypes: :value_type ft = res.field _type(int(i));

ostringstream os;

os << ft.sql _nanme() << " (" << ft.id() <<')";

cout << setw(widths[0]) << res.field_name(int(i)).c_str() <<
setw(wi dths[1]) << os.str() <<
setw(wi dths[2]) << cname <<
endl ;

}

cout << endl;

/1 Sinple type check
if (res.field_type(0) == typeid(string)) {
cout << "SQL type of 'item field nbst closely resenbles
"the C++ string type." << endl;

/1 Tricky type check: the "if' path shouldn't happen because the
/1 description field has the NULL attribute. W need to dig a
/1 little deeper if we want to ignore this in our type checks.
if (res.field_type(5) == typeid(string)) {

36

MySQL ++ v3.2.5 User Manual

cout << "Should not happen! Type check failure." << endl;

}
else if (res.field_type(5) == typeid(nysqlpp::sql_blob_null)) {
cout << "SQ type of 'description' field resenbles "
"a null able variant of the C++ string type." << endl;

}
el se {
cout << "Weird: fifth field' s type is now" <<
res.field_type(5).name() << endl;
cout << "Did sonething recently change in resetdb?" << endl;
}

}
catch (const nysql pp:: BadQuery& er) {
/1 Handl e any query errors
cerr << "Query error: " << er.what() << endl;
return -1;
}
catch (const nysql pp:: Exception& er) {
/] Catch-all for any other MySQ.++ exceptions

cerr << "Error: " << er.what() << endl;
return -1;

}

return O;

37

MySQL ++ v3.2.5 User Manual

4. Template Queries

Another powerful feature of MySQL ++ isbeing ableto set up template queries. Thesearekind of likeC'spri nt f ()
facility: you give MySQL ++ a string containing the fixed parts of the query and placeholders for the variable parts,
and you can later substitute in values into those placeholders.

The following program demonstrates how to use this feature. Thisisexanpl es/ t quer y1. cpp:

#i ncl ude "cmdl i ne. h"
#i ncl ude "printdata. h"

#i ncl ude <i ostreanp
usi ng nanespace std;

int
mai n(int argc, char *argv[])
{
/] CGet database access paraneters from command |ine
nmysql pp: : exanpl es: : ConmandLi ne cndl i ne(argc, argv);
if ('crdline) {
return 1,
}

try {
/1 Establish the connection to the database server.

nysql pp: : Connecti on con(nysqgl pp: : exanpl es: : db_nane,
cndl i ne.server(), cndline.user(), cmdline.pass());

/] Build a tenplate query to retrieve a stock itemgiven by
/1 item nane.
nmysql pp: : Query query = con. query(
"select * fromstock where item= %q");
query. parse();

/1 Retrieve an item added by resetdb; it won't be there if
/1 tquery* or ssqls3 is run since resetdb.
nmysql pp: : StoreQueryResult resl = query.store("Nurnberger Brats");
if (resl.empty()) {
t hrow nysql pp: : BadQuery("UTF-8 bratwirst itemnot found in
"table, run resetdb");

}

/1 Replace the proper Gernman name with a 7-bit ASCl|

/1 approximation using a different tenplate query.

query.reset(); /1 forget previous tenplate query data

query << "update stock set item= %q where item = %q";

query. parse();

nysql pp: : Si npl eResult res2 = query. execute("Nuerenberger Bratwurst",
resl[0][0].c_str());

/1 Print the new table contents.
print_stock_tabl e(query);

}

catch (const nysql pp: : BadQuery& er) {
/1 Handl e any query errors
cerr << "Query error: " << er.what() << endl;
return -1;

}

catch (const nysql pp:: BadConversi on& er) {
// Handl e bad conversions

38

MySQL ++ v3.2.5 User Manual

cerr << "Conversion error: " << er.what() << endl <<
"\tretrieved data size: " << er.retrieved <<
", actual size: " << er.actual _size << endl;
return -1;

}
catch (const nysql pp:: Exception& er) {

/] Catch-all for any other MySQL++ exceptions
cerr << "Error: " << er.what() << endl;
return -1;

}

return O;

}

Thelinejust beforethe call to quer y. par se() setsthe template, and the parse call putsit into effect. From that
point on, you can re-use this query by calling any of several Query member functions that accept query template
parameters. In this example, we'reusing Quer y: : execut e() .

Let'sdig into thisfeature alittle deeper.

4.1. Setting up Template Queries

To set up atemplate query, you simply insert it into the Query object, using numbered placeholders wherever you want
to be able to change the query. Then, you call the parse() function to tell the Query object that the query string isa
template query, and it needsto parseit:

query << "select (%:fieldl, 93:field2) fromstock where %:wheref = %0q: what";
query. parse();

The format of the placeholder is:

Yt (modi fier) (:nane)(:)

Where “###" is anumber up to three digits. It is the order of parameters given to a SQL QueryParms object, starting
from 0.

“modifier” can be any one of the following:

% Print an actual “%"

" Don't quote or escape no matter what.

q Thiswill escapetheitem using the MySQL CAPI
function mysgl-escape-string and add single
quotes around it as necessary, depending on the
type of the value you use.

Q Quote but don’t escape based on the same rules
asfor “q”. This can save a bit of processing time
if you know the strings will never need quoting

“:name” isfor an optional namewhich aidsin filling SQL QueryParms. Name can contain any a pha-numeric characters
or the underscore. You can have atrailing colon, which will be ignored. If you need to represent an actual colon after
the name, follow the name with two colons. The first one will end the name and the second one won't be processed.

39

MySQL ++ v3.2.5 User Manual

4.2. Setting the Parameters at Execution Time

To specify the parameters when you want to execute a query smply use Query: : st ore(const SQ.Stri ng
&parnD, [..., const SQ.String &parmll]) . Thistype of multiple overload also exists for
Query::storein(),Qery::use() andQuery: : execute()."“pam0”’ correspondsto thefirst parameter,
etc. You may specify up to 25 parameters. For example:

StoreQueryResult res = query.store("Dinner Rolls", "itenm, "iteni, "price")

with the template query provided above would produce:

select (item price) fromstock where item= "D nner Rolls"

The reason we didn’t put the template parametersin numeric order...

select (%O:fieldl, %:field2) fromstock where %2: wheref = 9%3q: what

...will become apparent shortly.

4.3. Default Parameters

The template query mechanism allows you to set default parameter values. You simply assign avalue for the parameter
to the appropriate position inthe Quer y: : t enpl at e_def aul t s array. You can refer to the parameters either by
position or by name;

query.tenplate defaults[1] = "itent;
query.tenpl ate_defaul ts["wheref"] = "itent;

Both do the same thing.

This mechanism works much like C++'s default function parameter mechanism: if you set defaults for the parameters
at the end of the list, you can call one of Quer y's query execution methods without passing all of the values. If the
query takes four parameters and you've set defaults for the last three, you can execute the query using as little as just
one explicit parameter.

Now you can see why we numbered the template query parameters the way we did afew sections earlier. We ordered
them so that the ones less likely to change have higher numbers, so we don't always have to pass them. We can just
give them defaults and take those defaults when applicable. Thisis most useful when some parametersin atemplate
guery vary less often than other parameters. For example:

"iten';
"price";

query.tenplate defaul ts["fieldl"]
query.tenpl ate_defaul ts["fiel d2"]
St oreQueryResult resl = query. store("Hanburger Buns", "itenl);
StoreQueryResult res2 = query.store(1l.25, "price");

This stores the result of the following queriesinr es1 and r es2, respectively:

select (item price) fromstock where item = "Hanburger Buns"
select (item price) fromstock where price = 1.25

Default parameters are useful in this example because we have two queries to issue, and parameters 2 and 3 remain
the same for both, while parameters 0 and 1 vary.

40

MySQL ++ v3.2.5 User Manual

Some have been tempted into using this mechanism as away to set al of the template parametersin a query:

query.tenpl ate_defaul ts["what"] = "Hanburger Buns";
query.tenpl ate_defaul ts["wheref"] = "itent;
query.tenplate_defaults["fieldl"] = "itent;
query.tenplate_defaults["field2"] = "price";

StoreQueryResult resl = query.store();

This can work, but it isnot designed to. In fact, it's known to fail horribly in one common case. You will not get
sympathy if you complain on the mailing list about it not working. If your code doesn’t actively reuse at least one of
the parameters in subsequent queries, you're abusing MySQL ++, and it is likely to take its revenge on you.

4.4. Error Handling

If for some reason you did not specify all the parameters when executing the query and the remaining parameters do
not havetheir valuesset viaQuer y: : t enpl at e_def aul t s, thequery object will throw aBadParamCount object.
If this happens, you can get an explanation of what happened by calling BadPar antCount : : what (), like so:

query.tenplate_defaults["fieldl"] = "itent;

query.tenplate defaults["field2"] = "price";
StoreQueryResult res = query.store(l.25);

Thiswould throw BadPar anCount because thewher ef isnot specified.

In theory, this exception should never be thrown. If the exception is thrown it probably alogic error in your program.

41

MySQL ++ v3.2.5 User Manual

5. Specialized SQL Structures

The Specialized SQL Structure (SSQLS) feature letsyou easily define C++ structuresthat match the form of your SQL
tables. At the most superficial level, an SSQL S has a member variable corresponding to each field in the SQL table.
But, an SSQL S also has several methods, operators, and data members used by MySQL ++'sinternals to provide neat
functionality, which we cover in this chapter.

You define SSQL Ses using the macros defined in ssql s. h. Thisisthe only MySQL++ header not automatically
included for you by mysql ++. h.You have to include it in code modules that use the SSQL S feature.

5.1. sql_create

Let's say you have the following SQL table;

CREATE TABLE stock (
i tem CHAR(30) NOT NULL,
num Bl G NT NOT NULL,
wei ght DOUBLE NOT NULL,
price DECI MAL(6,2) NOT NULL,
sdat e DATE NOT NULL,
description MEDI UMIEXT NULL)

You can create a C++ structure corresponding to this table like so:

sql _create_6(stock, 1, 6,
mysql pp: :sqgl _char, item
nmysql pp: : sqgl _bigint, num
nmysql pp: : sql _doubl e, wei ght,
nmysql pp: : sql _deci mal, price,
nmysql pp: : sgl _date, sdate,
mysql pp: : Nul | <nmysql pp: : sql _medi unt ext >, descri ption)

Thisdeclaresthe st ock structure, which has adatamember for each SQL column, using the same names. The structure
also has a number of member functions, operators and hidden data members, but we won't go into that just now.

The parameter before each field nameinthesql _cr eat e_# cal isthe C++ data type that will be used to hold that
value in the SSQL S. While you could use plain old C++ data types for most of these columns (long int instead of
mysqlpp::sql_bigint, for example) it's best to use the MySQL ++ typedefs.

Sometimes you have no choice but to use special MySQL ++ data typesto fully express the database schema. Consider
thedescri pti onfield. MySQL++'ssgl_mediumtext typeisjust an adliasfor std::string, since we don’t need anything
fancier to hold aSQL MEDIUMTEXT value. It'sthe SQL NULL attribute that causes trouble: it has no equivalent in
the C++ type system. MySQL ++ offersthe Null template, which bridges this difference between the two type systems.

The general format of this macrois:

sql _create #(NAVE, COVPCOUNT, SETCOUNT, TYPE1, |TEML, ... TYPE#, |TEM¥)

where # is the number of member variables, NAME is the name of the structure you wish to create, TYPEX isthetype
of amember variable, and | TEMK isthat variable's name.

The COVPCOUNT and SETCOUNT arguments are described in the next section.

42

MySQL ++ v3.2.5 User Manual

5.2. SSQLS Comparison and Initialization

Thesql _cr eat e_# macro adds member functions and operators to each SSQL S that allow you to compare one
SSQL Sinstance to another. These functions compare the first COMPCOUNT fields in the structure. In the example
above, COMPCOUNT is 1, so only thei t emfield will be checked when comparing two st ock structures.

This feature works best when your table’'s “key” fields are thefirst onesin the SSQL S and you set COMPCOUNT equal
to the number of key fields. That way, a check for equality between two SSQL S structuresin your C++ code will give
the same results as a check for equality in SQL.

COVPCOUNT must be at least 1. The current implementation of sql _cr eat e_# cannot create an SSQL S without
comparison member functions.

Because our st ock structure is less-than-comparable, you can use it in STL algorithms and containers that require
this, such as STL's associative containers:

std::set<stock> result;
query.storein(result);
cout << result.|ower_bound(stock("Hanmburger"))->item << endl;

Thiswill print thefirst item in the result set that begins with “Hamburger.”

The third parameter to sql _cr eat e_# is SETCOUNT. If thisis nonzero, it adds an initialization constructor and a
set () member function taking the given number of arguments, for setting the first N fields of the structure. For
example, you could change the above example like so:

sql _create_6(stock, 1, 2,
nmysql pp: :sqgl _char, item
nysql pp: :sql _bigint, num
nmysql pp: : sql _doubl e, wei ght,
nysql pp: : sql _deci mal, price,
nmysql pp: : sgl _date, sdate,
nysql pp: : Nul | <nysqgl pp: : sql _nmedi unt ext>, descri ption)

stock foo("Hotdog", 52);

In addition to this 2-parameter constructor, thisversion of the st ock SSQL S will have asimilar 2-parameter set ()
member function.

The COVPCOUNT and SETCOUNT values cannot be equal. If they are, the macro will generate two initialization
constructors with identical parameter lists, which isillegal in C++. You might be asking, why does there need to be a
constructor for comparison to begin with? It's often convenient to be able to say something likex ==

st ock(" Hot dog") . Thisrequiresthat there be aconstructor taking COMPCOUNT argumentsto create the temporary
st ock instance used in the comparison.

Thislimitationisnot aproblem in practice. If you want the same number of parametersin theinitialization constructor
as the number of fields used in comparisons, pass 0 for SETCOUNT. This suppresses the duplicate constructor you'd
get if you used the COMPCOUNT valueinstead. Thisis most useful in very small SSQL Ses, sinceit’s easier for the
number of key fields to equal the number of fields you want to compare on:

sql _create_1(stock_item 1, O, nysql pp::sql_char, item

43

MySQL ++ v3.2.5 User Manual

5.3. Retrieving data

Let’'sput SSQLSto use. Thisisexanpl es/ ssql s1. cpp:

#i ncl ude "cmdl i ne. h"
#i ncl ude "printdata. h"
#i ncl ude "stock. h"

#i ncl ude <i ostrean»>
#i ncl ude <vector>

usi ng nanespace std;

int

mai n(int argc, char *argv[])

{
/| Get database access paranmeters from comrand |ine
nmysql pp: : exanpl es: : ConmandLi ne cndl i ne(argc, argv);
if (cmdline) {

return 1,
}
try {
/] Establish the connection to the database server.
nmysql pp: : Connection con(nysql pp: : exanpl es: : db_nane,
cndl i ne.server(), cndline.user(), cmdline.pass());
/1 Retrieve a subset of the stock table's colums, and store
/1 the data in a vector of 'stock' SSQS structures. See the
/1 user manual for the consequences arising fromthis quiet
/] ability to store a subset of the table in the stock SSQS.
nmysql pp: : Query query = con.query("select itemdescription fromstock");
vect or <st ock> res;
query.storein(res);
/1 Display the itens
cout << "We have:" << endl;
vector<stock>::iterator it;
for (it =res.begin(); it !'=res.end(); ++it) {
cout << "\t' << it->item
if (it->description !'= nmysqlpp::null) {
cout << " (" << it->description << ")";
}
cout << endl;
}
}

catch (const nysql pp:: BadQuery& er) {
/1 Handl e any query errors
cerr << "Query error: " << er.what() << endl;
return -1;
}
catch (const nysql pp: : BadConversi on& er) {
/1 Handl e bad conversions; e.g. type msmatch popul ating 'stock'

cerr << "Conversion error: " << er.what() << endl <<
"\tretrieved data size: " << er.retrieved <<
", actual size: " << er.actual _size << endl;
return -1;

}

catch (const nysql pp:: Exception& er) {
/] Catch-all for any other MySQ.++ exceptions
cerr << "Error: " << er.what() << endl;
return -1,

MySQL ++ v3.2.5 User Manual

}

return O;

}
Here is the stock.h header used by that example, and by several others below:

#i ncl ude <nysql ++. h>
#i ncl ude <ssqls. h>

/1 The following is calling a very conplex macro which will create
/1 "struct stock", which has the nenber vari abl es:

11

/1 sql _char item

11

/1 sql _medi unt ext _nul | description;
11

/1 plus nmethods to help populate the class froma MySQL row. See the
/] SSQ.S sections in the user nmanual for further details.
sql _create_6(stock,
1, 6, // The neaning of these values is covered in the user manual
mysql pp: :sql _char, item
nysql pp: : sgl _bigint, num
nmysql pp: : sql _doubl e, wei ght,
nysql pp: : sql _doubl e_nul |, price,
nmysql pp: : sql _date, sDate, /] SSQS isn't case-sensitive!
nysql pp: : sql _nedi untext _nul |, description)

This example produces the same output assi npl el. cpp (see Section 3.2, “A Simple Example”), but it uses
higher-level datastructures paralleling the database schemainstead of MySQL ++’slower-level generic datastructures.
It also uses MySQL ++'s exceptions for error handling instead of doing everything inline. For small example programs
like these, the overhead of SSQL S and exceptions doesn’t pay off very well, but in areal program, they end up working
much better than hand-rolled code.

Notice that we are only pulling a single column from the st ock table, but we are storing therowsin a
std::vector<stock>. It may strike you asinefficient to have five unused fiel ds per record. It’s easily remedied by defining
asubset SSQLS:

sql _create_1(stock_subset,
1, O,
string, item

vect or <st ock_subset > res;
query.storein(res);
/1 ...etc...

MySQL ++ isflexible about popul ating SSQLSes13 It works much like the Web, adesign that’s enabl ed the devel opment
of the largest distributed system in the world. Just as a browser ignores tags and attributes it doesn’t understand, you
can populate an SSQL S from a query result set containing columns that don’t exist in the SSQL S. And as a browser
uses sensible defaults when the page doesn’t give explicit values, you can have an SSQL S with more fields defined
than arein the query result set, and these SSQL S fields will get default values. (Zero for numeric types, false for bool,
and a type-specific default for anything more complex, like mysglpp::DateTime.)

13Programs built against versions of MySQL++ prior to 3.0 would crash at almost any mismatch between the database schema and the SSQLS
definition. 1t's no longer necessary to keep the data design in lock-step between the client and database server. A mismatch can result in data loss,
but not a crash.

45

MySQL ++ v3.2.5 User Manual

In more concrete terms, the example aboveis able to populate the st ock objects using as much information as it has,
and leave the remaining fields at their defaults. Conversely, you could also stuff the results of SELECT * FROM
st ock intothest ock_subset SSQLS declared above; the extra fields would just be ignored.

WEe're trading run-time efficiency for flexibility here, usually the right thing in adistributed system. Since MySQL is
a networked database server, many uses of it will qualify as distributed systems. You can't count on being able to
update both the server(s) and all the clients at the same time, so you have to make them flexible enough to cope with
differences while the changes propagate. As long as the new database schemaisn’t too grossly different from the old,
your programs should continue to run until you get around to updating them to use the new schema.

