1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
|
/* Copyright (c) 2020, 2025, Oracle and/or its affiliates.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is designed to work with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have either included with
the program or referenced in the documentation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
#include "sql/join_optimizer/build_interesting_orders.h"
#include <assert.h>
#include <stdio.h>
#include <algorithm>
#include <string>
#include <utility>
#include "ft_global.h"
#include "my_alloc.h"
#include "my_base.h"
#include "my_table_map.h"
#include "mysql/udf_registration_types.h"
#include "sql/field.h"
#include "sql/handler.h"
#include "sql/item.h"
#include "sql/item_cmpfunc.h"
#include "sql/item_func.h"
#include "sql/item_row.h"
#include "sql/join_optimizer/access_path.h"
#include "sql/join_optimizer/bit_utils.h"
#include "sql/join_optimizer/interesting_orders.h"
#include "sql/join_optimizer/interesting_orders_defs.h"
#include "sql/join_optimizer/make_join_hypergraph.h"
#include "sql/join_optimizer/relational_expression.h"
#include "sql/key.h"
#include "sql/key_spec.h"
#include "sql/mem_root_array.h"
#include "sql/sql_array.h"
#include "sql/sql_bitmap.h"
#include "sql/sql_class.h"
#include "sql/sql_const.h"
#include "sql/sql_executor.h"
#include "sql/sql_lex.h"
#include "sql/sql_list.h"
#include "sql/sql_optimizer.h"
#include "sql/sql_resolver.h"
#include "sql/sql_select.h"
#include "sql/table.h"
#include "sql/window.h"
#include "template_utils.h"
using hypergraph::NodeMap;
using std::string;
using std::swap;
/**
Helper for CollectFunctionalDependenciesFromPredicates(); also used for
non-equijoin predicates in CollectFunctionalDependenciesFromJoins().
*/
static int AddFunctionalDependencyFromCondition(THD *thd, Item *condition,
bool always_active,
LogicalOrderings *orderings) {
if (condition->type() != Item::FUNC_ITEM) {
return -1;
}
// We treat IS NULL as item = const.
if (down_cast<Item_func *>(condition)->functype() == Item_func::ISNULL_FUNC) {
Item_func_isnull *isnull = down_cast<Item_func_isnull *>(condition);
FunctionalDependency fd;
fd.type = FunctionalDependency::FD;
fd.head = Bounds_checked_array<ItemHandle>();
fd.tail = orderings->GetHandle(isnull->arguments()[0]);
fd.always_active = always_active;
return orderings->AddFunctionalDependency(thd, fd);
}
if (down_cast<Item_func *>(condition)->functype() != Item_func::EQ_FUNC) {
// We only deal with equalities.
// TODO(khatlen): Also collect functional dependencies from EQUAL_FUNC?
return -1;
}
Item_func_eq *eq = down_cast<Item_func_eq *>(condition);
Item *left = eq->arguments()[0];
Item *right = eq->arguments()[1];
if (left->const_for_execution()) {
if (right->const_for_execution()) {
// Ignore const = const.
return -1;
}
swap(left, right);
}
if (equality_determines_uniqueness(eq, left, right)) {
// item = const.
FunctionalDependency fd;
fd.type = FunctionalDependency::FD;
fd.head = Bounds_checked_array<ItemHandle>();
fd.tail = orderings->GetHandle(left);
fd.always_active = always_active;
return orderings->AddFunctionalDependency(thd, fd);
} else if (!equality_has_no_implicit_casts(eq, left, right)) {
// This is not a true equivalence; there is an implicit cast involved
// that is potentially information-losing, so ordering by one will not
// necessarily be the same as ordering by the other.
// TODO(sgunders): Revisit this when we have explicit casts for
// all comparisons, where we can generate potentially useful equivalences
// involving the casts.
return -1;
} else {
// item = item.
