1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
/*
Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
/*
Gives a approximated number of how many records there is between two keys.
Used when optimizing querries.
*/
#include "myisamdef.h"
#include "rt_index.h"
static ha_rows _mi_record_pos(MI_INFO *, const uchar *, key_part_map,
enum ha_rkey_function);
static double _mi_search_pos(MI_INFO *,MI_KEYDEF *,uchar *, uint,uint,my_off_t);
static uint _mi_keynr(MI_INFO *info,MI_KEYDEF *,uchar *, uchar *,uint *);
/*
Estimate how many records there is in a given range
SYNOPSIS
mi_records_in_range()
info MyISAM handler
inx Index to use
min_key Min key. Is = 0 if no min range
max_key Max key. Is = 0 if no max range
NOTES
We should ONLY return 0 if there is no rows in range
RETURN
HA_POS_ERROR error (or we can't estimate number of rows)
number Estimated number of rows
*/
ha_rows mi_records_in_range(MI_INFO *info, int inx,
key_range *min_key, key_range *max_key)
{
ha_rows start_pos,end_pos,res;
DBUG_ENTER("mi_records_in_range");
if ((inx = _mi_check_index(info,inx)) < 0)
DBUG_RETURN(HA_POS_ERROR);
if (fast_mi_readinfo(info))
DBUG_RETURN(HA_POS_ERROR);
info->update&= (HA_STATE_CHANGED+HA_STATE_ROW_CHANGED);
if (info->s->concurrent_insert)
mysql_rwlock_rdlock(&info->s->key_root_lock[inx]);
switch(info->s->keyinfo[inx].key_alg){
#ifdef HAVE_RTREE_KEYS
case HA_KEY_ALG_RTREE:
{
uchar * key_buff;
uint start_key_len;
/*
The problem is that the optimizer doesn't support
RTree keys properly at the moment.
Hope this will be fixed some day.
But now NULL in the min_key means that we
didn't make the task for the RTree key
and expect BTree functionality from it.
As it's not able to handle such request
we return the error.
*/
if (!min_key)
{
res= HA_POS_ERROR;
break;
}
key_buff= info->lastkey+info->s->base.max_key_length;
start_key_len= _mi_pack_key(info,inx, key_buff,
(uchar*) min_key->key, min_key->keypart_map,
(HA_KEYSEG**) 0);
res= rtree_estimate(info, inx, key_buff, start_key_len,
myisam_read_vec[min_key->flag]);
res= res ? res : 1; /* Don't return 0 */
break;
}
#endif
case HA_KEY_ALG_BTREE:
default:
start_pos= (min_key ? _mi_record_pos(info, min_key->key,
min_key->keypart_map, min_key->flag)
: (ha_rows) 0);
end_pos= (max_key ? _mi_record_pos(info, max_key->key,
max_key->keypart_map, max_key->flag)
: info->state->records + (ha_rows) 1);
res= (end_pos < start_pos ? (ha_rows) 0 :
(end_pos == start_pos ? (ha_rows) 1 : end_pos-start_pos));
if (start_pos == HA_POS_ERROR || end_pos == HA_POS_ERROR)
res=HA_POS_ERROR;
}
if (info->s->concurrent_insert)
mysql_rwlock_unlock(&info->s->key_root_lock[inx]);
fast_mi_writeinfo(info);
DBUG_PRINT("info",("records: %ld",(ulong) (res)));
DBUG_RETURN(res);
}
/* Find relative position (in records) for key in index-tree */
static ha_rows _mi_record_pos(MI_INFO *info, const uchar *key,
key_part_map keypart_map,
enum ha_rkey_function search_flag)
{
uint inx=(uint) info->lastinx, nextflag, key_len;
MI_KEYDEF *keyinfo=info->s->keyinfo+inx;
uchar *key_buff;
double pos;
DBUG_ENTER("_mi_record_pos");
DBUG_PRINT("enter",("search_flag: %d",search_flag));
DBUG_ASSERT(keypart_map);
key_buff=info->lastkey+info->s->base.max_key_length;
key_len=_mi_pack_key(info,inx,key_buff,(uchar*) key, keypart_map,
(HA_KEYSEG**) 0);
DBUG_EXECUTE("key",_mi_print_key(DBUG_FILE,keyinfo->seg,
(uchar*) key_buff,key_len););
nextflag=myisam_read_vec[search_flag];
if (!(nextflag & (SEARCH_FIND | SEARCH_NO_FIND | SEARCH_LAST)))
key_len=USE_WHOLE_KEY;
/*
my_handler.c:ha_compare_text() has a flag 'skip_end_space'.
This is set in my_handler.c:ha_key_cmp() in dependence on the
compare flags 'nextflag' and the column type.
TEXT columns are of type HA_KEYTYPE_VARTEXT. In this case the
condition is skip_end_space= ((nextflag & (SEARCH_FIND |
SEARCH_UPDATE)) == SEARCH_FIND).