There's a danger that this quiet coping behavior may mask problems, but considering that the previous behavior was
for the program to crash when the database schema got out of synch with the SSQL S definition, it'slikely to be taken
as an improvement.

5.4. Adding data

MySQL ++ offers several waysto insert datain SSQL S form into a database table.

Inserting a Single Row

The simplest optionisto insert asinglerow at atime. Thisisexanpl es/ ssql s2. cpp:

#i ncl ude "cndl i ne. h"
#i ncl ude "printdata.h"
#i ncl ude "stock. h"

#i ncl ude <i ostreanp
#include <limts>

usi ng nanespace std,;

int
mai n(int argc, char *argv[])
{
/] Get database access paraneters from comand |ine
mysql pp: : exanpl es: : ConmandLi ne cndl i ne(argc, argv);
if (cmdline) {
return 1;

}

try {
/1 Establish the connection to the database server.

nmysql pp: : Connecti on con(nysql pp: : exanpl es: : db_nane,
cndl i ne.server(), cndline.user(), cndline.pass());

/1 Create and popul ate a stock object. W could al so have used
/1 the set() nenber, which takes the sane paraneters as this
/1 constructor.
stock row "Hot Dogs", 100, 1.5,
nureric_limts<double> :infinity(), // "priceless," hal
nmysql pp: : sql _dat e("1998- 09-25"), nysql pp::null);

/!l Formthe query to insert the rowinto the stock table.

mysql pp: : Query query = con. query();
query.insert(row;

/1 Show the query about to be executed.
cout << "Query: " << query << endl;

46

MySQL ++ v3.2.5 User Manual

/1 Execute the query. W use execute() because | NSERT doesn't
/] return a result set.
query. execute();

/1l Retrieve and print out the new table contents.
print_stock_tabl e(query);

}

catch (const nysql pp:: BadQuery& er) {
/1 Handl e any query errors
cerr << "Query error: " << er.what() << endl;
return -1;

}

catch (const nysql pp:: BadConversion& er) {
/! Handl e bad conversi ons

cerr << "Conversion error: " << er.what() << endl <<
"\tretrieved data size: " << er.retrieved <<
actual size: " << er.actual _size << endl;

return -1;

}
catch (const nysql pp:: Exception& er) {
/] Catch-all for any other MySQ.++ exceptions

cerr << "Error: " << er.what() << endl;
return -1;

}

return O;

}

That'sall thereistoit! MySQL++ even takes care of quoting and escaping the datawhen building queriesfrom SSQL S
structures. It'sefficient, too: MySQL ++ is smart enough to quote and escape dataonly for those datatypesthat actually
require it.

Inserting Many Rows

Inserting asingle row is useful, to be sure, but you might want to be able to insert many SSQL Ses or Row objects at
once. MySQL ++ knows how to do that, too, sparing you the necessity of writing the loop. Plus, MySQL ++ uses an
optimized implementation of this algorithm, packing everything into asingle SQL query, eliminating the overhead of
multiple calls between the client and server. It'sjust adifferent overload of i nsert () , which acceptsapair of iterators
into an STL container, inserting every row in that range:

vect or<st ock> | ots_of _stuff;
...populate the vector sonehow. ..
query.insert(lots_of stuff.begin(), lots_of _stuff.end()).execute();

By the way, notice that you can chain Quer y operations like in the last line above, because its methods return *this
where that makes sense.

Working Around MySQL's Packet Size Limit

The two-iterator form of i nsert () hasan associated risk: MySQL has alimit on the size of the SQL query it will
process. The default limit is 1 MB. You can raise the limit, but the reason the limit is configurable is not to allow huge
numbers of insertsin asingle query. They made the limit configurable because asingle row might be bigger than 1 MB,
so the default would prevent you from inserting anything at all. If you raise the limit simply to be able to insert more
rows at once, you're courting disaster with no compensating benefit: the more data you send at atime, the greater the
chance and cost of something going wrong. Worse, thisis pure risk, because by the time you hit 1 MB, the per-packet
overhead is such asmall fraction of the data being transferred that increasing the packet size buys you essentially
nothing.

47

MySQL ++ v3.2.5 User Manual

Let'ssay you haveavect or containing several megabytes of data; it will get even bigger when expressed in SQL
form, so there’s no way you can insert it all in asingle query without raising the MySQL packet limit. One way to
cope would be to write your own naive loop, inserting just one row at atime. Thisis slow, because you're paying the
per-query cost for every row in the container. Then you might realize that you could use the two iterator form of

i nsert (), passing iterators expressing sub-ranges of the container instead of trying to insert the whole container in
one go. Now you'vejust got to figure out how to cal culate those sub-rangesto get efficient operation without exceeding
the packet size limit.

MySQL ++ already knows how to do that, too, with Quer y: : i nsert from() . We gaveit adifferent name instead
of adding yet another i nsert () overload because it doesn’t merely build the INSERT query, which you then
execut e() . It'smorelikest or ei n(), inthat it wraps the entire operation up in asingle call. Thisfeatureis
demonstrated in exanpl es/ ssql s6. cpp:

#i nclude "cndl i ne. h"
#i ncl ude "printdata. h"
#i ncl ude "stock. h"

#i ncl ude <fstreane

usi ng nanespace std;

/1 Breaks a given text line of tab-separated fields up into a list of
/1 strings.

static size_t
tokeni ze_line(const string& |ine, vector<nmysqlpp::String>& strings)

{
string field,
strings.clear();
istringstreamiss(line);
while (getline(iss, field, "\t")) {
strings. push_back(mnmysql pp::String(field));
}
return strings.size();
}

/]l Reads a tab-delimted text file, returning the data found therein
/1 as a vector of stock SSQS objects.
static bool
read_stock_itens(const char* filenane, vector<stock>& stock_vector)
{
ifstreaminput (fil enane);
if (linput) {
cerr << "Error opening input file
return fal se;

<< filenane << "'" << endl;

}

string line;
vect or <nysql pp:: String> strings;
while (getline(input, line)) {
if (tokenize_line(line, strings) == 6) {
stock_vector. push_back(stock(string(strings[0]), strings[1],
strings[2], strings[3], strings[4], strings[5]));

}
el se {
cerr << "Error parsing input line (doesn't have 6 fields) " <<
"infile'" << filenanme << "'" << endl;
cerr << "invalid line: '" << line << "'" << endl;

48

MySQL ++ v3.2.5 User Manual

}
}
return true;
}
int
mai n(int argc, char *argv[])
{

/] CGet database access paraneters from command |ine
nmysql pp: : exanpl es: : CommandLi ne cndl i ne(argc, argv);
if (cmdline) {

return 1;

}

/1 Read in a tab-delinmted file of stock data
vect or <st ock> st ock_vector;
if (!read_stock_itens("exanpl es/stock.txt", stock_vector)) {

return 1;

}

try {
/] Establish the connection to the database server.
mysql pp: : Connection con(nysql pp: : exanpl es: : db_nane,

cndl i ne.server(), cndline.user(), cndline.pass());
/l Cear all existing rows fromstock table, as we're about to
// insert a bunch of new ones, and we want a clean slate.
nmysql pp: : Query query = con. query();
query. exec(" DELETE FROM st ock");
/1 Insert data read fromthe CSV file, allowing up to 1000
/1 characters per packet. W're using a small size in this
/1 example just to force nmultiple inserts. |In a real program
/1 you'd want to use |larger packets, for greater efficiency.
nysql pp: : Query: : MaxPacket I nsert Pol i cy<> insert_policy(1000);
query.insertfron(stock vector.begin(), stock vector.end(),
insert_policy);

/1l Retrieve and print out the new table contents.
print_stock_tabl e(query);

}

catch (const nysql pp:: BadQuery& er) {
/1 Handl e any query errors
cerr << "Query error: " << er.what() << endl;
return -1;
}
catch (const nysql pp: : BadConversi on& er) {
/1 Handl e bad conversions
cerr << "Conversion error: " << er.what() << endl <<
"\tretrieved data size: " << er.retrieved <<
", actual size: " << er.actual _size << endl;
return -1;
}
catch (const nysql pp:: BadlnsertPolicy& er) {
/1 Handl e bad conversions
cerr << "InsertPolicy error: " << er.what() << endl;
return -1;
}
catch (const nysql pp:: Exception& er) {
/] Catch-all for any other MySQ.++ exceptions
cerr << "Error: " << er.what() << endl;

49

MySQL ++ v3.2.5 User Manual

return -1;

}

return O;

Most of the complexity in this example goes to just reading in the data from afile; we have to get our test data from
somewhere. There are only two key lines of code: create an insertion policy object, and passit along with an STL
container full of row datato Query: :insertfron().

This policy object isthe main thing that differentiatesi nsert f r om() from the two-iterator formof i nsert () . It
controlshow i nsert fron() buildsthe query strings, primarily controlling how large each query gets before

i nsertfrom) executesit and starts building a new query. We designed it to use policy objects because thereis no
single “right” choice for the decisions it makes.

MySQL ++ ships with three different insertion policy classes, which should cover most situations.

MaxPacket | nsert Pol i cy, demonstrated in the example above, does things the most obvious way: when you
create it, you pass the maximum packet size, which it usesto prevent queries from going over the size limit. It builds
up aquery string row by row, checking each time through the loop whether adding another insert statement to the
query string would make the packet size go over the limit. When that happens, or it getsto the end of the iteration
range, it executesthe query and starts over if it's not yet at the end. Thisisrobust, but it has adownside: it has to build
each insert query in advance of knowing that it can append it to the larger query. Any time an insert query would push
the packet over the limit, it has to throw it away, causing the library to do more work than is strictly necessary.

Imagine you' ve done some benchmarking and have found that the point of diminishing returnsis at about 20 KB per
query in your environment; beyond that point, the per-query overhead ceases to be an issue. Let’s also say you know
for afact that your largest row will always be lessthan 1 MB — less 20 KB — when expressed as a SQL insert
statement. In that case, you can use the more efficient Si zeThr eshol dI nsert Pol i cy. It differsfrom
MaxPacket | nsert Pol i cy inthatitalowsi nsertfrom() toinsert rowsblindly into the query string until the
built query exceeds the threshold, 20 KB in this example. Then it ships the packet off, and if successful, starts a new
guery. Thus, each query (except possibly the last) will be at least 20 KB, exceeding that only by as much asonerow’s
worth of data, minus one byte. Thisis quite appropriate behavior when your rows are relatively small, asistypical for
tables not containing BLOB data. It ismoreefficient than MaxPacket | nsert Pol i cy becauseit never hasto throw
away any SQL fragments.

The simplest policy object typeis RowCount | nsert Pol i cy. Thisletsyou simply say how many rows at atime
to insert into the database. This works well when you have a good handle on how big each row will be, so you can
calculate in advance how many rows you can insert at once without exceeding some given limit. Say you know your
rows can't be any bigger than about 1 KB. If we stick with that 20 KB target, passing

RowCount | nsert Pol i cy<>(20) for the policy object would ensure we never exceed the size threshold. Or, say
that maximum size value above is still true, but we also know the average row sizeis only 200 bytes. You could pass
RowCount I nsert Pol i cy<>(100) for the policy, knowing that the average packet size will be around 20 KB,
and the worst case packet size 100 KB, still nowhere near the default 1 MB packet size limit. The code for this policy
isvery simple, so it makes your program alittle smaller than if you used either of the above policies. Obviously it'sa
bad choice if you aren’t able to predict the size of your rows accurately.

If one of the provided insert policy classes doesn't suit your needs, you can easily create a custom one. Just study the
implementationinl i b/ i nsertpolicy. *.

Interaction with Transactions

These policy classes are al templates, taking a parameter that defaults to Transaction. This means that, by defaullt,
i nsertfrom) wrapsthe entire operationin a SQL transaction, so that if any of the insertions fail, the database

50

MySQL ++ v3.2.5 User Manual

server rollsthem all back. This prevents an error in the middle of the operation from leaving just part of the container’'s
datainserted in the database, which you usually don’t want any more than you'd want half asingle row to be inserted.

There are

good reasons why you might not want this. Perhaps the best reason isif thei nsert f rom() call istobe
part of alarger transaction. MySQL doesn’t support nested transactions, sothei nsert f r on{) call will fail if it tries
to start one of itsown. You can passNoTr ansact i ons for theinsert policy’stemplate parameter to make it suppress

the transaction code.

5.5. Modifying data

It almost as easy to modify datawith SSQLS asto add it. Thisisexanpl es/ ssql s3. cpp:

#i ncl ude
#i ncl ude
#i ncl ude

#i ncl ude
usi ng na
i nt

mai n(i nt

{

"cmdl i ne. h"
"printdata.h"
"stock. h"

<i ost reanp

nmespace std;

argc, char *argv[])

/] Get database access paraneters from command |ine

nysq
if(

}

try

| pp: : exanpl es: : ConmandLi ne cndl i ne(argc, argv);
lcmdline) {
return 1,

{

/1 Establish the connection to the database server.
mysql pp: : Connection con(nysql pp: : exanpl es: : db_nane,
cndl i ne.server(), cndline.user(), cmdline.pass());

/1 Build a query to retrieve the stock itemthat has Uni code

/1 characters encoded in UTF-8 form

nmysql pp: : Query query = con.query("select * fromstock ");

query << "where item= " << nysql pp::quote << "Nirnberger Brats";

/1 Retrieve the row, throwing an exception if it fails.
nmysql pp: : StoreQueryResult res = query.store();
if (res.empty()) {
throw nysql pp: : BadQuery("UTF-8 bratwirst itemnot found in
"table, run resetdb");

}

/1 Because there should only be one rowin the result set,

/] there's no point in storing the result in an STL contai ner.
/1 W can store the first rowdirectly into a stock structure
/| because one of an SSQLS s constructors takes a Row object.
stock row = res[0];

/]l Create a copy so that the replace query knows what the
/1 original values are.
stock orig_row = row,

/1 Change the stock object's itemto use only 7-bit ASCI|, and
/1 to deliberately be wider than normal colum w dths printed
/1 by print_stock_table().

row. i tem = "Nuerenberger Bratwurst";

51

MySQL ++ v3.2.5 User Manual

/1 Formthe query to replace the rowin the stock table.
query. update(orig_row, row);

/1 Show the query about to be executed.
cout << "Query: " << query << endl;

/1 Run the query with execute(), since UPDATE doesn't return a
/1 result set.
query. execute();

/1l Retrieve and print out the new table contents.
print_stock_tabl e(query);

}

catch (const nysql pp:: BadQuery& er) {
/1 Handl e any query errors
cerr << "Query error: " << er.what() << endl;
return -1,

}

catch (const nysql pp: : BadConversi on& er) {
// Handl e bad conversions

cerr << "Conversion error: " << er.what() << endl <<
"\tretrieved data size: " << er.retrieved <<
", actual size: " << er.actual _size << endl;
return -1;

}
catch (const nysql pp:: Exception& er) {
/] Catch-all for any other MySQ.++ exceptions

cerr << "Error: " << er.what() << endl;
return -1;

}

return O;

}

Don't forget to runr eset db after running the example.

5.6. Storing SSQLSes in Associative Containers

One of the requirements of STL's associative containers on data stored in them is that the data type hasto be less-than
comparable. That is, it hasto have an oper at or < defined. SSQL S does optionally give you this, as demonstrated
inexanpl es/ ssql s4. cpp:

#i ncl ude "cmdl i ne. h"
#i ncl ude "printdata. h"
#i ncl ude "stock. h"

#i ncl ude <i ostreanr
usi ng namespace std;

int
mai n(int argc, char *argv[])
{
/] CGet database access paraneters from comand |ine
nysql pp: : exanpl es: : ComrandLi ne cndl i ne(argc, argv);
if (crdline) {
return 1;

}

try {
/! Establish the connection to the database server.

nmysql pp: : Connecti on con(nysql pp: : exanpl es: : db_nane,

52

MySQL ++ v3.2.5 User Manual

cndl i ne.server(), cndline.user(), cmdline.pass());

/1l Retrieve all rows fromthe stock table and put themin an

/] STL set. Notice that this works just as well as storing them
/1 in a vector, which we did in ssqglsl.cpp. It works because

/1 SSQ.S objects are | ess-than conparable.

nmysql pp: : Query query = con.query("select * from stock");

set <st ock> res;

query.storein(res);

/1 Display the result set. Since it is an STL set and we set up
/1 the SSQLS to conpare based on the itemcolumm, the rows will
/1 be sorted by item
print_stock_header(res.size());
set<stock>::iterator it;
cout . precision(3);
for (it =res.begin(); it !'=res.end(); ++it) {
print_stock rowmit->itemc_str(), it->num it->weight,
it->price, it->sDate);

}

/1 Use set's find nethod to | ook up a stock itemby item nane.
/1 This also uses the SSQS conparison setup.
it = res.find(stock("Hotdog Buns"));
if (it I'=res.end()) {
cout << endl << "Currently " << it->num <<
" hotdog buns in stock." << endl;

}
el se {

cout << endl << "Sorry, no hotdog buns in stock." << endl;
}

}
catch (const nysql pp:: BadQuery& er) {
/1 Handl e any query errors
cerr << "Query error: " << er.what() << endl;
return -1;
}
catch (const nysql pp: : BadConversi on& er) {
/1 Handl e bad conversions

cerr << "Conversion error: " << er.what() << endl <<
"\tretrieved data size: " << er.retrieved <<
", actual size: " << er.actual _size << endl;
return -1;

}
catch (const nysql pp:: Exception& er) {
/] Catch-all for any other MySQ.++ exceptions

cerr << "Error: " << er.what() << endl;
return -1,

}

return O;

}

Thefind() cal works because of the way the SSQL S was declared. It's properly covered elsewhere, but suffice it
to say, the“1” inthe declaration of st ock abovetellsit that only the first field needs to be checked in comparing two
SSQL Ses. In database terms, this makesit the primary key. Therefore, when searching for a match, our exemplar only
had to have itsfirst field populated.

53

MySQL ++ v3.2.5 User Manual

5.7. Changing the Table Name

Anoather feature you might find ausefor is changing the table name My SQL ++ usesto build queriesinvol ving SSQL Ses.
By default, the database server table is assumed to have the same name as the SSQL S structure type. But if thisis
inconvenient, you can globally change the table name used in queries like this:

stock: :tabl e("My/St ockDat a");

It's aso possible to change the name of atable on a per-instance basis:

stock s;
s.instance_tabl e("Al ternateTabl e");

Thisis useful when you have an SSQL S definition that is compatible with multiple tables, so the table name to use for
each instance is different. This feature saves you from having to define a separate SSQL S for each table. It isaso
useful for mapping aclass hierarchy onto a set of table definitions. The common SSQL S definition is the “ superclass’
for agiven set of tables.

Strictly speaking, you only need to use this feature in multithreaded programs. Changing the static table name before
using each instance is safeif al changes happen within asingle thread. That said, it may still be convenient to change
the name of the table for an SSQL S instance in a single-threaded program if it gets used for many operations over an
extended span of code.