FunctionalDependency fd;
fd.type = FunctionalDependency::EQUIVALENCE;
ItemHandle head = orderings->GetHandle(left);
fd.head = Bounds_checked_array<ItemHandle>(&head, 1);
fd.tail = orderings->GetHandle(right);
fd.always_active = always_active;
// Takes a copy if needed, so the stack reference is safe.
return orderings->AddFunctionalDependency(thd, fd);
}
}
/**
Collect functional dependencies from joins. Currently, we apply
item = item only, and only on inner joins and semijoins. Outer joins do not
enforce their equivalences unconditionally (e.g. with an outer join on
t1.a = t2.b, t1.a = t2.b does not hold afterwards; t2.b could be NULL).
Semijoins do, and even though the attributes from the inner side are
inaccessible afterwards, there could still be interesting constant FDs
that are applicable to the outer side after equivalences.
It is possible to generate a weaker form of FDs for outer joins,
as described in sql/aggregate_check.h (and done for GROUP BY);
e.g. from the join condition t1.x=t2.x AND t1.y=t2.y, one can infer a
functional dependency {t1.x,t1.y} → t2.x and similar for t2.y.
However, do note the comment about FD propagation in the calling function.
*/
static void CollectFunctionalDependenciesFromJoins(
THD *thd, JoinHypergraph *graph, LogicalOrderings *orderings) {
for (JoinPredicate &pred : graph->edges) {
const RelationalExpression *expr = pred.expr;
if (expr->type != RelationalExpression::INNER_JOIN &&
expr->type != RelationalExpression::STRAIGHT_INNER_JOIN &&
expr->type != RelationalExpression::SEMIJOIN) {
continue;
}
pred.functional_dependencies_idx.init(thd->mem_root);
pred.functional_dependencies_idx.reserve(expr->equijoin_conditions.size() +
expr->join_conditions.size());
for (Item_eq_base *join_condition : expr->equijoin_conditions) {
int fd_idx = AddFunctionalDependencyFromCondition(
thd, join_condition, /*always_active=*/false, orderings);
if (fd_idx != -1) {
pred.functional_dependencies_idx.push_back(fd_idx);
}
}
for (Item *join_condition : expr->join_conditions) {
int fd_idx = AddFunctionalDependencyFromCondition(
thd, join_condition, /*always_active=*/false, orderings);
if (fd_idx != -1) {
pred.functional_dependencies_idx.push_back(fd_idx);
}
}
}
}
/**
Collect functional dependencies from non-join predicates.
Again, we only do item = item, and more interesting; we only take the
raw items, where we could have been much more sophisticated.
Imagine a predicate like a = b + c; we will add a FD saying exactly
that (which may or may not be useful, if b + c shows up in ORDER BY),
but we should probably also have added {b,c} → a, if b and c could
be generated somehow.
However, we _do_ special-case item = const, since they are so useful;
they become {} → item instead.
*/
static void CollectFunctionalDependenciesFromPredicates(
THD *thd, JoinHypergraph *graph, LogicalOrderings *orderings) {
for (size_t i = 0; i < graph->num_where_predicates; ++i) {
Predicate &pred = graph->predicates[i];
bool always_active =
!Overlaps(pred.total_eligibility_set, PSEUDO_TABLE_BITS) &&
IsSingleBitSet(pred.total_eligibility_set);
int fd_idx = AddFunctionalDependencyFromCondition(thd, pred.condition,
always_active, orderings);
if (fd_idx != -1) {
pred.functional_dependencies_idx.push_back(fd_idx);
}
}
}
static void CollectFunctionalDependenciesFromUniqueIndexes(
THD *thd, JoinHypergraph *graph, LogicalOrderings *orderings) {
// Collect functional dependencies from unique indexes.
for (JoinHypergraph::Node &node : graph->nodes) {
TABLE *table = node.table;
for (unsigned key_idx = 0; key_idx < table->s->keys; ++key_idx) {
KEY *key = &table->key_info[key_idx];
if (!Overlaps(actual_key_flags(key), HA_NOSAME)) {
// Not a unique index.
