1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
|
#
# Bug #40113: Embedded SELECT inside UPDATE or DELETE can timeout
# without error
#
CREATE TABLE t1 (a int, b int, PRIMARY KEY (a,b)) ENGINE=InnoDB;
INSERT INTO t1 (a,b) VALUES (1070109,99);
CREATE TABLE t2 (b int, a int, PRIMARY KEY (b)) ENGINE=InnoDB;
INSERT INTO t2 (b,a) VALUES (7,1070109);
SELECT * FROM t1;
a b
1070109 99
BEGIN;
SELECT b FROM t2 WHERE b=7 FOR UPDATE;
b
7
BEGIN;
SELECT b FROM t2 WHERE b=7 FOR UPDATE;
ERROR HY000: Lock wait timeout exceeded; try restarting transaction
INSERT INTO t1 (a) VALUES ((SELECT a FROM t2 WHERE b=7));
ERROR HY000: Lock wait timeout exceeded; try restarting transaction
UPDATE t1 SET a='7000000' WHERE a=(SELECT a FROM t2 WHERE b=7);
ERROR HY000: Lock wait timeout exceeded; try restarting transaction
DELETE FROM t1 WHERE a=(SELECT a FROM t2 WHERE b=7);
ERROR HY000: Lock wait timeout exceeded; try restarting transaction
SELECT * FROM t1;
a b
1070109 99
DROP TABLE t2, t1;
# End of 5.0 tests
#
# Bug#46539 Various crashes on INSERT IGNORE SELECT + SELECT
# FOR UPDATE
#
drop table if exists t1;
create table t1 (a int primary key auto_increment,
b int, index(b)) engine=innodb;
insert into t1 (b) values (1), (2), (3), (4), (5), (6), (7), (8), (9), (10);
set autocommit=0;
begin;
select * from t1 where b=5 for update;
a b
5 5
insert ignore into t1 (b) select a as b from t1;
ERROR HY000: Lock wait timeout exceeded; try restarting transaction
# Cleanup
#
commit;
set autocommit=default;
drop table t1;
#
# Bug #37183 insert ignore into .. select ... hangs
# after deadlock was encountered
#
create table t1(id int primary key,v int)engine=innodb;
insert into t1 values (1,1),(2,2),(3,3),(4,4),(5,5),(6,6),(7,7);
create table t2 like t1;
begin;
update t1 set v=id*2 where id=1;
begin;
update t1 set v=id*2 where id=2;
update t1 set v=id*2 where id=2;
ERROR HY000: Lock wait timeout exceeded; try restarting transaction
insert ignore into t2 select * from t1 where id=1;
ERROR HY000: Lock wait timeout exceeded; try restarting transaction
rollback;
rollback;
drop table t1, t2;
#
# Bug#41756 Strange error messages about locks from InnoDB
#
drop table if exists t1;
# In the default transaction isolation mode, and/or with
# innodb_locks_unsafe_for_binlog=OFF, handler::unlock_row()
# in InnoDB does nothing.
# Thus in order to reproduce the condition that led to the
# warning, one needs to relax isolation by either
# setting a weaker tx_isolation value, or by turning on
# the unsafe replication switch.
# For testing purposes, choose to tweak the isolation level,
# since it's settable at runtime, unlike
# innodb_locks_unsafe_for_binlog, which is
# only a command-line switch.
#
set @@session.tx_isolation="read-committed";
# Prepare data. We need a table with a unique index,
# for join_read_key to be used. The other column
# allows to control what passes WHERE clause filter.
create table t1 (a int primary key, b int) engine=innodb;
# Let's make sure t1 has sufficient amount of rows
# to exclude JT_ALL access method when reading it,
# i.e. make sure that JT_EQ_REF(a) is always preferred.
insert into t1 values (1,1), (2,null), (3,1), (4,1),
(5,1), (6,1), (7,1), (8,1), (9,1), (10,1),
(11,1), (12,1), (13,1), (14,1), (15,1),
(16,1), (17,1), (18,1), (19,1), (20,1);
#
# Demonstrate that for the SELECT statement
# used later in the test JT_EQ_REF access method is used.
#
explain
select 1 from t1 natural join (select 2 as a, 1 as b union all
select 2 as a, 2 as b) as t2 for update;