SEARCH_FIND is used for an exact key search. The combination
SEARCH_FIND | SEARCH_UPDATE is used in write/update/delete
operations with a comment like "Not real duplicates", whatever this
means. From the condition above we can see that 'skip_end_space' is
always false for these operations. The result is that trailing space
counts in key comparison and hence, emtpy strings ('', string length
zero, but not NULL) compare less that strings starting with control
characters and these in turn compare less than strings starting with
blanks.
When estimating the number of records in a key range, we request an
exact search for the minimum key. This translates into a plain
SEARCH_FIND flag. Using this alone would lead to a 'skip_end_space'
compare. Empty strings would be expected above control characters.
Their keys would not be found because they are located below control
characters.
This is the reason that we add the SEARCH_UPDATE flag here. It makes
the key estimation compare in the same way like key write operations
do. Olny so we will find the keys where they have been inserted.
Adding the flag unconditionally does not hurt as it is used in the
above mentioned condition only. So it can safely be used together
with other flags.
*/
pos=_mi_search_pos(info,keyinfo,key_buff,key_len,
nextflag | SEARCH_SAVE_BUFF | SEARCH_UPDATE,
info->s->state.key_root[inx]);
if (pos >= 0.0)
{
DBUG_PRINT("exit",("pos: %ld",(ulong) (pos*info->state->records)));
DBUG_RETURN((ulong) (pos*info->state->records+0.5));
}
DBUG_RETURN(HA_POS_ERROR);
}
/* This is a modified version of _mi_search */
/* Returns offset for key in indextable (decimal 0.0 <= x <= 1.0) */
static double _mi_search_pos(register MI_INFO *info,
register MI_KEYDEF *keyinfo,
uchar *key, uint key_len, uint nextflag,
register my_off_t pos)
{
int flag;
uint nod_flag,keynr,UNINIT_VAR(max_keynr);
my_bool after_key;
uchar *keypos,*buff;
double offset;
DBUG_ENTER("_mi_search_pos");
if (pos == HA_OFFSET_ERROR)
DBUG_RETURN(0.5);
if (!(buff=_mi_fetch_keypage(info,keyinfo,pos,DFLT_INIT_HITS,info->buff,1)))
goto err;
flag=(*keyinfo->bin_search)(info,keyinfo,buff,key,key_len,nextflag,
&keypos,info->lastkey, &after_key);
nod_flag=mi_test_if_nod(buff);
keynr=_mi_keynr(info,keyinfo,buff,keypos,&max_keynr);
if (flag)
{
if (flag == MI_FOUND_WRONG_KEY)
DBUG_RETURN(-1); /* error */
/*
Didn't found match. keypos points at next (bigger) key
Try to find a smaller, better matching key.
Matches keynr + [0-1]
*/
if (flag > 0 && ! nod_flag)
offset= 1.0;
else if ((offset=_mi_search_pos(info,keyinfo,key,key_len,nextflag,
_mi_kpos(nod_flag,keypos))) < 0)
DBUG_RETURN(offset);
}
else
{
/*
Found match. Keypos points at the start of the found key
Matches keynr+1
*/
offset=1.0; /* Matches keynr+1 */
if ((nextflag & SEARCH_FIND) && nod_flag &&
((keyinfo->flag & (HA_NOSAME | HA_NULL_PART)) != HA_NOSAME ||
key_len != USE_WHOLE_KEY))
{
/*
There may be identical keys in the tree. Try to match on of those.
Matches keynr + [0-1]
*/
if ((offset=_mi_search_pos(info,keyinfo,key,key_len,SEARCH_FIND,
_mi_kpos(nod_flag,keypos))) < 0)
DBUG_RETURN(offset); /* Read error */
}
}
DBUG_PRINT("info",("keynr: %d offset: %g max_keynr: %d nod: %d flag: %d",
keynr,offset,max_keynr,nod_flag,flag));
DBUG_RETURN((keynr+offset)/(max_keynr+1));
err:
DBUG_PRINT("exit",("Error: %d",my_errno));
DBUG_RETURN (-1.0);
}
/* Get keynummer of current key and max number of keys in nod */
static uint _mi_keynr(MI_INFO *info, register MI_KEYDEF *keyinfo, uchar *page,
uchar *keypos, uint *ret_max_key)
{
uint nod_flag,keynr,max_key;
uchar t_buff[MI_MAX_KEY_BUFF],*end;
end= page+mi_getint(page);
nod_flag=mi_test_if_nod(page);
page+=2+nod_flag;
if (!(keyinfo->flag & (HA_VAR_LENGTH_KEY | HA_BINARY_PACK_KEY)))
{
*ret_max_key= (uint) (end-page)/(keyinfo->keylength+nod_flag);
return (uint) (keypos-page)/(keyinfo->keylength+nod_flag);
}
max_key=keynr=0;
t_buff[0]=0; /* Safety */
while (page < end)
{
if (!(*keyinfo->get_key)(keyinfo,nod_flag,&page,t_buff))
return 0; /* Error */
max_key++;
if (page == keypos)
keynr=max_key;
}
*ret_max_key=max_key;
return(keynr);
}
|