1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
|
// Copyright (c) 2017, 2025, Oracle and/or its affiliates.
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License, version 2.0,
// as published by the Free Software Foundation.
//
// This program is designed to work with certain software (including
// but not limited to OpenSSL) that is licensed under separate terms,
// as designated in a particular file or component or in included license
// documentation. The authors of MySQL hereby grant you an additional
// permission to link the program and your derivative works with the
// separately licensed software that they have either included with
// the program or referenced in the documentation.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License, version 2.0, for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
/// @file
///
/// This file implements the set of functions that storage engines can call to
/// do geometrical operations.
#include "sql/gis/rtree_support.h"
#include <algorithm> // std::min, std::max
#include <cmath> // std::isfinite, std::isinf, std::isnan
#include <limits>
#include <boost/geometry.hpp>
#include "my_byteorder.h" // doubleget, float8get
#include "my_inttypes.h" // uchar
#include "sql/current_thd.h"
#include "sql/dd/cache/dictionary_client.h"
#include "sql/dd/types/spatial_reference_system.h"
#include "sql/gis/box.h"
#include "sql/gis/box_traits.h"
#include "sql/gis/covered_by_functor.h"
#include "sql/gis/disjoint_functor.h"
#include "sql/gis/equals_functor.h"
#include "sql/gis/geometries.h"
#include "sql/gis/geometries_cs.h"
#include "sql/gis/intersects_functor.h"
#include "sql/gis/mbr_utils.h"
#include "sql/gis/srid.h"
#include "sql/gis/wkb.h"
#include "sql/spatial.h" // SRID_SIZE
#include "sql/sql_class.h" // THD
#include "sql/srs_fetcher.h"
#include "template_utils.h" // pointer_cast
namespace bg = boost::geometry;
dd::Spatial_reference_system *fetch_srs(gis::srid_t srid) {
const dd::Spatial_reference_system *srs = nullptr;
dd::cache::Dictionary_client::Auto_releaser m_releaser(
current_thd->dd_client());
Srs_fetcher fetcher(current_thd);
if (srid != 0 && fetcher.acquire(srid, &srs)) return nullptr;
if (srs)
return srs->clone();
else
return nullptr;
}
bool mbr_contain_cmp(const dd::Spatial_reference_system *srs, rtr_mbr_t *a,
rtr_mbr_t *b) {
assert(a->xmin <= a->xmax && a->ymin <= a->ymax);
assert(b->xmin <= b->xmax && b->ymin <= b->ymax);
bool result = false;
try {
gis::Covered_by covered_by(srs ? srs->semi_major_axis() : 0.0,
srs ? srs->semi_minor_axis() : 0.0);
if (srs == nullptr || srs->is_cartesian()) {
gis::Cartesian_box a_box(gis::Cartesian_point(a->xmin, a->ymin),
gis::Cartesian_point(a->xmax, a->ymax));
gis::Cartesian_box b_box(gis::Cartesian_point(b->xmin, b->ymin),
gis::Cartesian_point(b->xmax, b->ymax));
result = covered_by(&b_box, &a_box);
} else {
assert(srs->is_geographic());
gis::Geographic_box a_box(
gis::Geographic_point(srs->to_radians(a->xmin),
srs->to_radians(a->ymin)),
gis::Geographic_point(srs->to_radians(a->xmax),
srs->to_radians(a->ymax)));
gis::Geographic_box b_box(
gis::Geographic_point(srs->to_radians(b->xmin),
srs->to_radians(b->ymin)),
gis::Geographic_point(srs->to_radians(b->xmax),
srs->to_radians(b->ymax)));
result = covered_by(&b_box, &a_box);
}
} catch (...) {
assert(false); /* purecov: inspected */
}
return result;
}
bool mbr_equal_physically(rtr_mbr_t *a, rtr_mbr_t *b) {
return a->xmin == b->xmin && a->xmax == b->xmax && a->ymin == b->ymin &&
a->ymax == b->ymax;
}
bool mbr_equal_logically(const dd::Spatial_reference_system *srs, rtr_mbr_t *a,
rtr_mbr_t *b) {
// These points should not have initialized values at this point,
// which are min == DBL_MAX and max == -DBL_MAX.
