1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
|
/*
* Copyright (c) 2015, 2025, Oracle and/or its affiliates.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2.0,
* as published by the Free Software Foundation.
*
* This program is designed to work with certain software (including
* but not limited to OpenSSL) that is licensed under separate terms,
* as designated in a particular file or component or in included license
* documentation. The authors of MySQL hereby grant you an additional
* permission to link the program and your derivative works with the
* separately licensed software that they have either included with
* the program or referenced in the documentation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License, version 2.0, for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/** @page mysqlx_protocol_use_cases Use Cases
Topics in this section:
- @ref use_cases_Prepared_Statements_with_Single_Round_Trip
- @ref use_cases_Streaming_Inserts
- @ref use_cases_SQL_with_Multiple_Resultsets
- @ref use_cases_Inserting_CRUD_Data_in_a_Batch
- @ref use_cases_Cross_Collection_Update_and_Delete
Prepared Statements with Single Round-Trip {#use_cases_Prepared_Statements_with_Single_Round_Trip}
==========================================
In the MySQL Client/Server %Protocol, a ``PREPARE``/``EXECUTE`` cycle
required two round-trips as the ``COM_STMT_EXECUTE`` requires data from
the ``COM_STMT_PREPARE-ok`` packet.
@startuml "Single Round-Trip"
group tcp packet
Client -> Server: COM_STMT_PREPARE(...)
end
group tcp packet
Server --> Client: COM_STMT_PREPARE-ok(**stmt_id=1**)
end
group tcp packet
Client -> Server: COM_STMT_EXECUTE(**stmt_id=1**)
end
group tcp packet
Server --> Client: Resultset
end
@enduml
The X %Protocol is designed in a way that the ``EXECUTE`` stage
doesn't depend on the response of the ``PREPARE`` stage.
@startuml "Without PREPARE Stage Dependency"
group tcp packet
Client -> Server: Sql.PrepareStmt(**stmt_id=1**, ...)
end
group tcp packet
Server --> Client: Sql.PreparedStmtOk
end
group tcp packet
Client -> Server: Sql.PreparedStmtExecute(**stmt_id=1**, ...)
end
group tcp packet
Server --> Client: Sql.PreparedStmtExecuteOk
end
@enduml
That allows the client to send both ``PREPARE`` and ``EXECUTE`` after
each other without waiting for the server's response.
@startuml "Without Server Response"
group tcp packet
Client -> Server: Sql.PrepareStmt(**stmt_id=1**, ...)
Client -> Server: Sql.PreparedStmtExecute(**stmt_id=1**, ...)
end
group tcp packet
Server --> Client: Sql.PreparedStmtOk
Server --> Client: Sql.PreparedStmtExecuteOk
end
@enduml
@note
See the @ref mysqlx_protocol_implementation
"Implementation Notes" about how to efficiently implement pipelining.
Streaming Inserts {#use_cases_Streaming_Inserts}
=================
When inserting a large set of data (data import), make a trade-off
among:
- memory usage on client and server side
- network round-trips
- error reporting
For this example it is assumed that 1 million rows, each 1024 bytes in
size have to be transferred to the server.
**Optimizing for Network Round-Trips**
(Assuming the MySQL Client/Server %Protocol in this case) Network
round-trips can be minimized by creating a huge SQL statements of up to
1Gbyte in chunks of 16Mbyte (the protocol's maximum frame size) and
sending it over the wire and letting the server execute it.
@code{sql}
INSERT INTO tbl VALUES
( 1, "foo", "bar" ),
( 2, "baz", "fuz" ),
...;
@endcode
In this case:
- the client can generate the SQL statement in chunks of 16Mbyte and
write them to the network
- *(memory usage)* the server waits until the full 1GByte is received
- *(execution delay)* before it can start parsing and executing it
- *(error-reporting)* in case an error (parse-error, duplicate key
error, ...) the whole 1Gbyte message will be denied without any good
way to know where the error in that big message happened
The *Execution Time* for inserting all rows in one batch is:
@code{unparsed}
1 * RTT +
(num_rows * Row Size / Network Bandwidth) +
num_rows * Row Parse Time +
num_rows * Row Execution Time
@endcode
**Optimizing for Memory Usage and Error-Reporting**
The other extreme is using single row ``INSERT`` statements:
@code{sql}
INSERT INTO tbl VALUES
( 1, "foo", "bar" );
INSERT INTO tbl VALUES
( 2, "baz", "fuz" );
...
@endcode
- client can generate statements as it receives data
- streams it to the server
- *(execution delay)* server starts executing statements as soon as it
receives the first row
- *(memory usage)* server only has to buffer a single row
- *(error-reporting)* if inserting one row fails, the client knows
about it when it happens
- as each statement results in its own round-trip, the network-latency
is applied for each row instead of once
- each statement has to be parsed and executed in the server
Using Prepared Statements solves the last bullet point:
@startuml "Optimization for Memory"
Client -> Server: prepare("INSERT INTO tbl VALUES (?, ?, ?)")
Server --> Client: ok(stmt=1)
Client -> Server: execute(1, [1, "foo", "bar"])
Server --> Client: ok
Client -> Server: execute(1, [2, "baz", "fuz"])
Server --> Client: ok
@enduml
The *Execution Time* for inserting all rows using prepared statements
and the MySQL Client/Server %Protocol is:
@code{unparsed}
num_rows * RTT +
(num_rows * Row Size / Network Bandwidth) +
1 * Row Parse Time +
num_rows * Row Execution Time
@endcode
**Optimizing for Execution Time and Error-Reporting**
In the X %Protocol, a pipeline can be used to stream messages to the
server while the server is executing the previous message.
