1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
|
/*****************************************************************************
Copyright (c) 2005, 2013, Oracle and/or its affiliates. All Rights Reserved.
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*****************************************************************************/
/**************************************************//**
@file include/page0zip.ic
Compressed page interface
Created June 2005 by Marko Makela
*******************************************************/
#ifdef UNIV_MATERIALIZE
# undef UNIV_INLINE
# define UNIV_INLINE
#endif
#include "page0zip.h"
#include "page0page.h"
/* The format of compressed pages is as follows.
The header and trailer of the uncompressed pages, excluding the page
directory in the trailer, are copied as is to the header and trailer
of the compressed page.
At the end of the compressed page, there is a dense page directory
pointing to every user record contained on the page, including deleted
records on the free list. The dense directory is indexed in the
collation order, i.e., in the order in which the record list is
linked on the uncompressed page. The infimum and supremum records are
excluded. The two most significant bits of the entries are allocated
for the delete-mark and an n_owned flag indicating the last record in
a chain of records pointed to from the sparse page directory on the
uncompressed page.
The data between PAGE_ZIP_START and the last page directory entry will
be written in compressed format, starting at offset PAGE_DATA.
Infimum and supremum records are not stored. We exclude the
REC_N_NEW_EXTRA_BYTES in every record header. These can be recovered
from the dense page directory stored at the end of the compressed
page.
The fields node_ptr (in non-leaf B-tree nodes; level>0), trx_id and
roll_ptr (in leaf B-tree nodes; level=0), and BLOB pointers of
externally stored columns are stored separately, in ascending order of
heap_no and column index, starting backwards from the dense page
directory.
The compressed data stream may be followed by a modification log
covering the compressed portion of the page, as follows.
MODIFICATION LOG ENTRY FORMAT
- write record:
- (heap_no - 1) << 1 (1..2 bytes)
- extra bytes backwards
- data bytes
- clear record:
- (heap_no - 1) << 1 | 1 (1..2 bytes)
The integer values are stored in a variable-length format:
- 0xxxxxxx: 0..127
- 1xxxxxxx xxxxxxxx: 0..32767
The end of the modification log is marked by a 0 byte.
In summary, the compressed page looks like this:
(1) Uncompressed page header (PAGE_DATA bytes)
(2) Compressed index information
(3) Compressed page data
(4) Page modification log (page_zip->m_start..page_zip->m_end)
(5) Empty zero-filled space
(6) BLOB pointers (on leaf pages)
- BTR_EXTERN_FIELD_REF_SIZE for each externally stored column
- in descending collation order
(7) Uncompressed columns of user records, n_dense * uncompressed_size bytes,
- indexed by heap_no
- DATA_TRX_ID_LEN + DATA_ROLL_PTR_LEN for leaf pages of clustered indexes
- REC_NODE_PTR_SIZE for non-leaf pages
- 0 otherwise
(8) dense page directory, stored backwards
- n_dense = n_heap - 2
- existing records in ascending collation order
- deleted records (free list) in link order
*/
/** Start offset of the area that will be compressed */
#define PAGE_ZIP_START PAGE_NEW_SUPREMUM_END
/** Size of an compressed page directory entry */
#define PAGE_ZIP_DIR_SLOT_SIZE 2
/** Mask of record offsets */
#define PAGE_ZIP_DIR_SLOT_MASK 0x3fff
/** 'owned' flag */
#define PAGE_ZIP_DIR_SLOT_OWNED 0x4000
/** 'deleted' flag */
#define PAGE_ZIP_DIR_SLOT_DEL 0x8000
/**********************************************************************//**
Determine the size of a compressed page in bytes.
@return size in bytes */
UNIV_INLINE
ulint
page_zip_get_size(
/*==============*/
const page_zip_des_t* page_zip) /*!< in: compressed page */
{
ulint size;
if (UNIV_UNLIKELY(!page_zip->ssize)) {
return(0);
}
size = (PAGE_ZIP_MIN_SIZE >> 1) << page_zip->ssize;
ut_ad(size >= PAGE_ZIP_MIN_SIZE);
ut_ad(size <= UNIV_PAGE_SIZE);
return(size);
}
/**********************************************************************//**
Set the size of a compressed page in bytes. */
UNIV_INLINE
void
page_zip_set_size(
/*==============*/
page_zip_des_t* page_zip, /*!< in/out: compressed page */
ulint size) /*!< in: size in bytes */
{
if (size) {
int ssize;
ut_ad(ut_is_2pow(size));
for (ssize = 1; size > (ulint) (512 << ssize); ssize++) {
}
page_zip->ssize = ssize;
} else {
page_zip->ssize = 0;
}
ut_ad(page_zip_get_size(page_zip) == size);
}
#ifndef UNIV_HOTBACKUP
/**********************************************************************//**
Determine if a record is so big that it needs to be stored externally.
