1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
|
#ifdef __AVX2__
#include <stdio.h>
#include <stdint.h>
#include <x86intrin.h>
int utf8_naive(const unsigned char *data, int len);
#if 0
static void print256(const char *s, const __m256i v256)
{
const unsigned char *v8 = (const unsigned char *)&v256;
if (s)
printf("%s:\t", s);
for (int i = 0; i < 32; i++)
printf("%02x ", v8[i]);
printf("\n");
}
#endif
/*
* Map high nibble of "First Byte" to legal character length minus 1
* 0x00 ~ 0xBF --> 0
* 0xC0 ~ 0xDF --> 1
* 0xE0 ~ 0xEF --> 2
* 0xF0 ~ 0xFF --> 3
*/
static const int8_t _first_len_tbl[] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3,
};
/* Map "First Byte" to 8-th item of range table (0xC2 ~ 0xF4) */
static const int8_t _first_range_tbl[] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 8, 8, 8,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 8, 8, 8,
};
/*
* Range table, map range index to min and max values
* Index 0 : 00 ~ 7F (First Byte, ascii)
* Index 1,2,3: 80 ~ BF (Second, Third, Fourth Byte)
* Index 4 : A0 ~ BF (Second Byte after E0)
* Index 5 : 80 ~ 9F (Second Byte after ED)
* Index 6 : 90 ~ BF (Second Byte after F0)
* Index 7 : 80 ~ 8F (Second Byte after F4)
* Index 8 : C2 ~ F4 (First Byte, non ascii)
* Index 9~15 : illegal: i >= 127 && i <= -128
*/
static const int8_t _range_min_tbl[] = {
0x00, 0x80, 0x80, 0x80, 0xA0, 0x80, 0x90, 0x80,
0xC2, 0x7F, 0x7F, 0x7F, 0x7F, 0x7F, 0x7F, 0x7F,
0x00, 0x80, 0x80, 0x80, 0xA0, 0x80, 0x90, 0x80,
0xC2, 0x7F, 0x7F, 0x7F, 0x7F, 0x7F, 0x7F, 0x7F,
};
static const int8_t _range_max_tbl[] = {
0x7F, 0xBF, 0xBF, 0xBF, 0xBF, 0x9F, 0xBF, 0x8F,
0xF4, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
0x7F, 0xBF, 0xBF, 0xBF, 0xBF, 0x9F, 0xBF, 0x8F,
0xF4, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
};
/*
* Tables for fast handling of four special First Bytes(E0,ED,F0,F4), after
* which the Second Byte are not 80~BF. It contains "range index adjustment".
* +------------+---------------+------------------+----------------+
* | First Byte | original range| range adjustment | adjusted range |
* +------------+---------------+------------------+----------------+
* | E0 | 2 | 2 | 4 |
* +------------+---------------+------------------+----------------+
* | ED | 2 | 3 | 5 |
* +------------+---------------+------------------+----------------+
* | F0 | 3 | 3 | 6 |
* +------------+---------------+------------------+----------------+
* | F4 | 4 | 4 | 8 |
* +------------+---------------+------------------+----------------+
*/
/* index1 -> E0, index14 -> ED */
static const int8_t _df_ee_tbl[] = {
0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0,
0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0,
};
/* index1 -> F0, index5 -> F4 */
static const int8_t _ef_fe_tbl[] = {
0, 3, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 3, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
};
#define RET_ERR_IDX 0 /* Define 1 to return index of first error char */
static inline __m256i push_last_byte_of_a_to_b(__m256i a, __m256i b) {
return _mm256_alignr_epi8(b, _mm256_permute2x128_si256(a, b, 0x21), 15);
}
static inline __m256i push_last_2bytes_of_a_to_b(__m256i a, __m256i b) {
return _mm256_alignr_epi8(b, _mm256_permute2x128_si256(a, b, 0x21), 14);
}
static inline __m256i push_last_3bytes_of_a_to_b(__m256i a, __m256i b) {
return _mm256_alignr_epi8(b, _mm256_permute2x128_si256(a, b, 0x21), 13);
}
/* 5x faster than naive method */
/* Return 0 - success, -1 - error, >0 - first error char(if RET_ERR_IDX = 1) */
int utf8_range_avx2(const unsigned char *data, int len)
{
#if RET_ERR_IDX
int err_pos = 1;
#endif
if (len >= 32) {
__m256i prev_input = _mm256_set1_epi8(0);
__m256i prev_first_len = _mm256_set1_epi8(0);
/* Cached tables */
const __m256i first_len_tbl =
_mm256_loadu_si256((const __m256i *)_first_len_tbl);
const __m256i first_range_tbl =
_mm256_loadu_si256((const __m256i *)_first_range_tbl);
const __m256i range_min_tbl =
_mm256_loadu_si256((const __m256i *)_range_min_tbl);
const __m256i range_max_tbl =
_mm256_loadu_si256((const __m256i *)_range_max_tbl);
const __m256i df_ee_tbl =
_mm256_loadu_si256((const __m256i *)_df_ee_tbl);
const __m256i ef_fe_tbl =
_mm256_loadu_si256((const __m256i *)_ef_fe_tbl);
#if !RET_ERR_IDX
__m256i error1 = _mm256_set1_epi8(0);
__m256i error2 = _mm256_set1_epi8(0);
#endif