continue;
}
if (Overlaps(actual_key_flags(key), HA_NULL_PART_KEY)) {
// Some part of the index could be NULL,
// with special semantics; so ignore it.
continue;
}
FunctionalDependency fd;
fd.type = FunctionalDependency::FD;
fd.head = Bounds_checked_array<ItemHandle>::Alloc(thd->mem_root,
actual_key_parts(key));
for (unsigned keypart_idx = 0; keypart_idx < actual_key_parts(key);
++keypart_idx) {
fd.head[keypart_idx] = orderings->GetHandle(
new Item_field(key->key_part[keypart_idx].field));
}
fd.always_active = true;
// Add a FD for each field in the table that is not part of the key.
for (unsigned field_idx = 0; field_idx < table->s->fields; ++field_idx) {
Field *field = table->field[field_idx];
bool in_key = false;
for (unsigned keypart_idx = 0; keypart_idx < actual_key_parts(key);
++keypart_idx) {
if (field->eq(key->key_part[keypart_idx].field)) {
in_key = true;
break;
}
}
if (!in_key) {
fd.tail = orderings->GetHandle(new Item_field(field));
orderings->AddFunctionalDependency(thd, fd);
}
}
}
}
}
static Ordering::Elements CollectInterestingOrder(THD *thd, ORDER *order,
int order_len,
bool unwrap_rollup,
LogicalOrderings *orderings) {
Ordering::Elements elements =
Ordering::Elements::Alloc(thd->mem_root, order_len);
int i = 0;
for (; order != nullptr; order = order->next, ++i) {
Item *item = *order->item;
if (unwrap_rollup) {
item = unwrap_rollup_group(item);
}
elements[i].item = orderings->GetHandle(item);
elements[i].direction = order->direction;
}
return elements;
}
// A convenience form of the above.
static Ordering::Elements CollectInterestingOrder(
THD *thd, const SQL_I_List<ORDER> &order_list, bool unwrap_rollup,
LogicalOrderings *orderings) {
return CollectInterestingOrder(thd, order_list.first, order_list.size(),
unwrap_rollup, orderings);
}
ORDER *BuildSortAheadOrdering(THD *thd, const LogicalOrderings *orderings,
Ordering ordering) {
ORDER *order = nullptr;
ORDER *last_order = nullptr;
for (OrderElement element : ordering.GetElements()) {
ORDER *new_ptr = new (thd->mem_root) ORDER;
new_ptr->item_initial = orderings->item(element.item);
new_ptr->item = &new_ptr->item_initial;
new_ptr->direction = element.direction;
if (order == nullptr) {
order = new_ptr;
}
if (last_order != nullptr) {
last_order->next = new_ptr;
}
last_order = new_ptr;
}
return order;
}
static int AddOrdering(THD *thd, Ordering ordering, bool used_at_end,
table_map homogenize_tables,
LogicalOrderings *orderings) {
if (ordering.GetElements().empty()) {
return 0;
}
return orderings->AddOrdering(thd, ordering, /*interesting=*/true,
used_at_end, homogenize_tables);
}
static void CanonicalizeGrouping(Ordering::Elements *elements) {
for (OrderElement &elem : *elements) {
elem.direction = ORDER_NOT_RELEVANT;
}
std::sort(elements->begin(), elements->end(),
[](const OrderElement &a, const OrderElement &b) {
return a.item < b.item;
});
elements->resize(std::unique(elements->begin(), elements->end()) -
elements->begin());
}
/**
Find the ORDER objects pointing corresponding to a given OrderElement. That
is, return the first ORDER that has the same item and direction as the given
OrderElement. It is assumed that there is a corresponding one.
*/
static ORDER *FindOrderElementInORDER(OrderElement element, ORDER *order,
const LogicalOrderings &orderings) {
const Item *search_item = orderings.item(element.item);
while (true) {
assert(order != nullptr);
if (*order->item == search_item && element.direction == order->direction) {
return order;
}
order = order->next;
}
}
/**
Remove all redundant elements from a chain of ORDERs by modifying the next
pointers in the intrusive list.