assert(a->xmin <= a->xmax && a->ymin <= a->ymax);
assert(b->xmin <= b->xmax && b->ymin <= b->ymax);
bool result = false;
try {
gis::Equals equals(srs ? srs->semi_major_axis() : 0.0,
srs ? srs->semi_minor_axis() : 0.0);
if (srs == nullptr || srs->is_cartesian()) {
gis::Cartesian_box a_box(gis::Cartesian_point(a->xmin, a->ymin),
gis::Cartesian_point(a->xmax, a->ymax));
gis::Cartesian_box b_box(gis::Cartesian_point(b->xmin, b->ymin),
gis::Cartesian_point(b->xmax, b->ymax));
result = equals(&a_box, &b_box);
} else {
assert(srs->is_geographic());
gis::Geographic_box a_box(
gis::Geographic_point(srs->to_radians(a->xmin),
srs->to_radians(a->ymin)),
gis::Geographic_point(srs->to_radians(a->xmax),
srs->to_radians(a->ymax)));
gis::Geographic_box b_box(
gis::Geographic_point(srs->to_radians(b->xmin),
srs->to_radians(b->ymin)),
gis::Geographic_point(srs->to_radians(b->xmax),
srs->to_radians(b->ymax)));
result = equals(&a_box, &b_box);
}
} catch (...) {
assert(false); /* purecov: inspected */
}
return result;
}
bool mbr_intersect_cmp(const dd::Spatial_reference_system *srs, rtr_mbr_t *a,
rtr_mbr_t *b) {
try {
gis::Intersects intersects(srs ? srs->semi_major_axis() : 0.0,
srs ? srs->semi_minor_axis() : 0.0);
if (srs == nullptr || srs->is_cartesian()) {
gis::Cartesian_box a_box(gis::Cartesian_point(a->xmin, a->ymin),
gis::Cartesian_point(a->xmax, a->ymax));
gis::Cartesian_box b_box(gis::Cartesian_point(b->xmin, b->ymin),
gis::Cartesian_point(b->xmax, b->ymax));
return intersects(&a_box, &b_box);
} else {
assert(srs->is_geographic());
gis::Geographic_box a_box(
gis::Geographic_point(srs->to_radians(a->xmin),
srs->to_radians(a->ymin)),
gis::Geographic_point(srs->to_radians(a->xmax),
srs->to_radians(a->ymax)));
gis::Geographic_box b_box(
gis::Geographic_point(srs->to_radians(b->xmin),
srs->to_radians(b->ymin)),
gis::Geographic_point(srs->to_radians(b->xmax),
srs->to_radians(b->ymax)));
return intersects(&a_box, &b_box);
}
} catch (...) {
assert(false); /* purecov: inspected */
}
return false; /* purecov: dead code */
}
bool mbr_disjoint_cmp(const dd::Spatial_reference_system *srs, rtr_mbr_t *a,
rtr_mbr_t *b) {
try {
gis::Disjoint disjoint(srs ? srs->semi_major_axis() : 0.0,
srs ? srs->semi_minor_axis() : 0.0);
if (srs == nullptr || srs->is_cartesian()) {
gis::Cartesian_box a_box(gis::Cartesian_point(a->xmin, a->ymin),
gis::Cartesian_point(a->xmax, a->ymax));
gis::Cartesian_box b_box(gis::Cartesian_point(b->xmin, b->ymin),
gis::Cartesian_point(b->xmax, b->ymax));
return disjoint(&a_box, &b_box);
} else {
assert(srs->is_geographic());
gis::Geographic_box a_box(
gis::Geographic_point(srs->to_radians(a->xmin),
srs->to_radians(a->ymin)),
gis::Geographic_point(srs->to_radians(a->xmax),
srs->to_radians(a->ymax)));
gis::Geographic_box b_box(
gis::Geographic_point(srs->to_radians(b->xmin),
srs->to_radians(b->ymin)),
gis::Geographic_point(srs->to_radians(b->xmax),
srs->to_radians(b->ymax)));
return disjoint(&a_box, &b_box);
}
} catch (...) {
assert(false); /* purecov: inspected */
}
return false; /* purecov: dead code */
}
bool mbr_within_cmp(const dd::Spatial_reference_system *srs, rtr_mbr_t *a,
rtr_mbr_t *b) {
/* This function actually computes `a CoveredBy b` relation.
And mbr_contain_cmp(src,a,b) actually computes `a Covers b`.