while (len >= 32) {
const __m256i input = _mm256_loadu_si256((const __m256i *)data);
/* high_nibbles = input >> 4 */
const __m256i high_nibbles =
_mm256_and_si256(_mm256_srli_epi16(input, 4), _mm256_set1_epi8(0x0F));
/* first_len = legal character length minus 1 */
/* 0 for 00~7F, 1 for C0~DF, 2 for E0~EF, 3 for F0~FF */
/* first_len = first_len_tbl[high_nibbles] */
__m256i first_len = _mm256_shuffle_epi8(first_len_tbl, high_nibbles);
/* First Byte: set range index to 8 for bytes within 0xC0 ~ 0xFF */
/* range = first_range_tbl[high_nibbles] */
__m256i range = _mm256_shuffle_epi8(first_range_tbl, high_nibbles);
/* Second Byte: set range index to first_len */
/* 0 for 00~7F, 1 for C0~DF, 2 for E0~EF, 3 for F0~FF */
/* range |= (first_len, prev_first_len) << 1 byte */
range = _mm256_or_si256(
range, push_last_byte_of_a_to_b(prev_first_len, first_len));
/* Third Byte: set range index to saturate_sub(first_len, 1) */
/* 0 for 00~7F, 0 for C0~DF, 1 for E0~EF, 2 for F0~FF */
__m256i tmp1, tmp2;
/* tmp1 = (first_len, prev_first_len) << 2 bytes */
tmp1 = push_last_2bytes_of_a_to_b(prev_first_len, first_len);
/* tmp2 = saturate_sub(tmp1, 1) */
tmp2 = _mm256_subs_epu8(tmp1, _mm256_set1_epi8(1));
/* range |= tmp2 */
range = _mm256_or_si256(range, tmp2);
/* Fourth Byte: set range index to saturate_sub(first_len, 2) */
/* 0 for 00~7F, 0 for C0~DF, 0 for E0~EF, 1 for F0~FF */
/* tmp1 = (first_len, prev_first_len) << 3 bytes */
tmp1 = push_last_3bytes_of_a_to_b(prev_first_len, first_len);
/* tmp2 = saturate_sub(tmp1, 2) */
tmp2 = _mm256_subs_epu8(tmp1, _mm256_set1_epi8(2));
/* range |= tmp2 */
range = _mm256_or_si256(range, tmp2);
/*
* Now we have below range indices caluclated
* Correct cases:
* - 8 for C0~FF
* - 3 for 1st byte after F0~FF
* - 2 for 1st byte after E0~EF or 2nd byte after F0~FF
* - 1 for 1st byte after C0~DF or 2nd byte after E0~EF or
* 3rd byte after F0~FF
* - 0 for others
* Error cases:
* 9,10,11 if non ascii First Byte overlaps
* E.g., F1 80 C2 90 --> 8 3 10 2, where 10 indicates error
*/
/* Adjust Second Byte range for special First Bytes(E0,ED,F0,F4) */
/* Overlaps lead to index 9~15, which are illegal in range table */
__m256i shift1, pos, range2;
/* shift1 = (input, prev_input) << 1 byte */
shift1 = push_last_byte_of_a_to_b(prev_input, input);
pos = _mm256_sub_epi8(shift1, _mm256_set1_epi8(0xEF));
/*
* shift1: | EF F0 ... FE | FF 00 ... ... DE | DF E0 ... EE |
* pos: | 0 1 15 | 16 17 239| 240 241 255|
* pos-240: | 0 0 0 | 0 0 0 | 0 1 15 |
* pos+112: | 112 113 127| >= 128 | >= 128 |
*/
tmp1 = _mm256_subs_epu8(pos, _mm256_set1_epi8(240));
range2 = _mm256_shuffle_epi8(df_ee_tbl, tmp1);
tmp2 = _mm256_adds_epu8(pos, _mm256_set1_epi8(112));
range2 = _mm256_add_epi8(range2, _mm256_shuffle_epi8(ef_fe_tbl, tmp2));
range = _mm256_add_epi8(range, range2);
/* Load min and max values per calculated range index */
__m256i minv = _mm256_shuffle_epi8(range_min_tbl, range);
__m256i maxv = _mm256_shuffle_epi8(range_max_tbl, range);
/* Check value range */
#if RET_ERR_IDX
__m256i error = _mm256_cmpgt_epi8(minv, input);
error = _mm256_or_si256(error, _mm256_cmpgt_epi8(input, maxv));
/* 5% performance drop from this conditional branch */
if (!_mm256_testz_si256(error, error))
break;
#else
error1 = _mm256_or_si256(error1, _mm256_cmpgt_epi8(minv, input));
error2 = _mm256_or_si256(error2, _mm256_cmpgt_epi8(input, maxv));
#endif
prev_input = input;
prev_first_len = first_len;
data += 32;
len -= 32;
#if RET_ERR_IDX
err_pos += 32;
#endif
}
#if RET_ERR_IDX
/* Error in first 16 bytes */
if (err_pos == 1)
goto do_naive;
#else
__m256i error = _mm256_or_si256(error1, error2);
if (!_mm256_testz_si256(error, error))
return -1;
#endif
/* Find previous token (not 80~BF) */
int32_t token4 = _mm256_extract_epi32(prev_input, 7);
const int8_t *token = (const int8_t *)&token4;
int lookahead = 0;
if (token[3] > (int8_t)0xBF)
lookahead = 1;
else if (token[2] > (int8_t)0xBF)
lookahead = 2;
else if (token[1] > (int8_t)0xBF)
lookahead = 3;
data -= lookahead;
len += lookahead;
#if RET_ERR_IDX
err_pos -= lookahead;
#endif
}
/* Check remaining bytes with naive method */
#if RET_ERR_IDX
int err_pos2;
do_naive:
err_pos2 = utf8_naive(data, len);
if (err_pos2)
return err_pos + err_pos2 - 1;
return 0;
#else
return utf8_naive(data, len);
#endif
}
#endif
|