1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
|
/* Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
/*
Code for handling red-black (balanced) binary trees.
key in tree is allocated accrding to following:
1) If size < 0 then tree will not allocate keys and only a pointer to
each key is saved in tree.
compare and search functions uses and returns key-pointer
2) If size == 0 then there are two options:
- key_size != 0 to tree_insert: The key will be stored in the tree.
- key_size == 0 to tree_insert: A pointer to the key is stored.
compare and search functions uses and returns key-pointer.
3) if key_size is given to init_tree then each node will continue the
key and calls to insert_key may increase length of key.
if key_size > sizeof(pointer) and key_size is a multiple of 8 (double
allign) then key will be put on a 8 alligned adress. Else
the key will be on adress (element+1). This is transparent for user
compare and search functions uses a pointer to given key-argument.
- If you use a free function for tree-elements and you are freeing
the element itself, you should use key_size = 0 to init_tree and
tree_search
The actual key in TREE_ELEMENT is saved as a pointer or after the
TREE_ELEMENT struct.
If one uses only pointers in tree one can use tree_set_pointer() to
change address of data.
Implemented by monty.
*/
/*
NOTE:
tree->compare function should be ALWAYS called as
(*tree->compare)(custom_arg, ELEMENT_KEY(tree,element), key)
and not other way around, as
(*tree->compare)(custom_arg, key, ELEMENT_KEY(tree,element))
ft_boolean_search.c (at least) relies on that.
*/
#include "mysys_priv.h"
#include <m_string.h>
#include <my_tree.h>
#include "my_base.h"
#define BLACK 1
#define RED 0
#define DEFAULT_ALLOC_SIZE 8192
#define DEFAULT_ALIGN_SIZE 8192
static void delete_tree_element(TREE *,TREE_ELEMENT *);
static int tree_walk_left_root_right(TREE *,TREE_ELEMENT *,
tree_walk_action,void *);
static int tree_walk_right_root_left(TREE *,TREE_ELEMENT *,
tree_walk_action,void *);
static void left_rotate(TREE_ELEMENT **parent,TREE_ELEMENT *leaf);
static void right_rotate(TREE_ELEMENT **parent, TREE_ELEMENT *leaf);
static void rb_insert(TREE *tree,TREE_ELEMENT ***parent,
TREE_ELEMENT *leaf);
static void rb_delete_fixup(TREE *tree,TREE_ELEMENT ***parent);
/* The actuall code for handling binary trees */
#ifndef DBUG_OFF
static int test_rb_tree(TREE_ELEMENT *element);
#endif
void init_tree(TREE *tree, ulong default_alloc_size, ulong memory_limit,
int size, qsort_cmp2 compare, my_bool with_delete,
tree_element_free free_element, void *custom_arg)
{
DBUG_ENTER("init_tree");
DBUG_PRINT("enter",("tree: 0x%lx size: %d", (long) tree, size));
if (default_alloc_size < DEFAULT_ALLOC_SIZE)
default_alloc_size= DEFAULT_ALLOC_SIZE;
default_alloc_size= MY_ALIGN(default_alloc_size, DEFAULT_ALIGN_SIZE);
bzero((uchar*) &tree->null_element,sizeof(tree->null_element));
tree->root= &tree->null_element;
tree->compare=compare;
tree->size_of_element=size > 0 ? (uint) size : 0;
tree->memory_limit=memory_limit;
tree->free=free_element;
tree->allocated=0;
tree->elements_in_tree=0;
tree->custom_arg = custom_arg;
tree->null_element.colour=BLACK;
tree->null_element.left=tree->null_element.right=0;
tree->flag= 0;
if (!free_element && size >= 0 &&
((uint) size <= sizeof(void*) || ((uint) size & (sizeof(void*)-1))))
{
/*
We know that the data doesn't have to be aligned (like if the key
contains a double), so we can store the data combined with the
TREE_ELEMENT.
