1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
|
/* Copyright (c) 2015, 2025, Oracle and/or its affiliates.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is designed to work with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have either included with
the program or referenced in the documentation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
#include "sql-common/json_binary.h"
#include <string.h>
#include <algorithm> // std::min
#include <cassert>
#include <map>
#include <memory>
#include <string>
#include <utility>
#include "m_ctype.h"
#include "my_byteorder.h"
#include "my_sys.h"
#include "mysqld_error.h"
#ifdef MYSQL_SERVER
#include "sql/check_stack.h"
#endif
#include "sql-common/json_dom.h" // Json_dom
#include "sql-common/json_syntax_check.h"
#include "sql/field.h" // Field_json
#include "sql/sql_class.h" // THD
#include "sql/sql_const.h"
#include "sql/system_variables.h"
#include "sql/table.h" // TABLE::add_binary_diff()
#include "sql_string.h"
#include "template_utils.h" // down_cast
namespace {
constexpr char JSONB_TYPE_SMALL_OBJECT = 0x0;
constexpr char JSONB_TYPE_LARGE_OBJECT = 0x1;
constexpr char JSONB_TYPE_SMALL_ARRAY = 0x2;
constexpr char JSONB_TYPE_LARGE_ARRAY = 0x3;
constexpr char JSONB_TYPE_LITERAL = 0x4;
constexpr char JSONB_TYPE_INT16 = 0x5;
constexpr char JSONB_TYPE_UINT16 = 0x6;
constexpr char JSONB_TYPE_INT32 = 0x7;
constexpr char JSONB_TYPE_UINT32 = 0x8;
constexpr char JSONB_TYPE_INT64 = 0x9;
constexpr char JSONB_TYPE_UINT64 = 0xA;
constexpr char JSONB_TYPE_DOUBLE = 0xB;
constexpr char JSONB_TYPE_STRING = 0xC;
constexpr char JSONB_TYPE_OPAQUE = 0xF;
constexpr char JSONB_NULL_LITERAL = 0x0;
constexpr char JSONB_TRUE_LITERAL = 0x1;
constexpr char JSONB_FALSE_LITERAL = 0x2;
/*
The size of offset or size fields in the small and the large storage
format for JSON objects and JSON arrays.
*/
constexpr uint8 SMALL_OFFSET_SIZE = 2;
constexpr uint8 LARGE_OFFSET_SIZE = 4;
/*
The size of key entries for objects when using the small storage
format or the large storage format. In the small format it is 4
bytes (2 bytes for key length and 2 bytes for key offset). In the
large format it is 6 (2 bytes for length, 4 bytes for offset).
*/
constexpr uint8 KEY_ENTRY_SIZE_SMALL = 2 + SMALL_OFFSET_SIZE;
constexpr uint8 KEY_ENTRY_SIZE_LARGE = 2 + LARGE_OFFSET_SIZE;
/*
The size of value entries for objects or arrays. When using the
small storage format, the entry size is 3 (1 byte for type, 2 bytes
for offset). When using the large storage format, it is 5 (1 byte
for type, 4 bytes for offset).
*/
constexpr uint8 VALUE_ENTRY_SIZE_SMALL = 1 + SMALL_OFFSET_SIZE;
constexpr uint8 VALUE_ENTRY_SIZE_LARGE = 1 + LARGE_OFFSET_SIZE;
} // namespace
namespace json_binary {
/// Status codes for JSON serialization.
enum enum_serialization_result {
/**
Success. The JSON value was successfully serialized.
*/
OK,
/**
The JSON value was too big to be serialized. If this status code
is returned, and the small storage format is in use, the caller
should retry the serialization with the large storage format. If
this status code is returned, and the large format is in use,
my_error() will already have been called.
*/
VALUE_TOO_BIG,
/**
Some other error occurred. my_error() will have been called with
more specific information about the failure.
*/
FAILURE
};
#ifdef MYSQL_SERVER
static enum_serialization_result serialize_json_value(
const THD *thd, const Json_dom *dom, size_t type_pos, String *dest,
size_t depth, bool small_parent);
static void write_offset_or_size(char *dest, size_t offset_or_size, bool large);
#endif // ifdef MYSQL_SERVER
static uint8 offset_size(bool large);
#ifdef MYSQL_SERVER
bool serialize(const THD *thd, const Json_dom *dom, String *dest) {
// Reset the destination buffer.
dest->length(0);
dest->set_charset(&my_charset_bin);
// Reserve space (one byte) for the type identifier.
if (dest->append('\0')) return true; /* purecov: inspected */
return serialize_json_value(thd, dom, 0, dest, 0, false) != OK;
}
/**
Reserve space for the given amount of extra bytes at the end of a
String buffer. If the String needs to allocate more memory, it will
grow by at least 50%, to avoid frequent reallocations.
*/
static bool reserve(String *buffer, size_t bytes_needed) {
return buffer->reserve(bytes_needed, buffer->length() / 2);
}
/** Encode a 16-bit int at the end of the destination string. */
static bool append_int16(String *dest, int16 value) {
if (reserve(dest, sizeof(value))) return true; /* purecov: inspected */
int2store(dest->ptr() + dest->length(), value);
dest->length(dest->length() + sizeof(value));
return false;
}
/** Encode a 32-bit int at the end of the destination string. */
static bool append_int32(String *dest, int32 value) {
if (reserve(dest, sizeof(value))) return true; /* purecov: inspected */
int4store(dest->ptr() + dest->length(), value);
dest->length(dest->length() + sizeof(value));
return false;
}
/** Encode a 64-bit int at the end of the destination string. */
static bool append_int64(String *dest, int64 value) {
if (reserve(dest, sizeof(value))) return true; /* purecov: inspected */
int8store(dest->ptr() + dest->length(), value);
dest->length(dest->length() + sizeof(value));
return false;
}
/**
Append an offset or a size to a String.
@param dest the destination String
@param offset_or_size the offset or size to append
@param large if true, use the large storage format (4 bytes);
otherwise, use the small storage format (2 bytes)
@return false if successfully appended, true otherwise
*/
static bool append_offset_or_size(String *dest, size_t offset_or_size,
bool large) {
if (large)
return append_int32(dest, static_cast<int32>(offset_or_size));
else
return append_int16(dest, static_cast<int16>(offset_or_size));
}
/**
Insert an offset or a size at the specified position in a String. It
is assumed that the String has already allocated enough space to
hold the value.
@param dest the destination String
@param pos the position in the String
@param offset_or_size the offset or size to append
@param large if true, use the large storage format (4 bytes);
otherwise, use the small storage format (2 bytes)
*/
static void insert_offset_or_size(String *dest, size_t pos,
size_t offset_or_size, bool large) {
assert(pos + offset_size(large) <= dest->alloced_length());
write_offset_or_size(dest->ptr() + pos, offset_or_size, large);
}
/**
Write an offset or a size to a char array. The char array is assumed to be
large enough to hold an offset or size value.
@param dest the array to write to
@param offset_or_size the offset or size to write
@param large if true, use the large storage format
*/
static void write_offset_or_size(char *dest, size_t offset_or_size,
bool large) {
if (large)
int4store(dest, static_cast<uint32>(offset_or_size));
else
int2store(dest, static_cast<uint16>(offset_or_size));
}
/**
Check if the size of a document exceeds the maximum JSON binary size
(4 GB, aka UINT_MAX32). Raise an error if it is too big.
@param size the size of the document
@return true if the document is too big, false otherwise
*/
static bool check_document_size(size_t size) {
if (size > UINT_MAX32) {
/* purecov: begin inspected */
my_error(ER_JSON_VALUE_TOO_BIG, MYF(0));
return true;
/* purecov: end */
}
return false;
}
/**
Append a length to a String. The number of bytes used to store the length
uses a variable number of bytes depending on how large the length is. If the
highest bit in a byte is 1, then the length is continued on the next byte.
The least significant bits are stored in the first byte.
@param dest the destination String
@param length the length to write
@return false on success, true on error
*/
static bool append_variable_length(String *dest, size_t length) {
do {
// Filter out the seven least significant bits of length.
uchar ch = (length & 0x7F);
/*
Right-shift length to drop the seven least significant bits. If there
is more data in length, set the high bit of the byte we're writing
to the String.