5.8. Using an SSQLS in Multiple Modules

It's convenient to define an SSQL S in a header file so you can use it in multiple modules. You run into a bit of a
problem, though, because each SSQL Sincludesafew static datamembersto hold information commonto all structures
of that type. (The table name and the list of field names.) When you #include that header in more than one module,
you get a multiply-defined symbol error at link time.

The way around thisisto define the preprocessor macro MYSQLPP_SSQLS NO STATI CSin all but one of the
modules that use the header definining the SSQL S. When this macro is defined, it suppresses the static data members
in any SSQL S defined thereafter.

Imagine we have afilemy_ssql s. h whichincludesasql _cr eat e_Nmacro cal to define an SSQLS, and that
that SSQLSisused in at least two modules. Onewe'll call f 0o. cpp, and we'll say it'sjust auser of the SSQLS; it
doesn’'t “own” it. Another of the modules, ny_ssql s. cpp usesthe SSQLS more heavily, so we've called it the
owner of the SSQLS. If there aren’t very many modules, this works nicely:

/1 File foo.cpp, which just uses the SSQS, but doesn’t "own" it:
#defi ne MYSQLPP_SSQ.S NO STATI CS
#i ncl ude "ny_ssqls. h"

/1 File nmy_ssqls.cpp, which owns the SSQS, so we just #include it directly
#i ncl ude "ny_ssqls. h"

If there are many modules that need the SSQL S, adding all those #defines can be a pain. In that case, it's easier if you
flip the above pattern on its head:

/1 File my_ssqls.h:
#i f 1 defined(EXPAND_MY_SSQLS STATI CS)
define MYSQLPP_SSQLS NO STATICS

MySQL ++ v3.2.5 User Manual

#endi f
sql _create_X(Y, Z....) /] the SSQS definition

/1 File foo.cpp, a nere user of the SSQS:
#i ncl ude "ny_ssqls. h"

/1 File nmy_ssqls.cpp, which owns the SSQS:
#def i ne EXPAND_MY_SSQLS_STATI CS
#i ncl ude "my_ssql s. h"

5.9. Harnessing SSQLS Internals

The sql_create macros define several methods for each SSQL S. These methods are mostly for use within the library,
but some of them are useful enough that you might want to harness them for your own ends. Here is some pseudocode
showing how the most useful of these methods would be defined for the stock structure used in all thessql s*. cpp
examples:

/1 Basic form

tenpl ate <class Mani p>

stock_val ue_I| i st <Mani p> val ue_list(cchar *d =", ",
Mani p m = nysql pp: : quote) const;

tenpl ate <class Mani p>
stock_field_|ist<Manip> field_|list(cchar *d = ",",
Mani p m = nysql pp: : do_not hi ng) const;

tenpl ate <cl ass Mani p>
stock_equal _I i st <Mani p> equal _|ist(cchar *d =", ",
cchar *e =" =", Manip m = nysql pp:: quote) const;

/1 Bool ean argunment form

tenpl ate <class Mani p>

stock_cus_val ue_Il i st <Mani p> val ue_list([cchar *d, [Manip m]]
bool i1, bool i2 =false, ... , bool i5 = false) const;

/1 List form

tenpl ate <cl ass Mani p>

stock_cus_val ue_I| i st <Mani p> value_list([cchar *d, [Manip m]]
stock_enumil, stock_enumi?2 = stock_ NULL, ...,
stock_enumi5 = stock NULL) const;

/1 Vector form

tenpl ate <cl ass Mani p>

stock_cus_val ue_I| i st <Mani p> value_list([cchar *d, [Manip m]]
vect or<bool > *i) const;

...Plus the obvious equivalents for field_|list() and equal _list()

Rather than try to learn what al of these methods do at once, let’s ease into the subject. Consider this code:

stock s("Dinner Rolls", 75, 0.95, 0.97, sql _date("1998-05-25"));

cout << "Value list: " << s.value_list() << endl;
cout << "Field list: " << s.field_list() << endl;
cout << "Equal list: " << s.equal _list() << endl;

That would produce something like:

55

MySQL ++ v3.2.5 User Manual

Value list: 'Dinner Rolls’, 75,0.95,0.97,'1998-05- 25’
Field list: itemnum weight, price, sdate
Equal list: item= "D nner Rolls’,num= 75 weight = 0.95, price = 0.97,sdate = '1998-05-25'

That is, a“valuelist” isalist of data member values within a particular SSQL Sinstance, a“field list” isalist of the
fields (columns) within that SSQLS, and an “equal list” isalist in the form of an SQL equals clause.

Just knowing that much, it shouldn’t surpriseyou to learn that Quer y: : i nsert () isimplemented moreor lesslike
this:

*this << "INSERT INTO " << v.table() << " (" << v.field list() <<
") VALUES (" << v.value_list() << ")";

where ‘v’ isthe SSQL S you're asking the Query object to insert into the database.

Now let’s look at a complete example, which uses one of the more complicated formsof equal _|i st (). This
example builds a query with fewer hard-coded strings than the most obvious technique requires, which makes it more
robust in the face of change. Hereisexanpl es/ ssql s5. cpp:

#i ncl ude "cndl i ne. h"
#i ncl ude "printdata. h"
#i ncl ude "stock. h"

#i ncl ude <i ostreanp
#i ncl ude <vector>

usi ng nanespace std;

int

mai n(int argc, char *argv[])

{
/] Get database access paraneters from comand |ine
mysql pp: : exanpl es: : ConmandLi ne cndl i ne(argc, argv);
if (cmdline) {

return 1;
}
try {
/] Establish the connection to the database server.
nmysql pp: : Connecti on con(nysql pp: : exanpl es: : db_nane,
cndl i ne.server(), cndline.user(), cndline.pass());
/] Get all the rows in the stock table.
nmysql pp: : Query query = con. query("select * from stock");
vect or <st ock> res;
query.storein(res);
if (res.size() > 0) {
/1 Build a select query using the data fromthe first row
/1 returned by our previous query.
query << "select * fromstock where " <<
res[0].equal _list(" and ", stock_weight, stock price);
/1 Display the finished query.
cout << "Custom query:\n" << query << endl;
}
}

catch (const nysql pp:: BadQuery& er) {
/1 Handl e any query errors
cerr << "Query error: " << er.what() << endl;

56

MySQL ++ v3.2.5 User Manual

return -1;

}
catch (const nysql pp:: BadConversion& er) {

/! Handl e bad conversions

cerr << "Conversion error: " << er.what() << endl <<
"\tretrieved data size: " << er.retrieved <<
actual size: " << er.actual _size << endl;

return -1;

}
catch (const nysql pp:: Exception& er) {
/] Catch-all for any other MySQL++ exceptions

cerr << "Error: " << er.what() << endl;
return -1,
}
return O;
}
Thisexampleusesthelistformof equal _| i st (). Theargumentsst ock_wei ght andst ock_pri ce areenum

values equal to the position of these columns within the stock table. sgl_create # generates this enum for you
automatically.

The boolean argument form of that equal _| i st () call would look likethis:

query << "select * fromstock where " <<
res[0].equal list(" and ", false, false, true, true, false);

It'salittle more verbose, as you can see. And if you want to get really complicated, use the vector form:

vect or <bool > v(5, false);

v[stock_weight] = true;

v[stock_price] = true;

query << "select * fromstock where " <<
res[0].equal list(" and ", v);

This form makes the most sense if you are building many other queries, and so can re-use that vector object.

Many of these methods accept manipulators and custom delimiters. The defaults are suitable for building SQL queries,
but if you're using these methods in a different context, you may need to override these defaults. For instance, you
could use these methods to dump data to a text file using different delimiters and quoting rules than SQL.

At this point, we've seen all the major aspects of the SSQL S feature. The final sections of this chapter look at some
of the peripheral aspects.

5.10. Having Different Field Names in C++ and SQL

There's amore advanced SSQL S creation macro, which al the others are built on top of. Currently, the only feature
it adds over what's described aboveisthat it lets you name your SSQL S fields differently from the names used by the
database server. Perhaps you want to use Hungarian notation in your C++ program without changing the SQL database
schema:

sql _create_conpl ete_5(stock, 1, 5,
nmysql pp: :sgl _char, msltem "itenl,
nysql pp: :sqgl _bigint, mnNum "nunt,
nmysql pp: : sql _doubl e, m fWight, "weight",
nysql pp: :sgl _decinal, mfPrice, "price",
nmysql pp: : sql _date, mDate, "sdate")

57

MySQL ++ v3.2.5 User Manual

Note that you don’t have to use this mechanism if the only differencein your SQL and C++ field namesiscase. SSQLS
field name lookups are case-insensitive as of MySQL ++ 3.1. You can see this in the examples. some parts of the code
deliberately refer tothe st ock. sdat e sampletablefield asst ock. sDat e to exercise this feature.

5.11. Expanding SSQLS Macros

If you ever need to see the code that a given SSQL S declaration expands out to, usethe utility doc/ ssql s-pretty,
like so:

doc/ssql s-pretty < nyprog.cpp | |ess

This Perl script locates the first SSQL S declaration in that file, then uses the C++ preprocessor to expand that macro.
(The script assumes that your system’s preprocessor is called cpp, and that its command line interface follows Unix
conventions.)

If you run it from the top MySQL ++ directory, as shown above, it will use the header filesin the distribution’s| i b
subdirectory. Otherwise, it assumesthe MySQL ++ headersarein their default location, / usr /i ncl ude/ mysql ++.
If you want to use headers in some other location, you'll need to change the directory namein the -1 flag at the top of
the script.

5.12. Customizing the SSQLS Mechanism

The SSQLS header ssql s. h isautomatically generated by the Perl script ssql s. pl . Althoughit is possible to
change this script to get additional functionality, most of the timeit’s better to just derive a custom class from the
generated SSQL S to add functionality to it. (See the next section to see how to do this correctly.)

That said, ssql s. pl does have afew configurables you might want to tweak.

The first configurable value sets the maximum number of data members allowed in an SSQLS. This is discussed
elsewhere, in Section 8.2, “ The Maximum Number of Fields Allowed”. Beware the warnings there about increasing
this value too much.

The second configurableis the default floating point precision used for comparison. As described above (Section 5.2,
“SSQL S Comparison and Initialization”) SSQL Ses can be compared for equality. The only placethisistricky iswith
floating-point numbers, since rounding errors can make two “equal” values compare as distinct. This property of
floating-point numbers means we almost never want to do exact comparison. MySQL ++ |ets you specify the precision
you want it to use. If the difference between two values is under a given threshold, MySQL ++ considers the values
equal. The default threshold is 0.00001. This threshold works well for “human” scale values, but because of the way
floating-point numbers work, it can be wildly inappropriate for very large or very small quantities like those used in
scientific applications.

There are actually two ways to change this threshold. If you need a different system-wide default, edit ssql s. pl
and changethe $f p_mi n_del t a variable at the top of thefile, then rebuild ssql s. h as described below. If you
need different thresholds per file or per project, it's better to set the C macro MYSQLPP_FP_M N_DEL TA instead.
The Perl variable sets this macro’s default; if you give a different value before #including ssql s. h, it will use that
instead.

Torebuildssql s. h after changing ssql s. pl , you'll need a Perl interpreter. The only modern Unixy system I'm
aware of wherePerl isn't installed by defaultis Cygwin, andit’'sjust aset up. exe choice away there. You'll probably
only have to download and install a Perl interpreter if you're on Windows and don’t want to use Cygwin.

If you're on a system that uses autoconf, building MySQL ++ automatically updatesssql s. h any timessql s. pl
changes. Otherwise, you'll need to run the Perl interpreter by hand:

58

MySQL ++ v3.2.5 User Manual

c:\nmysql++> cd lib
c:\lib> perl ssqls.pl

5.13. Deriving from an SSQLS

Specialized SQL Structures make good base classes. They're simple, and have few requirements on any class that
derives from them. There are some gotchas to look out for, however.

Consider this:

sql _create_2(
Base, 1, 2,
nysql pp: : sql _varchar, a,
nysqgl pp::sql_int, b

)

class Derived : public Base
{
public:
/'l constructor
Derived(nysql pp::sql _varchar _a, nysqglpp::sql_int _b) :
Base(_a, _b)
{
}

// functionality added to the SSQLS through inheritance
bool do_sonething_interesting(int data);

b
WEe've derived a class from an SSQL S in order to add amethod to it. Easy, right?

Sadly, too easy. The code has arather large flaw which makes our derived class unusable as an SSQLS. In C++, if a

derived class has a function of the same name as one in the base class, the base class versions of that function are all
hidden by those in the derived class. This applies to constructors, too: an SSQL S defines several constructors, but our

derived class defines only one, causing that one to hide al of the onesin the base class. Many of the MySQL ++

mechanisms that use SSQL Ses rely on having these contructors, so our Der i ved aboveis-not-aBase, and soitisn't

an SSQLS. If you try touse Der i ved asan SSQLS, you'll get compiler errors wherever MySQL ++ tries to access
one of these other constructors.

There's another minor flaw, as well. Our lone constructor above takes its parameters by value, but the corresponding
constructor in the SSQL S takes them by const reference. Our derived class has technically hidden afourth base class

constructor this way, but this particular case is more a matter of efficiency than correctness. Code that needs the

full-creation constructor will still work with our code above, but passing stringish typeslikesqgl _var char by value

instead of by const reference isinefficient.

Thisisthe corrected version of the above code:

sql _create_2(
Base, 1, 2,
nysql pp: : sql _varchar, a,
nysqgl pp::sql _int, b

)i

class Derived : public Base

{
public:

59

MySQL ++ v3.2.5 User Manual

!/ default constructor
Derived() :
Base()

{
}

/1 for-conparison constructor?®®
Derived(const mysql pp::sqgl _varchar& _a) :
Base(_a)

{
}

/1 full creation constructor

Derived(const mysql pp::sqgl _varchar& _a, const nysqlpp::sqgl_int& _b) :
Base(_a, _b)

{

}

/1 popul ation constructor?®
Derived(const mnysql pp: : Row& row) :
Base(row)

{

}

[/ functionality added to the SSQS through inheritance
bool do_sonething_interesting(int data);

|
Now Der i ved is-an SSQLS.

You might wonder if you can use protected inheritance above to redefine the SSQLS's public interface. For instance,
OO purists might object to the public data membersin an SSQLS. You could encapsul ate these public data members
in the derived class by using protected inheritance, exposing access to the base class's data members with public
accessor methods. The problem with thisisthat each SSQL S has dozens of public member functions. These are needed
by MySQL ++ internals, so unless you re-exposed all of them as we did with the constructors above, you'd again have
an SSQL S derivative that is-not-an SSQLS. Simply put, only public inheritance is practical with SSQL Ses.

5.14. SSQLS and BLOB Columns

It takes special careto use SSQL S with BLOB columns. It's safest to declare the SSQL Sfield as of type

nmysql pp: : sql _bl ob. Thisiscurrently atypedef aliasfor String, which isthe form the dataisin just before the
SSQL S mechanism populates the structure. Thus, when the dataiis copied from the internal MySQL ++ data structures
into your SSQLS, you get adirect copy of the St r i ng object’s contents, without interference.

Because C++ strings handle binary datajust fine, you might think you canusest d: : st ri ng instead of sql _bl ob,
but the current design of St ri ng convertstost d: : stri ng viaaC string. Asaresult, the BLOB datais truncated
at the first embedded null character during population of the SSQLS. There’s no way to fix that without completely
redesigning either St r i ng or the SSQL S mechanism.

Thesqgl _bl ob typedef may be changed to alias a different typein the future, so using it instead of St ri ng ensures
that your codetrackstheselibrary changes automatically. Besides, St r i ng isonly intended to be aninternal mechanism
within MySQL ++. The only reason the layering is so thin here is because it’s the only way to prevent BLOB datafrom
being corrupted while avoiding that looming redesign effort.

Yneeded by mechanisms like Query: : st or ei n() ; anything using an STL container, which usually require default ctors for contained data
structures

Stakes the COMPCOUNT subset of the SSQL S's data members, used for making comparison exemplars, used with Query: : updat e() and sim-
ilar mechanisms; see Section 5.1, “sgl_create” for more on COMPCOUNT

16used in taking raw row data from a SQL result set and converting it to SSQLS form

60

MySQL ++ v3.2.5 User Manual

You can seethistechniquein actioninthecgi _j peg example:

#i ncl ude "crdl i ne. h"
#i ncl ude "i mages. h"

#define CRLF "\r\n"
#defi ne CRLF2 "\r\n\r\n"
int

mai n(int argc, char* argv[])

{

/1 CGet database access paraneters fromcommand line if present, else
/1 use hard-coded values for true C3 case.
nmysql pp: : exanpl es: : ConmandLi ne cndl i ne(argc, argv, "root",
"nunyabi nness");
if (crdline) {
return 1;

}

/1 Parse CE query string environnent variable to get inage ID
unsigned int ing_id = 0;
char* cgi _query = getenv("QUERY_STRING');
if (cgi_query) {
if ((strlen(cgi_query) < 4) || nmencnp(cgi_query, "id=", 3)) {
std::cout << "Content-type: text/plain" << std::endl << std::endl;
std::cout << "ERROR Bad query string" << std::endl;

return 1;
}
el se {
img_id = atoi(cgi_query + 3);
}
}
el se {
std::cerr << "Put this programinto a web server's cgi-bin "
"directory, then" << std::endl;
std::cerr << "invoke it with a URL like this:" << std::endl;
std::cerr << std::endl;
std::cerr << " http://server.name. conm cgi - bi n/cgi _j peg?i d=2" <<
std::endl;
std::cerr << std::endl;
std::cerr << "This will retrieve the inage with ID 2." << std::endl;
std::cerr << std::endl;
std::cerr << "You will probably have to change sone of the #defines "
"at the top of" << std::endl;
std::cerr << "exanples/cgi _jpeg.cpp to allow the |ookup to work." <<
std::endl;
return 1;
}

/1l Retrieve image fromDB by ID
try {
mysql pp: : Connecti on con(nysql pp: : exanpl es: : db_nane,
cndl i ne.server(), cndline.user(), cmdline.pass());
mysql pp: : Query query = con. query();
query << "SELECT * FROM inmages WHERE id = " << ing_id;
mysql pp: : StoreQueryResult res = query.store();
if (res & res.numrows()) {
images ing = res[0];
if (inmg.data.is_null) {
std::cout << "Content-type: text/plain" << CRLF2;
std::cout << "No image content!" << CRLF;

}

el se {

61

MySQL ++ v3.2.5 User Manual

std::cout << "X-lmage-ld: " << ing_id << CRLF; // for debuggi ng
std::cout << "Content-type: image/jpeg" << CRLF;
std::cout << "Content-length: " <<
i ng. data. data.length() << CRLFZ;
std::cout << ing.data;
}
}

el se {
std::cout << "Content-type: text/plain" << CRLF2;
std::cout << "ERROR. No image with ID" << ing_id << CRLF;
}
}
catch (const nysql pp: : BadQuery& er) {
/1 Handl e any query errors
std::cout << "Content-type: text/plain" << CRLF2;
std::cout << "QUERY ERROR " << er.what() << CRLF;
return 1;

}

catch (const nysql pp:: Exception& er) {
/] Catch-all for any other MySQ.++ exceptions
std::cout << "Content-type: text/plain" << CRLF2;
std::cout << "GENERAL ERROR " << er.what() << CRLF;
return 1;

}

return O;

}
5.15. SSQLS and Visual C++ 2003

SSQL Sworks on all platforms supported by MySQL ++ except for Visual C++ 2003. (Because the rest of MySQL ++
works just fine with Visual C++ 2003, we haven't removed this platform from the supported list entirely.)