*/
tree->offset_to_key=sizeof(TREE_ELEMENT); /* Put key after element */
/* Fix allocation size so that we don't lose any memory */
default_alloc_size/=(sizeof(TREE_ELEMENT)+size);
if (!default_alloc_size)
default_alloc_size=1;
default_alloc_size*=(sizeof(TREE_ELEMENT)+size);
}
else
{
tree->offset_to_key=0; /* use key through pointer */
tree->size_of_element+=sizeof(void*);
}
if (!(tree->with_delete=with_delete))
{
init_alloc_root(&tree->mem_root, (uint) default_alloc_size, 0);
tree->mem_root.min_malloc=(sizeof(TREE_ELEMENT)+tree->size_of_element);
}
DBUG_VOID_RETURN;
}
static void free_tree(TREE *tree, myf free_flags)
{
DBUG_ENTER("free_tree");
DBUG_PRINT("enter",("tree: 0x%lx", (long) tree));
if (tree->root) /* If initialized */
{
if (tree->with_delete)
delete_tree_element(tree,tree->root);
else
{
if (tree->free)
{
if (tree->memory_limit)
(*tree->free)(NULL, free_init, tree->custom_arg);
delete_tree_element(tree,tree->root);
if (tree->memory_limit)
(*tree->free)(NULL, free_end, tree->custom_arg);
}
free_root(&tree->mem_root, free_flags);
}
}
tree->root= &tree->null_element;
tree->elements_in_tree=0;
tree->allocated=0;
DBUG_VOID_RETURN;
}
void delete_tree(TREE* tree)
{
free_tree(tree, MYF(0)); /* my_free() mem_root if applicable */
}
void reset_tree(TREE* tree)
{
/* do not free mem_root, just mark blocks as free */
free_tree(tree, MYF(MY_MARK_BLOCKS_FREE));
}
static void delete_tree_element(TREE *tree, TREE_ELEMENT *element)
{
if (element != &tree->null_element)
{
delete_tree_element(tree,element->left);
if (tree->free)
(*tree->free)(ELEMENT_KEY(tree,element), free_free, tree->custom_arg);
delete_tree_element(tree,element->right);
if (tree->with_delete)
my_free(element);
}
}
/*
insert, search and delete of elements
The following should be true:
parent[0] = & parent[-1][0]->left ||
parent[0] = & parent[-1][0]->right
*/
TREE_ELEMENT *tree_insert(TREE *tree, void *key, uint key_size,
void* custom_arg)
{
int cmp;
TREE_ELEMENT *element,***parent;
parent= tree->parents;
*parent = &tree->root; element= tree->root;
for (;;)
{
if (element == &tree->null_element ||
(cmp = (*tree->compare)(custom_arg, ELEMENT_KEY(tree,element),
key)) == 0)
break;
if (cmp < 0)
{
*++parent= &element->right; element= element->right;
}
else
{
*++parent = &element->left; element= element->left;
}
}
if (element == &tree->null_element)
{
uint alloc_size=sizeof(TREE_ELEMENT)+key_size+tree->size_of_element;
tree->allocated+=alloc_size;
if (tree->memory_limit && tree->elements_in_tree
&& tree->allocated > tree->memory_limit)
{
reset_tree(tree);
return tree_insert(tree, key, key_size, custom_arg);
}
key_size+=tree->size_of_element;
if (tree->with_delete)
element=(TREE_ELEMENT *) my_malloc(alloc_size, MYF(MY_WME));
else
element=(TREE_ELEMENT *) alloc_root(&tree->mem_root,alloc_size);
if (!element)
return(NULL);
**parent=element;
element->left=element->right= &tree->null_element;
if (!tree->offset_to_key)
{
if (key_size == sizeof(void*)) /* no length, save pointer */
*((void**) (element+1))=key;
else
{
*((void**) (element+1))= (void*) ((void **) (element+1)+1);
memcpy((uchar*) *((void **) (element+1)),key,
(size_t) (key_size-sizeof(void*)));
}
}
else
memcpy((uchar*) element+tree->offset_to_key,key,(size_t) key_size);
element->count=1; /* May give warning in purify */
tree->elements_in_tree++;
rb_insert(tree,parent,element); /* rebalance tree */
}
else
{
if (tree->flag & TREE_NO_DUPS)
return(NULL);
element->count++;
/* Avoid a wrap over of the count. */
if (! element->count)
element->count--;
}
DBUG_EXECUTE("check_tree", test_rb_tree(tree->root););
return element;
}
int tree_delete(TREE *tree, void *key, uint key_size, void *custom_arg)
{
int cmp,remove_colour;