@return FALSE if the entire record can be stored locally on the page */
UNIV_INLINE
ibool
page_zip_rec_needs_ext(
/*===================*/
ulint rec_size, /*!< in: length of the record in bytes */
ulint comp, /*!< in: nonzero=compact format */
ulint n_fields, /*!< in: number of fields in the record;
ignored if zip_size == 0 */
ulint zip_size) /*!< in: compressed page size in bytes, or 0 */
{
ut_ad(rec_size > comp ? REC_N_NEW_EXTRA_BYTES : REC_N_OLD_EXTRA_BYTES);
ut_ad(ut_is_2pow(zip_size));
ut_ad(comp || !zip_size);
#if UNIV_PAGE_SIZE > REC_MAX_DATA_SIZE
if (UNIV_UNLIKELY(rec_size >= REC_MAX_DATA_SIZE)) {
return(TRUE);
}
#endif
if (UNIV_UNLIKELY(zip_size)) {
ut_ad(comp);
/* On a compressed page, there is a two-byte entry in
the dense page directory for every record. But there
is no record header. There should be enough room for
one record on an empty leaf page. Subtract 1 byte for
the encoded heap number. Check also the available space
on the uncompressed page. */
return(rec_size - (REC_N_NEW_EXTRA_BYTES - 2 - 1)
>= page_zip_empty_size(n_fields, zip_size)
|| rec_size >= page_get_free_space_of_empty(TRUE) / 2);
}
return(rec_size >= page_get_free_space_of_empty(comp) / 2);
}
#endif /* !UNIV_HOTBACKUP */
#ifdef UNIV_DEBUG
/**********************************************************************//**
Validate a compressed page descriptor.
@return TRUE if ok */
UNIV_INLINE
ibool
page_zip_simple_validate(
/*=====================*/
const page_zip_des_t* page_zip)/*!< in: compressed page descriptor */
{
ut_ad(page_zip);
ut_ad(page_zip->data);
ut_ad(page_zip->ssize < PAGE_ZIP_NUM_SSIZE);
ut_ad(page_zip_get_size(page_zip)
> PAGE_DATA + PAGE_ZIP_DIR_SLOT_SIZE);
ut_ad(page_zip->m_start <= page_zip->m_end);
ut_ad(page_zip->m_end < page_zip_get_size(page_zip));
ut_ad(page_zip->n_blobs
< page_zip_get_size(page_zip) / BTR_EXTERN_FIELD_REF_SIZE);
return(TRUE);
}
#endif /* UNIV_DEBUG */
/**********************************************************************//**
Determine if the length of the page trailer.
@return length of the page trailer, in bytes, not including the
terminating zero byte of the modification log */
UNIV_INLINE
ibool
page_zip_get_trailer_len(
/*=====================*/
const page_zip_des_t* page_zip,/*!< in: compressed page */
ibool is_clust)/*!< in: TRUE if clustered index */
{
ulint uncompressed_size;
ut_ad(page_zip_simple_validate(page_zip));
UNIV_MEM_ASSERT_RW(page_zip->data, page_zip_get_size(page_zip));
if (UNIV_UNLIKELY(!page_is_leaf(page_zip->data))) {
uncompressed_size = PAGE_ZIP_DIR_SLOT_SIZE
+ REC_NODE_PTR_SIZE;
ut_ad(!page_zip->n_blobs);
} else if (UNIV_UNLIKELY(is_clust)) {
uncompressed_size = PAGE_ZIP_DIR_SLOT_SIZE
+ DATA_TRX_ID_LEN + DATA_ROLL_PTR_LEN;
} else {
uncompressed_size = PAGE_ZIP_DIR_SLOT_SIZE;
ut_ad(!page_zip->n_blobs);
}
return((page_dir_get_n_heap(page_zip->data) - 2)
* uncompressed_size
+ page_zip->n_blobs * BTR_EXTERN_FIELD_REF_SIZE);
}
/**********************************************************************//**
Determine how big record can be inserted without recompressing the page.