@param order Pointer to the first element of the original ORDER BY clause.
@param reduced_ordering An Ordering object that contains only the
non-redundant elements of "order".
@param orderings The logical orderings.
@return Pointer to the first element of the reduced ordering.
*/
static ORDER *RemoveRedundantOrderElements(ORDER *order,
Ordering reduced_ordering,
const LogicalOrderings &orderings) {
ORDER *first = nullptr;
ORDER *prev = nullptr;
ORDER *current = order;
for (OrderElement element : reduced_ordering.GetElements()) {
ORDER *next = FindOrderElementInORDER(element, current, orderings);
assert(next != nullptr);
if (first == nullptr) {
first = next;
} else {
prev->next = next;
}
prev = next;
current = next->next;
}
if (prev != nullptr) {
prev->next = nullptr;
}
return first;
}
Ordering ReduceFinalOrdering(THD *thd, const LogicalOrderings &orderings,
int ordering_idx) {
Ordering full_ordering = orderings.ordering(ordering_idx);
return orderings.ReduceOrdering(
full_ordering, /*all_fds=*/true,
Ordering::Elements::Alloc(thd->mem_root, full_ordering.size()));
}
void BuildInterestingOrders(
THD *thd, JoinHypergraph *graph, Query_block *query_block,
LogicalOrderings *orderings,
Mem_root_array<SortAheadOrdering> *sort_ahead_orderings,
int *order_by_ordering_idx, int *group_by_ordering_idx,
int *distinct_ordering_idx, Mem_root_array<ActiveIndexInfo> *active_indexes,
Mem_root_array<FullTextIndexInfo> *fulltext_searches, string *trace) {
// Collect ordering from ORDER BY.
if (query_block->is_ordered()) {
Ordering::Elements elements =
CollectInterestingOrder(thd, query_block->order_list,
/*unwrap_rollup=*/false, orderings);
*order_by_ordering_idx =
AddOrdering(thd, Ordering(elements, Ordering::Kind::kOrder),
/*used_at_end=*/true, /*homogenize_tables=*/0, orderings);
}
// Collect grouping from GROUP BY.
if (query_block->is_explicitly_grouped()) {
Ordering::Elements elements =
CollectInterestingOrder(thd, query_block->group_list,
/*unwrap_rollup=*/true, orderings);
if (query_block->join->rollup_state == JOIN::RollupState::NONE) {
CanonicalizeGrouping(&elements);
*group_by_ordering_idx =
AddOrdering(thd, Ordering(elements, Ordering::Kind::kGroup),
/*used_at_end=*/true, /*homogenize_tables=*/0, orderings);
} else {
for (OrderElement &elem : elements) {
elem.direction = ORDER_NOT_RELEVANT;
}
*group_by_ordering_idx =
AddOrdering(thd, Ordering(elements, Ordering::Kind::kRollup),
/*used_at_end=*/true, /*homogenize_tables=*/0, orderings);
}
}
// Collect orderings/groupings from window functions.
//
// Note that window functions may contain hybrid groupings/orderings,
// e.g. PARTITION BY a,b ORDER BY c,d. In this case, several orderings
// (eight of them) would satisfy the query:
//
// 1. (a,b,c,d)
// 2. (b,a,c,d)
// 3. (a↓,b,c,d)
// 4. (b↓,a↓,c,d)
// 5. etc..
//
// However, since we don't support hybrid groupings/orderings,
// just pure groupings or pure orderings, we only accept #1 here.