If you do need SSQL S and are currently on Visual C++ 2003, you have these options:

1. The simplest option is to upgrade to a newer version of Visual C++. The compiler limitations that break SSQL S
areall fixed inVisual C++ 2005 and newer. Visual C++ Expressisfree and is apparently here to stay; coupled with
the free wxWidgets library, it lacks little compared to Visual C++ Professional. A bonus of using wxWidgetsis that
it's cross-platform and better-supported than MFC.

2. If you can’t upgrade your compiler, you may be able to downgrade to MySQL ++ v2.x. The SSQL Sfeaturein these
older versions worked with Visual C++ 2003, but didn’t let you use agiven SSQL S in more than one modulein a
program. If you can live with that limitation and have a Perl interpreter on your system, you can re-generate
i b/ ssql s. htoremovethe multiple-module SSQL S support. To do this, you run the command per| ssgls.pl -v
from within MySQL++'s| i b subdirectory before you build and install the library.

3. There'saplan to replace the current SSQL S mechanism with an entirely new code base. Although thisis being
done primarily to get new features that are too difficult to add within the current design, it also meanswe’ll have
the chance to test step-by-step along the way that we don’t reintroduce code that Visual C++ 2003 doesn'’t support.
This may happen without you doing anything, but if there's someone on the team who cares about this, that will
naturally increase the chances that it does happen.

62

MySQL ++ v3.2.5 User Manual

6. Using Unicode with MySQL++
6.1. A Short History of Unicode

...with a focus on relevance to MySQL++

In the old days, computer operating systems only dealt with 8-bit character sets. That only allows for 256 possible
characters, but the modern Western languages have more characters combined than that alone. Add in all the other
languages of the world plus the various symbols people use in writing, and you have areal mess!

Since no standards body held sway over things like international character encoding in the early days of computing,
many different character setswereinvented. These character setsweren’t even standardized between operating systems,
so heaven help you if you needed to move localized Greek text on a DOS box to a Russian Macintosh! The only way
we got any international communication done at all was to build standards on top of the common 7-bit ASCII subset.
Either people used approximationslikeaplain“c” instead of the French“¢”, or they invented thingslike HTML entities
(“ç” in this case) to encode these additional characters using only 7-hit ASCII.

Unicode solvesthis problem. It encodes every character used for writing in the world, using up to 4 bytes per character.
Before emoji became popular, the subset covering the most economically valuable casesfit into the lower 65536 code
points, so you could encode most texts using only two bytes per character. Many nominally Unicode-aware programs
only support this subset, called the Basic Multilingual Plane, or BMP.

Unfortunately, Unicode was invented about two decades too late for Unix and C. Those decades of legacy created an
immense inertia preventing a widespread move away from 8-bit characters. MySQL and C++ come out of these older
traditions, and so they share the same practical limitations. MySQL ++ doesn’t have any codein it for Unicode
conversions, and it likely never will; it just passes data along unchanged from the underlying MySQL C API, so you
till need to be aware of these underlying issues.

During the devel opment of the Plan 9 operating system (a kind of successor to Unix) Ken Thompson invented the
UTF-8 encoding. UTF-8 isasuperset of 7-bit ASCII and is compatible with C strings, since it doesn’'t use 0 bytes
anywhere as multi-byte Unicode encodings do. As aresult, many programs that deal in text will cope with UTF-8 data
even though they have no explicit support for UTF-8. Follow thelast link above to see how the design of UTF-8 alows
this.

6.2. Unicode in MySQL

Since MySQL comes out of the Unix world, and it predates the widespread use of UTF-8 in Unix, the early versinos
of MySQL had no explicit support for Unicode. From the start, you could store raw UTF-8 strings, but it wouldn’t
know how to do things like sort a column of UTF-8 strings.

MySQL 4.1 added the first explicit support for Unicode. This version of MySQL supported only the BMP, meaning
that if you told it to expect stringsto bein UTF-8, it could only use up to 3 bytes per character.

MySQL 5.5 wasthefirst release to completely support Unicode. Because the BMP-only Unicode support had beenin
the wild for about 6 years by that point, and changing to the new character set requires atable rebuild, the new one
was called “utf8mb4” rather than change the longstanding meaning of “utf8” in MySQL. Thisrelease also added a
new alias for the old UTF-8 subset character set, “utf8mb3.”

Finally, in MySQL 8.0, “utf8mb4” became the default character set. For backwards compatibility, “utf8” remains an
aliasfor “utf8mb3.”

Asof MySQL++ 3.2.4, we've defined the MYSQLPP_UTF8 _CS and MYSQLPP_UTF8_ COL macros which expand
to “utf8mb4” and “utf8mb4_general_ci” when you build MySQL ++ against MySQL 5.5 and newer and to “ utf8” and

63

MySQL ++ v3.2.5 User Manual

“utf8_general_ci” otherwise. We use these macrosin our r eset db example; you're welcome to use them in your
code aswell.

6.3. Unicode on Unixy Systems

Linux and Unix have system-wide UTF-8 support these days. If your operating system is of 2001 or newer vintage, it
probably has such support.

On such asystem, theterminal 1/0 code understands UTF-8 encoded data, so your program doesn’t require any special
codeto correctly display a UTF-8 string. If you aren’t sure whether your system supports UTF-8 natively, just run the
si npl el example: if thefirst item has two high-ASCI| charactersin place of the“ (1" in “Nurnberger Brats’, you
know it's not handling UTF-8.

If your Unix doesn’'t support UTF-8 natively, it likely doesn’t support any form of Unicode at all, for the historical
reasons | gave above. Therefore, you will have to convert the UTF-8 datato the local 8-bit character set. The standard
Unix functioni conv() canhelphere. If your systemdoesn’'t havethei conv() facility, thereisafreeimplementation
available from the GNU Project. Another library you might check out is IBM’sICU. Thisis rather heavy-weight, so
if you just need basic conversions, i conv() should suffice.

6.4. Unicode on Windows

Each Windows APl function that takes a string actually comes in two versions. One version supports only 1-byte
“ANSI” characters (asuperset of ASCII), sothey endin'A'. Windows al so supports the 2-byte subset of Unicode called
UCS-2Y". Some call these “wide” characters, so the other set of functions end in'W'. The MessageBox () AP, for
instance, is actually amacro, not areal function. If you define the UNICODE macro when building your program, the
MessageBox() macro evaluatesto MessageBox W) ; otherwise, to MessageBoxA() .

Since MySQL uses the UTF-8 Unicode encoding and Windows uses UCS-2, you must convert data when passing text
between MySQL ++ and the Windows API. Since there's no point in trying for portability — no other OS I’ m aware
of usesUCS-2— you might aswell use platform-specific functionsto do thistrandation. Sinceversion 2.2.2, MySQL ++
ships with two Visual C++ specific examples showing how to do thisin a GUI program. (In earlier versions of
MySQL ++, we did Unicode conversion in the console mode programs, but this was unrealistic.)

How you handle Unicode data depends on whether you're using the native Windows API, or the newer .NET API.
First, the native case:

/1l Convert a Cstring in UTF-8 format to UCS-2 format.
voi d ToUCS2(LPTSTR pcQut, int nQutLen, const char* kpcln)

Mul ti Byt eToW deChar (CP_UTF8, 0, kpcln, -1, pcQut, nQutLen);
}

/1 Convert a UCS-2 string to C string in UTF-8 format.
voi d ToUTF8(char* pcQut, int nQutlLen, LPCWSTR kpcln)

W deChar ToMul ti Byt e(CP_UTF8, 0, kpcln, -1, pcQut, nCutLen, 0, 0);
}

These functions |eave out some important error checking, so see exanpl es/ vst udi o/ nf ¢/ nf c_dl g. cpp for
the complete version.

1Since Windows X P, Windows actually usesthe UTF-16 encoding, not UCS-2. Thismeansthat if you use characters beyond the 16-bit BMP range,
they get encoded as 4-byte characters. But again, since the most economically valuable subset of Unicode is the BMP if you ignore emoji, many
programs ignore this distinction and assume Unicode strings on Windows are always 2 bytes per character.

64

MySQL ++ v3.2.5 User Manual

If you're building a.NET application (such as, perhaps, because you're using Windows Forms), it’s better to use the
NET librariesfor this:

/1 Convert a Cstring in UTF-8 format to a . NET String in UCS-2 format.
String® ToUCS2(const char* utf8)

{
return gcnew String(utf8, 0, strlen(utf8), System: Text::Encoding::UTF8);

}

/1 Convert a .NET String in UCS-2 format to a C string in UTF-8 format.
System : Voi d ToUTF8(char* pcQut, int nCQutlLen, String”® sln)

{
array<Byte>" bytes = System : Text::Encodi ng:: UTF8- >CGet Byt es(sln);
nQutLen = Math:: M n(nQutLen - 1, bytes->Length);
System : Runti me: : I nteropServices:: Marshal : : Copy(bytes, O,
IntPtr(pcQut), nCutlen);
pcQut [nCQutLen] = '\0';
}

Unlike the native API versions, these examples are complete, since the .NET platform handles alot of things behind
the scenes for us. We don’t need any error-checking code for such simple routines.

All of thisassumesyou're using Windows NT or one of itsdirect descendants: Windows 2000, Windows X P, Windows
Vista, Windows 7, or any “Server” variant of Windows. Windows 95 and its descendants (98, ME, and CE) do not
support Unicode. They till have the 'W' APIs for compatibility, but they just smash the data down to 8-bit and call
the'A" version for you.

6.5. For More Information

The Unicode FAQs page has copious information on this complex topic.

When it comes to Unix and UTF-8 specific items, the UTF-8 and Unicode FAQ for Unix/Linux is aquicker way to
find basic information.

65

MySQL ++ v3.2.5 User Manual

7. Using MySQL++ in a Multithreaded Program

MySQL++ isnot “thread safe” in any meaningful sense. MySQL ++ contains very little code that actively prevents
trouble with threads, and all of it is optional. We have done somework in MySQL ++ to make thread safety achievable,
but it doesn’t come for free.

The main reason for thisisthat MySQL++ is generally 1/0O-bound, not processor-bound. That is, if your program’s
bottleneck is MySQL ++, the ultimate cause is usually the 1/O overhead of using a client-server database. Doubling the
number of threadswill just let your program get back to waiting for I/O twice asfast. Sincethreadsare evil and generally
can't help MySQL ++, the only optional thread awareness features we turn on in the shipping version of MySQL++
are those few that have no practical negative consequences. Everything else is up to you, the programmer, to evaluate
and enable as and when you need it.

WEe're going to assume that you are reading this chapter because you find yourself needing to use threads for some
other reason than to speed up MySQL access. Our purpose hereis limited to setting down the rules for avoiding
problems with MySQL ++ in a multi-threaded program. We won't go into the broader issues of thread safety outside
the scope of MySQL ++. You will need agrounding in threads in general to get the full value of this advice.

7.1. Build Issues

Before you can safely use MySQL ++ with threads, there are several things you must do to get a thread-aware build:
1. Build MySQL++ itself with thread awareness turned on.

On Linux, Cygwin and Unix (OS X, *BSD, Solaris...), passthe- - enabl e-t hr ead- check flag to the

confi gur e script. Beware, thisis only arequest to the conf i gur e script to look for thread support on your
system, not arequirement to do or die: if the script doesn't find what it needs to do threading, MySQL ++ will just
get built without thread support. See README- Uni x. t xt for more details.

On Windows, if you use the Visual C++ project files or the MinGW Makefile that comes with the MySQL ++
distribution, threading is always turned on, due to the nature of Windows.

If you build MySQL ++ in some other way, such as with Dev-Cpp (based on MinGW) you're on your own to enable
thread awareness.

2. Link your programto a thread-aware build of the MySQL C API library.

If you use abinary distribution of MySQL on Unixy systems (including Cygwin) you usually get two different
versions of the MySQL C API library, one with thread support and one without. These are typically called
i bmysgl client andl i bmysqgl client _r,thelatter being thethread-safeone. (The*_r " meansreentrant.)

If you're using the Windows binary distribution of MySQL, you should have only one version of the CAPI library,
which should be thread-aware. If you have two, you probably just have separate debug and optimized builds. See
README- Vi sual - C++. t xt or README- M nGW t xt for details.

If you build MySQL from source, you might only get one version of the MySQL C AP library, and it can have
thread awareness or not, depending on your configuration choices.

3. Enablethreading in your program’s build options.

Thisisdifferent for every platform, but it's usually the case that you don’t get thread-aware builds by default.
Depending on the platform, you might need to change compiler options, linker options, or both. See your devel opment
environment’s documentation, or study how MySQL ++ itself turns on thread-aware build options when requested.

66

MySQL ++ v3.2.5 User Manual

7.2. Connection Management

The MySQL C API underpinning MySQL ++ does not allow multiple concurrent queries on a single connection. You
can runinto this problem in asingle-threaded program, too, which iswhy we cover the details el sawhere, in Section 3.16,
“Concurrent Queries on a Connection”. It's athornier problem when using threads, though.

The simplefix isto just create a separarate Connection object for each thread that needs to make database queries.
Thisworkswell if you have a small number of threads that need to make queries, and each thread uses its connection
often enough that the server doesn’t time out waiting for queries.

If you have lots of threads or the frequency of queriesislow, the connection management overhead will be excessive.
To avoid that, we created the ConnectionPool class. It manages apool of Connect i on objectslike library books: a
thread checks one out, usesit, and then returns it to the pool as soon asit’'s done with it. This keeps the number of
active connections low. We suggest that you keep each connection’s use limited to a single variable scope for RAII
reasons, we created alittle helper called ScopedConnection to make that easy.

Connect i onPool hasthree methods that you need to override in a subclass to make it concrete: cr eat e() ,
destroy(),andmax_idl e_ti me() . Theseoverrides let the base class del egate operations it can’t successfully
doitself to its subclass. The Connect i onPool can't know how to cr eat e() the Connect i on objects, because
that depends on how your program getslogin parameters, server information, etc. Connect i onPool aso makesthe
subclassdest r oy() theConnect i on objectsit created; it could assume that they're simply allocated on the heap
with new, but it can’t be sure, so the base class del egates destruction, too. Finally, the base class can’t know which
connection idle timeout policy would make the most sense to the client, so it asksits subclass viathe

max_i dl e_ti nme() method.

Connect i onPool alsoalowsyoutooverrider el ease() , if needed. For simple uses, it'snot necessary to override
this.

In designing your Connect i onPool derivative, you might consider making it a Singleton, since there should only
be one pool in aprogram.

Another thing you might consider doing is passing a ReconnectOption object to Connect i on: : set _opti on()
inyour cr eat e() override before returning the new Connect i on pointer. Thiswill cause the underlying MySQL
CAPI to try to reconnect to the database server if a query fails because the connection was dropped by the server. This
can happen if the DB server is allowed to restart out from under your application. In many applications, thisisn't
allowed, or if it does happen, you might want your code to be able to detect it, so MySQL ++ doesn’t set this option
for you automatically.

Here is an example showing how to use connection pools with threads:

#include "cndline. h"
#i ncl ude "threads. h"

#i ncl ude <i ostreanp

usi ng nanespace std

#i f defi ned(HAVE_THREADS)

/1 Define a concrete ConnectionPool derivative. Takes connection

/] parameters as inputs to its ctor, which it uses to create the

/1 connections we're called upon to nake. Note that we al so declare
/1 a global pointer to an object of this type, which we create soon
/] after startup; this should be a conmbn usage pattern, as what use
[/ are multiple pools?

class Sinpl eConnectionPool : public nmysql pp:: Connecti onPoo

{

67

MySQL ++ v3.2.5 User Manual

public:
// The object's only constructor
Si npl eConnect i onPool (nysql pp: : exanpl es: : CommandLi ne& cl)
conns_in_use (0),
db_(nysql pp: : exanpl es: : db_nane),
server _(cl.server()),
user _(cl.user()),
password_(cl . pass())

{
}

/1 The destructor. We _nust_ call ConnectionPool::clear() here,
/1 because our superclass can't do it for us.
~Si npl eConnect i onPool ()

clear();

}

/1 Do a sinple formof in-use connection limting: wait to return
/1 a connection until there are a reasonably | ow nunber in use

/] already. Can't do this in create() because we're interested in
/1 connections actually in use, not those created. Also note that
/1 we keep our own count; ConnectionPool::size() isn't the sane!
mysql pp: : Connecti on* grab()

{

while (conns_in_use_ > 8) {
cout.put('R); cout.flush(); // indicate waiting for rel ease
sl eep(1);

}

++conns_i n_use_;
return nysqgl pp: : Connecti onPool : : grab();
}

// Oher half of in-use conn count limt
voi d rel ease(const nysql pp:: Connecti on* pc)

{
nmysql pp: : Connecti onPool : : rel ease(pc);
--conns_i n_use_;
}
pr ot ect ed:

/1 Supercl ass overrides
nmysql pp: : Connecti on* create()

/1 Create connection using the paraneters we were passed upon
// creation. This could be sonething nuch nore conplex, but for
/1 the purposes of the exanple, this suffices.
cout.put('C); cout.flush(); // indicate connection creation
return new nysgl pp:: Connecti on(

db_.enmpty() ? 0 : db_.c_str(),

server _.enpty() ? 0 : server_.c_str(),

user _.enpty() ? O : user_.c_str(),

password_.enpty() ? "" : password_.c_str());
}
voi d destroy(nysql pp:: Connecti on* cp)
{
/1 Qur superclass can't know how we created the Connection, so
/1 it delegates destruction to us, to be safe.
cout.put('D); cout.flush(); // indicate connection destruction
del ete cp;
}

68

MySQL ++ v3.2.5 User Manual

unsigned int max_idle_tine()

{
/1 Set our idle time at an exanple-friendly 3 seconds. A real
/1 pool would return sone fraction of the server's connection
/1 idle tinmeout instead.
return 3,
}
private:

/1 Nunber of connections currently in use
unsi gned int conns_in_use_;

/1 Qur connection paraneters

std::string db_, server_, user_, password_;
b
Si npl eConnecti onPool * pool ptr = 0;

static thread_return_t CALLBACK_SPECI FI ER

wor ker _t hread(thread_arg_t running_fl ag)

{
/1 Ask the underlying C APl to allocate any per-thread resources it
/1 needs, in case it hasn't happened already. |In this particular
/1 program it's alnpst guaranteed that the safe_grab() call bel ow
/1 will create a new connection the first tinme through, and thus
/1 allocate these resources inplicitly, but there's a nonzero chance
/1 that this won't happen. Anyway, this is an exanpl e program
/1 meant to show good style, so we take the high road and ensure the
/1 resources are allocated before we do any queri es.
mysql pp: : Connection::thread_start();
cout.put('S"); cout.flush(); // indicate thread started