This function could be as simple as return mbr_contain_cmp(src,b,a), if it
did not have to handle 'legacy_empty_box' defined as
{x,y}min = DBL_MAX, {x,y}max= -DBL_MAX
which historically was used to represent MBR(GEOMETRYCOLECTION()). Nowadays,
MBR(EMPTY GEOMETRYCOLECTION) is computed to, and stored as 'full_range_box':
{x,y}min = -DBL_MAX, {x,y}max= DBL_MAX
The situation where a or b (or both!) equal legacy_empty_box might arise
because of:
1. Legacy spatial indexes, which might still contain tuples with MBR for
empty geometry collection encoded in the old way, and passed as `b`
2. InnoDB sometimes passing a constant representing the MBR of an empty
geometry collection in this old form as argument `a`.
The other predicates (like mbr_contain_cmp) do not seem to be ever used in
such a way, so they don't have this special handling.
Scenario 1 occurs if spatial index was created back in 5.7, and contains
tuples representing GEOMETRYCOLLECTION() and was not rebuilt since then.
As in 5.7 there were no SRIDs and modern optimizer ignores indexes without
SRID, InnoDB only does "minimal maintenance" of the index by adding/removing
tuples in it to match those in clustered index. For that, when traversing the
R-tree it is using mbr_within_cmp(mbr(PK.geo), mbr(non-leaf)). Note, that the
clustered index geometry column does not store mbr explicitly, instead it is
computed at run time, using the current code base, so LHS will never use
legacy_empty_box format in this case, but RHS might.
Another action permitted for such index is CHECK TABLE, which uses
mbr_within_cmp(legacy_empty_box,mbr(node)). More on that below.
Scenario 2 occurs in already mentioned CHECK TABLE, where InnoDB's intent is
to traverse the whole R-tree. It achieves this by attempting a search for
records which satisfy mbr_within_cmp(legacy_empty_box,mbr(node)) which
conceptually makes sense ("empty set is covered by every set").
Note that using the new format for empty geometry collection i.e. the
mbr_within_cmp(full_range_box, mbr(node)) would not achieve this goal,
because most of mbr(nodes) do not contain full range. What is needed is a
predicate which always evaluates to true, such as
mbr_contains_cmp(full_range_box, mbr(node)), alas, that would mean that
mbr_contains_cmp would also have to be able to handle tuples from legacy
indexes, and we prefer to support this in just one place, here.
There are also two other places in which InnoDB specifies a=legacy_empty_box,
both of which try to handle a missing geometry blob. One of them is when
reporting operation to undo log, and thus probably unreachable. The other is
handling a rollback interrupted by a crash where it tries to construct search
tuple to clean up from secondary index. As row_purge_upd_exist_or_extern_func
removes externally stored fields (such as geometry blob) only after removing
secondary index records, there should be no such records to remove, and thus
search for them isn't needed, but refactoring it is difficult, so we just
need to avoid a crash here by handling it arbitrarily. Original code handled
it by scanning full R-tree, and so we do that, too. */
try {
if (a->xmax < a->xmin || a->ymax < a->ymin) {
/* This only happens when InnoDB has specified `a` as special constant:*/
assert(a->xmin == DBL_MAX);
assert(a->ymin == DBL_MAX);
assert(a->xmax == -DBL_MAX);
assert(a->ymax == -DBL_MAX);
/* ... which was meant to represent empty geometry collection and as such
should be considered 'covered by' every other MBR. We handle it by
returning true because there is no guarantee provided that functions used
below know how to handle an MBR with min < max. */
return true;
}
// Correct the min and max corners to generate proper boxes.
// The only reason this can happen, is that b is an mbr comming from 5.7
// spatial index and is legacy_empty_box.
if (b->xmax < b->xmin || b->ymax < b->ymin) {
assert(b->xmin == DBL_MAX);
assert(b->ymin == DBL_MAX);
assert(b->xmax == -DBL_MAX);
assert(b->ymax == -DBL_MAX);
}
// We handle it by converting b to the modern (8.0+) representation used for
// empty geometry collection, which is full_range_box.
// This is a bit wrong as then everything seems to be covered_by b, so we
// waste time for traversing fragments of tree which do not really cover
// anything (except empty geometry collection), but this is handled by other
// functions which do post-filtering.