*/
length >>= 7;
if (length != 0) ch |= 0x80;
if (dest->append(ch)) return true; /* purecov: inspected */
} while (length != 0);
if (check_document_size(dest->length() + length))
return true; /* purecov: inspected */
// Successfully appended the length.
return false;
}
#endif // ifdef MYSQL_SERVER
/**
Read a variable length written by append_variable_length().
@param[in] data the buffer to read from
@param[in] data_length the maximum number of bytes to read from data
@param[out] length the length that was read
@param[out] num the number of bytes needed to represent the length
@return false on success, true if the variable length field is ill-formed
*/
static bool read_variable_length(const char *data, size_t data_length,
uint32 *length, uint8 *num) {
/*
It takes five bytes to represent UINT_MAX32, which is the largest
supported length, so don't look any further.
*/
const size_t max_bytes = std::min(data_length, static_cast<size_t>(5));
size_t len = 0;
for (size_t i = 0; i < max_bytes; i++) {
// Get the next 7 bits of the length.
len |= (data[i] & 0x7f) << (7 * i);
if ((data[i] & 0x80) == 0) {
// The length shouldn't exceed 32 bits.
if (len > UINT_MAX32) return true; /* purecov: inspected */
// This was the last byte. Return successfully.
*num = static_cast<uint8>(i + 1);
*length = static_cast<uint32>(len);
return false;
}
}
// No more available bytes. Return true to signal error.
return true; /* purecov: inspected */
}
/**
Check if the specified offset or size is too big to store in the
binary JSON format.
If the small storage format is used, the caller is expected to retry
serialization in the large storage format, so no error is generated
if the offset or size is too big. If the large storage format is
used, an error will be generated if the offset or size is too big.
@param offset_or_size the offset or size to check
@param large if true, we are using the large storage format
for JSON arrays and objects, which allows offsets and sizes that
fit in a uint32; otherwise, we are using the small storage format,
which allow offsets and sizes that fit in a uint16.
@return true if offset_or_size is too big for the format, false
otherwise
*/
#ifdef MYSQL_SERVER
static bool is_too_big_for_json(size_t offset_or_size, bool large) {
if (offset_or_size > UINT_MAX16) {
if (!large) return true;
return check_document_size(offset_or_size);
}
return false;
}
/**
Append all the key entries of a JSON object to a destination string.
The key entries are just a series of offset/length pairs that point
to where the actual key names are stored.
@param[in] object the JSON object
@param[out] dest the destination string
@param[in] offset the offset of the first key
@param[in] large if true, the large storage format will be used
@return serialization status
*/
static enum_serialization_result append_key_entries(const Json_object *object,
String *dest, size_t offset,
bool large) {
#ifndef NDEBUG
const std::string *prev_key = nullptr;
#endif
// Add the key entries.
for (Json_object::const_iterator it = object->begin(); it != object->end();
++it) {
const std::string *key = &it->first;
size_t len = key->length();
#ifndef NDEBUG
// Check that the DOM returns the keys in the correct order.
if (prev_key) {
assert(prev_key->length() <= len);
if (len == prev_key->length())
assert(memcmp(prev_key->data(), key->data(), len) < 0);
}
prev_key = key;
#endif
// We only have two bytes for the key size. Check if the key is too big.
if (len > UINT_MAX16) {
my_error(ER_JSON_KEY_TOO_BIG, MYF(0));
return FAILURE;
}
if (is_too_big_for_json(offset, large))
return VALUE_TOO_BIG; /* purecov: inspected */
if (append_offset_or_size(dest, offset, large) ||
append_int16(dest, static_cast<int16>(len)))
return FAILURE; /* purecov: inspected */
offset += len;
}
return OK;
}
#endif // ifdef MYSQL_SERVER
/**
Will a value of the specified type be inlined?
@param type the type to check
@param large true if the large storage format is used
@return true if the value will be inlined
*/
static bool inlined_type(uint8 type, bool large) {
switch (type) {
case JSONB_TYPE_LITERAL:
case JSONB_TYPE_INT16:
case JSONB_TYPE_UINT16:
return true;
case JSONB_TYPE_INT32:
case JSONB_TYPE_UINT32:
return large;
default:
return false;
}
}
/**
Get the size of an offset value.
@param large true if the large storage format is used
@return the size of an offset
*/
static uint8 offset_size(bool large) {
return large ? LARGE_OFFSET_SIZE : SMALL_OFFSET_SIZE;
}
/**
Get the size of a key entry.
@param large true if the large storage format is used
@return the size of a key entry
*/
static uint8 key_entry_size(bool large) {
return large ? KEY_ENTRY_SIZE_LARGE : KEY_ENTRY_SIZE_SMALL;
}
/**
Get the size of a value entry.
@param large true if the large storage format is used
@return the size of a value entry
*/
static uint8 value_entry_size(bool large) {
return large ? VALUE_ENTRY_SIZE_LARGE : VALUE_ENTRY_SIZE_SMALL;
}
/**
Attempt to inline a value in its value entry at the beginning of an
object or an array. This function assumes that the destination
string has already allocated enough space to hold the inlined value.
@param[in] value the JSON value
@param[out] dest the destination string
@param[in] pos the offset where the value should be inlined
@param[in] large true if the large storage format is used
@return true if the value was inlined, false if it was not
*/
#ifdef MYSQL_SERVER
static bool attempt_inline_value(const Json_dom *value, String *dest,
size_t pos, bool large) {
int32 inlined_val;
char inlined_type;
switch (value->json_type()) {
case enum_json_type::J_NULL:
inlined_val = JSONB_NULL_LITERAL;
inlined_type = JSONB_TYPE_LITERAL;
break;
case enum_json_type::J_BOOLEAN:
inlined_val = down_cast<const Json_boolean *>(value)->value()
? JSONB_TRUE_LITERAL
: JSONB_FALSE_LITERAL;
inlined_type = JSONB_TYPE_LITERAL;
break;
case enum_json_type::J_INT: {
const Json_int *i = down_cast<const Json_int *>(value);
if (!i->is_16bit() && !(large && i->is_32bit()))
return false; // cannot inline this value
inlined_val = static_cast<int32>(i->value());
inlined_type = i->is_16bit() ? JSONB_TYPE_INT16 : JSONB_TYPE_INT32;
break;
}
case enum_json_type::J_UINT: {
const Json_uint *i = down_cast<const Json_uint *>(value);
if (!i->is_16bit() && !(large && i->is_32bit()))
return false; // cannot inline this value
inlined_val = static_cast<int32>(i->value());
inlined_type = i->is_16bit() ? JSONB_TYPE_UINT16 : JSONB_TYPE_UINT32;
break;
}
default:
return false; // cannot inline value of this type
}
(*dest)[pos] = inlined_type;
insert_offset_or_size(dest, pos + 1, inlined_val, large);
return true;
}
/**
Serialize a JSON array at the end of the destination string.
@param thd THD handle
@param array the JSON array to serialize
@param dest the destination string
@param large if true, the large storage format will be used
@param depth the current nesting level
@return serialization status
*/
static enum_serialization_result serialize_json_array(const THD *thd,
const Json_array *array,
String *dest, bool large,
size_t depth) {
if (check_stack_overrun(thd, STACK_MIN_SIZE, nullptr))
return FAILURE; /* purecov: inspected */
const size_t start_pos = dest->length();
const size_t size = array->size();
if (check_json_depth(++depth, JsonDocumentDefaultDepthHandler)) {
return FAILURE;
}
if (is_too_big_for_json(size, large)) return VALUE_TOO_BIG;
// First write the number of elements in the array.
if (append_offset_or_size(dest, size, large))
return FAILURE; /* purecov: inspected */
// Reserve space for the size of the array in bytes. To be filled in later.
const size_t size_pos = dest->length();
if (append_offset_or_size(dest, 0, large))
return FAILURE; /* purecov: inspected */
size_t entry_pos = dest->length();
// Reserve space for the value entries at the beginning of the array.
const auto entry_size = value_entry_size(large);
if (dest->fill(dest->length() + size * entry_size, 0))
return FAILURE; /* purecov: inspected */
for (const auto &child : *array) {
const Json_dom *elt = child.get();
if (!attempt_inline_value(elt, dest, entry_pos, large)) {
size_t offset = dest->length() - start_pos;
if (is_too_big_for_json(offset, large)) return VALUE_TOO_BIG;
insert_offset_or_size(dest, entry_pos + 1, offset, large);
auto res = serialize_json_value(thd, elt, entry_pos, dest, depth, !large);
if (res != OK) return res;
}
entry_pos += entry_size;
}
// Finally, write the size of the object in bytes.
size_t bytes = dest->length() - start_pos;
if (is_too_big_for_json(bytes, large))
return VALUE_TOO_BIG; /* purecov: inspected */
insert_offset_or_size(dest, size_pos, bytes, large);
return OK;
}
/**
Serialize a JSON object at the end of the destination string.