/1 Pull data fromthe sanple table a bunch of tinmes, releasing the
/1 connection we use each tine.
for (size_t i =0; i <6; ++i) {
/1 Go get a free connection fromthe pool, or create a new one
/1 if there are no free conns yet. Uses safe_grab() to get a
/1 connection fromthe pool that will be automatically returned
/1 to the pool when this loop iteration finishes.
mysql pp: : ScopedConnecti on cp(*pool ptr, true);
if (tep) {
cerr << "Failed to get a connection fromthe pool!" << endl;
br eak;

}

/1 Pull a copy of the sanple stock table and print a dot for
/] each rowin the result set.
mysql pp: : Query query(cp->query("select * from stock"));
nmysql pp: : StoreQueryResult res = query.store();
for (size_t j =0; j <res.numrows(); ++) {
cout.put('.");

}
/1 Delay 1-4 seconds before doing it again. Because this can
/1 delay longer than the idle tineout, we'll occasionally force

/1 the creation of a new connection on the next |oop.
sleep(rand() %4 + 1);
}

/1 Tell main() that this thread is no | onger running
*reinterpret_cast<bool *>(running_flag) = fal se;
cout.put('E); cout.flush(); // indicate thread ended

69

MySQL ++ v3.2.5 User Manual

// Rel ease the per-thread resources before we exit
mysql pp: : Connection::thread_end();

return O;

}
#endi f

int

mai n(int argc, char *argv[])

{

#i f defi ned(HAVE_THREADS)
/] Get database access paraneters from comand |ine
mysql pp: : exanpl es: : ConmandLi ne cndl i ne(argc, argv);
if (cmdline) {

return 1;

}

/] Create the pool and grab a connection. W do it partly to test

/1 that the paranmeters are good before we start doing real work, and
/] partly because we need a Connection object to call thread_aware()

/1 on to check that it's okay to start doing that real work. This
// latter check should never fail on Wndows, but will fail on npst

/1 other systens unless you take positive steps to build with thread

/1 awareness turned on. See READVE-*.txt for your platform
pool ptr = new Si npl eConnecti onPool (cndl i ne) ;
try {

mysql pp: : ScopedConnecti on cp(*pool ptr, true);

if ('cp->thread_aware()) {

cerr << "MySQ.++ wasn't built with thread awareness! " <<
argv[0] << " can't run without it." << endl;
return 1;
}
}
catch (nysql pp:: Exception& e) {
cerr << "Failed to set up initial pooled connection: " <<
e.what () << endl;
return 1;
}

/1 Setup conplete. Now let's spin sone threads...
cout << endl << "Pool created and working correctly. Nowto do "
"some real work..." << endl;
srand((unsigned int)tinme(0));
bool running[] = {
true, true, true, true, true, true, true,
true, true, true, true, true, true, true };
const size_t numthreads = sizeof (running) / sizeof(running[0]);
size t i;
for (i =0; i < numthreads; ++i) {
if (int err = create_thread(worker_thread, running + i)) {
cerr << "Failed to create thread " << i <<
": error code " << err << endl;
return 1;

}

/1 Test the 'running' flags every second until we find that they're
/1 all turned off, indicating that all threads are stopped.
cout.put('W); cout.flush(); // indicate waiting for conpletion
do {

sl eep(l);

70

MySQL ++ v3.2.5 User Manual

i =0;

while (i < numthreads && !running[i]) ++i;
}
while (i < numthreads);
cout << endl << "All threads stopped!" << endl;

/1 Shut it all down...
del et e pool ptr;
cout << endl;

#el se

(void)argc; /1l warni ng squisher

cout << argv[0] << " requires that threads be enabled!" << endl;
#endi f

return O;

}

The example works with both Windows native threads and with POSIX threads.'® Because thread-enabled builds are
only the default on Windows, it’s quite possible for this program to do nothing on other platforms. See above for
instructions on enabling a thread-aware build.

If you write your code without checks for thread support like you see in the code above and link it to a build of
MySQL ++ that isn't thread-aware, it will still try to run. The threading mechanismsfall back to asingle-threaded mode
when threads aren’t available. A particular danger is that the mutex lock mechanism used to keep the pool’s internal
data consistent while multiple threads access it will just quietly become a no-op if MySQL++ is built without thread
support. We do it this way because we don’t want to make thread support a MySQL ++ prerequisite. And, although it
would be of limited value, thislets you use Connect i onPool in single-threaded programs.

You might wonder why we don’t just work around this weakness in the C API transparently in MySQL ++ instead of
suggesting design guidelines to avoid it. We'd like to do just that, but how?

If you consider just the threaded case, you could argue for the use of mutexes to protect a connection from trying to
execute two queries at once. The cure isworse than the disease: it turns a design error into a performance sap, asthe
second thread is blocked indefinitely waiting for the connection to free up. Much better to let the program get the
“Commands out of sync” error, which will guide you to this section of the manual, which tells you how to avoid the
error with a better design.

Another option would beto bury Connect i onPool functionality within MySQL ++ itself, so thelibrary could create
new connections at need. That's no good because the above example is the most complex in MySQL ++, so if it were
mandatory to use connection pools, the whole library would be that much more complex to use. The whole point of
MySQL ++ isto make using the database easier. MySQL ++ offers the connection pool mechanism for those that really
need it, but an option it must remain.

7.3. Helper Functions

Connect i on has several thread-related static methods you might care about when using MySQL ++ with threads.

Youcancall Connecti on: : t hread_awar e() todeterminewhether MySQL ++ and the underlying CAPI library
were both built to be thread-aware. | want to stress that thread awareness is not the same thing as thread safety: it's
till up to you to make your code thread-safe. If this method returns true, it just meansit’s possible to achieve
thread-safety, not that you actually haveit.

If your program’s connection-management strategy allows athread to use aConnect i on object that another thread
created, you need to know about Connect i on: : t hread_st art () . Thisfunction sets up per-thread resources
needed to make MySQL server calls. You don’t need to call it when you use the smple Connect i on-per-thread

BThefile exanpl es/ t hr eads. h contains afew macros and such to abstract away the differences between the two threading models.

71

MySQL ++ v3.2.5 User Manual

strategy, because thisfunctionisimplicitly called thefirst timeyou createaConnect i on inathread. It'snot harmful
to call thisfunction from athread that previoudly crested aConnect i on, just unnecessary. Theonly timeit’s necessary
iswhen athread can make calls to the database server on aConnect i on that another thread created and that thread
hasn't already created aConnect i on itself.

If you use Connect i onPool , youshouldcal t hr ead_st art () atthe start of each worker thread because you

probably can't reliably predict whether your gr ab() call will createanew Connect i on or will return one previously
returned to the pool from another thread. It's possible to conceive of situations where you can guarantee that each pool
user always creates afresh Connect i on thefirst timeit callsgr ab() , but thread programming is complex enough
that it's best to take the safe path and alwayscall t hr ead_st art () early in each worker thread.

Finally, there's the complementary method, Connect i on: : t hr ead_end() . Strictly speaking, it's not necessary
to call this. The per-thread memory allocated by the C API issmall, it doesn’t grow over time, and atypical thread is
going to need this memory for its entire run time. Memory debuggers aren’t smart enough to know all this, though, so
they will gripe about amemory leak unlessyou call thisfrom each thread that uses MySQL ++ before that thread exits.

Although its name suggests otherwise, Connecti on: : t hread_i d() hasnothing to do with anything in this
chapter.

7.4. Sharing MySQL++ Data Structures

WEe'rein the process of making it safer to share MySQL ++'s data structures across threads. Although things are getting
better, it'shighly doubtful that all problemswith thisare now fixed. By way of illustration, allow me explain one aspect
of this problem and how we solved it in MySQL ++ 3.0.0.

When you issue a database query that returns rows, you also get information about the columns in each row. Sincethe
column information isthe same for each row in the result set, older versions of MySQL ++ kept thisinformation in the
result set object, and each Row kept a pointer back to the result set object that created it so it could access this common
data at need. Thiswasfine aslong as each result set object outlived the Row objectsit returned. It required uncommon
usage patternsto run into troublein thisareain asingle-threaded program, but in amulti-threaded program it was easy.
For example, there'sfrequently adesire to let one connection do the queries, and other threads process the results. You
can see how avoiding lifetime problems here would require a careful locking strategy.

We got around thisin MySQL ++ v3.0 by giving these shared data structures alifetime independent of the result set
object that intitially createsit. These shared data structures stick around until the last object needing them gets destroyed.

Although thisis now a solved problem, | bring it up because there are likely other similar lifetime and sequencing
problems waiting to be discovered inside MySQL ++. If you would like to help us find these, by all means, share data
between threads willy-nilly. We welcome your crash reports on the MySQL ++ mailing list. But if you'd prefer to avoid
problems, it's better to keep all data about a query within asingle thread. Between this and the advice in prior sections,
you should be able to use threads with MySQL ++ without trouble.

72

MySQL ++ v3.2.5 User Manual

8. Configuring MySQL++

The default configuration of MySQL++ is suitable for most purposes, but there are a few things you can change to
make it meet special needs.

8.1.The Location of the MySQL Development Files

MySQL ++ isbuilt on top of the MySQL C API. (Now called Connector/C.) MySQL ++ relies on thislow-level library
for all communication with the database server. Conseguently, the build process for MySQL ++ may fail if it can’t find
the C API headers and library.
On platformsthat useAutoconf*®, theconf i gur e script can usually figure out the location of the C API development
files by itself?0 It simply tries a bunch of common installation locations until it finds one that works. If your MySQL
server was installed in a nonstandard location, you will have to tell the conf i gur e script where these files are with
some combination of the- - wi t h- mysql ,--w t h-nysql -i ncl ude,and--w th-mnmysql -1i b flags. See
README- Uni x. t xt for details.

No other platform allows this sort of auto-discovery, so the build files for these platforms simply hard-code the default
installation location for the current GA version of Connector/C at the time that version of MySQL ++ was released.
For example, the Visual C++ project files currently assume MySQL isinc: \ Program Fi | es\ MySQL\ MySQL
Server 5. 1.If you'reusing some other release of MySQL or you installed it somewhere else, you will haveto
modify the build files. How you do this, exactly, varies based on platform and what tools you have on hand. See
README- Vi sual - C++. t xt , READMVE- M nGW t xt , or READMVE- Mac- OS- X. t xt , as appropriate.

8.2. The Maximum Number of Fields Allowed

MySQL ++ offers two ways to automatically build SQL queries at run time: Template Queriesand SSQLS. There'sa
limit on the number of fields these mechanisms support, defaulting to 25 fieldsin the official MySQL++ packag&c.21
Thefiles embodying these limitsarel i b/ quer ydef . handl i b/ ssql s. h, each generated by Perl scripts of the
same name but witha. pl extension.

The default quer ydef . h issmall and its size only increases linearly with respect to maximum field count.

ssql s. hisatotaly different story. The default 25 field limit makesssql s. pl generateanssql s. h over 1 MB.
Worse, the field limit to file size relation is quadrati ¢.22 This has anumber of bad effects:

» Generating header files to support more fields than you actually require is a waste of space and bandwidth.

» Some compilers have arbitrary limits on the size of macros they’re able to parse. Exceeding these limits usualy
causes the compiler to mishehave badly, rather than fail gracefully.

» Becauseit increases the size of two key files used in building MySQL ++ itself and programs built on it, it increases
compile times significantly. Onetest | did here showed atripling of compile time from quadrupling the field limit.

» Morethan 25 fieldsin atable isagood sign of abad database design, most likely a denormalization problem.

19 inux, Solaris, the BSDs, Mac OS X command line (as opposed to the Xcode IDE), Cygwin... Basically, Unix or anything that works like it.

20 don't say “Connector/C" here because the name change generally hasn’t percolated out to Unixy systems. It's more commonly used on Windows
systems, since the separate Connector/C download lets them avoid installing a MySQL server just to get development headers and libraries.

2Lif yourre using athird-party MySQL ++ package, its maintainer may haveincreased these field counts so the resulting headers more closely approach
the size limit of the compiler the package was built with. In that case, you can look at the top of each generated header file to find out how many
fields each supports.

22The file size equation, for you amateur mathematicians out there, is Njjpes = 18.5f2 + 454.5f + 196.4, wheref isthefield count.

73

MySQL ++ v3.2.5 User Manual

The default limits try to mitigate against all of these factors while still being high enough to be useful with most DB
designs.

If you're building MySQL ++ from source on a platform that uses Autoconf, the easiest way to change these limitsis
at configuration time:
./configure --with-field-1imt=50

That causes the configuration script to pass the -f flag to the two Perl scripts named above, overriding the default of
25 fields. Obviously you need a Perl interpreter on the system for this to work, but Perl is usually installed by default
on systems MySQL ++ supports via Autoconf.

On dl other platforms, you'll have to give the -f flag to these scripts yourself. This may require installing Perl and
putting it in the command path first. Having done that, you can do something like thisto raise the limits:

cd lib
perl ssqls.pl -f 50
perl querydef.pl -f 50

Note the need to run these commands within thel i b subdirectory of the MySQL ++ sourcetree. (Thisisdone for you
automatically on systems where you are able to use the Autoconf method.)

8.3. Buried MySQL C API Headers

It's common these days on Unixy systemsto install the MySQL C APl headersinanysql directory under some
common i ncl ude directory. If the CAPI headersarein/ usr/ i ncl ude/ nysql , we say they are “buried”
underneath the system’s main include directory, / usr /i ncl ude. Since the MySQL ++ headers depend on these C
API headers, it can be useful for MySQL ++ to know this fact.

When MySQL ++ includes one of the C API headers, it normally does so in the obvious way:

#i ncl ude <nysql . h>

But, if you define the MYSQLPP_MYSQ._HEADERS BURI ED macro, it switchesto this style:

#i ncl ude <nysql/nysql. h>

Incommon situationslikethe/ usr /i ncl ude/ nysql one, thissimplifiestheinclude path optionsyou passto your
compiler.

8.4. Building MySQL++ on Systems Without Complete C99
Support

MySQL ++ usesthe C99 header st di nt . h for portablefixed-sizeinteger typedefswhere possible. The C99 extensions
aren’t yet officially part of the C++ Standard, so there are still some C++ compilers that don’t offer this header.
MySQL ++ works around the lack of this header whereit knowsit needsto, but your platform might not be recognized,
causing the build to break. If this happens, you can define the MYSQLPP_NO_STDI NT__H macro to make MySQL ++
use its best guess for suitable integer typesinstead of relyingon st di nt . h.

MySQL ++ also uses C99's long long data type where available. MySQL ++ has workarounds for platforms where this
is known not to be available, but if you get errorsin conmon. h about this type, you can define the macro
MYSQLPP_NO_LONG_LONGS to make MySQL ++ fall back to portable constructs.

74

MySQL ++ v3.2.5 User Manual

9. Using MySQL++ in Your Own Project

Up to now, this manual has only discussed MySQL ++ in conjunction with the example programs that come with the
library. This chapter covers the steps you need to take to incorporate MySQL ++ into your own projects.

Thefirst thing you haveto doisincludemysqgl ++. h ineach modulethat usesMySQL ++. In modulesthat use SSQL S
v1, you also needtoincludessql s. h.z

At this point, your project probably still won't compile, and it certainly won't link. The remaining steps are dependent
on the operating system and tools you are using. The rest of this chapter is broken up into several sections, one for
each major platform type. You can skip over the sections for platforms you don't use.

9.1.Visual C++
Using MySQL++ in an MFC Project

If you don't already have a project set up, open Visual Studio, say File | New | Project, then choose Visual C++ | MFC
| MFC Application. Go through the wizard setting up the project as you see fit.

Once you have your project open, right click on your top-level executablein the Solution Explorer, choose Properties,
and make the following changes. (Where it doesn’t specify Debug or Release, make the same change to both
configurations.)

» Appendthefollowing to C/C++ | General | Additional Include Directories: C:. \ Pr ogr am Fi | es\ MySQL\ My SQL
Connector C 6.1\include, C\nysqgl++\include

* Under C/C++ | Code Generation change “ Runtime Library” to “Multi-threaded Debug DLL (/MDd)” for the Debug
configuration. For the Release configuration, make it “Multi-threaded DLL (/MD)”".

* For both Release and Debug builds, append the following to Linker | General | Additional Library Directories:
C:\Program Fi |l es\ MySQ.\ M\ySQ. Connector C 6.1\lib, C\nysqgl++\lib

Connector/C does include debug libraries, but you will probably not need to use them.

 Under Linker | Input add thefollowing to “Additional Dependencies’ for the Debug configuration: | i brrysqgl . i b
wsock32.lib nysqlpp d.lib

...and then for the Release configuration: | i bnysql . i b wsock32.lib nysql pp.lib

This difference is because MySQL ++'s Debug DLL and import library havea _d suffix so you can have both in
the same directory without conflicts.

You may want to study exanpl es\ vst udi o\ nf c\ nf c. vcpr oj toseethisin action. Notethat some of the paths
will be different, because it can use relative paths for nysql pp. dl | .

Using MySQL++ in aWindows Forms C++/CLI Project

Before you start work on getting MySQL ++ working with your own program, you need to make some changesto the
MySQL ++ build settings. Open mysql pp. sl n, then right-click on the mysglpp target and select Properties. Make
the following changes for both the Debug and Release configurations:

23MySQL++ has many header files, but the only one that isn't intertwined with therestisssql s. h. nysql ++. h bringsin al of the othersin the
correct order. Some have tried to speed their build times by finding a subset of MySQL ++ headers to include, but mysql ++. h aready does as
much of thisasis practical. MySQL ++'s monolithic nature rules out finding a true subset of the library headers.

75

MySQL ++ v3.2.5 User Manual

» Under Configuration Properties | General, change “ Common Language Runtime support” to the /clr setting.

* Under C/C++ | Code Generation, change “ Enable C++ Exceptions’ from “ Yes (/EHsc)” to “ YesWith SEH Exceptions
(/EHa)”

If you have already built MySQL ++, be sure to perform a complete rebuild after changing these options. The compiler
will emit several C4835 warnings after making those changes, which are harmlesswhen usingthe DLL withaC++/CLI
program, but which warn of real problems when using it with unmanaged C++. Thisiswhy MySQL ++'s Windows
installer (i nst al | . ht a) offersthe option to install the CLR version into a separate directory; useit if you need both
managed and unmanaged versions installed!

For the samereason, you might give some thought about whereyouinstall nysql pp. dl | onyour end user’s machines
when distributing your program. My recommendation isto install it in the same directory asthe . exe file that uses
it, rather than installing into a system directory where it could conflict withanysql pp. dl | built with different
Settings.

Once you have MySQL ++ built with CLR support, open your program’s project. If you don't already have a project
set up, open Visual Studio, say File | New | Project, then choose Visual C++ | CLR | Windows Forms Application. Go
through the wizard setting up the project as you see fit.

The configuration processisn’t much different from that for an MFC project, so go through the list above first. Then,
make the following changes particular to .NET and C++/CLI:

» Under Configuration Properties| General change the setting from /clr:pureto /clr. (You need mixed assembly support
to alow a C++/CLI program to use aplain C++ library like MySQL ++.)

 For the Linker | Input settings, you don’t need wsock32. | i b. The merefact that you're using .NET takes care of
that dependency for you.