@return a positive number indicating the maximum size of a record
whose insertion is guaranteed to succeed, or zero or negative */
UNIV_INLINE
lint
page_zip_max_ins_size(
/*==================*/
const page_zip_des_t* page_zip,/*!< in: compressed page */
ibool is_clust)/*!< in: TRUE if clustered index */
{
ulint trailer_len;
trailer_len = page_zip_get_trailer_len(page_zip, is_clust);
/* When a record is created, a pointer may be added to
the dense directory.
Likewise, space for the columns that will not be
compressed will be allocated from the page trailer.
Also the BLOB pointers will be allocated from there, but
we may as well count them in the length of the record. */
trailer_len += PAGE_ZIP_DIR_SLOT_SIZE;
return((lint) page_zip_get_size(page_zip)
- trailer_len - page_zip->m_end
- (REC_N_NEW_EXTRA_BYTES - 2));
}
/**********************************************************************//**
Determine if enough space is available in the modification log.
@return TRUE if enough space is available */
UNIV_INLINE
ibool
page_zip_available(
/*===============*/
const page_zip_des_t* page_zip,/*!< in: compressed page */
ibool is_clust,/*!< in: TRUE if clustered index */
ulint length, /*!< in: combined size of the record */
ulint create) /*!< in: nonzero=add the record to
the heap */
{
ulint trailer_len;
ut_ad(length > REC_N_NEW_EXTRA_BYTES);
trailer_len = page_zip_get_trailer_len(page_zip, is_clust);
/* Subtract the fixed extra bytes and add the maximum
space needed for identifying the record (encoded heap_no). */
length -= REC_N_NEW_EXTRA_BYTES - 2;
if (UNIV_UNLIKELY(create)) {
/* When a record is created, a pointer may be added to
the dense directory.
Likewise, space for the columns that will not be
compressed will be allocated from the page trailer.
Also the BLOB pointers will be allocated from there, but
we may as well count them in the length of the record. */
trailer_len += PAGE_ZIP_DIR_SLOT_SIZE;
}
return(UNIV_LIKELY(length
+ trailer_len
+ page_zip->m_end
< page_zip_get_size(page_zip)));
}
/**********************************************************************//**
Initialize a compressed page descriptor. */
UNIV_INLINE
void
page_zip_des_init(
/*==============*/
page_zip_des_t* page_zip) /*!< in/out: compressed page
descriptor */
{
memset(page_zip, 0, sizeof *page_zip);
}
/**********************************************************************//**
Write a log record of writing to the uncompressed header portion of a page. */
UNIV_INTERN
void
page_zip_write_header_log(
/*======================*/
const byte* data,/*!< in: data on the uncompressed page */
ulint length, /*!< in: length of the data */
mtr_t* mtr); /*!< in: mini-transaction */
/**********************************************************************//**
Write data to the uncompressed header portion of a page. The data must
already have been written to the uncompressed page.
However, the data portion of the uncompressed page may differ from
the compressed page when a record is being inserted in
page_cur_insert_rec_zip(). */
UNIV_INLINE
void
page_zip_write_header(
/*==================*/
page_zip_des_t* page_zip,/*!< in/out: compressed page */
const byte* str, /*!< in: address on the uncompressed page */
ulint length, /*!< in: length of the data */
mtr_t* mtr) /*!< in: mini-transaction, or NULL */
{
ulint pos;
ut_ad(PAGE_ZIP_MATCH(str, page_zip));
ut_ad(page_zip_simple_validate(page_zip));
UNIV_MEM_ASSERT_RW(page_zip->data, page_zip_get_size(page_zip));
pos = page_offset(str);
ut_ad(pos < PAGE_DATA);
memcpy(page_zip->data + pos, str, length);
/* The following would fail in page_cur_insert_rec_zip(). */
/* ut_ad(page_zip_validate(page_zip, str - pos)); */
if (UNIV_LIKELY_NULL(mtr)) {
#ifndef UNIV_HOTBACKUP
page_zip_write_header_log(str, length, mtr);
#endif /* !UNIV_HOTBACKUP */
}
}
#ifdef UNIV_MATERIALIZE
# undef UNIV_INLINE
# define UNIV_INLINE UNIV_INLINE_ORIGINAL
#endif
|