@param thd THD handle
@param object the JSON object to serialize
@param dest the destination string
@param large if true, the large storage format will be used
@param depth the current nesting level
@return serialization status
*/
static enum_serialization_result serialize_json_object(
const THD *thd, const Json_object *object, String *dest, bool large,
size_t depth) {
if (check_stack_overrun(thd, STACK_MIN_SIZE, nullptr))
return FAILURE; /* purecov: inspected */
const size_t start_pos = dest->length();
const size_t size = object->cardinality();
if (check_json_depth(++depth, JsonDocumentDefaultDepthHandler)) {
return FAILURE;
}
if (is_too_big_for_json(size, large))
return VALUE_TOO_BIG; /* purecov: inspected */
// First write the number of members in the object.
if (append_offset_or_size(dest, size, large))
return FAILURE; /* purecov: inspected */
// Reserve space for the size of the object in bytes. To be filled in later.
const size_t size_pos = dest->length();
if (append_offset_or_size(dest, 0, large))
return FAILURE; /* purecov: inspected */
const auto key_entry_size = json_binary::key_entry_size(large);
const auto value_entry_size = json_binary::value_entry_size(large);
/*
Calculate the offset of the first key relative to the start of the
object. The first key comes right after the value entries.
*/
const size_t first_key_offset =
dest->length() + size * (key_entry_size + value_entry_size) - start_pos;
// Append all the key entries.
enum_serialization_result res =
append_key_entries(object, dest, first_key_offset, large);
if (res != OK) return res;
const size_t start_of_value_entries = dest->length();
// Reserve space for the value entries. Will be filled in later.
dest->fill(dest->length() + size * value_entry_size, 0);
// Add the actual keys.
for (const auto &member : *object) {
if (dest->append(member.first.c_str(), member.first.length()))
return FAILURE; /* purecov: inspected */
}
// Add the values, and update the value entries accordingly.
size_t entry_pos = start_of_value_entries;
for (const auto &member : *object) {
const Json_dom *child = member.second.get();
if (!attempt_inline_value(child, dest, entry_pos, large)) {
size_t offset = dest->length() - start_pos;
if (is_too_big_for_json(offset, large)) return VALUE_TOO_BIG;
insert_offset_or_size(dest, entry_pos + 1, offset, large);
res = serialize_json_value(thd, child, entry_pos, dest, depth, !large);
if (res != OK) return res;
}
entry_pos += value_entry_size;
}
// Finally, write the size of the object in bytes.
size_t bytes = dest->length() - start_pos;
if (is_too_big_for_json(bytes, large)) return VALUE_TOO_BIG;
insert_offset_or_size(dest, size_pos, bytes, large);
return OK;
}
/**
Serialize a JSON opaque value at the end of the destination string.
@param[in] opaque the JSON opaque value
@param[in] type_pos where to write the type specifier
@param[out] dest the destination string
@return serialization status
*/
static enum_serialization_result serialize_opaque(const Json_opaque *opaque,
size_t type_pos,
String *dest) {
assert(type_pos < dest->length());
if (dest->append(static_cast<char>(opaque->type())) ||
append_variable_length(dest, opaque->size()) ||
dest->append(opaque->value(), opaque->size()))
return FAILURE; /* purecov: inspected */
(*dest)[type_pos] = JSONB_TYPE_OPAQUE;
return OK;
}
/**
Serialize a DECIMAL value at the end of the destination string.
@param[in] jd the DECIMAL value
@param[in] type_pos where to write the type specifier
@param[out] dest the destination string
@return serialization status
*/
static enum_serialization_result serialize_decimal(const Json_decimal *jd,
size_t type_pos,
String *dest) {
// Store DECIMALs as opaque values.
const int bin_size = jd->binary_size();
char buf[Json_decimal::MAX_BINARY_SIZE];
if (jd->get_binary(buf)) return FAILURE; /* purecov: inspected */
Json_opaque o(MYSQL_TYPE_NEWDECIMAL, buf, bin_size);
return serialize_opaque(&o, type_pos, dest);
}
/**
Serialize a DATETIME value at the end of the destination string.
@param[in] jdt the DATETIME value
@param[in] type_pos where to write the type specifier
@param[out] dest the destination string
@return serialization status
*/
static enum_serialization_result serialize_datetime(const Json_datetime *jdt,
size_t type_pos,
String *dest) {
// Store datetime as opaque values.
char buf[Json_datetime::PACKED_SIZE];
jdt->to_packed(buf);
Json_opaque o(jdt->field_type(), buf, sizeof(buf));
return serialize_opaque(&o, type_pos, dest);
}
/**
Serialize a JSON value at the end of the destination string.
Also go back and update the type specifier for the value to specify
the correct type. For top-level documents, the type specifier is
located in the byte right in front of the value. For documents that
are nested within other documents, the type specifier is located in
the value entry portion at the beginning of the parent document.
@param thd THD handle
@param dom the JSON value to serialize
@param type_pos the position of the type specifier to update
@param dest the destination string
@param depth the current nesting level
@param small_parent
tells if @a dom is contained in an array or object
which is stored in the small storage format
@return serialization status
*/
static enum_serialization_result serialize_json_value(
const THD *thd, const Json_dom *dom, size_t type_pos, String *dest,
size_t depth, bool small_parent) {
const size_t start_pos = dest->length();
assert(type_pos < start_pos);
enum_serialization_result result;
switch (dom->json_type()) {
case enum_json_type::J_ARRAY: {
const Json_array *array = down_cast<const Json_array *>(dom);
(*dest)[type_pos] = JSONB_TYPE_SMALL_ARRAY;
result = serialize_json_array(thd, array, dest, false, depth);
/*
If the array was too large to fit in the small storage format,
reset the destination buffer and retry with the large storage
format.
Possible future optimization: Analyze size up front and pick the
correct format on the first attempt, so that we don't have to
redo parts of the serialization.
*/
if (result == VALUE_TOO_BIG) {
// If the parent uses the small storage format, it needs to grow too.
if (small_parent) return VALUE_TOO_BIG;
dest->length(start_pos);
(*dest)[type_pos] = JSONB_TYPE_LARGE_ARRAY;
result = serialize_json_array(thd, array, dest, true, depth);
}
break;
}
case enum_json_type::J_OBJECT: {
const Json_object *object = down_cast<const Json_object *>(dom);
(*dest)[type_pos] = JSONB_TYPE_SMALL_OBJECT;
result = serialize_json_object(thd, object, dest, false, depth);
/*
If the object was too large to fit in the small storage format,
reset the destination buffer and retry with the large storage
format.
Possible future optimization: Analyze size up front and pick the
correct format on the first attempt, so that we don't have to
redo parts of the serialization.
*/
if (result == VALUE_TOO_BIG) {
// If the parent uses the small storage format, it needs to grow too.
if (small_parent) return VALUE_TOO_BIG;
dest->length(start_pos);
(*dest)[type_pos] = JSONB_TYPE_LARGE_OBJECT;
result = serialize_json_object(thd, object, dest, true, depth);
}
break;
}
case enum_json_type::J_STRING: {
const Json_string *jstr = down_cast<const Json_string *>(dom);
size_t size = jstr->size();
if (append_variable_length(dest, size) ||
dest->append(jstr->value().c_str(), size))
return FAILURE; /* purecov: inspected */
(*dest)[type_pos] = JSONB_TYPE_STRING;
result = OK;
break;
}
case enum_json_type::J_INT: {
const Json_int *i = down_cast<const Json_int *>(dom);
longlong val = i->value();
if (i->is_16bit()) {
if (append_int16(dest, static_cast<int16>(val)))
return FAILURE; /* purecov: inspected */
(*dest)[type_pos] = JSONB_TYPE_INT16;
} else if (i->is_32bit()) {
if (append_int32(dest, static_cast<int32>(val)))
return FAILURE; /* purecov: inspected */
(*dest)[type_pos] = JSONB_TYPE_INT32;
} else {
if (append_int64(dest, val)) return FAILURE; /* purecov: inspected */
(*dest)[type_pos] = JSONB_TYPE_INT64;
}
result = OK;
break;
}
case enum_json_type::J_UINT: {
const Json_uint *i = down_cast<const Json_uint *>(dom);
ulonglong val = i->value();
if (i->is_16bit()) {
if (append_int16(dest, static_cast<int16>(val)))
return FAILURE; /* purecov: inspected */
(*dest)[type_pos] = JSONB_TYPE_UINT16;
} else if (i->is_32bit()) {
if (append_int32(dest, static_cast<int32>(val)))
return FAILURE; /* purecov: inspected */
(*dest)[type_pos] = JSONB_TYPE_UINT32;
} else {
if (append_int64(dest, val)) return FAILURE; /* purecov: inspected */
(*dest)[type_pos] = JSONB_TYPE_UINT64;
}
result = OK;
break;
}
case enum_json_type::J_DOUBLE: {
// Store the double in a platform-independent eight-byte format.