// This behaviour was introduced in 8.0 and we keep it for now.
const double b_xmin = std::min(b->xmin, b->xmax);
const double b_ymin = std::min(b->ymin, b->ymax);
const double b_xmax = std::max(b->xmin, b->xmax);
const double b_ymax = std::max(b->ymin, b->ymax);
gis::Covered_by covered_by(srs ? srs->semi_major_axis() : 0.0,
srs ? srs->semi_minor_axis() : 0.0);
if (srs == nullptr || srs->is_cartesian()) {
gis::Cartesian_box a_box(gis::Cartesian_point(a->xmin, a->ymin),
gis::Cartesian_point(a->xmax, a->ymax));
gis::Cartesian_box b_box(gis::Cartesian_point(b_xmin, b_ymin),
gis::Cartesian_point(b_xmax, b_ymax));
return covered_by(&a_box, &b_box);
} else {
assert(srs->is_geographic());
gis::Geographic_box a_box(
gis::Geographic_point(srs->to_radians(a->xmin),
srs->to_radians(a->ymin)),
gis::Geographic_point(srs->to_radians(a->xmax),
srs->to_radians(a->ymax)));
gis::Geographic_box b_box(gis::Geographic_point(srs->to_radians(b_xmin),
srs->to_radians(b_ymin)),
gis::Geographic_point(srs->to_radians(b_xmax),
srs->to_radians(b_ymax)));
return covered_by(&a_box, &b_box);
}
} catch (...) {
assert(false); /* purecov: inspected */
}
return false;
}
void mbr_join(const dd::Spatial_reference_system *srs, double *a,
const double *b, int n_dim [[maybe_unused]]) {
assert(n_dim == 2);
try {
if (srs == nullptr || srs->is_cartesian()) {
gis::Cartesian_box a_box(gis::Cartesian_point(a[0], a[2]),
gis::Cartesian_point(a[1], a[3]));
gis::Cartesian_box b_box(gis::Cartesian_point(b[0], b[2]),
gis::Cartesian_point(b[1], b[3]));
bg::expand(a_box, b_box);
a[0] = a_box.min_corner().x();
a[1] = a_box.max_corner().x();
a[2] = a_box.min_corner().y();
a[3] = a_box.max_corner().y();
} else {
assert(srs->is_geographic());
gis::Geographic_box a_box(
gis::Geographic_point(srs->to_radians(a[0]), srs->to_radians(a[2])),
gis::Geographic_point(srs->to_radians(a[1]), srs->to_radians(a[3])));
gis::Geographic_box b_box(
gis::Geographic_point(srs->to_radians(b[0]), srs->to_radians(b[2])),
gis::Geographic_point(srs->to_radians(b[1]), srs->to_radians(b[3])));
bg::expand(a_box, b_box);
a[0] = srs->from_radians(a_box.min_corner().x());
a[1] = srs->from_radians(a_box.max_corner().x());
a[2] = srs->from_radians(a_box.min_corner().y());
a[3] = srs->from_radians(a_box.max_corner().y());
}
} catch (...) {
assert(false); /* purecov: inspected */
}
}
double mbr_join_area(const dd::Spatial_reference_system *srs, const double *a,
const double *b, int n_dim [[maybe_unused]]) {
assert(n_dim == 2);
double area = 0.0;
try {
if (srs == nullptr || srs->is_cartesian()) {
gis::Cartesian_box a_box(gis::Cartesian_point(a[0], a[2]),
gis::Cartesian_point(a[1], a[3]));
gis::Cartesian_box b_box(gis::Cartesian_point(b[0], b[2]),
gis::Cartesian_point(b[1], b[3]));
bg::expand(a_box, b_box);
area = bg::area(a_box);
} else {
assert(srs->is_geographic());
gis::Geographic_box a_box(
gis::Geographic_point(srs->to_radians(a[0]), srs->to_radians(a[2])),
gis::Geographic_point(srs->to_radians(a[1]), srs->to_radians(a[3])));
gis::Geographic_box b_box(
gis::Geographic_point(srs->to_radians(b[0]), srs->to_radians(b[2])),
gis::Geographic_point(srs->to_radians(b[1]), srs->to_radians(b[3])));
bg::strategies::geographic<> strategies(bg::srs::spheroid<double>(