// For PARTITION BY with no ORDER BY, we use a grouping as usual.
for (Window &window : query_block->join->m_windows) {
ORDER *order = window.sorting_order(thd);
if (order == nullptr) {
window.m_ordering_idx = 0;
continue;
}
const bool mixed_grouping = (window.effective_order_by() != nullptr &&
window.effective_partition_by() != nullptr);
int order_len = 0;
for (ORDER *ptr = order; ptr != nullptr; ptr = ptr->next) {
if (mixed_grouping && ptr->direction == ORDER_NOT_RELEVANT) {
ptr->direction = ORDER_ASC;
}
++order_len;
}
Ordering::Elements elements =
CollectInterestingOrder(thd, order, order_len,
/*unwrap_rollup=*/false, orderings);
Ordering::Kind kind;
if (window.effective_order_by() == nullptr) {
CanonicalizeGrouping(&elements);
kind = Ordering::Kind::kGroup;
} else {
kind = Ordering::Kind::kOrder;
}
window.m_ordering_idx =
AddOrdering(thd, Ordering(elements, kind),
/*used_at_end=*/true, /*homogenize_tables=*/0, orderings);
}
// Collect grouping from DISTINCT.
//
// Note that we don't give in the ORDER BY ordering here, and thus also don't
// care about all_order_by_fields_used (which says whether the DISTINCT
// ordering was able to also satisfy the ORDER BY); group coverings will be
// dealt with by the more general intesting order framework, which can also
// combine e.g. GROUP BY groupings with ORDER BY.
if (query_block->join->select_distinct) {
bool all_order_fields_used = false;
ORDER *order = create_order_from_distinct(
thd, Ref_item_array(), /*order=*/nullptr, query_block->join->fields,
/*skip_aggregates=*/false, /*convert_bit_fields_to_long=*/false,
&all_order_fields_used);
if (order == nullptr) {
*distinct_ordering_idx = 0; // 0 is the empty ordering.
} else {
int order_len = 0;
for (ORDER *ptr = order; ptr != nullptr; ptr = ptr->next) {
++order_len;
}
Ordering::Elements elements =
CollectInterestingOrder(thd, order, order_len,
/*unwrap_rollup=*/false, orderings);
CanonicalizeGrouping(&elements);
*distinct_ordering_idx =
AddOrdering(thd, Ordering(elements, Ordering::Kind::kGroup),
/*used_at_end=*/true, /*homogenize_tables=*/0, orderings);
}
}
// Collect groupings from semijoins (because we might want to do duplicate
// removal on the inner side, which will allow us to convert the join to an
// inner join and invert it).
for (JoinPredicate &pred : graph->edges) {
if (pred.expr->type != RelationalExpression::SEMIJOIN) {
continue;
}
if (!pred.expr->join_conditions.empty()) {
// Most semijoins (e.g. from IN) are pure equijoins, but due to
// outer references, there may also be non-equijoin conditions
// involved. If so, we can no longer rewrite to a regular inner
// join (at least not in the general case), so skip these.
continue;
}
const table_map inner_tables = pred.expr->right->tables_in_subtree;
Ordering::Elements elements = Ordering::Elements::Alloc(
thd->mem_root, pred.expr->equijoin_conditions.size());
bool contains_row_item = false;
for (size_t i = 0; i < pred.expr->equijoin_conditions.size(); ++i) {
Item *item = pred.expr->equijoin_conditions[i]->get_arg(1);
if (!IsSubset(item->used_tables() & ~PSEUDO_TABLE_BITS, inner_tables)) {
item = pred.expr->equijoin_conditions[i]->get_arg(0);
assert(
IsSubset(item->used_tables() & ~PSEUDO_TABLE_BITS, inner_tables));
}
if (item->result_type() == ROW_RESULT) {
// In rare cases, the optimizer may set up semijoins where the
// items themselves are ROW() items. RemoveDuplicatesIterator
// isn't ready for ROW_RESULT type, so we unwrap the simple ones
// and simply ignore semijoins over more complex row-type items.