const Json_double *d = down_cast<const Json_double *>(dom);
if (reserve(dest, 8)) return FAILURE; /* purecov: inspected */
float8store(dest->ptr() + dest->length(), d->value());
dest->length(dest->length() + 8);
(*dest)[type_pos] = JSONB_TYPE_DOUBLE;
result = OK;
break;
}
case enum_json_type::J_NULL:
if (dest->append(JSONB_NULL_LITERAL))
return FAILURE; /* purecov: inspected */
(*dest)[type_pos] = JSONB_TYPE_LITERAL;
result = OK;
break;
case enum_json_type::J_BOOLEAN: {
char c = (down_cast<const Json_boolean *>(dom)->value())
? JSONB_TRUE_LITERAL
: JSONB_FALSE_LITERAL;
if (dest->append(c)) return FAILURE; /* purecov: inspected */
(*dest)[type_pos] = JSONB_TYPE_LITERAL;
result = OK;
break;
}
case enum_json_type::J_OPAQUE:
result =
serialize_opaque(down_cast<const Json_opaque *>(dom), type_pos, dest);
break;
case enum_json_type::J_DECIMAL:
result = serialize_decimal(down_cast<const Json_decimal *>(dom), type_pos,
dest);
break;
case enum_json_type::J_DATETIME:
case enum_json_type::J_DATE:
case enum_json_type::J_TIME:
case enum_json_type::J_TIMESTAMP:
result = serialize_datetime(down_cast<const Json_datetime *>(dom),
type_pos, dest);
break;
default:
/* purecov: begin deadcode */
assert(false);
my_error(ER_INTERNAL_ERROR, MYF(0), "JSON serialization failed");
return FAILURE;
/* purecov: end */
}
if (result == OK && dest->length() > thd->variables.max_allowed_packet) {
my_error(ER_WARN_ALLOWED_PACKET_OVERFLOWED, MYF(0),
"json_binary::serialize", thd->variables.max_allowed_packet);
return FAILURE;
}
return result;
}
#endif // ifdef MYSQL_SERVER
bool Value::is_valid() const {
switch (m_type) {
case ERROR:
return false;
case ARRAY:
// Check that all the array elements are valid.
for (size_t i = 0; i < element_count(); i++)
if (!element(i).is_valid()) return false; /* purecov: inspected */
return true;
case OBJECT: {
/*
Check that all keys and values are valid, and that the keys come
in the correct order.
*/
const char *prev_key = nullptr;
size_t prev_key_len = 0;
for (size_t i = 0; i < element_count(); i++) {
Value k = key(i);
if (!k.is_valid() || !element(i).is_valid())
return false; /* purecov: inspected */
const char *curr_key = k.get_data();
size_t curr_key_len = k.get_data_length();
if (i > 0) {
if (prev_key_len > curr_key_len)
return false; /* purecov: inspected */
if (prev_key_len == curr_key_len &&
(memcmp(prev_key, curr_key, curr_key_len) >= 0))
return false; /* purecov: inspected */
}
prev_key = curr_key;
prev_key_len = curr_key_len;
}
return true;
}
default:
// This is a valid scalar value.
return true;
}
}
/**
Create a Value object that represents an error condition.
*/
static Value err() { return Value(Value::ERROR); }
/**
Parse a JSON scalar value.
@param type the binary type of the scalar
@param data pointer to the start of the binary representation of the scalar
@param len the maximum number of bytes to read from data
@return an object that represents the scalar value
*/
static Value parse_scalar(uint8 type, const char *data, size_t len) {
switch (type) {
case JSONB_TYPE_LITERAL:
if (len < 1) return err(); /* purecov: inspected */
switch (static_cast<uint8>(*data)) {
case JSONB_NULL_LITERAL:
return Value(Value::LITERAL_NULL);
case JSONB_TRUE_LITERAL:
return Value(Value::LITERAL_TRUE);
case JSONB_FALSE_LITERAL:
return Value(Value::LITERAL_FALSE);
default:
return err(); /* purecov: inspected */
}
case JSONB_TYPE_INT16:
if (len < 2) return err(); /* purecov: inspected */
return Value(Value::INT, sint2korr(data));
case JSONB_TYPE_INT32:
if (len < 4) return err(); /* purecov: inspected */
return Value(Value::INT, sint4korr(data));
case JSONB_TYPE_INT64:
if (len < 8) return err(); /* purecov: inspected */
return Value(Value::INT, sint8korr(data));
case JSONB_TYPE_UINT16:
if (len < 2) return err(); /* purecov: inspected */
return Value(Value::UINT, uint2korr(data));
case JSONB_TYPE_UINT32:
if (len < 4) return err(); /* purecov: inspected */
return Value(Value::UINT, uint4korr(data));
case JSONB_TYPE_UINT64:
if (len < 8) return err(); /* purecov: inspected */
return Value(Value::UINT, uint8korr(data));
case JSONB_TYPE_DOUBLE: {
if (len < 8) return err(); /* purecov: inspected */
return Value(float8get(data));
}
case JSONB_TYPE_STRING: {
uint32 str_len;
uint8 n;
if (read_variable_length(data, len, &str_len, &n))
return err(); /* purecov: inspected */
if (len < n + str_len) return err(); /* purecov: inspected */
return Value(data + n, str_len);
}
case JSONB_TYPE_OPAQUE: {
/*
There should always be at least one byte, which tells the field
type of the opaque value.
*/
if (len < 1) return err(); /* purecov: inspected */
// The type is encoded as a uint8 that maps to an enum_field_types.
uint8 type_byte = static_cast<uint8>(*data);
enum_field_types field_type = static_cast<enum_field_types>(type_byte);
// Then there's the length of the value.
uint32 val_len;
uint8 n;
if (read_variable_length(data + 1, len - 1, &val_len, &n))
return err(); /* purecov: inspected */
if (len < 1 + n + val_len) return err(); /* purecov: inspected */
return Value(field_type, data + 1 + n, val_len);
}
default:
// Not a valid scalar type.
return err();
}
}
/**
Read an offset or size field from a buffer. The offset could be either
a two byte unsigned integer or a four byte unsigned integer.
@param data the buffer to read from
@param large tells if the large or small storage format is used; true
means read four bytes, false means read two bytes
*/
static uint32 read_offset_or_size(const char *data, bool large) {
return large ? uint4korr(data) : uint2korr(data);
}
/**
Parse a JSON array or object.
@param t type (either ARRAY or OBJECT)
@param data pointer to the start of the array or object
@param len the maximum number of bytes to read from data
@param large if true, the array or object is stored using the large
storage format; otherwise, it is stored using the small
storage format
@return an object that allows access to the array or object
*/
static Value parse_array_or_object(Value::enum_type t, const char *data,
size_t len, bool large) {
assert(t == Value::ARRAY || t == Value::OBJECT);
/*
Make sure the document is long enough to contain the two length fields
(both number of elements or members, and number of bytes).
*/
const auto offset_size = json_binary::offset_size(large);
if (len < 2 * offset_size) return err();
const uint32 element_count = read_offset_or_size(data, large);
const uint32 bytes = read_offset_or_size(data + offset_size, large);
// The value can't have more bytes than what's available in the data buffer.
if (bytes > len) return err();
/*
Calculate the size of the header. It consists of:
- two length fields
- if it is a JSON object, key entries with pointers to where the keys
are stored
- value entries with pointers to where the actual values are stored
*/
size_t header_size = 2 * offset_size;
if (t == Value::OBJECT) header_size += element_count * key_entry_size(large);
header_size += element_count * value_entry_size(large);
// The header should not be larger than the full size of the value.
if (header_size > bytes) return err(); /* purecov: inspected */
return Value(t, data, bytes, element_count, large);
}
/**
Parse a JSON value within a larger JSON document.