id 1
select_type PRIMARY
table <derived2>
type ALL
possible_keys NULL
key NULL
key_len NULL
ref NULL
rows 2
Extra
id 1
select_type PRIMARY
table t1
type eq_ref
possible_keys PRIMARY
key PRIMARY
key_len 4
ref t2.a
rows 1
Extra Using where
id 2
select_type DERIVED
table NULL
type NULL
possible_keys NULL
key NULL
key_len NULL
ref NULL
rows NULL
Extra No tables used
id 3
select_type UNION
table NULL
type NULL
possible_keys NULL
key NULL
key_len NULL
ref NULL
rows NULL
Extra No tables used
id NULL
select_type UNION RESULT
table <union2,3>
type ALL
possible_keys NULL
key NULL
key_len NULL
ref NULL
rows NULL
Extra
#
# Demonstrate that the reported SELECT statement
# no longer produces warnings.
#
select 1 from t1 natural join (select 2 as a, 1 as b union all
select 2 as a, 2 as b) as t2 for update;
1
commit;
#
# Demonstrate that due to lack of inter-sweep "reset" function,
# we keep some non-matching records locked, even though we know
# we could unlock them.
# To do that, show that if there is only one distinct value
# for a in t2 (a=2), we will keep record (2,null) in t1 locked.
# But if we add another value for "a" to t2, say 6,
# join_read_key cache will be pruned at least once,
# and thus record (2, null) in t1 will get unlocked.
#
begin;
select 1 from t1 natural join (select 2 as a, 1 as b union all
select 2 as a, 2 as b) as t2 for update;
1
#
# Switching to connection con1
# We should be able to delete all records from t1 except (2, null),
# since they were not locked.
begin;
# Delete in series of 3 records so that full scan
# is not used and we're not blocked on record (2,null)
delete from t1 where a in (1,3,4);
delete from t1 where a in (5,6,7);
delete from t1 where a in (8,9,10);
delete from t1 where a in (11,12,13);
delete from t1 where a in (14,15,16);
delete from t1 where a in (17,18);
delete from t1 where a in (19,20);
#
# Record (2, null) is locked. This is actually unnecessary,
# because the previous select returned no rows.
# Just demonstrate the effect.
#
delete from t1;
ERROR HY000: Lock wait timeout exceeded; try restarting transaction
rollback;
#
# Switching to connection default
#
# Show that the original contents of t1 is intact:
select * from t1;
a b
1 1
2 NULL
3 1
4 1
5 1
6 1
7 1
8 1
9 1
10 1
11 1
12 1
13 1
14 1
15 1
16 1
17 1
18 1
19 1
20 1
commit;
#
# Have a one more record in t2 to show that
# if join_read_key cache is purned, the current
# row under the cursor is unlocked (provided, this row didn't
# match the partial WHERE clause, of course).
# Sic: the result of this test dependent on the order of retrieval
# of records --echo # from the derived table, if !
# We use DELETE to disable the JOIN CACHE. This DELETE modifies no
# records. It also should leave no InnoDB row locks.
#
begin;
delete t1.* from t1 natural join (select 2 as a, 2 as b union all
select 0 as a, 0 as b) as t2;
# Demonstrate that nothing was deleted form t1
select * from t1;
a b
1 1
2 NULL
3 1
4 1
5 1
6 1
7 1
8 1
9 1
10 1
11 1
12 1
13 1
14 1
15 1
16 1
17 1
18 1
19 1
20 1
#
# Switching to connection con1
begin;
# Since there is another distinct record in the derived table
# the previous matching record in t1 -- (2,null) -- was unlocked.
delete from t1;
# We will need the contents of the table again.
rollback;
select * from t1;
a b
1 1
2 NULL
3 1
4 1
5 1
6 1
7 1
8 1
9 1
10 1
11 1
12 1
13 1
14 1
15 1
16 1
17 1
18 1
19 1
20 1
commit;
#
# Switching to connection default
rollback;
begin;
#
# Before this patch, we could wrongly unlock a record
# that was cached and later used in a join. Demonstrate that
# this is no longer the case.
# Sic: this test is also order-dependent (i.e. the
# the bug would show up only if the first record in the union
# is retreived and processed first.
#
# Verify that JT_EQ_REF is used.
explain
select 1 from t1 natural join (select 3 as a, 2 as b union all
select 3 as a, 1 as b) as t2 for update;
id 1
select_type PRIMARY
table <derived2>
type ALL
possible_keys NULL
key NULL
key_len NULL
ref NULL
rows 2
Extra
id 1
select_type PRIMARY
table t1
type eq_ref
possible_keys PRIMARY
key PRIMARY
key_len 4
ref t2.a
rows 1
Extra Using where
id 2
select_type DERIVED
table NULL
type NULL
possible_keys NULL
key NULL
key_len NULL
ref NULL
rows NULL
Extra No tables used
id 3
select_type UNION
table NULL
type NULL
possible_keys NULL
key NULL
key_len NULL
ref NULL
rows NULL
Extra No tables used
id NULL
select_type UNION RESULT
table <union2,3>
type ALL
possible_keys NULL
key NULL
key_len NULL
ref NULL
rows NULL
Extra
# Lock the record.
select 1 from t1 natural join (select 3 as a, 2 as b union all
select 3 as a, 1 as b) as t2 for update;
1
1
# Switching to connection con1
#
# We should not be able to delete record (3,1) from t1,
# (previously it was possible).
#
delete from t1 where a=3;
ERROR HY000: Lock wait timeout exceeded; try restarting transaction
# Switching to connection default
commit;
set @@session.tx_isolation=default;
drop table t1;
#
# End of 5.1 tests
#
|