TREE_ELEMENT *element,***parent, ***org_parent, *nod;
if (!tree->with_delete)
return 1; /* not allowed */
parent= tree->parents;
*parent= &tree->root; element= tree->root;
for (;;)
{
if (element == &tree->null_element)
return 1; /* Was not in tree */
if ((cmp = (*tree->compare)(custom_arg, ELEMENT_KEY(tree,element),
key)) == 0)
break;
if (cmp < 0)
{
*++parent= &element->right; element= element->right;
}
else
{
*++parent = &element->left; element= element->left;
}
}
if (element->left == &tree->null_element)
{
(**parent)=element->right;
remove_colour= element->colour;
}
else if (element->right == &tree->null_element)
{
(**parent)=element->left;
remove_colour= element->colour;
}
else
{
org_parent= parent;
*++parent= &element->right; nod= element->right;
while (nod->left != &tree->null_element)
{
*++parent= &nod->left; nod= nod->left;
}
(**parent)=nod->right; /* unlink nod from tree */
remove_colour= nod->colour;
org_parent[0][0]=nod; /* put y in place of element */
org_parent[1]= &nod->right;
nod->left=element->left;
nod->right=element->right;
nod->colour=element->colour;
}
if (remove_colour == BLACK)
rb_delete_fixup(tree,parent);
if (tree->free)
(*tree->free)(ELEMENT_KEY(tree,element), free_free, tree->custom_arg);
tree->allocated-= sizeof(TREE_ELEMENT) + tree->size_of_element + key_size;
my_free(element);
tree->elements_in_tree--;
return 0;
}
void *tree_search(TREE *tree, void *key, void *custom_arg)
{
int cmp;
TREE_ELEMENT *element=tree->root;
for (;;)
{
if (element == &tree->null_element)
return (void*) 0;
if ((cmp = (*tree->compare)(custom_arg, ELEMENT_KEY(tree,element),
key)) == 0)
return ELEMENT_KEY(tree,element);
if (cmp < 0)
element=element->right;
else
element=element->left;
}
}
void *tree_search_key(TREE *tree, const void *key,
TREE_ELEMENT **parents, TREE_ELEMENT ***last_pos,
enum ha_rkey_function flag, void *custom_arg)
{
int cmp;
TREE_ELEMENT *element= tree->root;
TREE_ELEMENT **last_left_step_parent= NULL, **last_right_step_parent= NULL;
TREE_ELEMENT **last_equal_element= NULL;
/*
TODO: support for HA_READ_KEY_OR_PREV, HA_READ_PREFIX flags if needed.
*/
*parents = &tree->null_element;
while (element != &tree->null_element)
{
*++parents= element;
if ((cmp= (*tree->compare)(custom_arg, ELEMENT_KEY(tree, element),
key)) == 0)
{
switch (flag) {
case HA_READ_KEY_EXACT:
case HA_READ_KEY_OR_NEXT:
case HA_READ_BEFORE_KEY:
last_equal_element= parents;
cmp= 1;
break;
case HA_READ_AFTER_KEY:
cmp= -1;
break;
case HA_READ_PREFIX_LAST:
case HA_READ_PREFIX_LAST_OR_PREV:
last_equal_element= parents;
cmp= -1;
break;
default:
return NULL;
}
}
if (cmp < 0) /* element < key */
{
last_right_step_parent= parents;
element= element->right;
}
else
{
last_left_step_parent= parents;
element= element->left;
}
}
switch (flag) {
case HA_READ_KEY_EXACT:
case HA_READ_PREFIX_LAST:
*last_pos= last_equal_element;
break;
case HA_READ_KEY_OR_NEXT:
*last_pos= last_equal_element ? last_equal_element : last_left_step_parent;
break;
case HA_READ_AFTER_KEY:
*last_pos= last_left_step_parent;
break;
case HA_READ_PREFIX_LAST_OR_PREV:
*last_pos= last_equal_element ? last_equal_element : last_right_step_parent;
break;
case HA_READ_BEFORE_KEY:
*last_pos= last_right_step_parent;
break;
default:
return NULL;
}
return *last_pos ? ELEMENT_KEY(tree, **last_pos) : NULL;
}
/*
Search first (the most left) or last (the most right) tree element
*/
void *tree_search_edge(TREE *tree, TREE_ELEMENT **parents,
TREE_ELEMENT ***last_pos, int child_offs)
{
TREE_ELEMENT *element= tree->root;
*parents= &tree->null_element;
while (element != &tree->null_element)
{
*++parents= element;
element= ELEMENT_CHILD(element, child_offs);
}
*last_pos= parents;
return **last_pos != &tree->null_element ?
