1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
|
#ifdef __aarch64__
#include <stdio.h>
#include <stdint.h>
#include <arm_neon.h>
int utf8_naive(const unsigned char *data, int len);
#if 0
static void print128(const char *s, const uint8x16_t v128)
{
unsigned char v8[16];
vst1q_u8(v8, v128);
if (s)
printf("%s:\t", s);
for (int i = 0; i < 16; ++i)
printf("%02x ", v8[i]);
printf("\n");
}
#endif
/*
* Map high nibble of "First Byte" to legal character length minus 1
* 0x00 ~ 0xBF --> 0
* 0xC0 ~ 0xDF --> 1
* 0xE0 ~ 0xEF --> 2
* 0xF0 ~ 0xFF --> 3
*/
static const uint8_t _first_len_tbl[] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3,
};
/* Map "First Byte" to 8-th item of range table (0xC2 ~ 0xF4) */
static const uint8_t _first_range_tbl[] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 8, 8, 8,
};
/*
* Range table, map range index to min and max values
* Index 0 : 00 ~ 7F (First Byte, ascii)
* Index 1,2,3: 80 ~ BF (Second, Third, Fourth Byte)
* Index 4 : A0 ~ BF (Second Byte after E0)
* Index 5 : 80 ~ 9F (Second Byte after ED)
* Index 6 : 90 ~ BF (Second Byte after F0)
* Index 7 : 80 ~ 8F (Second Byte after F4)
* Index 8 : C2 ~ F4 (First Byte, non ascii)
* Index 9~15 : illegal: u >= 255 && u <= 0
*/
static const uint8_t _range_min_tbl[] = {
0x00, 0x80, 0x80, 0x80, 0xA0, 0x80, 0x90, 0x80,
0xC2, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
};
static const uint8_t _range_max_tbl[] = {
0x7F, 0xBF, 0xBF, 0xBF, 0xBF, 0x9F, 0xBF, 0x8F,
0xF4, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
};
/*
* This table is for fast handling four special First Bytes(E0,ED,F0,F4), after
* which the Second Byte are not 80~BF. It contains "range index adjustment".
* - The idea is to minus byte with E0, use the result(0~31) as the index to
* lookup the "range index adjustment". Then add the adjustment to original
* range index to get the correct range.
* - Range index adjustment
* +------------+---------------+------------------+----------------+
* | First Byte | original range| range adjustment | adjusted range |
* +------------+---------------+------------------+----------------+
* | E0 | 2 | 2 | 4 |
* +------------+---------------+------------------+----------------+
* | ED | 2 | 3 | 5 |
* +------------+---------------+------------------+----------------+
* | F0 | 3 | 3 | 6 |
* +------------+---------------+------------------+----------------+
* | F4 | 4 | 4 | 8 |
* +------------+---------------+------------------+----------------+
* - Below is a uint8x16x2 table, data is interleaved in NEON register. So I'm
* putting it vertically. 1st column is for E0~EF, 2nd column for F0~FF.
*/
static const uint8_t _range_adjust_tbl[] = {
/* index -> 0~15 16~31 <- index */
/* E0 -> */ 2, 3, /* <- F0 */
0, 0,
0, 0,
0, 0,
0, 4, /* <- F4 */
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
/* ED -> */ 3, 0,
0, 0,
0, 0,
};
/* 2x ~ 4x faster than naive method */
/* Return 0 on success, -1 on error */
int utf8_range(const unsigned char *data, int len)
{
if (len >= 16) {
uint8x16_t prev_input = vdupq_n_u8(0);
uint8x16_t prev_first_len = vdupq_n_u8(0);
/* Cached tables */
const uint8x16_t first_len_tbl = vld1q_u8(_first_len_tbl);
const uint8x16_t first_range_tbl = vld1q_u8(_first_range_tbl);
const uint8x16_t range_min_tbl = vld1q_u8(_range_min_tbl);
const uint8x16_t range_max_tbl = vld1q_u8(_range_max_tbl);
const uint8x16x2_t range_adjust_tbl = vld2q_u8(_range_adjust_tbl);
