1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
|
// Copyright (c) 2017, 2025, Oracle and/or its affiliates.
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License, version 2.0,
// as published by the Free Software Foundation.
//
// This program is designed to work with certain software (including
// but not limited to OpenSSL) that is licensed under separate terms,
// as designated in a particular file or component or in included license
// documentation. The authors of MySQL hereby grant you an additional
// permission to link the program and your derivative works with the
// separately licensed software that they have either included with
// the program or referenced in the documentation.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License, version 2.0, for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
/// @file
///
/// This file implements the mbr_disjoint function.
#include "sql/gis/mbr_utils.h"
#include <cmath> // std::isnan
#include <exception>
#include <boost/geometry.hpp>
#include "sql/dd/types/spatial_reference_system.h" // dd::Spatial_reference_system
#include "sql/gis/box.h"
#include "sql/gis/box_traits.h"
#include "sql/gis/geometries.h"
#include "sql/gis/geometries_cs.h"
#include "sql/gis/geometries_traits.h"
#include "template_utils.h" // down_cast
namespace bg = boost::geometry;
namespace gis {
bool mbrs_are_equal(Box const &mbr1, Box const &mbr2) {
assert(mbr1.coordinate_system() == mbr2.coordinate_system());
switch (mbr1.coordinate_system()) {
case Coordinate_system::kCartesian:
return bg::equals(*down_cast<const Cartesian_box *>(&mbr1),
*down_cast<const Cartesian_box *>(&mbr2));
case Coordinate_system::kGeographic:
return bg::equals(*down_cast<const Geographic_box *>(&mbr1),
*down_cast<const Geographic_box *>(&mbr2));
}
assert(false); /* purecov: inspected */
return false; /* purecov: inspected */
}
bool mbr_is_empty(Box const &mbr) {
return std::isnan(mbr.min_corner().x()) && std::isnan(mbr.min_corner().y()) &&
std::isnan(mbr.max_corner().x()) && std::isnan(mbr.max_corner().y());
}
bool mbr_is_point(Box const &mbr) {
return mbr.min_corner().x() == mbr.max_corner().x() &&
mbr.min_corner().y() == mbr.max_corner().y();
}
bool mbr_is_line(Box const &mbr) {
return (mbr.min_corner().x() == mbr.max_corner().x()) !=
(mbr.min_corner().y() == mbr.max_corner().y());
}
/// Merges a vector of Cartesian MBRs into one common MBR.
///
/// Since the coordinate system doesn't wrap, the order in which MBRs are
/// expanded doesn't matter.
///
/// @param[in] boxes Vector of MBRs to merge.
/// @param[out] mbr The resulting MBR.
static void merge_mbrs(const std::vector<Cartesian_box> &boxes,
Cartesian_box *mbr) {
if (!boxes.empty()) *mbr = boxes[0];
for (auto &box : boxes) bg::expand(*mbr, box);
}
/// Merges a vector of geographic MBRs into one common MBR.
///
/// The coordinate system wraps, so the MBRs must be expanded in the correct
/// order to avoid creating an MBR that is larger than necessary.
///
/// If the vector of boxes is empty, the result MBR is unchanged.
///
/// @param[in] boxes Vector of MBRs to merge.
/// @param[out] mbr The resulting MBR.
static void merge_mbrs(const std::vector<Geographic_box> &boxes,
Geographic_box *mbr) {
if (!boxes.empty())
bg::detail::envelope::envelope_range_of_boxes::apply(boxes, *mbr);
}
/// Computes the envelope of a Cartesian geometry.
///
/// The MBR returned may be a collapsed box.
///
/// @param[in] g The geometry.
/// @param[out] mbr The envelope of g.
static void cartesian_envelope(const Geometry *g, Cartesian_box *mbr) {
switch (g->type()) {
case Geometry_type::kPoint:
bg::envelope(*down_cast<const Cartesian_point *>(g), *mbr);
break;
case Geometry_type::kLinestring:
bg::envelope(*down_cast<const Cartesian_linestring *>(g), *mbr);
break;
case Geometry_type::kPolygon:
bg::envelope(*down_cast<const Cartesian_polygon *>(g), *mbr);
break;
case Geometry_type::kGeometrycollection: {
std::vector<Cartesian_box> boxes;
Cartesian_box geom_mbr;
for (auto geom : *down_cast<const Cartesian_geometrycollection *>(g)) {
switch (geom->type()) {
case Geometry_type::kPoint:
bg::envelope(*down_cast<const Cartesian_point *>(geom), geom_mbr);
break;
case Geometry_type::kLinestring:
bg::envelope(*down_cast<const Cartesian_linestring *>(geom),
geom_mbr);
break;
case Geometry_type::kPolygon:
bg::envelope(*down_cast<const Cartesian_polygon *>(geom), geom_mbr);
break;
case Geometry_type::kGeometrycollection:
cartesian_envelope(geom, &geom_mbr);
break;
case Geometry_type::kMultipoint:
bg::envelope(*down_cast<const Cartesian_multipoint *>(geom),
geom_mbr);
break;
case Geometry_type::kMultilinestring:
bg::envelope(*down_cast<const Cartesian_multilinestring *>(geom),
geom_mbr);
break;
case Geometry_type::kMultipolygon:
bg::envelope(*down_cast<const Cartesian_multipolygon *>(geom),
geom_mbr);
break;
case Geometry_type::kGeometry:
assert(false);
throw std::exception();
}
// Cartesian_boxxes around empty geometries contain NaN in all
// coordinates. If
// passed to bg::expand, the result will be a box with all NaN
// coordinates. Therefore, we skip empty boxes.