In the MFC instructions above, it said that you need to build it using the Multi-threaded DL L version of the C++
Runtime Library. That's not strictly true for MFC, but it's an absolute requirement for C++/CLI. See the Remarksin
the MSDN article on the /clr switch for details.

You may want to study exanpl es\ vst udi o\ wf or ns\ wf or ms. vcpr oj toseeall thisin action. Note that some
of the paths will be different, because it can use relative pathsfor nysql pp_d. dl | and nysql pp. dl I .

9.2. Unixy Platforms: Linux, *BSD, OS X, Cygwin, Solaris...

Therearelots of waysto build programs on Unixy platforms. We'll cover just the most generic way here, Makef i | es.
WE'll use avery simple example so it’s clear how to tranglate this to more sophisticated build systems such as GNU
Autotools or Bakefile.

“Hello, world!” for MySQL ++ might look something like this:
#i ncl ude <nysql ++. h>

int main()

{
nysql pp::String greeting("Hello, world!");
std::cout << greeting << std::endl;
return O;

}
HeresaMakef i | e for building that program:

CXXFLAGS : = -1/usr/include/nysql -I1/usr/local/include/nysql++
LDFLAGS := -L/usr/local/lib

76

MySQL ++ v3.2.5 User Manual

LDLIBS := -1 nysqgl pp -1 nysqglclient
EXECUTABLE : = hell o

al | : $(EXECUTABLE)

cl ean:
rm-f $(EXECUTABLE) *.o

The* FLAGS lines are where all of the assumptions about file and path names are laid out. Probably at least one of
these assumptions isn’t true for your system, and so will require changing.

Thetrickiest lineisthe LDLI BS one. MySQL ++ programs need to get built against both the MySQL and MySQL ++
libraries, because MySQL ++ is built on top of the MySQL C API Iibrary24 If you're building athreaded program, use
-l nmysqgl client _r instead of - | nysqgl cl i ent here. (See Section 7, “Using MySQL ++ in a Multithreaded
Program” for more details on building thread-aware programs.)

On some systems, the order of librariesin the LDLI BS line isimportant: these linkers collect symbols from right to
left, so the rightmost library needs to be the most generic. In this example, MySQL ++ depends on MySQL, so the
MySQL CAPI library is rightmost.

You might need to add more librariesto the LDLI BSline. - | nsl , - | z and - | mare common. If you study how
MySQL ++ itself gets built on your system, you can see what it uses, and emulate that.

You may be wondering why we have used both LDLI BS and LDFLAGS here. Some Makef i | es you have seen
collect both types of flagsin asingle variable. That can work if the variable is used in the right place in the link
command. However, thisparticular Makef i | e ismadewith GNU makein mind, and usesits standard rulesimplicitly.
Those rules are designed to use these two variables separately like this. If you were writing your own compilation
rules, you could write them in such away that you didn’t have to do this.

Beyond that, we have a pretty vanillaMakef i | e, thanksin large part to the fact that the default make rules are fine
for such a simple program.

9.3.0S X

Makefiles
The generic Makef i | e instructions above cover most of what you need to know about using Makefiles on OS X.

One thing that may trip you up on OS X isthat it uses an uncommon dynamic linkage system. The easiest way to cope
with thisisto link your executables with the compiler, rather than call | d directly.

Another tricky bit on OS X isthe concept of Universal binaries. See READMVE- Mac- OS- X. t xt for detailson building
aUniversal version of the MySQL ++ library, if you need one. By default, you only get a version tuned for the system
type you build it on.

Xcode

| have no information on how to incorporate MySQL ++ in an X code project. Send amessage to the MySQL ++ mailing
list if you can help out here.

2%The MySQL C API library is most commonly called | i brysql cl i ent on Unixy systems, though it is also known as Connector/C.

77

MySQL ++ v3.2.5 User Manual

9.4. MinGW

Makefiles

The generic Makef i | e instructions above apply to MinGW's version of GNU nake aswell. You will have some
differences due to the platform, so here’'sthe adjusted Makef i | e:

SHELL : = $(COVBPEC)

MYSQL_DIR := "c:/Program Fi | es/ M\ySQL/ M\ySQL Connector C 6.1"
CXXFLAGS := -1$(MYSQL_DIR)/include -1c:/MSQ++/incl ude
LDFLAGS := -L$(MYSQL_DIR)/lib -Lc:/MSQ++/1ib/MnGW
LDLIBS := -1 nysqgl -1nmysql pp

EXECUTABLE : = hell o
al | : $(EXECUTABLE)

cl ean:
del $(EXECUTABLE)

Note that I've used del instead of rm in the clean target. In the past, at least, MinGW rmake had some funny rules
about whether commands in target rules would get run with sh. exe or with cnd. exe. | can't currently get my
installation of MinGW to do anything but use sh. exe by default, but that may be because | have Cygwin installed,
which provides sh. exe. This explainsthe first line in the file, which overrides the default shell with cnd. exe,
purely to get consistent behavior across platforms. If you knew all your platforms would have a better shell, you'd
probably want to use that instead.

Notetheuse of forward slashesin the path to the MySQL Connector/C development files. GNU mak e usesthe backslash
as an escape character, so you'd have to double them if you're unwilling to use forward slashes.

Third-Party MinGW IDEs (Dev-C++, Code::Blocks...)

| have no information on how to do this. We've received reports on the mailing list from people that have made it
work, but no specifics on what all needs to be done. The Makef i | e discussion above should give you some hints.

9.5. Eclipse

Asfar as| cantell, the simplest way to build a C++ project with Eclipseisto set up aMakef i | e for it as described
above, then add an external run configuration for your local nake tool. Get the project building from the command
line with make, then go to Run | External Tools | Open External Tools Dialog and add a new launch configuration.

For example, on my OS X system | use/ usr / bi n/ gnumake for the program location and pick the project root with
the Browse Workspace button to set the working directory.

78

MySQL ++ v3.2.5 User Manual

10. Incompatible Library Changes

This chapter documents those library changes since the epochal 1.7.9 release that break end-user programs. You can
dig this stuff out of the ChangelLog. nd file, but the change log focuses more on explaining and justifying the facets
of each change, while this section focuses on how to migrate your code between these library versions.

Since pure additions do not break programs, those changes are still documented only in the change log.

10.1. API Changes

This section documents files, functions, methods and classes that were removed or changed in an incompatible way.
If your program uses the changed item, you will have to change something in your program to get it to compile after
upgrading to each of these versions.

v1.7.10

Removed Row: : oper at or [] () overloadsexcept the onefor size type, and added Row: : | ookup_by_name()
to provide the “subscript by string” functionality. In practical terms, this change means that ther ow] "fi el d"]
syntax no longer works; you must use the new | ookup_by_nane method instead.

Renamed the generated library on POSIX systemsfrom| i bsql pl us tol i brrysqgl pp.
v1.7.19

Removed SQLQuer y: : oper at or =() , and the same for its Quer y subclass. Use the copy constructor instead, if
you need to copy one query to another query object.

v1.7.20

Thelibrary used to have two names for many core classes: a short one, such as Row and alonger one, Mysql Row.
The library now uses the shorter names exclusively.

All symbols within MySQL ++ are in the nysgl pp namespace now if you use the new nysql ++. h header. If you
usethe older sqgl pl us. hh or mysqgl ++. hh headers, these symbols are hoist up into the global namespace. The
older headers cause the compiler to emit warnings if you use them, and they will go away someday.

v2.0.0

Connection class changes

» Connection::create_db() anddrop_db() returntrueon success. They returned falsein v1.7.x! This
change will only affect your code if you have exceptions disabled.

* Renamed Connecti on: : real _connect () toconnect (), made severa more of its parameters default, and
removed the old connect () method, asit’s now astrict subset of the new one. The only practical conseguence
isthat if your program wasusing r eal _connect (), you will have to changeit to connect () .

* Replaced Connecti on: :read_option() withnew set _opti on() mechanism. In addition to changing
the name, programs using this function will have to use the new Connect i on: : Opt i on enumerated values,
accept atrue return value as meaning success instead of 0, and use the proper argument type. Regarding the latter,
read_opti on() took aconst char* argument, but because it was just a thin wrapper over the MySQL C API
function mysgl-options, the actual value being pointed to could be any of several types. This new mechanismis
properly type-safe.

79

MySQL ++ v3.2.5 User Manual

Exception-related changes

» ClassesConnecti on, Query, Resul t, ResUse, and Row now derive from Optional Exceptions which gives
these classes acommon interface for disabling exceptions. In addition, almost all of the per-method exception-disabling
flags were removed. The preferred method for disabling exceptions on these objects is to create an instance of the
new NoExceptions class on the stack, which disables exceptions on an Opt i onal Except i ons subclassaslong
asthe NoExcept i ons instance isin scope. You can instead call di sabl e_excepti ons() on any of these
objects, but if you only want them disabled temporarily, it's easy to forget to re-enable them later.

* Inthe previous version of MySQL ++, those classes that supported optional exceptions that could create instances
of other such classes were supposed to pass this flag on to their children. That is, if you created aConnect i on
object with exceptions enabled, and then asked it to create a Quer y object, the Quer y object also had exceptions
disabled. The problem is, this didn’t happen in all cases where it should havein v1.7. Thisbugisfixed in v2.0. If
your program begins crashing due to uncaught exceptions after upgrading to v2.0, thisisthe most likely cause. The
most expeditious fix in this situation isto use the new NoExcept i ons feature to return these code paths to the
v1.7 behavior. A better fix isto rework your program to avoid or deal with the new exceptions.

 All custom MySQL ++ exceptions now derive from the new Exception interface. The practical upshot of thisisthat
the variability between the various exception types has been eliminated. For instance, to get the error string, the
BadQuer y exception had a string member called er r or plus amethod called what () . Both did the same thing,
and thewhat () method is more common, so the error string was dropped from the interface. None of the example
programs had to be changed to work with the new exceptions, so if your program handles MySQL ++ exceptions
the same way they do, your program won'’t need to change, either.

» Renamed SQLQuer yNEPar ans exception to BadPar anCount to match style of other exception names.

» Added BadOption, ConnectionFailed, DB SelectionFailed, EndOfResults, EndOfResultSets, L ockFailed, and
ObjectNotlnitialized exception types, to fix overuse of BadQuer y. Now the latter is used only for errors on query
execution. If your program has a“catch-all” block taking ast d: : except i on for each try block containing
MySQL ++ statements, you probably won’t need to change your program. Otherwise, the new exceptionswill likely
show up as program crashes due to unhandled exceptions.

Query class changes

* Inpreviousversions, Connect i on had aquerying interface similar to classQuer y’s. These methods were intended
only for Quer y’s use; no example ever used this interface directly, so no end-user code islikely to be affected by
this change.

» A morelikely problem arising from the above changeis code that testsfor query successby callingthe Connect i on
object’'ssuccess() method or by casting it to bool. Thiswill now give misleading results, because queries no
longer go through the Connect i on object. Class Quer y has the same success-testing interface, so useit instead.

* Query now derivesfrom st d: : ost r eaminstead of st d: : stri ngstream
Result/ResUse class changes
* Renamed ResUse: : nysql _result() toraw resul t () soit'sdatabase server neutral.

* Removed ResUse: : eof (), asit wrapped the deprecated and unnecessary MySQL C API function mysqgl-eof.
Seethesi npl e3 and usequer y examplesto see the proper way to test for the end of aresult set.

Row class changes

» Removed “field name” form of Row; : fi el d_I i st (). It waspointless.

80

MySQL ++ v3.2.5 User Manual

» Row subscripting works more like v1.7.9: one can subscript a Rowwith astring (e.g.r ow{ " nyfi el d"]), or with
an integer (e.g.r owf 5]). | ookup_by_ name() wasremoved. Becauser ow| 0] isambiguous (O could mean
thefirst field, or be anull pointer to const char*), thereisnow Row: : at () , which can look up any field by index.

Miscellaneous changes

» Where possible, all distributed Makefiles only build dynamic libraries. (Shared objects on most Unices, DLLson
Windows, etc.) Unless your program is licensed under the GPL or LGPL, you shouldn’t have been using the static
libraries from previous versions anyway.

» Removed the backwards-compatibility headerssql pl us. hh and nysqgl ++. hh. If you were till using these,
you will have to changeto nysql ++. h, which will put all symbolsin namespace mysqlpp.

» Can no longer use arrow operator (->) on the iteratorsinto the Fi el ds, Resul t and Row containers.

v2.2.0

Code like thiswill have to change:

query << "delete fromnytable where nyfiel d=%: nyval ue";
query. parse();

query. def["nyval ue"] = sone_val ue

query. execute();

...to something more like this:

query << "del ete from nytabl e where nyfiel d=99";
query. parse();
query. execut e(sonme_val ue);

Thefirst code snippet abuses the default template query parameter mechanism (Quer y: : def) tofill out the template
instead of using one of the overloaded forms of execut e(), st ore() oruse() taking oneor more SQLSt ri ng
parameters. The purpose of Quer y: : def isto allow for default template parameters over multiple queries. In the
first snippet above, there is only one parameter, so in order to justify the use of template queriesin the first place, it
must be changing with each query. Therefore, it isn't really a“default” parameter at all. We did not make this change
maliciously, but you can understand why we are not in any hurry to restore this “feature”.

(Incidentally, this change was made to allow better support for BLOB columns.)

v2.3.0

Connection::set_option() calsnow set the connection option immediately, instead of waiting until just
before the connnection is actually established. Code that relied on the old behavior could see unhandled exceptions,
since option setting errors are now thrown from a different part of the code. You want to wrap the actual

set _option() cal now, not Connecti on: : connect ()

Fi el dNanes andFi el dTypes arenolonger exported from thelibrary. If you are using these classes directly from
Visual C++ or MinGW, your code won't be able to dynamically link to aDLL version of the library any more. These
areinternal classes, however, so no one should be using them directly.

81

MySQL ++ v3.2.5 User Manual

v3.0.0

Class name changes

Several classes changed names in this release:

* Col Dataisnow Stri ng.

* Nul l'i sBl ankisnowNul | | sBl ank. (Notethecapital I.) Similar changesfor Nul | i sNul | andNul | i sZer o.
* ResNSel isnow Si npl eResul t.

* Result isnow St or eQueryResul t.

* ResUse isnow UseQueryResul t.

* SQStringisnow SQLTypeAdapt er.

When first building existing code against this version, you may find it helpful to define the macro

MYSQLPP_OLD CLASS NAMES in your program’s build options. Thiswill turn on some macros that set up aliases
for the new class names matching their corresponding old names. Then, when you've fixed up any other issues that
may prevent your program from building with the new MySQL ++, you can turn it back off and fix up any class name
differences.

If youwereonly using Col Dat ainaBLOB context, youshouldusesql _bl ob or oneof therelated typedefs defined
inlib/sqgl_types. hinstead, toinsulate your code from changes like these.

The SQLSt ri ng change shouldn’t affect you, asthis class was not designed to be used by end user code. But, due to
the old name and the fact that it used to derive from st d: : st ri ng, some might have been tempted to useit asan
enhanced st d: : st ri ng. Such code will undoubtedly break, but can probably be fixed by just changing it to use
std::stringinstead.

Connection class changes

The option setting mechanism has been redesigned. (Yes, again.) There used to be an enumin Connect i on witha
value for each option we understood, and an overload of Connecti on: : set _opti on() for each argument type
we understood. It was possible to pass any option valueto any set _opti on() overload, and the problem would
only be detected at run time. Now each option is represented by a class derived from the new Opt i on abstract base
class,and set _opti on() simply takesapointer to one of these objects. Seeexanpl es/ mul ti query. cpp for
the syntax. Since each Opt i on subclass takes only the parameter types it actually understands, it's now completely
type-safe at compile time.

The new option setting mechanism also hasthe virtue of being more powerful soit let usreplace several existing things
within Connect i on with new options:

* Replaced enabl e_ssl () withSsl Opt i on.

* Replaced the conpr ess parameter to the Connect i on create-and-connect constructor and
Connecti on: : connect () method with Conpr essOpt i on.

* Replaced theconnect _t i nmeout parameter with Connect Ti meout Opti on.

» Defined Opt i on subclasses for each of the flags you would previously set usingthecl i ent _f | ag parameter.
There are about adozen of these, so instead of listing them, look inl i b/ opt i ons. h for something with asimilar
name.

82

MySQL ++ v3.2.5 User Manual

Collapsed Connect i on’shost , port, and socket _name parameters down into a new combined ser ver
parameter which is parsed to determine what kind of connection you mean. These interfaces are still compatible with
v2.3 and earlier up through the port parameter.

Moved Connecti on: : affected_rows(),info() andi nsert i d() methodstoclassQuer y, asthey relate
to the most recently-executed query.

Changed the return type of Connect i on: : pi ng() fromintto bool. If you were calling pi ng() inbool context
or using itsreturn value in bool context, you will need to reverse the sense of the test because the previous return code
used zero to mean success. Now it returns true to indicate success.

Renamed several methods:

* Useclient_version() instead of api _version() orclient_info().
e Usei pc_version() instead of host i nfo().

» Useprotocol version() insteadof proto_i nfo().

* Useserver_version() instead of server _i nfo().

* Usestatus() instead of st at ().

Also, removed cl ose() infavor of di sconnect (), which has always done the same thing.

Date and Time class changes
The sql_timestamp typedef isnow an aliasfor Dat eTi ne, not Ti ne.

There used to be implicit conversion constructors from Col Dat a (now St ri ng), st d: : st ri ng and const char*
for the Dat e, Dat eTi e, and Ti ne classes. It's still possible to do these conversions, but only explicitly. (This had
to be done to make Nul | <T> work in SSQL Ses.)

The most likely placeto run into problems as aresult of this changeisin code like this:

voi d sonme_function(const nysql pp:: DateTi ne& dt);
sone_function("2007-12-22");

The function call needs to be changed to:

sone_function(nysqgl pp:: Dat eTi ne("2007- 12-22"));
Exception changes

If an error occurs during the processing of a“use” query (as opposed to the initial execution) we throw the new
UseQuer yEr r or exception instead of BadQuery.

If you pass bad valuesto the Rowctor sothat it can’t initializeitself properly, it throwstheCbj ect Not I niti al i zed
exception instead of BadQuer y.

Together, these two changes mean that BadQuer y isnow used solely to indicate a problem executing the actual SQL
query statement.

83

MySQL ++ v3.2.5 User Manual

Field and Fields class changes
Fi el disnow area C++ class, not just atypedef for the corresponding C API class. Mgjor portability impacts are:

* It has no public data members. Where sensible, there is a public accessor function of the same name asthe
corresponding field in the C API structure.

» Themain exceptionto thisisthef | ags datamember. Thisisabitfield in the C API data structure and you had to
use MySQL -specific constants to break values out of it. MySQL++'snew Fi el d class provides a public member
function returning bool for each of these flags.

» The new class doesn’t include al of the data members from the C APl version. We |eft out those that aren’t used
within MySQL ++ or its examples, or whose function we couldn’t understand. Basicaly, if we couldn’t document
areason to useit, we left it out.

Fi el ds usedtobeast d: : vect or work-alike which worked with the C APl to access fields and return them as
though they were simply contained directly within the Fi el ds object. Now that we have areal MySQL ++ classto
hold information about each field without reference to the C API, we were able to replace the Fi el ds classwith:

typedef std::vector<Field> Fields;

If anything, this should give a pure superset of the old functionality, but it's possible it could break end user code.