/* Cached values */
const uint8x16_t const_1 = vdupq_n_u8(1);
const uint8x16_t const_2 = vdupq_n_u8(2);
const uint8x16_t const_e0 = vdupq_n_u8(0xE0);
/* We use two error registers to remove a dependency. */
uint8x16_t error1 = vdupq_n_u8(0);
uint8x16_t error2 = vdupq_n_u8(0);
while (len >= 16) {
const uint8x16_t input = vld1q_u8(data);
/* high_nibbles = input >> 4 */
const uint8x16_t high_nibbles = vshrq_n_u8(input, 4);
/* first_len = legal character length minus 1 */
/* 0 for 00~7F, 1 for C0~DF, 2 for E0~EF, 3 for F0~FF */
/* first_len = first_len_tbl[high_nibbles] */
const uint8x16_t first_len =
vqtbl1q_u8(first_len_tbl, high_nibbles);
/* First Byte: set range index to 8 for bytes within 0xC0 ~ 0xFF */
/* range = first_range_tbl[high_nibbles] */
uint8x16_t range = vqtbl1q_u8(first_range_tbl, high_nibbles);
/* Second Byte: set range index to first_len */
/* 0 for 00~7F, 1 for C0~DF, 2 for E0~EF, 3 for F0~FF */
/* range |= (first_len, prev_first_len) << 1 byte */
range =
vorrq_u8(range, vextq_u8(prev_first_len, first_len, 15));
/* Third Byte: set range index to saturate_sub(first_len, 1) */
/* 0 for 00~7F, 0 for C0~DF, 1 for E0~EF, 2 for F0~FF */
uint8x16_t tmp1, tmp2;
/* tmp1 = (first_len, prev_first_len) << 2 bytes */
tmp1 = vextq_u8(prev_first_len, first_len, 14);
/* tmp1 = saturate_sub(tmp1, 1) */
tmp1 = vqsubq_u8(tmp1, const_1);
/* range |= tmp1 */
range = vorrq_u8(range, tmp1);
/* Fourth Byte: set range index to saturate_sub(first_len, 2) */
/* 0 for 00~7F, 0 for C0~DF, 0 for E0~EF, 1 for F0~FF */
/* tmp2 = (first_len, prev_first_len) << 3 bytes */
tmp2 = vextq_u8(prev_first_len, first_len, 13);
/* tmp2 = saturate_sub(tmp2, 2) */
tmp2 = vqsubq_u8(tmp2, const_2);
/* range |= tmp2 */
range = vorrq_u8(range, tmp2);
/*
* Now we have below range indices caluclated
* Correct cases:
* - 8 for C0~FF
* - 3 for 1st byte after F0~FF
* - 2 for 1st byte after E0~EF or 2nd byte after F0~FF
* - 1 for 1st byte after C0~DF or 2nd byte after E0~EF or
* 3rd byte after F0~FF
* - 0 for others
* Error cases:
* 9,10,11 if non ascii First Byte overlaps
* E.g., F1 80 C2 90 --> 8 3 10 2, where 10 indicates error
*/
/* Adjust Second Byte range for special First Bytes(E0,ED,F0,F4) */
/* See _range_adjust_tbl[] definition for details */
/* Overlaps lead to index 9~15, which are illegal in range table */
uint8x16_t shift1 = vextq_u8(prev_input, input, 15);
uint8x16_t pos = vsubq_u8(shift1, const_e0);
range = vaddq_u8(range, vqtbl2q_u8(range_adjust_tbl, pos));
/* Load min and max values per calculated range index */
uint8x16_t minv = vqtbl1q_u8(range_min_tbl, range);
uint8x16_t maxv = vqtbl1q_u8(range_max_tbl, range);
/* Check value range */
error1 = vorrq_u8(error1, vcltq_u8(input, minv));
error2 = vorrq_u8(error2, vcgtq_u8(input, maxv));
prev_input = input;
prev_first_len = first_len;
data += 16;
len -= 16;
}
/* Merge our error counters together */
error1 = vorrq_u8(error1, error2);
/* Delay error check till loop ends */
if (vmaxvq_u8(error1))
return -1;
/* Find previous token (not 80~BF) */
uint32_t token4;
vst1q_lane_u32(&token4, vreinterpretq_u32_u8(prev_input), 3);
const int8_t *token = (const int8_t *)&token4;
int lookahead = 0;
if (token[3] > (int8_t)0xBF)
lookahead = 1;
else if (token[2] > (int8_t)0xBF)
lookahead = 2;
else if (token[1] > (int8_t)0xBF)
lookahead = 3;
data -= lookahead;
len += lookahead;
}
/* Check remaining bytes with naive method */
return utf8_naive(data, len);
}
#endif
|