ELEMENT_KEY(tree, **last_pos) : NULL;
}
void *tree_search_next(TREE *tree, TREE_ELEMENT ***last_pos, int l_offs,
int r_offs)
{
TREE_ELEMENT *x= **last_pos;
if (ELEMENT_CHILD(x, r_offs) != &tree->null_element)
{
x= ELEMENT_CHILD(x, r_offs);
*++*last_pos= x;
while (ELEMENT_CHILD(x, l_offs) != &tree->null_element)
{
x= ELEMENT_CHILD(x, l_offs);
*++*last_pos= x;
}
return ELEMENT_KEY(tree, x);
}
else
{
TREE_ELEMENT *y= *--*last_pos;
while (y != &tree->null_element && x == ELEMENT_CHILD(y, r_offs))
{
x= y;
y= *--*last_pos;
}
return y == &tree->null_element ? NULL : ELEMENT_KEY(tree, y);
}
}
/*
Expected that tree is fully balanced
(each path from root to leaf has the same length)
*/
ha_rows tree_record_pos(TREE *tree, const void *key,
enum ha_rkey_function flag, void *custom_arg)
{
int cmp;
TREE_ELEMENT *element= tree->root;
double left= 1;
double right= tree->elements_in_tree;
while (element != &tree->null_element)
{
if ((cmp= (*tree->compare)(custom_arg, ELEMENT_KEY(tree, element),
key)) == 0)
{
switch (flag) {
case HA_READ_KEY_EXACT:
case HA_READ_BEFORE_KEY:
cmp= 1;
break;
case HA_READ_AFTER_KEY:
cmp= -1;
break;
default:
return HA_POS_ERROR;
}
}
if (cmp < 0) /* element < key */
{
element= element->right;
left= (left + right) / 2;
}
else
{
element= element->left;
right= (left + right) / 2;
}
}
switch (flag) {
case HA_READ_KEY_EXACT:
case HA_READ_BEFORE_KEY:
return (ha_rows) right;
case HA_READ_AFTER_KEY:
return (ha_rows) left;
default:
return HA_POS_ERROR;
}
}
int tree_walk(TREE *tree, tree_walk_action action, void *argument, TREE_WALK visit)
{
switch (visit) {
case left_root_right:
return tree_walk_left_root_right(tree,tree->root,action,argument);
case right_root_left:
return tree_walk_right_root_left(tree,tree->root,action,argument);
}
return 0; /* Keep gcc happy */
}
static int tree_walk_left_root_right(TREE *tree, TREE_ELEMENT *element, tree_walk_action action, void *argument)
{
int error;
if (element->left) /* Not null_element */
{
if ((error=tree_walk_left_root_right(tree,element->left,action,
argument)) == 0 &&
(error=(*action)(ELEMENT_KEY(tree,element),
(element_count) element->count,
argument)) == 0)
error=tree_walk_left_root_right(tree,element->right,action,argument);
return error;
}
return 0;
}
static int tree_walk_right_root_left(TREE *tree, TREE_ELEMENT *element, tree_walk_action action, void *argument)
{
int error;
if (element->right) /* Not null_element */
{
if ((error=tree_walk_right_root_left(tree,element->right,action,
argument)) == 0 &&
(error=(*action)(ELEMENT_KEY(tree,element),
(element_count) element->count,
argument)) == 0)
error=tree_walk_right_root_left(tree,element->left,action,argument);
return error;
}
return 0;
}
/* Functions to fix up the tree after insert and delete */
static void left_rotate(TREE_ELEMENT **parent, TREE_ELEMENT *leaf)
{
TREE_ELEMENT *y;
y=leaf->right;
leaf->right=y->left;
parent[0]=y;
y->left=leaf;
}