@param type the binary type of the value to parse
@param data pointer to the start of the binary representation of the value
@param len the maximum number of bytes to read from data
@return an object that allows access to the value
*/
static Value parse_value(uint8 type, const char *data, size_t len) {
switch (type) {
case JSONB_TYPE_SMALL_OBJECT:
return parse_array_or_object(Value::OBJECT, data, len, false);
case JSONB_TYPE_LARGE_OBJECT:
return parse_array_or_object(Value::OBJECT, data, len, true);
case JSONB_TYPE_SMALL_ARRAY:
return parse_array_or_object(Value::ARRAY, data, len, false);
case JSONB_TYPE_LARGE_ARRAY:
return parse_array_or_object(Value::ARRAY, data, len, true);
default:
return parse_scalar(type, data, len);
}
}
Value parse_binary(const char *data, size_t len) {
DBUG_TRACE;
/*
Each document should start with a one-byte type specifier, so an
empty document is invalid according to the format specification.
Empty documents may appear due to inserts using the IGNORE keyword
or with non-strict SQL mode, which will insert an empty string if
the value NULL is inserted into a NOT NULL column. We choose to
interpret empty values as the JSON null literal.
*/
if (len == 0) return Value(Value::LITERAL_NULL);
Value ret = parse_value(data[0], data + 1, len - 1);
return ret;
}
/**
Get the element at the specified position of a JSON array or a JSON
object. When called on a JSON object, it returns the value
associated with the key returned by key(pos).
@param pos the index of the element
@return a value representing the specified element, or a value where
type() returns ERROR if pos does not point to an element
*/
Value Value::element(size_t pos) const {
assert(m_type == ARRAY || m_type == OBJECT);
if (pos >= m_element_count) return err();
const auto entry_size = value_entry_size(m_large);
const auto entry_offset = value_entry_offset(pos);
uint8 type = m_data[entry_offset];
/*
Check if this is an inlined scalar value. If so, return it.
The scalar will be inlined just after the byte that identifies the
type, so it's found on entry_offset + 1.
*/
if (inlined_type(type, m_large))
return parse_scalar(type, m_data + entry_offset + 1, entry_size - 1);
/*
Otherwise, it's a non-inlined value, and the offset to where the value
is stored, can be found right after the type byte in the entry.
*/
uint32 value_offset = read_offset_or_size(m_data + entry_offset + 1, m_large);
if (m_length < value_offset || value_offset < entry_offset + entry_size)
return err(); /* purecov: inspected */
return parse_value(type, m_data + value_offset, m_length - value_offset);
}
/**
Get the key of the member stored at the specified position in a JSON
object.
@param pos the index of the member
@return the key of the specified member, or a value where type()
returns ERROR if pos does not point to a member
*/
Value Value::key(size_t pos) const {
assert(m_type == OBJECT);
if (pos >= m_element_count) return err();
const auto offset_size = json_binary::offset_size(m_large);
const auto key_entry_size = json_binary::key_entry_size(m_large);
const auto value_entry_size = json_binary::value_entry_size(m_large);
// The key entries are located after two length fields of size offset_size.
const size_t entry_offset = key_entry_offset(pos);
// The offset of the key is the first part of the key entry.
const uint32 key_offset = read_offset_or_size(m_data + entry_offset, m_large);
// The length of the key is the second part of the entry, always two bytes.
const uint16 key_length = uint2korr(m_data + entry_offset + offset_size);
/*
The key must start somewhere after the last value entry, and it must
end before the end of the m_data buffer.
*/
if ((key_offset < entry_offset + (m_element_count - pos) * key_entry_size +
m_element_count * value_entry_size) ||
(m_length < key_offset + key_length))
return err(); /* purecov: inspected */
return Value(m_data + key_offset, key_length);
}
/**
Get the value associated with the specified key in a JSON object.
@param[in] key the key to look up
@param[in] length the length of the key
@return the value associated with the key, if there is one. otherwise,
returns ERROR
*/
Value Value::lookup(const char *key, size_t length) const {
size_t index = lookup_index(key, length);
if (index == element_count()) return err();
return element(index);
}
/**
Get the index of the element with the specified key in a JSON object.
@param[in] key the key to look up
@param[in] length the length of the key
@return the index if the key is found, or `element_count()` if the
key is not found
*/
size_t Value::lookup_index(const char *key, size_t length) const {
assert(m_type == OBJECT);
const auto offset_size = json_binary::offset_size(m_large);
const auto entry_size = key_entry_size(m_large);
const size_t first_entry_offset = key_entry_offset(0);
size_t lo = 0U; // lower bound for binary search (inclusive)
size_t hi = m_element_count; // upper bound for binary search (exclusive)
while (lo < hi) {
// Find the entry in the middle of the search interval.
size_t idx = (lo + hi) / 2;
size_t entry_offset = first_entry_offset + idx * entry_size;
// Keys are ordered on length, so check length first.
size_t key_len = uint2korr(m_data + entry_offset + offset_size);
if (length > key_len) {
lo = idx + 1;
} else if (length < key_len) {
hi = idx;
} else {
// The keys had the same length, so compare their contents.
size_t key_offset = read_offset_or_size(m_data + entry_offset, m_large);
int cmp = memcmp(key, m_data + key_offset, key_len);
if (cmp > 0)
lo = idx + 1;
else if (cmp < 0)
hi = idx;
else
return idx;
}
}
return m_element_count; // not found
}
/**
Is this binary value pointing to data that is contained in the specified
string.
@param str a string with binary data
@retval true if the string contains data pointed to from this object
@retval false otherwise
*/
bool Value::is_backed_by(const String *str) const {
/*
The m_data member is only valid for objects, arrays, strings and opaque
values. Other types have copied the necessary data into the Value object
and do not depend on data in any String object.
*/
switch (m_type) {
case OBJECT:
case ARRAY:
case STRING:
case OPAQUE:
return m_data >= str->ptr() && m_data < str->ptr() + str->length();
default:
return false;
}
}
/**
Copy the binary representation of this value into a buffer,
replacing the contents of the receiving buffer.
@param thd THD handle
@param buf the receiving buffer
@return false on success, true otherwise
*/
#ifdef MYSQL_SERVER
bool Value::raw_binary(const THD *thd, String *buf) const {
// It's not safe to overwrite ourselves.
assert(!is_backed_by(buf));
// Reset the buffer.
buf->length(0);
buf->set_charset(&my_charset_bin);
switch (m_type) {
case OBJECT:
case ARRAY: {
char tp = m_large ? (m_type == OBJECT ? JSONB_TYPE_LARGE_OBJECT
: JSONB_TYPE_LARGE_ARRAY)
: (m_type == OBJECT ? JSONB_TYPE_SMALL_OBJECT
: JSONB_TYPE_SMALL_ARRAY);
return buf->append(tp) || buf->append(m_data, m_length);
}
case STRING:
return buf->append(JSONB_TYPE_STRING) ||
append_variable_length(buf, m_length) ||
buf->append(m_data, m_length);
case INT: {
Json_int i(get_int64());
return serialize(thd, &i, buf) != OK;
}
case UINT: {
Json_uint i(get_uint64());
return serialize(thd, &i, buf) != OK;
}
case DOUBLE: {
Json_double d(get_double());
return serialize(thd, &d, buf) != OK;
}
case LITERAL_NULL: {
Json_null n;
return serialize(thd, &n, buf) != OK;
}
case LITERAL_TRUE:
case LITERAL_FALSE: {
Json_boolean b(m_type == LITERAL_TRUE);
return serialize(thd, &b, buf) != OK;
}
case OPAQUE:
return buf->append(JSONB_TYPE_OPAQUE) || buf->append(field_type()) ||
append_variable_length(buf, m_length) ||
buf->append(m_data, m_length);
case ERROR:
break; /* purecov: inspected */
}
/* purecov: begin deadcode */
assert(false);
return true;
/* purecov: end */
}
#endif // ifdef MYSQL_SERVER
/**
Find the start offset and the end offset of the specified element.