if (item->type() == Item::ROW_ITEM && item->cols() == 1) {
item = down_cast<Item_row *>(item)->element_index(0);
} else {
contains_row_item = true;
break;
}
}
elements[i].item = orderings->GetHandle(item);
}
if (contains_row_item) {
continue;
}
CanonicalizeGrouping(&elements);
pred.ordering_idx_needed_for_semijoin_rewrite = AddOrdering(
thd,
Ordering(elements, elements.empty() ? Ordering::Kind::kEmpty
: Ordering::Kind::kGroup),
/*used_at_end=*/false, /*homogenize_tables=*/inner_tables, orderings);
}
// Collect list of all active indexes. We will be needing this for ref access
// and full-text index search even if we don't have any interesting orders.
for (unsigned node_idx = 0; node_idx < graph->nodes.size(); ++node_idx) {
TABLE *table = graph->nodes[node_idx].table;
for (unsigned key_idx = 0; key_idx < table->s->keys; ++key_idx) {
// NOTE: visible_index claims to contain “visible and enabled” indexes,
// but we still need to check keys_in_use to ignore disabled indexes.
if (!table->keys_in_use_for_query.is_set(key_idx)) {
continue;
}
ActiveIndexInfo index_info;
index_info.table = table;
index_info.key_idx = key_idx;
active_indexes->push_back(index_info);
}
}
// Collect list of full-text searches that can be satisfied by an active
// full-text index.
if (query_block->has_ft_funcs()) {
for (const ActiveIndexInfo &index_info : *active_indexes) {
const TABLE *table = index_info.table;
const unsigned key_idx = index_info.key_idx;
const KEY &key = table->key_info[key_idx];
if (!Overlaps(key.flags, HA_FULLTEXT)) continue;
for (Item_func_match &ftfunc : *query_block->ftfunc_list) {
if (ftfunc.get_master() == &ftfunc &&
ftfunc.table_ref->table == table && ftfunc.key == key_idx) {
fulltext_searches->push_back(FullTextIndexInfo{&ftfunc, 0});
}
}
}
}
// Early exit if we don't have any interesting orderings.
if (orderings->num_orderings() <= 1) {
if (trace != nullptr) {
*trace +=
"\nNo interesting orders found. Not collecting functional "
"dependencies.\n\n";
}
orderings->Build(thd, trace);
return;
}
// Collect orderings from indexes. Note that these are not interesting
// in themselves, so they will be rapidly pruned away if they cannot lead
// to an interesting order.
for (ActiveIndexInfo &index_info : *active_indexes) {
TABLE *table = index_info.table;
KEY *key = &table->key_info[index_info.key_idx];
// Find out how many usable keyparts there are. We have to stop
// at the first that is partial (if any), or if the index is
// nonorderable (e.g. a hash index), which we can seemingly only
// query by keypart.
int sortable_key_parts = 0;
for (unsigned keypart_idx = 0; keypart_idx < actual_key_parts(key);
++keypart_idx, ++sortable_key_parts) {
if (Overlaps(key->key_part[keypart_idx].key_part_flag, HA_PART_KEY_SEG) ||
!Overlaps(
table->file->index_flags(index_info.key_idx, keypart_idx, true),
HA_READ_ORDER)) {
break;
}
}
if (sortable_key_parts == 0) {
continue;
}
// First add the forward order.
Ordering::Elements elements =
Ordering::Elements::Alloc(thd->mem_root, sortable_key_parts);
for (int keypart_idx = 0; keypart_idx < sortable_key_parts; ++keypart_idx) {
const KEY_PART_INFO &key_part = key->key_part[keypart_idx];
elements[keypart_idx].item =
orderings->GetHandle(new Item_field(key_part.field));
elements[keypart_idx].direction =
Overlaps(key_part.key_part_flag, HA_REVERSE_SORT) ? ORDER_DESC
: ORDER_ASC;
}
index_info.forward_order = orderings->AddOrdering(
thd, Ordering(elements, Ordering::Kind::kOrder), /*interesting=*/false,
/*used_at_end=*/true, /*homogenize_tables=*/0);
// And now the reverse, if the index allows it.