if (!mbr_is_empty(geom_mbr)) boxes.push_back(geom_mbr);
}
merge_mbrs(boxes, mbr);
break;
}
case Geometry_type::kMultipoint:
bg::envelope(*down_cast<const Cartesian_multipoint *>(g), *mbr);
break;
case Geometry_type::kMultilinestring:
bg::envelope(*down_cast<const Cartesian_multilinestring *>(g), *mbr);
break;
case Geometry_type::kMultipolygon:
bg::envelope(*down_cast<const Cartesian_multipolygon *>(g), *mbr);
break;
case Geometry_type::kGeometry:
assert(false);
throw std::exception();
break;
}
}
/// Computes the envelope of a geographic geometry.
///
/// The MBR returned may be a collapsed box.
///
/// @param[in] g The geometry.
/// @param[in] semi_major Semi-major axis of ellipsoid.
/// @param[in] semi_minor Semi-minor axis of ellipsoid.
/// @param[out] mbr The envelope of g.
static void geographic_envelope(const Geometry *g, double semi_major,
double semi_minor, Geographic_box *mbr) {
bg::strategy::envelope::geographic<bg::strategy::andoyer,
bg::srs::spheroid<double>>
strategy(bg::srs::spheroid<double>(semi_major, semi_minor));
switch (g->type()) {
case Geometry_type::kPoint:
bg::envelope(*down_cast<const Geographic_point *>(g), *mbr);
break;
case Geometry_type::kLinestring:
bg::envelope(*down_cast<const Geographic_linestring *>(g), *mbr,
strategy);
break;
case Geometry_type::kPolygon:
bg::envelope(*down_cast<const Geographic_polygon *>(g), *mbr, strategy);
break;
case Geometry_type::kGeometrycollection: {
std::vector<Geographic_box> boxes;
Geographic_box geom_mbr;
for (auto geom : *down_cast<const Geographic_geometrycollection *>(g)) {
switch (geom->type()) {
case Geometry_type::kPoint:
bg::envelope(*down_cast<const Geographic_point *>(geom), geom_mbr);
break;
case Geometry_type::kLinestring:
bg::envelope(*down_cast<const Geographic_linestring *>(geom),
geom_mbr, strategy);
break;
case Geometry_type::kPolygon:
bg::envelope(*down_cast<const Geographic_polygon *>(geom), geom_mbr,
strategy);
break;
case Geometry_type::kGeometrycollection:
geographic_envelope(geom, semi_major, semi_minor, &geom_mbr);
break;
case Geometry_type::kMultipoint:
bg::envelope(*down_cast<const Geographic_multipoint *>(geom),
geom_mbr);
break;
case Geometry_type::kMultilinestring:
bg::envelope(*down_cast<const Geographic_multilinestring *>(geom),
geom_mbr, strategy);
break;
case Geometry_type::kMultipolygon:
bg::envelope(*down_cast<const Geographic_multipolygon *>(geom),
geom_mbr, strategy);
break;
case Geometry_type::kGeometry:
assert(false);
throw std::exception();
}
// Geographic_boxxes around empty geometries contain NaN in all
// coordinates. If
// passed to bg::expand, the result will be a box with all NaN
// coordinates. Therefore, we skip empty boxes.
if (!mbr_is_empty(geom_mbr)) boxes.push_back(geom_mbr);
}
merge_mbrs(boxes, mbr);
break;
}
case Geometry_type::kMultipoint:
bg::envelope(*down_cast<const Geographic_multipoint *>(g), *mbr);
break;
case Geometry_type::kMultilinestring:
bg::envelope(*down_cast<const Geographic_multilinestring *>(g), *mbr,
strategy);
break;
case Geometry_type::kMultipolygon:
bg::envelope(*down_cast<const Geographic_multipolygon *>(g), *mbr,
strategy);
break;
case Geometry_type::kGeometry:
assert(false);
throw std::exception();
break;
}
}
void box_envelope(const Geometry *g, const dd::Spatial_reference_system *srs,
Box *mbr) {
switch (g->coordinate_system()) {
case Coordinate_system::kCartesian:
cartesian_envelope(g, down_cast<Cartesian_box *>(mbr));
break;
case Coordinate_system::kGeographic:
geographic_envelope(g, srs ? srs->semi_major_axis() : 0.0,
srs ? srs->semi_minor_axis() : 0.0,
down_cast<Geographic_box *>(mbr));
break;
}
}
} // namespace gis
|