@param[in] pos which element to check
@param[out] start the start offset of the value
@param[out] end the end offset of the value (exclusive)
@param[out] inlined set to true if the specified element is inlined
@return true if the offsets cannot be determined, false if successful
*/
bool Value::element_offsets(size_t pos, size_t *start, size_t *end,
bool *inlined) const {
assert(m_type == ARRAY || m_type == OBJECT);
assert(pos < m_element_count);
const char *entry = m_data + value_entry_offset(pos);
if (entry + value_entry_size(m_large) > m_data + m_length)
return true; /* purecov: inspected */
if (inlined_type(*entry, m_large)) {
*start = 0;
*end = 0;
*inlined = true;
return false;
}
const size_t val_pos = read_offset_or_size(entry + 1, m_large);
if (val_pos >= m_length) return true;
size_t val_end = 0;
switch (entry[0]) {
case JSONB_TYPE_INT32:
case JSONB_TYPE_UINT32:
val_end = val_pos + 4;
break;
case JSONB_TYPE_INT64:
case JSONB_TYPE_UINT64:
case JSONB_TYPE_DOUBLE:
val_end = val_pos + 8;
break;
case JSONB_TYPE_STRING:
case JSONB_TYPE_OPAQUE:
case JSONB_TYPE_SMALL_OBJECT:
case JSONB_TYPE_LARGE_OBJECT:
case JSONB_TYPE_SMALL_ARRAY:
case JSONB_TYPE_LARGE_ARRAY: {
Value v = element(pos);
if (v.type() == ERROR) return true;
val_end = (v.m_data - this->m_data) + v.m_length;
} break;
default:
return true;
}
*start = val_pos;
*end = val_end;
*inlined = false;
return false;
}
/**
Find the lowest possible offset where a value can be located inside this
array or object.
@param[out] offset the lowest offset where a value can be located
@return false on success, true on error
*/
bool Value::first_value_offset(size_t *offset) const {
assert(m_type == ARRAY || m_type == OBJECT);
/*
Find the lowest offset where a value could be stored. Arrays can
store them right after the last value entry. Objects can store
them right after the last key.
*/
if (m_type == ARRAY || m_element_count == 0) {
*offset = value_entry_offset(m_element_count);
return false;
}
Value key = this->key(m_element_count - 1);
if (key.type() == ERROR) return true;
*offset = key.get_data() + key.get_data_length() - m_data;
return false;
}
/**
Does this array or object have enough space to replace the value at
the given position with another value of a given size?
@param[in] pos the position in the array or object
@param[in] needed the number of bytes needed for the new value
@param[out] offset if true is returned, this value is set to an
offset relative to the start of the array or
object, which tells where the replacement value
should be stored
@return true if there is enough space, false otherwise
*/
bool Value::has_space(size_t pos, size_t needed, size_t *offset) const {
assert(m_type == ARRAY || m_type == OBJECT);
assert(pos < m_element_count);
/*
Find the lowest offset where a value could be stored. Arrays can
store them right after the last value entry. Objects can store
them right after the last key.
*/
size_t first_value_offset;
if (this->first_value_offset(&first_value_offset)) return false;
/*
No need to check further if we need more space than the total
space available in the array or object.
*/
if (needed > m_length - first_value_offset) return false;
size_t val_start;
size_t val_end;
bool inlined;
if (element_offsets(pos, &val_start, &val_end, &inlined)) return false;
if (!inlined && val_end - val_start >= needed) {
// Found enough space at the position where the original value was located.
*offset = val_start;
return true;
}
/*
Need more space. Look for free space after the original value.
There's potential free space after the end of the original value
and up to the start of the next non-inlined value.
*/
const auto entry_size = value_entry_size(m_large);
size_t i = pos + 1;
for (auto entry = m_data + value_entry_offset(pos); i < m_element_count;
++i) {
entry += entry_size;
// TODO Give up after N iterations?
if (inlined_type(*entry, m_large)) continue;
val_end = read_offset_or_size(entry + 1, m_large);
if (val_end > m_length) return false;
break;
}
if (i == m_element_count) {
/*
There are no non-inlined values behind the one we are updating,
so we can use the rest of the space allocated for the array or
object.
*/
val_end = m_length;
}
if (!inlined && val_end - val_start >= needed) {
*offset = val_start;
return true;
}
/*
Still not enough space. See if there's free space we can use in
front of the original value. We can use space after the end of the
first non-inlined value we find.
*/
if (needed > val_end - first_value_offset) return false;
for (i = pos; i > 0; --i) {
size_t elt_start;
size_t elt_end;
bool elt_inlined;
if (element_offsets(i - 1, &elt_start, &elt_end, &elt_inlined))
return false;
if (elt_inlined) continue;
val_start = elt_end;
break;
}
if (i == 0) {
/*
There are no non-inlined values ahead of the value we are
updating, so we can start right after the value entries.
*/
val_start = first_value_offset;
}
if (val_start >= first_value_offset && val_end <= m_length &&
val_start <= val_end && val_end - val_start >= needed) {
*offset = val_start;
return true;
}
return false;
}
/**
Get the offset of the key entry that describes the key of the member at a
given position in this object.
@param pos the position of the member
@return the offset of the key entry, relative to the start of the object
*/
inline size_t Value::key_entry_offset(size_t pos) const {
assert(m_type == OBJECT);
// The first key entry is located right after the two length fields.
return 2 * offset_size(m_large) + key_entry_size(m_large) * pos;
}
/**
Get the offset of the value entry that describes the element at a
given position in this array or object.
@param pos the position of the element
@return the offset of the entry, relative to the start of the array or object
*/
inline size_t Value::value_entry_offset(size_t pos) const {
assert(m_type == ARRAY || m_type == OBJECT);
/*
Value entries come after the two length fields if it's an array, or
after the two length fields and all the key entries if it's an object.
*/
size_t first_entry_offset = 2 * offset_size(m_large);
if (m_type == OBJECT)
first_entry_offset += m_element_count * key_entry_size(m_large);
return first_entry_offset + value_entry_size(m_large) * pos;
}
#ifdef MYSQL_SERVER
bool space_needed(const THD *thd, const Json_wrapper *value, bool large,
size_t *needed) {
if (value->type() == enum_json_type::J_ERROR) {
my_error(ER_INVALID_JSON_BINARY_DATA, MYF(0));
return true;
}
// Serialize the value to a temporary buffer to find out how big it is.
StringBuffer<STRING_BUFFER_USUAL_SIZE> buf;
if (value->to_binary(thd, &buf)) return true; /* purecov: inspected */
assert(buf.length() > 1);
// If the value can be inlined in the value entry, it doesn't need any space.
if (inlined_type(buf[0], large)) {
*needed = 0;
return false;
}
/*
The first byte in the buffer is the type identifier. We're only
interested in the size of the data portion, so exclude the type byte
from the returned size.
*/
*needed = buf.length() - 1;
return false;
}
/**
Update a value in an array or object. The updated value is written to a
shadow copy. The original array or object is left unchanged, unless the
shadow copy is actually a pointer to the array backing this Value object. It
is assumed that the shadow copy is at least as big as the original document,
and that there is enough space at the given position to hold the new value.
Typically, if a document is modified multiple times in a single update
statement, the first invocation of update_in_shadow() will have a Value
object that points into the binary data in the Field, and write to a separate
destination buffer. Subsequent updates of the document will have a Value
object that points to the partially updated value in the destination buffer,
and write the new modifications to the same buffer.
All changes made to the binary value are recorded as binary diffs using
TABLE::add_binary_diff().