@startuml "Optimization for Execution"
group tcp packet
Client -> Server: Sql.PrepareStmt(stmt_id=1, ...)
Client -> Server: Sql.PreparedStmtExecute(stmt_id=1, values= [ .. ])
Client -> Server: Sql.PreparedStmtExecute(stmt_id=1, values= [ .. ])
Client -> Server: Sql.PreparedStmtExecute(stmt_id=1, values= [ .. ])
end
note over Client, Server
data too large to be merged into one TCP packet
end note
group tcp packet
Server --> Client: Sql.PreparedStmtOk
Server --> Client: Sql.PreparedStmtExecuteOk
Server --> Client: Sql.PreparedStmtExecuteOk
end
group tcp packet
Client -> Server: Sql.PreparedStmtExecute(stmt_id=1, values= [ .. ])
Client -> Server: Sql.PreparedStmtExecute(stmt_id=1, values= [ .. ])
end
group tcp packet
Server --> Client: Sql.PreparedStmtExecuteOk
Server --> Client: Sql.PreparedStmtExecuteOk
Server --> Client: Sql.PreparedStmtExecuteOk
end
@enduml
The *Execution Time* for inserting all rows using prepared statements
and using pipelining is (assuming that the network is not saturated):
@code{unparsed}
1 * RTT +
(1 * Row Size / Network Bandwidth) +
1 * Row Parse Time +
num_rows * Row Execution Time
@endcode
- ``one`` *network latency* to get the initial ``prepare``/``execute``
across the wire
- ``one`` *network bandwith* to get the initial ``prepare``/``execute``
across the wire. All further commands arrive at the server before the
executor needs them thanks to pipelining.
- ``one`` *row parse time* to parse the ``prepare``
- ``num_rows`` *row execution time* stays as before
In case *error reporting* isn't a major topic one can combine
``multi-row INSERT`` with pipelining and reduce the per-row network
overhead. This is important in case the network is saturated.
SQL with Multiple Resultsets {#use_cases_SQL_with_Multiple_Resultsets}
============================
@startuml "Multiple Resultsets"
group prepare
Client -> Server: Sql.PrepareStmt(stmt_id=1, "CALL multi_resultset_sp()")
Server --> Client: Sql.PrepareStmtOk()
end
group execute
Client -> Server: Sql.PreparedStmtExecute(stmt_id=1, cursor_id=1)
Server --> Client: Sql.PreparedStmtExecuteOk()
end
group fetch rows
Client -> Server: Cursor::FetchResultset(cursor_id=1)
Server --> Client: Resultset::ColumnMetaData
Server --> Client: Resultset::Row
Server --> Client: Resultset::Row
Server --> Client: Resultset::DoneMoreResultsets
end
group fetch last resultset
Client -> Server: Cursor::FetchResultset(cursor_id=1)
Server --> Client: Resultset::ColumnMetaData
Server --> Client: Resultset::Row
Server --> Client: Resultset::Row
Server --> Client: Resultset::Done
end
group close cursor
Client -> Server: Cursor::Close(cursor_id=1)
Server --> Client: Cursor::Ok
end
@enduml
Inserting CRUD Data in a Batch {#use_cases_Inserting_CRUD_Data_in_a_Batch}
==============================
Inserting multiple documents into a collection ``col1`` is a two-step
process:.
1. prepare the insert
2. pipeline the execute messages
@startuml "Batch
Client -> Server: Crud::PrepareInsert(stmt_id=1, Collection(name="col1"))
Server --> Client: PreparedStmt::PrepareOk
loop
Client -> Server: PreparedStmt::Execute(stmt_id=1, values=[ doc ])
Server --> Client: PreparedStmt::ExecuteOk
end loop
Client -> Server: PreparedStmt::Close(stmt_id=1)
Server --> Client: PreparedStmt::CloseOk
@enduml
By utilizing pipelining the ``execute`` message can be batched without
waiting for the corresponding ``executeOk`` message to be returned.
Cross-Collection Update and Delete {#use_cases_Cross_Collection_Update_and_Delete}
==================================
Deleting documents from collection ``col2`` based on data from
collection ``col1``.
Instead of fetching all rows from ``col1`` first to construct a big
``delete`` message it can also be run in nested loop:
@code{unparsed}
Crud.PrepareDelete(stmt_id=2, Collection(name="col2"), filter={ id=? })
Crud.PrepareFind(stmt_id=1, Collection(name="col1"), filter={ ... })
Sql.PreparedStmtExecute(stmt_id=1, cursor_id=2)
while ((rows = Sql.CursorFetch(cursor_id=2))):
Sql.PreparedStmtExecute(stmt_id=2, values = [ rows.col2_id ])
Sql.PreparedStmtClose(stmt_id=2)
Sql.PreparedStmtClose(stmt_id=1)
@endcode
@startuml "Update and Delete"
Client -> Server: Crud::PrepareFind(stmt_id=1, filter=...)
Client -> Server: Crud::PrepareDelete(stmt_id=2, filter={ id=? })
Server --> Client: PrepareStmt::PrepareOk
Server --> Client: PrepareStmt::PrepareOk
Client -> Server: PreparedStmt::ExecuteIntoCursor(stmt_id=1, cursor_id=2)
Server --> Client: PreparedStmt:::ExecuteOk
Client -> Server: Cursor::FetchResultset(cursor_id=2, limit=batch_size)
loop batch_size
Server --> Client: Resultset::Row
Client -> Server: PreparedStmt::Execute(stmt_id=2, values=[ ? ])
break
alt
Server --> Client: Resultset::Suspended
else
Server --> Client: Resultset::Done
end alt
end break
end loop
loop batch_size
Server --> Client: PreparedStmt::ExecuteOk
end loop
@enduml
*/
|