if (Overlaps(table->file->index_flags(index_info.key_idx,
sortable_key_parts - 1, true),
HA_READ_PREV)) {
for (int keypart_idx = 0; keypart_idx < sortable_key_parts;
++keypart_idx) {
if (elements[keypart_idx].direction == ORDER_ASC) {
elements[keypart_idx].direction = ORDER_DESC;
} else {
elements[keypart_idx].direction = ORDER_ASC;
}
}
index_info.reverse_order = orderings->AddOrdering(
thd, Ordering(elements, Ordering::Kind::kOrder),
/*interesting=*/false,
/*used_at_end=*/true, /*homogenize_tables=*/0);
// Reverse index range scans need to know whether they should use the
// extended key parts (key parts from the primary key that are appended to
// the keys in a secondary index). So we also keep the ordering for a
// reverse scan that only uses the user-defined key parts.
if (const int user_defined_key_parts = key->user_defined_key_parts;
sortable_key_parts <= user_defined_key_parts) {
index_info.reverse_order_without_extended_key_parts =
index_info.reverse_order;
} else {
index_info.reverse_order_without_extended_key_parts =
orderings->AddOrdering(
thd,
Ordering(elements.prefix(user_defined_key_parts),
Ordering::Kind::kOrder),
/*interesting=*/false,
/*used_at_end=*/true,
/*homogenize_tables=*/0);
}
}
}
// Collect orderings from full-text indexes. Note that these are not
// interesting in themselves, so they will be rapidly pruned away if they
// cannot lead to an interesting order. Full-text indexes can only provide
// results ordered descending on the result returned by MATCH ... AGAINST.
for (FullTextIndexInfo &info : *fulltext_searches) {
// MyISAM does not support ordering on queries in boolean mode.
if (Overlaps(info.match->flags, FT_BOOL) &&
!Overlaps(info.match->table_ref->table->file->ha_table_flags(),
HA_CAN_FULLTEXT_EXT)) {
continue;
}
ItemHandle item = orderings->GetHandle(info.match);
OrderElement order_element{item, ORDER_DESC};
Ordering::Elements elements{&order_element, 1};
info.order = orderings->AddOrdering(
thd, Ordering(elements, Ordering::Kind::kOrder), /*interesting=*/false,
/*used_at_end=*/true,
/*homogenize_tables=*/0);
}
// Collect functional dependencies. Currently, there are many kinds
// we don't do; see sql/aggregate_check.h. In particular, we don't
// collect FDs from:
//
// - Unique indexes that are nullable, but that are made non-nullable
// by WHERE predicates.
// - Generated columns. [*]
// - Join conditions from outer joins. [*]
// - Non-merged derived tables (including views and CTEs). [*]
//
// Note that the points marked with [*] introduce special problems related
// to propagation of FDs; aggregate_check.h contains more details around
// so-called “NULL-friendly functional dependencies”. If we include any
// of them, we need to take more care about propagating them through joins.
//
// We liberally insert FDs here, even if they are not obviously related
// to interesting orders; they may be useful at a later stage, when
// other FDs can use them as a stepping stone. Optimization in Build()
// will remove them if they are indeed not useful.
CollectFunctionalDependenciesFromJoins(thd, graph, orderings);
CollectFunctionalDependenciesFromPredicates(thd, graph, orderings);
CollectFunctionalDependenciesFromUniqueIndexes(thd, graph, orderings);
// Collect the GROUP BY expression, which will be used by
// AddFDsFromAggregateItems() later.
if (query_block->is_explicitly_grouped()) {
auto head = Bounds_checked_array<ItemHandle>::Alloc(
thd->mem_root, query_block->group_list.size());
int idx = 0;
for (ORDER *group = query_block->group_list.first; group != nullptr;
group = group->next, ++idx) {
head[idx] = orderings->GetHandle(*group->item);
}
orderings->SetHeadForAggregates(head);
}
orderings->SetRollup(query_block->join->rollup_state !=
JOIN::RollupState::NONE);
orderings->Build(thd, trace);
if (*order_by_ordering_idx != -1) {
*order_by_ordering_idx =
orderings->RemapOrderingIndex(*order_by_ordering_idx);
// See if we're able to eliminate any redundant elements completely from the
// ORDER BY clause. If so, store the reduced ordering in join->order.