@param field the column that is updated
@param pos the element to update
@param new_value the new value of the element
@param data_offset where to write the value (offset relative to the
beginning of the array or object, obtained with
#has_space) or zero if the value can be inlined
@param data_length the length of the new value in bytes or zero if
the value can be inlined
@param original pointer to the start of the JSON document
@param destination pointer to the shadow copy of the JSON document
(it could be the same as @a original, in which case the
original document will be modified)
@param[out] changed gets set to true if a change was made to the document,
or to false if this operation was a no-op
@return false on success, true if an error occurred
@par Example of partial update
Given the JSON document [ "abc", "def" ], which is serialized like this in a
JSON column:
0x02 - type: small JSON array
0x02 - number of elements (low byte)
0x00 - number of elements (high byte)
0x12 - number of bytes (low byte)
0x00 - number of bytes (high byte)
0x0C - type of element 0 (string)
0x0A - offset of element 0 (low byte)
0x00 - offset of element 0 (high byte)
0x0C - type of element 1 (string)
0x0E - offset of element 1 (low byte)
0x00 - offset of element 1 (high byte)
0x03 - length of element 0
'a'
'b' - content of element 0
'c'
0x03 - length of element 1
'd'
'e' - content of element 1
'f'
Let's change element 0 from "abc" to "XY" using the following statement:
UPDATE t SET j = JSON_SET(j, '$[0]', 'XY')
Since we're replacing one string with a shorter one, we can just overwrite
the length byte with the new length, and the beginning of the original string
data. Since the original string "abc" is longer than the new string "XY",
we'll have a free byte at the end of the string. This byte is left as is
('c'). The resulting binary representation looks like this:
0x02 - type: small JSON array
0x02 - number of elements (low byte)
0x00 - number of elements (high byte)
0x12 - number of bytes (low byte)
0x00 - number of bytes (high byte)
0x0C - type of element 0 (string)
0x0A - offset of element 0 (low byte)
0x00 - offset of element 0 (high byte)
0x0C - type of element 1 (string)
0x0E - offset of element 1 (low byte)
0x00 - offset of element 1 (high byte)
CHANGED 0x02 - length of element 0
CHANGED 'X'
CHANGED 'Y' - content of element 0
(free) 'c'
0x03 - length of element 1
'd'
'e' - content of element 1
'f'
This change will be represented as one binary diff that covers the three
changed bytes.
Let's now change element 1 from "def" to "XYZW":
UPDATE t SET j = JSON_SET(j, '$[1]', 'XYZW')
Since the new string is one byte longer than the original string, we cannot
simply overwrite the old one. But we can reuse the free byte from the
previous update, which is immediately preceding the original value.
To make use of this, we need to change the offset of element 1 to point to
the free byte. Then we can overwrite the free byte and the original string
data with the new length and string contents. Resulting binary
representation:
0x02 - type: small JSON array
0x02 - number of elements (low byte)
0x00 - number of elements (high byte)
0x12 - number of bytes (low byte)
0x00 - number of bytes (high byte)
0x0C - type of element 0 (string)
0x0A - offset of element 0 (low byte)
0x00 - offset of element 0 (high byte)
0x0C - type of element 1 (string)
CHANGED 0x0D - offset of element 1 (low byte)
0x00 - offset of element 1 (high byte)
0x02 - length of element 0
'X' - content of element 0
'Y' - content of element 0
CHANGED 0x04 - length of element 1
CHANGED 'X'
CHANGED 'Y'
CHANGED 'Z' - content of element 1
CHANGED 'W'
This change will be represented as two binary diffs. One diff for changing
the offset, and one for changing the contents of the string.
Then let's replace the string in element 1 with a small number:
UPDATE t SET j = JSON_SET(j, '$[1]', 456)
This will change the type of element 1 from string to int16. Such small
numbers are inlined in the value entry, where we normally store the offset of
the value. The offset section of the value entry is therefore changed to hold
the number 456. The length and contents of the original value ("XYZW") are
not touched, but they are now unused and free to be reused. Resulting binary
representation:
0x02 - type: small JSON array
0x02 - number of elements (low byte)
0x00 - number of elements (high byte)
0x12 - number of bytes (low byte)
0x00 - number of bytes (high byte)
0x0C - type of element 0 (string)
0x0A - offset of element 0 (low byte)
0x00 - offset of element 0 (high byte)
CHANGED 0x05 - type of element 1 (int16)
CHANGED 0xC8 - value of element 1 (low byte)
CHANGED 0x01 - value of element 1 (high byte)
0x02 - length of element 0
'X' - content of element 0
'Y' - content of element 0
(free) 0x04 - length of element 1
(free) 'X'
(free) 'Y'
(free) 'Z' - content of element 1
(free) 'W'
The change is represented as one binary diff that changes the value entry
(type and inlined value).
*/
bool Value::update_in_shadow(const Field_json *field, size_t pos,
Json_wrapper *new_value, size_t data_offset,
size_t data_length, const char *original,
char *destination, bool *changed) const {
assert(m_type == ARRAY || m_type == OBJECT);
const bool inlined = (data_length == 0);
// Assume no changes. Update the flag when the document is actually changed.
*changed = false;
/*
Create a buffer large enough to hold the new value entry. (Plus one since
some String functions insist on adding a terminating '\0'.)
*/
StringBuffer<VALUE_ENTRY_SIZE_LARGE + 1> new_entry;
if (inlined) {
new_entry.length(value_entry_size(m_large));
Json_dom *dom = new_value->to_dom();
if (dom == nullptr) return true; /* purecov: inspected */
attempt_inline_value(dom, &new_entry, 0, m_large);
} else {
new_entry.append('\0'); // type, to be filled in later
append_offset_or_size(&new_entry, data_offset, m_large);
const char *value = m_data + data_offset;
const size_t value_offset = value - original;
char *value_dest = destination + value_offset;
StringBuffer<STRING_BUFFER_USUAL_SIZE> buffer;
if (new_value->to_binary(current_thd, &buffer))
return true; /* purecov: inspected */
assert(buffer.length() > 1);
// The first byte is the type byte, which should be in the value entry.
new_entry[0] = buffer[0];
/*
Create another diff for the changed data, but only if the new data is
actually different from the old data.
*/
const size_t length = buffer.length() - 1;
assert(length == data_length);
if (memcmp(value_dest, buffer.ptr() + 1, length) != 0) {
memcpy(value_dest, buffer.ptr() + 1, length);
if (field->table->add_binary_diff(field, value_offset, length))
return true; /* purecov: inspected */
*changed = true;
}
}
assert(new_entry.length() == value_entry_size(m_large));
/*
Type and offset will often be unchanged. Don't create a change
record unless they have actually changed.
*/
const char *const entry = m_data + value_entry_offset(pos);
if (memcmp(entry, new_entry.ptr(), new_entry.length()) != 0) {
const size_t entry_offset = entry - original;
memcpy(destination + entry_offset, new_entry.ptr(), new_entry.length());
if (field->table->add_binary_diff(field, entry_offset, new_entry.length()))
return true; /* purecov: inspected */
*changed = true;
}
return false;
}
/**
Remove a value from an array or object. The updated JSON document is written
to a shadow copy. The original document is left unchanged, unless the shadow
copy is actually a pointer to the array backing this Value object. It is
assumed that the shadow copy is at least as big as the original document, and
that there is enough space at the given position to hold the new value.
Typically, if a document is modified multiple times in a single update
statement, the first invocation of remove_in_shadow() will have a Value
object that points into the binary data in the Field, and write to a separate
destination buffer. Subsequent updates of the document will have a Value
object that points to the partially updated value in the destination buffer,
and write the new modifications to the same buffer.
All changes made to the binary value are recorded as binary diffs using
TABLE::add_binary_diff().
@param field the column that is updated
@param pos the element to remove
@param original pointer to the start of the JSON document
@param destination pointer to the shadow copy of the JSON document
(it could be the same as @a original, in which case the
original document will be modified)
@return false on success, true if an error occurred
@par Example of partial update
Take the JSON document { "a": "x", "b": "y", "c": "z" }, whose serialized
representation looks like the following:
0x00 - type: JSONB_TYPE_SMALL_OBJECT
0x03 - number of elements (low byte)
0x00 - number of elements (high byte)
0x22 - number of bytes (low byte)
0x00 - number of bytes (high byte)
0x19 - offset of key "a" (high byte)
0x00 - offset of key "a" (low byte)
0x01 - length of key "a" (high byte)
0x00 - length of key "a" (low byte)
0x1a - offset of key "b" (high byte)
0x00 - offset of key "b" (low byte)
0x01 - length of key "b" (high byte)
0x00 - length of key "b" (low byte)
0x1b - offset of key "c" (high byte)
0x00 - offset of key "c" (low byte)
0x01 - length of key "c" (high byte)
0x00 - length of key "c" (low byte)
0x0c - type of value "a": JSONB_TYPE_STRING
0x1c - offset of value "a" (high byte)
0x00 - offset of value "a" (low byte)
0x0c - type of value "b": JSONB_TYPE_STRING
0x1e - offset of value "b" (high byte)
0x00 - offset of value "b" (low byte)
0x0c - type of value "c": JSONB_TYPE_STRING
0x20 - offset of value "c" (high byte)
0x00 - offset of value "c" (low byte)
0x61 - first key ('a')
0x62 - second key ('b')
0x63 - third key ('c')
0x01 - length of value "a"
0x78 - contents of value "a" ('x')
0x01 - length of value "b"
0x79 - contents of value "b" ('y')
0x01 - length of value "c"
0x7a - contents of value "c" ('z')
We remove the member with name 'b' from the document, using a statement such
as:
UPDATE t SET j = JSON_REMOVE(j, '$.b')
This function will then remove the element by moving the key entries and
value entries that follow the removed member so that they overwrite the
existing entries, and the element count is decremented.