Query class changes

If you were using char as an 8-bit integer in query building, there are several placesin MySQL ++ v3 whereit will now
be treated as a single-character string. MySQL++ hashad thet i ny i nt classfor many years now specifically to
provide atrue 8-bit integer without the semantic confusion surrounding the old C char type. Either useti ny_i nt,
or use the SQL type aliases sgl_tinyint and sgl_tinyint_unsigned instead.

The‘r and 'R’ template query parameter modifiers were removed. They made thelibrary do quoting and both quoting
and escaping (respectively) regardless of the data type of the parameter. There are no corresponding Quer y stream
manipulators, so for symmetery we had to decide whether to add such manipulators or remove the tquery modifiers.
There should never be areason to force quoting or escaping other than to work around aMySQL ++ bug, and it's better
to just fix the bug than work around it, so removed the tquery modifiers.

Query::store_next() andResul t::fetch_row) nolongerthrow the EndOf Resul t s and
EndOf Resul t Set s exceptions; these are not exceptional conditions! These methods simply return false when you
hit the end of the result set now.

Renamed Query: : def toQuery: : t enpl at e_def aul t s to makeits purpose clearer.

Removed Quer y: : previ ew() . The most direct replacement for this set of overloaded methodsis the paralldl set
of st r () methods, which werejust aliases before. (Chosest r () over previ ew() becauseit’s standard C++
nomenclature.) But if you're just looking to get a copy of abuilt query string and you aren’t using template queries,
you can now insert the Quer y into a stream and get the same result.

For example, alot of code in the examples that used to say things like:

cout << query.preview) << endl;

now looks like this:

cout << query << endl;

MySQL ++ v3.2.5 User Manual

Result, ResUse, and ResNSel class changes

In addition to the class name changes described above, UseQuer yResul t isnolonger St or eQuer yResul t's
base class. Thereis anew abstract class called Resul t Base containing much of what used to bein ResUse, and it
is the base of both of these concrete result set types. This should only affect your code if you were using ResUse
references to refer to Resul t objects.

Removed a bunch of duplicate methods:

* Usenum fi el ds() instead of col ums() .
* Usefi el d_nanes() instead of names() .
* Usenum rows() instead of r ows() .

e Usefield types() insteadof t ypes().

Renamed several methods for “grammar” reasons. For example, some methods returned a single object but had a
“plura” name, implying that it returned a container of objects. In cases like this, we changed the name to agree with
the return value. Some of these also fall into the duplicate method category above:

* Usefiel d(unsigned int) insteadof fi el ds(unsigned int).

e Usefield _num(const std::string&) instead of nanes(const std::string&).
e Usefield nanme(int) instead of names(int).

 Usefield type(int) insteadof t ypes(int).

Removed several “smelly” methods:

» pur ge() : wasan internal implementation detail, not something for end user code to call

e raw_resul t () : end user code shouldn’t be digging down to the C API data structures, but if you really need
something likethis, look at theimplementation of Quer y: : st or ei n() . ltsworkingswill probably be educational .

e reset _nanes() : noreason to cal this, especially now that the field name list isinitialized once at startup and
then never changed

 reset _field nanmes():justanadiasfor previous
* reset _types():sameargument asforreset nanes()
« reset _field types():justanadiasfor previous

ResUse: : fiel d_num() would unconditionally throw aBadFi el dNane exception when you asked for afield
that doesn’t exist. Now, if exceptions are disabled on the abject, it just returns -1.

Si npl eResul t 's member variables are all now private, and have read-only accessor functions of the same name.

Code like this used to work:

nmysql pp: : Row row;

nmysql pp: : Resul t::size_type i;

for (i =0; row=res[i]; ++i) {
/1 Do sonmething with row here

}

85

MySQL ++ v3.2.5 User Manual

That is, indexing past the end of a“store” result set would just return an empty row object, which tests asfalsein bool
context, so it endsthe loop. Now that St or eQuer yResul t isast d: : vect or derivative, thiseither crashes your
program or causes the standard library to throw an exception, depending on what debugging features your version of
STL has. The proper techniqueis:

nmysql pp: : Row row,
nysql pp: : StoreQueryResul t::size_type i;
for (i =0; i <res.numrows(); ++i) {
row = res[i];
/1 Do sonmething with row here

}

...or, inamore C++ish idiom:

nysql pp: : Row row;
nmysql pp: : StoreQueryResul t::const _iterator it;
for (it =res.begin(); it !=res.end(); ++it) {
row = *it;
/1 Do sonething with row here

}
Row class changes

Removed Row: : raw _data(),raw_si ze() andraw_stri ng() . These were useful with BLOB data back
when MySQL ++ didn’t handle embedded null characters very well, and when copies of Col Dat a objects were
expensive. Neither is true now, so they have no value any more. Equivalent calls are:

nmysql pp::String s = row 0] ;

s.data(); /1 raw data() equivalent
s.length(); /'l raw_size() equival ent
std::string(s.data(), s.length()); // raw_string() equival ent

Row: : operator[] (const char*) wouldunconditionally throw aBadFi el dNamne exception when you asked
for afield that doesn’t exist. Now, if exceptions are disabled on the Row object, it just returns a reference to an empty
St ri ng object. You can tell when this happens because such an object tests as false in bool context.

Specialized SQL Structure (SSQLS) changes

Renamed cust ont tossql s*. Thereisabackwards-compatibility header cust om h whichincludesssql s. h
for you, but it will go away in afuture version of MySQL ++.

SSQL Ses get populated by field name now, not by field order. In v2, it was absolutely required that your SSQL S had
itsfields declared in exactly the same order asthefieldsin the database server, and there could be no gaps. An ALTER
TABL E command would almost always necessitate redefining the corresponding SSQL S and rebuilding your program.
Some alterations actually made using SSQL S impossible. For the most part, this change just gives your program
additional flexibility in the face of future changes. However, code that was taking advantage of thislow-level fact will
break when moving to v3. Before | explain how, let’'s go over the high-level functional changesyou’ll findinv3's
SSQL S mechanism.

Because MySQL ++ no longer needs the SSQL S field order to match the SQL field order, the

sql _create_c_order_* SSQLS creation macro was dropped in v3. We were also able to drop the ordering
parametersfromsql _creat e_conpl et e_*. That in turn meansthereis no longer a difference between the way
itandsql _create_c_nanmes_* work, so the latter was also dropped. Thus, there are now only two groups of
SSQL S creation macros left: sgl _cr eat e_*, which works pretty much as it aways has, and

sql _create_conpl et e_*, which isthe same except for the lack of ordering parameters.

86

MySQL ++ v3.2.5 User Manual

In general, you should beusingsqgl _cr eat e_* for all SSQL Ses unless you need to use different names for data
membersin C++ than you usefor the corresponding columnsin SQL. Inthat case, usesqgl _creat e_conpl ete_*
instead.

Inv2, it was possible to have different SQL column names than SSQL S data member names while still using
sqgl _create_* if youonly used SSQLS for data retrieval.2° In v3, youmust usesql _create_conplete_*
for absolutely all uses of SSQL S when you want the C++ field names to differ from the SQL column names.

Thenew Nul | <T> support in SSQL Ses causesan internal compiler error inVisual C++ 2003. (V C++ 2005 and newer
have no trobule with it.) A poll on the mailing list says there aren’t many people still stuck on this version, so we just
ifdef’d out the SSQL S mechanism and all the examplesthat use it when built with vV C++ 2003. If this affects you, see
Section 5.15, “SSQL S and Visual C++ 2003” for suggestions on ways to cope.

If you are using types other than MySQL++'ssgl_* ones Bin your SSQL Ses, code that previously worked may now
see TypeLookupFai | ed exceptions. (This can be thrown even if exceptions are otherwise disabled in MySQL ++.)
Thisversion of MySQL ++ is stricter about mapping SQL to C++ type information, and vice versa. If the library can’t
find a suitable mapping from one type system to the other, it throws this exception, becauseits only other option would
be to crash or raise an assertion. Thistypically happens when building SQL queries, so you can probably handleit the
sameway asif the subsequent query excecution failed. If you're catching the generic mysql pp: : Excepti on, your
error handling code might not need to change. If you see this exception, it does mean you need to look into your use
of datatypes, though. The table that controlsthisisnmysql _type_i nf o: : t ypes, defined at the top of
lib/type_info.cpp.Everydaatypeinli b/ sql _types. hhasacorresponding record inthistable, soif you
stick to thosetypes, you'll befine. It'salso okay to use typesyour C++ compiler can convert directly to these predefined

types.

The _t abl e static member variable for each SSQL S is now private. The recommended way to access this remains
unchanged: thet abl e() static member function.

t abl e() used to return amodifiable reference to the table name. Now there are two overloads, one which returns an
unmaodifiable pointer to the table name, and the other which takes const char* so you can override the default table
name. So, the code we used to recommend for changing the SSQL S's table name:

my_ssqgl s_type::table() = "MTabl eNane";

now needs to be:

my_ssqgl s_type: :tabl e("MTabl eNanme");
Miscellaneous changes

MySQL ++ does quoting and escaping much more selectively now. Basicaly, if thelibrary can tell you're not building
a SQL query using one of the standard methods, it assumes you're outputting values for human consumption, so it
disables quoting and SQL escaping. If you need to build your own mechanism to replace this, quoting is easy to do,
and Query: : escape_string() cando SQL escaping for you.

Removed success() inConnecti on, Query and Si npl eResul t (neé ResNSel) and simply made these
classes testable in bool context to get the same information. An additional changein Connect i on isthat it used to

25InMyS¢QL++ v2, dataretreival (Query: : storein(),SSQLS(const Row& ot her), etc.) worked fine regardless of whether your SSQLS
field names matched those in the corresponding SQL table, because the SSQL S was populated by position, not by field name. Thus, if al you used
SSQL Sfor wasdataretrieval, you could define your structureswithsql _cr eat e_* inv2. Thiswas never recommended, because such an SSQLS
wouldn’t work with other features of MySQL++ like Query: : i nsert () because they depend on being able to map names from C++ to SQL
and back. You needed to use sql _creat e_c_nanes_* to make these features work in v2 in the face of a naming scheme difference between
C++and SQL.

ZThese typedefs have been available since MySQL++ v2.1.

87

MySQL ++ v3.2.5 User Manual

be considered “unsuccessful” when the connection was down. Since the sense of thistest is now whether the object is
in agood state, it only returns false when the connection attempt fails. Call Connecti on: : i s_connect ed() if
you just want to test whether the connection is up.

The debug mode build of thelibrary now hasa"_d" suffix for Visual C++, and X code. Thisletsyou have both versions
installed without conflict. The release build uses the current naming scheme. If you have an existing program building
against MySQL ++ on these platforms, you' [l need to change your build options to use the new name in debug mode.

Renamed NO_LONG_LONGS to MYSQLPP_NO LONG_LONGS to avoid arisk of collision in the global macro
namespace.

v3.0.7

Most MySQL ++ classeswith at () or operat or [] () methods now throw the new Badlndex exception when
you pass an out-of-range index. These methods variously either did not check their indices, or threw
st d: : out _of _range when passed a bad index.

| say “most” becausethereis at least one MySQL ++ class that doesn’'t follow thisrule. Fi el ds isjust atypedef for
aspecialization of st d: : vect or, and the Standard hasits own rules for index checking.

10.2. ABI Changes

This section documents those library changes that require you to rebuild your program so that it will link with the new
library. Most of the itemsin the previous section are also ABI changes, but this section is only for those items that
shouldn’t require any code changes in your program.

If you were going to rebuild your program after installing the new library anyway, you can probably ignore this section.

v1.7.18

The Quer y classes now subclassfrom st ri ngst r eaminstead of the deprecated st r st r eam

v1.7.19

Fixed several const-incorrectnessesin the Quer y classes.

v1.7.22

Removed “reset query” parameters from several Quer y class members. Thisis not an APl change, because the
parameters were given default values, and the library would ignore any value other than the default. So, any program
that tried to make them take another value wouldn’t have worked anyway.

v1.7.24

Some freestanding functions didn’t get moved into namespace mysgl pp when that namespace was created. Thisrelease
fixed that. It doesn’'t affect the API if your program’s C++ source files say using namespace mysglpp within them.

v2.0.0

Removed Connecti on: : i nfoo().(I'd cal thisan API changeif | thought there were any programs out there
actualy using this...)

88

MySQL ++ v3.2.5 User Manual

Collapsedthe Connect i on constructor taking abool (for setting the throw_exceptionsflag) and the default constructor
into a single constructor using a default for the parameter.

ClassesConnect i on and Quer y are now derived fromthe Lockabl e interface, instead of implementing their own
lock/unlock functions.

In several instances, functions that took objects by value now take them by const reference, for efficiency.
Merged SQLQuer y classs membersinto classQuery.
Merged RowTenpl at e class's membersinto class Row.

Reordered member variable declarations in some classes. The most common instance is when the private section was
declared before the public section; it is now the opposite way. This can change the object’s layout in memory, so a
program linking to the library must be rebuilt.

Simplified the date and time class hierarchy. Date used to derive from nysql _dat e, Time used to derive from
nysql _ti me, and DateTime used to derive from both of those. All three of these classes used to derive from
nysqgl _dt _base.All of thenysqgl _* classes' functionality and data has been folded into the leaf classes, and now
the only thing shared between them is their dependence on the DTbase template. Since the leaf classes' interface has
not changed and end-user code shouldn’t have been using the other classes, this shouldn’t affect the APl in any practical

way.

nysql _type_i nf o now alwaysinitializes its private nummember. Previously, thiswould go uninitialized if you
used the default constructor. Now there is no default ctor, but the ctor taking one argument (which setsnum) hasa
defaullt.

v3.0.0

Removedr eset _quer y parametersfrom Quer y member functions. None of these have been honored at least going
back to v1.7.9, so thisis not an API change. As of thisversion, Quer y now automatically detects when it can safely
reset itself after executing a query, so it’s not necessary to ask for areset except when using template queries.

Removed overloads of Query: : execut e(),store(),anduse() that takeonly aconst char*. Thisisnot an
API change because there was an equivalent call chain for this already. This change just snaps alayer of indirection.

Query: :error () isnow const and returns const char* instead of ast d: : stri ng by value.

Removed Lockabl e mechanism as it was conceptually flawed. Connect i on and Quer y consequently no longer
derive from Lockabl e. Sinceit was basically uselessin prior versions, it can't be construed as an APl change.

v3.0.1

Connection::thread_aware(),thread_start() andthread_end() arenow static methods, so a
program can call them before creating a connection. Ditto for DBDr i ver methods of the same name.

Connecti onPool : : rel ease() isnow virtual, so a subclass can overrideiit.

v3.0.2

Connecti onPool : : grab() isnow virtua; same reason as above.

Quer y can now betested in bool context, as was intended for v3.0.0. Had to change the “ safe bool” method signature
to make it happen, so technically it'san API change, but it's still used the same way.

89

MySQL ++ v3.2.5 User Manual

v3.1.0

The addition of afew new virtual methodsto Connect i onPool inadvertently changed the library ABI. | knew
adding fields changed the ABI, but erroneously assumed that the inverse of that truth — that adding methods was

always safe — was a so true. Adding normal methods is safe, but adding virtual methods breaks the ABI because it
changes the class's vtable size.

That left us with two bad choices. either we could come out with a 3.1.1 that removed these methods to restore the
prior ABI, or we could just declare thisthe “new ABI” and move on, resolving not to fall into thistrap again. We've
chosen the | atter path.

90

MySQL ++ v3.2.5 User Manual

11. Licensing

The primary copyright holders on the MySQL ++ library and its documentation are Kevin Atkinson (1998), MySQL
AB (1999 through 2001) and Educational Technology Resources, Inc. (2004 through the date of thiswriting). There
are other contributors, who also retain copyrights on their additions; see the ChangelLog. nd filein the MySQL++
distribution tarball for details.

The MySQL ++ library and its Reference Manual are released under the GNU Lesser General Public License (LGPL),
reproduced bel ow.

The MySQL ++ User Manual — excepting some exampl e code from the library reproduced within it — is offered
under alicense closaly based on the Linux Documentation Project License (LDPL) v2.0, included below. (The MySQL ++
documentationisn’t actually part of the Linux Documentation Project, so the main changes areto L DP-related language.
Also, generic language such as “author’s (or authors')” has been replaced with specific language, because the license
appliesto only this one document.)

These licenses basically state that you are free to use, distribute and modify these works, whether for personal or
commercial purposes, aslong as you grant the same rights to those you distribute the works to, whether you changed
them or not. See the licenses below for full details.

91

MySQL ++ v3.2.5 User Manual

11.1. GNU Lesser General Public License

Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyoneis permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

[Thisisthefirst released version of the Lesser GPL. It also counts as the successor of the GNU Library Public License,
version 2, hence the version number 2.1.]

Preamble

The licenses for most software are designed to take away your freedom to share and changeit. By contrast, the GNU
Genera Public Licenses are intended to guarantee your freedom to share and change free software--to make sure the
softwareisfreefor all its users.

Thislicense, the Lesser General Public License, applies to some specially designated software packages--typically
libraries--of the Free Software Foundation and other authors who decide to use it. You can useit too, but we suggest
you first think carefully about whether thislicense or the ordinary General Public Licenseis the better strategy to use
in any particular case, based on the explanations bel ow.

When we speak of free software, we are referring to freedom of use, not price. Our General Public Licenses are designed
to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish);
that you receive source code or can get it if you want it; that you can change the software and use pieces of it in new

free programs; and that you are informed that you can do these things.

To protect your rights, we need to make restrictions that forbid distributors to deny you these rights or to ask you to
surrender these rights. These restrictions trandlate to certain responsibilities for you if you distribute copies of the
library or if you modify it.

For example, if you distribute copies of the library, whether gratis or for afee, you must give the recipients all the

rights that we gave you. You must make sure that they, too, receive or can get the source code. If you link other code
with the library, you must provide complete object files to the recipients, so that they can relink them with the library
after making changesto the library and recompiling it. And you must show them these terms so they know their rights.

We protect your rights with a two-step method: (1) we copyright the library, and (2) we offer you thislicense, which
gives you legal permission to copy, distribute and/or modify the library.

To protect each distributor, we want to make it very clear that there is no warranty for the free library. Also, if the
library is modified by someone else and passed on, the recipients should know that what they have is not the origina
version, so that the original author’s reputation will not be affected by problems that might be introduced by others.

Finally, software patents pose a constant threat to the existence of any free program. We wish to make sure that a
company cannot effectively restrict the users of afree program by obtaining a restrictive license from a patent holder.
Therefore, weinsist that any patent license obtained for aversion of thelibrary must be consistent with the full freedom
of use specified in thislicense.

Most GNU software, including some libraries, is covered by the ordinary GNU General Public License. Thislicense,
the GNU Lesser Genera Public License, appliesto certain designated libraries, and is quite different from the ordinary
General Public License. We use thislicense for certain libraries in order to permit linking those librariesinto non-free
programs.