static void right_rotate(TREE_ELEMENT **parent, TREE_ELEMENT *leaf)
{
TREE_ELEMENT *x;
x=leaf->left;
leaf->left=x->right;
parent[0]=x;
x->right=leaf;
}
static void rb_insert(TREE *tree, TREE_ELEMENT ***parent, TREE_ELEMENT *leaf)
{
TREE_ELEMENT *y,*par,*par2;
leaf->colour=RED;
while (leaf != tree->root && (par=parent[-1][0])->colour == RED)
{
if (par == (par2=parent[-2][0])->left)
{
y= par2->right;
if (y->colour == RED)
{
par->colour=BLACK;
y->colour=BLACK;
leaf=par2;
parent-=2;
leaf->colour=RED; /* And the loop continues */
}
else
{
if (leaf == par->right)
{
left_rotate(parent[-1],par);
par=leaf; /* leaf is now parent to old leaf */
}
par->colour=BLACK;
par2->colour=RED;
right_rotate(parent[-2],par2);
break;
}
}
else
{
y= par2->left;
if (y->colour == RED)
{
par->colour=BLACK;
y->colour=BLACK;
leaf=par2;
parent-=2;
leaf->colour=RED; /* And the loop continues */
}
else
{
if (leaf == par->left)
{
right_rotate(parent[-1],par);
par=leaf;
}
par->colour=BLACK;
par2->colour=RED;
left_rotate(parent[-2],par2);
break;
}
}
}
tree->root->colour=BLACK;
}
static void rb_delete_fixup(TREE *tree, TREE_ELEMENT ***parent)
{
TREE_ELEMENT *x,*w,*par;
x= **parent;
while (x != tree->root && x->colour == BLACK)
{
if (x == (par=parent[-1][0])->left)
{
w=par->right;
if (w->colour == RED)
{
w->colour=BLACK;
par->colour=RED;
left_rotate(parent[-1],par);
parent[0]= &w->left;
*++parent= &par->left;
w=par->right;
}
if (w->left->colour == BLACK && w->right->colour == BLACK)
{
w->colour=RED;
x=par;
parent--;
}
else
{
if (w->right->colour == BLACK)
{
w->left->colour=BLACK;
w->colour=RED;
right_rotate(&par->right,w);
w=par->right;
}
w->colour=par->colour;
par->colour=BLACK;
w->right->colour=BLACK;
left_rotate(parent[-1],par);
x=tree->root;
break;
}
}
else
{
w=par->left;
if (w->colour == RED)
{
w->colour=BLACK;
par->colour=RED;
right_rotate(parent[-1],par);
parent[0]= &w->right;
*++parent= &par->right;
w=par->left;
}
if (w->right->colour == BLACK && w->left->colour == BLACK)
{
w->colour=RED;
x=par;
parent--;
}
else
{
if (w->left->colour == BLACK)
{
w->right->colour=BLACK;
w->colour=RED;
left_rotate(&par->left,w);
w=par->left;
}
w->colour=par->colour;
par->colour=BLACK;
w->left->colour=BLACK;
right_rotate(parent[-1],par);
x=tree->root;
break;
}
}
}
x->colour=BLACK;
}
#ifndef DBUG_OFF
/* Test that the proporties for a red-black tree holds */
static int test_rb_tree(TREE_ELEMENT *element)
{
int count_l,count_r;
if (!element->left)
return 0; /* Found end of tree */
if (element->colour == RED &&
(element->left->colour == RED || element->right->colour == RED))
{
printf("Wrong tree: Found two red in a row\n");
return -1;
}
count_l=test_rb_tree(element->left);
count_r=test_rb_tree(element->right);
if (count_l >= 0 && count_r >= 0)
{
if (count_l == count_r)
return count_l+(element->colour == BLACK);
printf("Wrong tree: Incorrect black-count: %d - %d\n",count_l,count_r);
}
return -1;
}
#endif
|