The resulting binary document will look like this:
0x00 - type: JSONB_TYPE_SMALL_OBJECT
CHANGED 0x02 - number of elements (low byte)
0x00 - number of elements (high byte)
0x22 - number of bytes (low byte)
0x00 - number of bytes (high byte)
0x19 - offset of key "a" (high byte)
0x00 - offset of key "a" (low byte)
0x01 - length of key "a" (high byte)
0x00 - length of key "a" (low byte)
CHANGED 0x1b - offset of key "c" (high byte)
CHANGED 0x00 - offset of key "c" (low byte)
CHANGED 0x01 - length of key "c" (high byte)
CHANGED 0x00 - length of key "c" (low byte)
CHANGED 0x0c - type of value "a": JSONB_TYPE_STRING
CHANGED 0x1c - offset of value "a" (high byte)
CHANGED 0x00 - offset of value "a" (low byte)
CHANGED 0x0c - type of value "c": JSONB_TYPE_STRING
CHANGED 0x20 - offset of value "c" (high byte)
CHANGED 0x00 - offset of value "c" (low byte)
(free) 0x00
(free) 0x0c
(free) 0x1e
(free) 0x00
(free) 0x0c
(free) 0x20
(free) 0x00
0x61 - first key ('a')
(free) 0x62
0x63 - third key ('c')
0x01 - length of value "a"
0x78 - contents of value "a" ('x')
(free) 0x01
(free) 0x79
0x01 - length of value "c"
0x7a - contents of value "c" ('z')
Two binary diffs will be created. One diff changes the element count, and one
diff changes the key and value entries.
*/
bool Value::remove_in_shadow(const Field_json *field, size_t pos,
const char *original, char *destination) const {
assert(m_type == ARRAY || m_type == OBJECT);
const char *value_entry = m_data + value_entry_offset(pos);
const char *next_value_entry = value_entry + value_entry_size(m_large);
/*
If it's an object, we first remove the key entry by shifting all subsequent
key entries to the left, and also all value entries up to the one that's
being removed.
*/
if (m_type == OBJECT) {
const char *key_entry = m_data + key_entry_offset(pos);
const char *next_key_entry = key_entry + key_entry_size(m_large);
size_t len = value_entry - next_key_entry;
memmove(destination + (key_entry - original), next_key_entry, len);
if (field->table->add_binary_diff(field, key_entry - original, len))
return true; /* purecov: inspected */
/*
Adjust the destination of the value entry to account for the removed key
entry.
*/
value_entry -= key_entry_size(m_large);
}
/*
Next, remove the value entry by shifting all subsequent value entries to
the left.
*/
const char *value_entry_end = m_data + value_entry_offset(m_element_count);
size_t len = value_entry_end - next_value_entry;
memmove(destination + (value_entry - original), next_value_entry, len);
if (field->table->add_binary_diff(field, value_entry - original, len))
return true; /* purecov: inspected */
/*
Finally, update the element count.
*/
write_offset_or_size(destination + (m_data - original), m_element_count - 1,
m_large);
return field->table->add_binary_diff(field, m_data - original,
offset_size(m_large));
}
/**
Get the amount of unused space in the binary representation of this value.
@param thd THD handle
@param[out] space the amount of free space
@return false on success, true on error
*/
bool Value::get_free_space(const THD *thd, size_t *space) const {
*space = 0;
switch (m_type) {
case ARRAY:
case OBJECT:
break;
default:
// Scalars don't have any holes, so return immediately.
return false;
}
if (m_type == OBJECT) {
// The first key should come right after the last value entry.
const char *next_key = m_data + value_entry_offset(m_element_count);
// Sum up all unused space between keys.
for (size_t i = 0; i < m_element_count; ++i) {
Value key = this->key(i);
if (key.type() == ERROR) {
my_error(ER_INVALID_JSON_BINARY_DATA, MYF(0));
return true;
}
*space += key.get_data() - next_key;
next_key = key.get_data() + key.get_data_length();
}
}
size_t next_value_offset;
if (first_value_offset(&next_value_offset)) {
my_error(ER_INVALID_JSON_BINARY_DATA, MYF(0));
return true;
}
// Find the "holes" between and inside each element in the array or object.
for (size_t i = 0; i < m_element_count; ++i) {
size_t elt_start;
size_t elt_end;
bool inlined;
if (element_offsets(i, &elt_start, &elt_end, &inlined)) {
my_error(ER_INVALID_JSON_BINARY_DATA, MYF(0));
return true;
}
if (inlined) continue;
if (elt_start < next_value_offset || elt_end > m_length) {
my_error(ER_INVALID_JSON_BINARY_DATA, MYF(0));
return true;
}
*space += elt_start - next_value_offset;
next_value_offset = elt_end;
Value elt = element(i);
switch (elt.type()) {
case ARRAY:
case OBJECT: {
// Recursively process nested arrays or objects.
if (check_stack_overrun(thd, STACK_MIN_SIZE, nullptr))
return true; /* purecov: inspected */
size_t elt_space;
if (elt.get_free_space(thd, &elt_space)) return true;
*space += elt_space;
break;
}
case ERROR:
/* purecov: begin inspected */
my_error(ER_INVALID_JSON_BINARY_DATA, MYF(0));
return true;
/* purecov: end */
default:
break;
}
}
*space += m_length - next_value_offset;
return false;
}
/**
Check whether two binary JSON scalars are equal. This function is used by
multi-valued index updating code. Unlike JSON comparator implemented in
server, this code doesn't treat numeric types as the same, e.g. int 1 and
uint 1 won't be treated as equal. This is fine as the mv index updating code
compares old and new values of the same typed array field, i.e. all values
being compared have the same type.
Since MV index doesn't support indexing of arrays/objects in arrays, these
two aren't supported and cause assert.
*/
int Value::eq(const Value &val) const {
assert(is_valid() && val.is_valid());
if (type() != val.type()) {
return type() < val.type() ? -1 : 1;
}
switch (m_type) {
case OBJECT:
case ARRAY:
assert(false);
return -1;
case OPAQUE:
if (m_field_type != val.m_field_type)
return m_field_type < val.m_field_type ? -1 : 1;
[[fallthrough]];
case STRING: {
uint cmp_length = std::min(get_data_length(), val.get_data_length());
int res;
if (!(res = memcmp(get_data(), val.get_data(), cmp_length)))
return (get_data_length() < val.get_data_length())
? -1
: ((get_data_length() == val.get_data_length()) ? 0 : 1);
return res;
}
case INT:
case UINT:
return (m_int_value == val.m_int_value)
? 0
: ((m_int_value < val.m_int_value) ? -1 : 1);
case DOUBLE:
return (m_double_value == val.m_double_value)
? 0
: ((m_double_value < val.m_double_value) ? -1 : 1);
case LITERAL_NULL:
case LITERAL_TRUE:
case LITERAL_FALSE:
return 0;
default:
assert(false); // Shouldn't happen
break;
}
return -1;
}
#endif // ifdef MYSQL_SERVER
bool Value::to_std_string(std::string *buffer,
const JsonDocumentDepthHandler &depth_handler) const {
buffer->clear();
Json_wrapper wrapper(*this);
StringBuffer<STRING_BUFFER_USUAL_SIZE> string_buffer;
bool formatting_failed =
wrapper.to_string(&string_buffer, false, "to_std_string", depth_handler);
if (!formatting_failed)
*buffer = {string_buffer.ptr(), string_buffer.length()};
return formatting_failed;
}
bool Value::to_pretty_std_string(
std::string *buffer, const JsonDocumentDepthHandler &depth_handler) const {
buffer->clear();
Json_wrapper wrapper(*this);
StringBuffer<STRING_BUFFER_USUAL_SIZE> string_buffer;
bool formatting_failed = wrapper.to_pretty_string(
&string_buffer, "to_pretty_std_string", depth_handler);
if (!formatting_failed)
*buffer = {string_buffer.ptr(), string_buffer.length()};
return formatting_failed;
}
} // end namespace json_binary
|