if (const Ordering reduced_ordering =
ReduceFinalOrdering(thd, *orderings, *order_by_ordering_idx);
reduced_ordering.size() < query_block->order_list.elements) {
query_block->join->order = ORDER_with_src(
RemoveRedundantOrderElements(query_block->join->order.order,
reduced_ordering, *orderings),
query_block->join->order.src);
}
}
if (*group_by_ordering_idx != -1) {
*group_by_ordering_idx =
orderings->RemapOrderingIndex(*group_by_ordering_idx);
}
if (*distinct_ordering_idx != -1) {
*distinct_ordering_idx =
orderings->RemapOrderingIndex(*distinct_ordering_idx);
}
for (Window &window : query_block->join->m_windows) {
if (window.m_ordering_idx != -1) {
window.m_ordering_idx =
orderings->RemapOrderingIndex(window.m_ordering_idx);
}
}
for (JoinPredicate &pred : graph->edges) {
for (int fd_idx : pred.functional_dependencies_idx) {
pred.functional_dependencies |= orderings->GetFDSet(fd_idx);
}
}
for (Predicate &pred : graph->predicates) {
for (int fd_idx : pred.functional_dependencies_idx) {
pred.functional_dependencies |= orderings->GetFDSet(fd_idx);
}
}
for (JoinPredicate &pred : graph->edges) {
if (pred.ordering_idx_needed_for_semijoin_rewrite != -1) {
pred.ordering_idx_needed_for_semijoin_rewrite =
orderings->RemapOrderingIndex(
pred.ordering_idx_needed_for_semijoin_rewrite);
// Set up the elements to deduplicate against. Note that we don't do this
// before after Build(), because Build() may have simplified away some
// (or all) elements using functional dependencies.
Ordering::Elements grouping =
orderings->ordering(pred.ordering_idx_needed_for_semijoin_rewrite)
.GetElements();
pred.semijoin_group_size = grouping.size();
if (!grouping.empty()) {
pred.semijoin_group =
thd->mem_root->ArrayAlloc<Item *>(grouping.size());
for (size_t i = 0; i < grouping.size(); ++i) {
pred.semijoin_group[i] = orderings->item(grouping[i].item);
}
}
}
}
for (FullTextIndexInfo &info : *fulltext_searches) {
info.order = orderings->RemapOrderingIndex(info.order);
}
// Now collect all orderings we have that we can try as sort-ahead,
// including both the orderings we originally added, group covers,
// and homogenized orders.
for (int ordering_idx = 0; ordering_idx < orderings->num_orderings();
++ordering_idx) {
if (!orderings->ordering_is_relevant_for_sortahead(ordering_idx)) {
continue;
}
table_map used_tables = 0;
bool aggregates_required = false;
bool sort_ahead_only = false;
for (OrderElement element :
orderings->ordering(ordering_idx).GetElements()) {
Item *item = orderings->item(element.item);
used_tables |= item->used_tables();
aggregates_required |= (item->has_aggregation() || item->has_wf());
const Item *real_item = item->real_item();
sort_ahead_only =
sort_ahead_only ||
std::none_of(query_block->join->fields->cbegin(),
query_block->join->fields->cend(),
[real_item](const Item *field) {
return real_item->eq(field->real_item(),
/*binary_cmp=*/true);
});
}
NodeMap required_nodes = GetNodeMapFromTableMap(
used_tables & ~(INNER_TABLE_BIT | OUTER_REF_TABLE_BIT),
graph->table_num_to_node_num);
ORDER *order = BuildSortAheadOrdering(thd, orderings,
orderings->ordering(ordering_idx));
sort_ahead_orderings->push_back(
SortAheadOrdering{ordering_idx, required_nodes, aggregates_required,
sort_ahead_only, order});
}
}
|