srs->semi_major_axis(), srs->semi_minor_axis()));
bg::expand(a_box, b_box, strategies);
area = bg::area(a_box, strategies);
}
} catch (...) {
assert(false); /* purecov: inspected */
}
if (!std::isfinite(area)) area = std::numeric_limits<double>::max();
return area;
}
double compute_area(const dd::Spatial_reference_system *srs, const double *a,
int n_dim [[maybe_unused]]) {
assert(n_dim == 2);
double area = 0.0;
try {
if (srs == nullptr || srs->is_cartesian()) {
gis::Cartesian_box a_box(gis::Cartesian_point(a[0], a[2]),
gis::Cartesian_point(a[1], a[3]));
area = bg::area(a_box);
} else {
assert(srs->is_geographic());
gis::Geographic_box a_box(
gis::Geographic_point(srs->to_radians(a[0]), srs->to_radians(a[2])),
gis::Geographic_point(srs->to_radians(a[1]), srs->to_radians(a[3])));
bg::strategies::area::geographic<> strategies(bg::srs::spheroid<double>(
srs->semi_major_axis(), srs->semi_minor_axis()));
area = bg::area(a_box, strategies);
}
} catch (...) {
assert(false); /* purecov: inspected */
}
return area;
}
int get_mbr_from_store(const dd::Spatial_reference_system *srs,
const uchar *store, uint size,
uint n_dims [[maybe_unused]], double *mbr,
gis::srid_t *srid) {
assert(n_dims == 2);
// The SRS should match the SRID of the geometry, with one exception: For
// backwards compatibility it is allowed to create indexes with mixed
// SRIDs. Although these indexes can never be used to optimize queries, the
// user is allowed to create them. These indexes will call get_mbr_from_store
// with srs == nullptr. There is, unfortunately, no way to differentiate mixed
// SRID indexes from SRID 0 indexes here, so the assertion is not perfect.
assert(srs == nullptr || (srs->id() == uint4korr(store)));
if (srid != nullptr) *srid = uint4korr(store);
try {
// Note: current_thd may be nullptr here if this function was called from an
// internal InnoDB thread. In that case, we won't get any stack size check
// in gis::parse_wkb, but the geometry has been parsed before with the stack
// size check enabled. We assume we have at least the same amount of stack
// when called from an internal thread as when called from a MySQL thread.
std::unique_ptr<gis::Geometry> g =
gis::parse_wkb(current_thd, srs,
pointer_cast<const char *>(store) + sizeof(gis::srid_t),
size - sizeof(gis::srid_t), true);
if (g.get() == nullptr) {
return -1; /* purecov: inspected */
}
if (srs == nullptr || srs->is_cartesian()) {
gis::Cartesian_box box;
gis::box_envelope(g.get(), srs, &box);
mbr[0] = box.min_corner().x();
mbr[1] = box.max_corner().x();
mbr[2] = box.min_corner().y();
mbr[3] = box.max_corner().y();
} else {
assert(srs->is_geographic());
gis::Geographic_box box;
gis::box_envelope(g.get(), srs, &box);
mbr[0] = srs->from_radians(box.min_corner().x());
mbr[1] = srs->from_radians(box.max_corner().x());
mbr[2] = srs->from_radians(box.min_corner().y());
mbr[3] = srs->from_radians(box.max_corner().y());
}
} catch (...) {
assert(false); /* purecov: inspected */
return -1;
}
if (std::isnan(mbr[0])) {
/* purecov: begin inspected */
assert(std::isnan(mbr[1]) && std::isnan(mbr[2]) && std::isnan(mbr[3]));
// The geometry is empty, so there is no bounding box. Return a box that
// covers the entire domain.