When aprogram is linked with alibrary, whether statically or using a shared library, the combination of thetwo is
legally speaking a combined work, a derivative of the original library. The ordinary General Public License therefore
permits such linking only if the entire combination fitsits criteria of freedom. The Lesser General Public License
permits more lax criteriafor linking other code with the library.

92

MySQL ++ v3.2.5 User Manual

We call thislicensethe “Lesser” General Public License because it does L ess to protect the user’s freedom than the
ordinary General Public License. It also provides other free software devel opers Less of an advantage over competing
non-free programs. These disadvantages are the reason we use the ordinary General Public License for many libraries.
However, the Lesser license provides advantages in certain special circumstances.

For example, on rare occasions, there may be a special need to encourage the widest possible use of a certain library,
so that it becomes a de-facto standard. To achieve this, non-free programs must be allowed to use the library. A more
frequent caseisthat afreelibrary doesthe samejob aswidely used non-freelibraries. In this case, thereislittleto gain
by limiting the free library to free software only, so we use the Lesser General Public License.

In other cases, permission to use a particular library in non-free programs enables a greater number of peopleto usea
large body of free software. For example, permission to use the GNU C Library in non-free programs enables many
more people to use the whole GNU operating system, as well as its variant, the GNU/Linux operating system.

Although the Lesser General Public Licenseis Less protective of the users' freedom, it does ensure that the user of a
program that is linked with the Library has the freedom and the wherewithal to run that program using a modified
version of the Library.

The precisetermsand conditionsfor copying, distribution and modification follow. Pay close attention to the difference
between a“work based on the library” and a“work that uses the library”. The former contains code derived from the
library, whereas the latter must be combined with the library in order to run.

GNU LESSER GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library or other program which contains a notice placed by the
copyright holder or other authorized party saying it may be distributed under the terms of this Lesser General Public
License (also called “this License”). Each licensee is addressed as “you”.

A “library” meansacollection of software functions and/or data prepared so asto be conveniently linked with application
programs (which use some of those functions and data) to form executables.

The*“Library”, below, refers to any such software library or work which has been distributed under these terms. A
“work based on the Library” means either the Library or any derivative work under copyright law: that isto say, a
work containing the Library or aportion of it, either verbatim or with modifications and/or translated straightforwardly
into another language. (Hereinafter, trandation isincluded without limitation in the term “modification”.)

“Source code” for awork means the preferred form of the work for making modificationsto it. For alibrary, complete
source code means all the source code for all modules it contains, plus any associated interface definition files, plus
the scripts used to control compilation and installation of the library.

Activities other than copying, distribution and modification are not covered by this License; they are outside its scope.
The act of running a program using the Library is not restricted, and output from such a program is covered only if its
contents constitute awork based on the Library (independent of the use of the Library in atool for writing it). Whether
that is true depends on what the Library does and what the program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library’s complete source code asyou receiveit, in any medium,
provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer
of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and distribute a
copy of this License along with the Library.

You may charge afee for the physical act of transferring a copy, and you may at your option offer warranty protection
in exchange for afee.

93

MySQL ++ v3.2.5 User Manual

2.You may modify your copy or copies of the Library or any portion of it, thus forming awork based on the Library,
and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet
all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices stating that you changed the files
and the date of any change.

¢) You must cause the whole of the work to be licensed at no charge to all third parties under the
terms of this License.

d) If afacility in the modified Library refersto afunction or atable of datato be supplied by an
application program that uses the facility, other than as an argument passed when the facility is
invoked, then you must make a good faith effort to ensure that, in the event an application does not
supply such function or table, the facility still operates, and performs whatever part of its purpose
remains meaningful.

(For example, afunctionin alibrary to compute square roots has a purposethat is entirely well-defined
independent of the application. Therefore, Subsection 2d requires that any application-supplied
function or table used by this function must be optional: if the application does not supply it, the
square root function must still compute square roots.)

These requirements apply to the modified work as awhole. If identifiable sections of that work are not derived from
the Library, and can be reasonably considered independent and separate works in themselves, then this License, and
itsterms, do not apply to those sections when you distribute them as separate works. But when you distribute the same
sections as part of awhole which isawork based on the Library, the distribution of the whole must be on the terms of
this License, whose permissionsfor other licensees extend to the entire whol e, and thusto each and every part regardless
of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather,
theintent isto exercise the right to control the distribution of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the Library (or with awork based on the
Library) on avolume of astorage or distribution medium does not bring the other work under the scope of thisLicense.

3. You may opt to apply the terms of the ordinary GNU General Public Licenseinstead of this Licenseto agiven copy
of the Library. To do this, you must alter all the notices that refer to this License, so that they refer to the ordinary
GNU Genera Public License, version 2, instead of to this License. (If anewer version than version 2 of the ordinary
GNU Genera Public License has appeared, then you can specify that version instead if you wish.) Do not make any
other change in these notices.

Once this change ismadein a given copy, it isirreversible for that copy, so the ordinary GNU General Public License
appliesto all subsequent copies and derivative works made from that copy.

This option is useful when you wish to copy part of the code of the Library into a program that is not alibrary.

4.You may copy and distributethe Library (or aportion or derivative of it, under Section 2) in object code or executable
form under the terms of Sections 1 and 2 above provided that you accompany it with the complete corresponding
machine-readabl e source code, which must be distributed under the terms of Sections 1 and 2 above on amedium
customarily used for software interchange.

If distribution of object code is made by offering access to copy from a designated place, then offering equivalent
access to copy the source code from the same place satisfies the requirement to distribute the source code, even though
third parties are not compelled to copy the source along with the object code.

94

MySQL ++ v3.2.5 User Manual

5. A program that contains no derivative of any portion of the Library, but is designed to work with the Library by
being compiled or linked with it, is called a“work that usesthe Library”. Such awork, inisolation, is not a derivative
work of the Library, and therefore falls outside the scope of this License.

However, linking a“work that usesthe Library” with the Library creates an executablethat isaderivative of the Library
(because it contains portions of the Library), rather than a“work that usesthe library”. The executable is therefore
covered by this License. Section 6 states terms for distribution of such executables.

When a“work that usesthe Library” uses material from a header file that is part of the Library, the object code for the
work may be a derivative work of the Library even though the source code is not. Whether thisistrueis especially
significant if the work can be linked without the Library, or if the work isitself alibrary. The threshold for thisto be
trueis not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and accessors, and small macros and small
inline functions (ten lines or less in length), then the use of the object file is unrestricted, regardless of whether it is
legally a derivative work. (Executables containing this object code plus portions of the Library will still fall under
Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code for the work under the terms
of Section 6. Any executables containing that work also fall under Section 6, whether or not they are linked directly
with the Library itself.

6. As an exception to the Sections above, you may also combine or link a“work that usesthe Library” with the Library
to produce awork containing portions of the Library, and distribute that work under terms of your choice, provided
that the terms permit modification of the work for the customer’s own use and reverse engineering for debugging such
modifications.

You must give prominent notice with each copy of the work that the Library is used in it and that the Library and its
use are covered by thisLicense. You must supply acopy of thisLicense. If thework during execution displays copyright
notices, you must include the copyright notice for the Library among them, as well as a reference directing the user to
the copy of this License. Also, you must do one of these things:

a) Accompany the work with the complete corresponding machine-readable source code for the
Library including whatever changeswere used in thework (which must be distributed under Sections
1 and 2 above); and, if the work is an executable linked with the Library, with the complete
machine-readable “work that usesthe Library”, as object code and/or source code, so that the user
can modify the Library and then relink to produce a modified executable containing the modified
Library. (It is understood that the user who changes the contents of definitionsfilesin the Library
will not necessarily be able to recompile the application to use the modified definitions.)

b) Use a suitable shared library mechanism for linking with the Library. A suitable mechanismis
one that (1) uses at run time a copy of the library already present on the user’s computer system,
rather than copying library functionsinto the executable, and (2) will operate properly with amodified
version of thelibrary, if the user installs one, aslong as the modified version isinterface-compatible
with the version that the work was made with.

c) Accompany the work with awritten offer, valid for at |east three years, to give the same user the
materials specified in Subsection 6a, above, for a charge no more than the cost of performing this
distribution.

d) If distribution of the work is made by offering access to copy from a designated place, offer
equivalent access to copy the above specified materials from the same place.

€) Verify that the user has already received a copy of these materials or that you have already sent
this user a copy.

95

MySQL ++ v3.2.5 User Manual

For an executable, the required form of the “work that uses the Library” must include any data and utility programs
needed for reproducing the executable from it. However, as a special exception, the materials to be distributed need
not include anything that isnormally distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executabl e runs, unless that component itself accompaniesthe
executable.

It may happen that this requirement contradictsthe license restrictions of other proprietary librariesthat do not normally
accompany the operating system. Such a contradiction means you cannot use both them and the Library together in
an executabl e that you distribute.

7.You may place library facilities that are awork based on the Library side-by-side in asingle library together with
other library facilities not covered by this License, and distribute such a combined library, provided that the separate
distribution of the work based on the Library and of the other library facilitiesis otherwise permitted, and provided
that you do these two things:

a) Accompany the combined library with a copy of the samework based on the Library, uncombined
with any other library facilities. This must be distributed under the terms of the Sections above.

b) Give prominent notice with the combined library of the fact that part of it isawork based on the
Library, and explaining where to find the accompanying uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except as expressly provided under this
License. Any attempt otherwise to copy, modify, sublicense, link with, or distribute the Library is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or rights, from
you under this License will not have their licenses terminated so long as such parties remain in full compliance.

9.You are not required to accept thisLicense, since you have not signed it. However, nothing €l se grantsyou permission
to modify or distribute the Library or its derivative works. These actions are prohibited by law if you do not accept
this License. Therefore, by modifying or distributing the Library (or any work based on the Library), you indicate your
acceptance of this Licenseto do so, and all its terms and conditions for copying, distributing or modifying the Library
or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the recipient automatically receives a
licensefrom the original licensor to copy, distribute, link with or modify the Library subject to these termsand conditions.
You may not impose any further restrictions on the recipients’ exercise of the rights granted herein. You are not
responsible for enforcing compliance by third parties with this License.

11. If, as aconsequence of a court judgment or allegation of patent infringement or for any other reason (not limited
to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent obligations, then asaconsequence
you may not distribute the Library at al. For example, if a patent license would not permit royalty-free redistribution
of the Library by all those who receive copies directly or indirectly through you, then the only way you could satisfy
both it and this License would be to refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the
section is intended to apply, and the section as awhole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest
validity of any such claims; this section has the sole purpose of protecting theintegrity of the free software distribution
system which isimplemented by public license practices. Many people have made generous contributions to the wide
range of software distributed through that system in reliance on consistent application of that system; it isup to the
author/donor to decide if he or she iswilling to distribute software through any other system and a licensee cannot
impose that choice.

96

MySQL ++ v3.2.5 User Manual

This section isintended to make thoroughly clear what is believed to be a consequence of the rest of this License.

12. If the distribution and/or use of the Library isrestricted in certain countries either by patents or by copyrighted
interfaces, the original copyright holder who places the Library under this License may add an explicit geographical
distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if written in the body of this License.

13. The Free Software Foundation may publish revised and/or new versions of the Lesser General Public Licensefrom
time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new
problems or concerns.

Each version is given a distinguishing version number. If the Library specifies aversion number of this License which
appliesto it and “any later version”, you have the option of following the terms and conditions either of that version
or of any later version published by the Free Software Foundation. If the Library does not specify alicense version
number, you may choose any version ever published by the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programswhose distribution conditions areincompatible
with these, writeto the author to ask for permission. For software which is copyrighted by the Free Software Foundation,
write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the
two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse
of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY ISLICENSED FREE OF CHARGE, THERE ISNO WARRANTY FOR THE
LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED
IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY “ASIS’
WITHOUT WARRANTY OFANY KIND, EITHER EXPRESSED ORIMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
THEENTIRERISK ASTO THE QUALITY AND PERFORMANCE OF THE LIBRARY ISWITHYOU. SHOULD
THE LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR
OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW ORAGREED TO IN WRITING WILL ANY
COPYRIGHT HOLDER, ORANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE
LIBRARY ASPERMITTED ABOVE, BE LIABLE TOYOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGESARISING OUT OF THE USE OR INABILITY TO
USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED
INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY
TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMSAND CONDITIONS

How to Apply These Terms to Your New Libraries

If you develop anew library, and you want it to be of the greatest possible use to the public, we recommend making
it free software that everyone can redistribute and change. You can do so by permitting redistribution under these terms
(or, aternatively, under the terms of the ordinary General Public License).

To apply these terms, attach the following notices to the library. It is safest to attach them to the start of each source
file to most effectively convey the exclusion of warranty; and each file should have at least the “ copyright” line and a
pointer to where the full notice is found.

<onelineto give thelibrary’s name and a brief idea of what it does.>

97

MySQL ++ v3.2.5 User Manual

Copyright © <year> <name of author>

Thislibrary is free software; you can redistribute it and/or modify it under the terms of the GNU
Lesser General Public License as published by the Free Software Foundation; either version 2.1 of
the License, or (at your option) any later version.

Thislibrary is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with thislibrary;
if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work asaprogrammer) or your school, if any, to sign a“ copyright disclaimer”
for the library, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the library “Frob' (alibrary for tweaking
knobs) written by James Random Hacker.

<signature of Ty Coon>, 1 April 1990
Ty Coon, President of Vice

That's all thereisto it!

98

MySQL ++ v3.2.5 User Manual

11.2. MySQL++ User Manual License
|. COPYRIGHT

The copyright to the MySQL ++ User Manual is owned by its authors.

[I. LICENSE

The MySQL ++ User Manua may be reproduced and distributed in whole or in part, in any medium physical or
electronic, provided that this license notice is displayed in the reproduction. Commercial redistribution is permitted
and encouraged. Thirty days advance notice viaemail to the authors of redistribution is appreciated, to give the authors
time to provide updated documents.

A. REQUIREMENTS OF MODIFIED WORKS

All modified documents, including tranglations, anthologies, and partial documents, must meet the following
requirements:

1. The modified version must be labeled as such.

2. The person making the modifications must be identified.

3. Acknowledgement of the original author must be retained.

4. Thelocation of the original unmodified document be identified.

5. Theorigina authors names may not be used to assert or imply endorsement of the resulting document without the
original authors permission.

In addition it is requested that:
1. The modifications (including deletions) be noted.

2. The authors be notified by email of the modification in advance of redistribution, if an email addressis provided
in the document.

Mere aggregation of the MySQL ++ User Manual with other documents or programs on the same media shall not cause
thislicense to apply to those other works.

All trangdlations, derivative documents, or modified documents that incorporate the MySQL ++ User Manual may not
have more restrictive license terms than these, except that you may require distributors to make the resulting document
available in source format.

99

	MySQL++ v3.2.5 User Manual
	Table of Contents
	1. Introduction
	1.1. A Brief History of MySQL++
	1.2. If You Have Questions...

	2. Overview
	2.1. The Connection Object
	2.2. The Query Object
	2.3. Result Sets
	Queries That Do Not Return Data
	Queries That Return Data: MySQL++ Data Structures
	Queries That Return Data: Specialized SQL Structures

	2.4. Exceptions

	3. Tutorial
	3.1. Running the Examples
	3.2. A Simple Example
	3.3. A More Complicated Example
	3.4. Exceptions
	3.5. Quoting and Escaping
	3.6. C++ vs. SQL Data Types
	3.7. Handling SQL Nulls
	SQL NULL is a type modifier
	SQL NULL is a unique value

	3.8. MySQL++’s Special String Types
	SQLTypeAdapter
	String
	Reference Counting

	3.9. Dealing with Binary Data
	Loading a binary file into a BLOB column
	Serving images from BLOB column via CGI

	3.10. Using Transactions
	3.11. Which Query Type to Use?
	3.12. Conditional Result Row Handling
	3.13. Executing Code for Each Row In a Result Set
	3.14. Connection Options
	3.15. Dealing with Connection Timeouts
	3.16. Concurrent Queries on a Connection
	3.17. Getting Field Meta-Information

	4. Template Queries
	4.1. Setting up Template Queries
	4.2. Setting the Parameters at Execution Time
	4.3. Default Parameters
	4.4. Error Handling

	5. Specialized SQL Structures
	5.1. sql_create
	5.2. SSQLS Comparison and Initialization
	5.3. Retrieving data
	5.4. Adding data
	Inserting a Single Row
	Inserting Many Rows
	Working Around MySQL’s Packet Size Limit
	Interaction with Transactions

	5.5. Modifying data
	5.6. Storing SSQLSes in Associative Containers
	5.7. Changing the Table Name
	5.8. Using an SSQLS in Multiple Modules
	5.9. Harnessing SSQLS Internals
	5.10. Having Different Field Names in C++ and SQL
	5.11. Expanding SSQLS Macros
	5.12. Customizing the SSQLS Mechanism
	5.13. Deriving from an SSQLS
	5.14. SSQLS and BLOB Columns
	5.15. SSQLS and Visual C++ 2003

	6. Using Unicode with MySQL++
	6.1. A Short History of Unicode
	6.2. Unicode in MySQL
	6.3. Unicode on Unixy Systems
	6.4. Unicode on Windows
	6.5. For More Information

	7. Using MySQL++ in a Multithreaded Program
	7.1. Build Issues
	7.2. Connection Management
	7.3. Helper Functions
	7.4. Sharing MySQL++ Data Structures

	8. Configuring MySQL++
	8.1. The Location of the MySQL Development Files
	8.2. The Maximum Number of Fields Allowed
	8.3. Buried MySQL C API Headers
	8.4. Building MySQL++ on Systems Without Complete C99 Support

	9. Using MySQL++ in Your Own Project
	9.1. Visual C++
	Using MySQL++ in an MFC Project
	Using MySQL++ in a Windows Forms C++/CLI Project

	9.2. Unixy Platforms: Linux, *BSD, OS X, Cygwin, Solaris...
	9.3. OS X
	Makefiles
	Xcode

	9.4. MinGW
	Makefiles
	Third-Party MinGW IDEs (Dev-C++, Code::Blocks...)

	9.5. Eclipse

	10. Incompatible Library Changes
	10.1. API Changes
	v1.7.10
	v1.7.19
	v1.7.20
	v2.0.0
	Connection class changes
	Exception-related changes
	Query class changes
	Result/ResUse class changes
	Row class changes
	Miscellaneous changes

	v2.2.0
	v2.3.0
	v3.0.0
	Class name changes
	Connection class changes
	Date and Time class changes
	Exception changes
	Field and Fields class changes
	Query class changes
	Result, ResUse, and ResNSel class changes
	Row class changes
	Specialized SQL Structure (SSQLS) changes
	Miscellaneous changes

	v3.0.7

	10.2. ABI Changes
	v1.7.18
	v1.7.19
	v1.7.22
	v1.7.24
	v2.0.0
	v3.0.0
	v3.0.1
	v3.0.2
	v3.1.0

	11. Licensing
	11.1. GNU Lesser General Public License
	Preamble
	GNU LESSER GENERAL PUBLIC LICENSE
	How to Apply These Terms to Your New Libraries

	11.2. MySQL++ User Manual License
	I. COPYRIGHT
	II. LICENSE
	A. REQUIREMENTS OF MODIFIED WORKS