mbr[0] = std::numeric_limits<double>::lowest();
mbr[1] = std::numeric_limits<double>::max();
mbr[2] = std::numeric_limits<double>::lowest();
mbr[3] = std::numeric_limits<double>::max();
/* purecov: end inspected */
}
// xmin <= xmax && ymin <= ymax
assert(mbr[0] <= mbr[1] && mbr[2] <= mbr[3]);
return 0;
}
double rtree_area_increase(const dd::Spatial_reference_system *srs,
const uchar *mbr_a, const uchar *mbr_b,
int mbr_len [[maybe_unused]], double *ab_area) {
assert(mbr_len == sizeof(double) * 4);
double a_xmin = float8get(mbr_a);
double a_xmax = float8get(mbr_a + sizeof(double));
double a_ymin = float8get(mbr_a + sizeof(double) * 2);
double a_ymax = float8get(mbr_a + sizeof(double) * 3);
double b_xmin = float8get(mbr_b);
double b_xmax = float8get(mbr_b + sizeof(double));
double b_ymin = float8get(mbr_b + sizeof(double) * 2);
double b_ymax = float8get(mbr_b + sizeof(double) * 3);
assert(a_xmin <= a_xmax && a_ymin <= a_ymax);
assert(b_xmin <= b_xmax && b_ymin <= b_ymax);
double a_area = 0.0;
try {
if (srs == nullptr || srs->is_cartesian()) {
gis::Cartesian_box a_box(gis::Cartesian_point(a_xmin, a_ymin),
gis::Cartesian_point(a_xmax, a_ymax));
gis::Cartesian_box b_box(gis::Cartesian_point(b_xmin, b_ymin),
gis::Cartesian_point(b_xmax, b_ymax));
a_area = bg::area(a_box);
if (a_area == 0.0) a_area = 0.001 * 0.001;
bg::expand(a_box, b_box);
*ab_area = bg::area(a_box);
} else {
assert(srs->is_geographic());
gis::Geographic_box a_box(gis::Geographic_point(srs->to_radians(a_xmin),
srs->to_radians(a_ymin)),
gis::Geographic_point(srs->to_radians(a_xmax),
srs->to_radians(a_ymax)));
gis::Geographic_box b_box(gis::Geographic_point(srs->to_radians(b_xmin),
srs->to_radians(b_ymin)),
gis::Geographic_point(srs->to_radians(b_xmax),
srs->to_radians(b_ymax)));
bg::strategies::geographic<> strategies(bg::srs::spheroid<double>(
srs->semi_major_axis(), srs->semi_minor_axis()));
a_area = bg::area(a_box, strategies);
bg::expand(a_box, b_box, strategies);
*ab_area = bg::area(a_box, strategies);
}
if (std::isinf(a_area)) a_area = std::numeric_limits<double>::max();
if (std::isinf(*ab_area)) *ab_area = std::numeric_limits<double>::max();
} catch (...) {
assert(false); /* purecov: inspected */
}
assert(std::isfinite(*ab_area - a_area));
return *ab_area - a_area;
}
double rtree_area_overlapping(const dd::Spatial_reference_system *srs,
const uchar *mbr_a, const uchar *mbr_b,
int mbr_len [[maybe_unused]]) {
assert(mbr_len == sizeof(double) * 4);
double a_xmin = float8get(mbr_a);
double a_xmax = float8get(mbr_a + sizeof(double));
double a_ymin = float8get(mbr_a + sizeof(double) * 2);
double a_ymax = float8get(mbr_a + sizeof(double) * 3);
double b_xmin = float8get(mbr_b);
double b_xmax = float8get(mbr_b + sizeof(double));
double b_ymin = float8get(mbr_b + sizeof(double) * 2);
double b_ymax = float8get(mbr_b + sizeof(double) * 3);
assert(a_xmin <= a_xmax && a_ymin <= a_ymax);
assert(b_xmin <= b_xmax && b_ymin <= b_ymax);
double area = 0.0;
try {
if (srs == nullptr || srs->is_cartesian()) {
gis::Cartesian_box a_box(gis::Cartesian_point(a_xmin, a_ymin),
gis::Cartesian_point(a_xmax, a_ymax));
gis::Cartesian_box b_box(gis::Cartesian_point(b_xmin, b_ymin),
gis::Cartesian_point(b_xmax, b_ymax));
gis::Cartesian_box overlapping_box;
if (bg::intersection(a_box, b_box, overlapping_box)) {
area = bg::area(overlapping_box);
}
} else {
assert(srs->is_geographic());
gis::Geographic_box a_box(gis::Geographic_point(srs->to_radians(a_xmin),
srs->to_radians(a_ymin)),
gis::Geographic_point(srs->to_radians(a_xmax),
srs->to_radians(a_ymax)));
gis::Geographic_box b_box(gis::Geographic_point(srs->to_radians(b_xmin),
srs->to_radians(b_ymin)),
gis::Geographic_point(srs->to_radians(b_xmax),
srs->to_radians(b_ymax)));
gis::Geographic_box overlapping_box;
bg::strategies::geographic<> strategies(bg::srs::spheroid<double>(
srs->semi_major_axis(), srs->semi_minor_axis()));
if (bg::intersection(a_box, b_box, overlapping_box, strategies)) {
area = bg::area(overlapping_box, strategies);
}
}
} catch (...) {
assert(false); /* purecov: inspected */
}
if (std::isnan(area)) area = 0.0;
return area;
}
|