File: cost_model.cc

package info (click to toggle)
mysql-8.0 8.0.43-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,273,924 kB
  • sloc: cpp: 4,684,605; ansic: 412,450; pascal: 108,398; java: 83,641; perl: 30,221; cs: 27,067; sql: 26,594; sh: 24,181; python: 21,816; yacc: 17,169; php: 11,522; xml: 7,388; javascript: 7,076; makefile: 2,194; lex: 1,075; awk: 670; asm: 520; objc: 183; ruby: 97; lisp: 86
file content (927 lines) | stat: -rw-r--r-- 35,589 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
/* Copyright (c) 2020, 2025, Oracle and/or its affiliates.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License, version 2.0,
   as published by the Free Software Foundation.

   This program is designed to work with certain software (including
   but not limited to OpenSSL) that is licensed under separate terms,
   as designated in a particular file or component or in included license
   documentation.  The authors of MySQL hereby grant you an additional
   permission to link the program and your derivative works with the
   separately licensed software that they have either included with
   the program or referenced in the documentation.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License, version 2.0, for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301  USA */

#include "sql/join_optimizer/cost_model.h"

#include <math.h>
#include <stdio.h>
#include <algorithm>

#include "mem_root_deque.h"
#include "my_base.h"
#include "sql/handler.h"
#include "sql/item_func.h"
#include "sql/item_subselect.h"
#include "sql/join_optimizer/access_path.h"
#include "sql/join_optimizer/bit_utils.h"
#include "sql/join_optimizer/find_contained_subqueries.h"
#include "sql/join_optimizer/join_optimizer.h"
#include "sql/join_optimizer/materialize_path_parameters.h"
#include "sql/join_optimizer/overflow_bitset.h"
#include "sql/join_optimizer/print_utils.h"
#include "sql/join_optimizer/relational_expression.h"
#include "sql/mem_root_array.h"
#include "sql/mysqld.h"
#include "sql/opt_costmodel.h"
#include "sql/opt_trace.h"
#include "sql/sql_class.h"
#include "sql/sql_const.h"
#include "sql/sql_lex.h"
#include "sql/sql_optimizer.h"
#include "sql/sql_planner.h"
#include "sql/system_variables.h"
#include "sql/table.h"
#include "template_utils.h"

using std::min;
using std::string;

double EstimateCostForRefAccess(THD *thd, TABLE *table, unsigned key_idx,
                                double num_output_rows) {
  // When asking the cost model for costs, the API takes in a double,
  // but truncates it to an unsigned integer. This means that if we
  // expect an index lookup to give e.g. 0.9 rows on average, the cost
  // model will assume we get back 0 -- and even worse, InnoDB's
  // cost model gives a cost of exactly zero for this case, ignoring
  // entirely the startup cost! Obviously, a cost of zero would make
  // it very attractive to line up a bunch of such lookups in a nestloop
  // and nestloop-join against them, crowding out pretty much any other
  // way to do a join, so to counteract both of these issues, we
  // explicitly round up here. This can be removed if InnoDB's
  // cost model is tuned better for this case.
  const double hacked_num_output_rows = ceil(num_output_rows);

  // We call find_cost_for_ref(), which is the same cost model used
  // in the old join optimizer, but without the “worst_seek” cap,
  // which gives ref access with high row counts an artificially low cost.
  // Removing this cap hurts us a bit if the buffer pool gets filled
  // with useful data _while running this query_, but it is just a really
  // bad idea overall, that makes the join optimizer prefer such plans
  // by a mile. The original comment says that it's there to prevent
  // choosing table scan too often, but table scans are not a problem
  // if we hash join on them. (They can be dangerous with nested-loop
  // joins, though!)
  //
  // TODO(sgunders): This is still a very primitive, and rather odd,
  // cost model. In particular, why don't we ask the storage engine for
  // the cost of scanning non-covering secondary indexes?
  return find_cost_for_ref(thd, table, key_idx, hacked_num_output_rows,
                           /*worst_seeks=*/DBL_MAX);
}

void EstimateSortCost(AccessPath *path) {
  AccessPath *child = path->sort().child;
  const double num_input_rows = child->num_output_rows();
  const double num_output_rows =
      path->sort().limit != HA_POS_ERROR
          ? std::min<double>(num_input_rows, path->sort().limit)
          : num_input_rows;

  double sort_cost;
  if (num_input_rows <= 1.0) {
    // Avoid NaNs from log2().
    sort_cost = kSortOneRowCost;
  } else {
    // Filesort's complexity is O(n + k log k) with a limit, or O(n log n)
    // without. See comment in Filesort_buffer::sort_buffer(). We can use the
    // same calculation for both. If n = k (no limit, or the limit is higher
    // than the number of input rows), O(n + k log k) is the same as
    // O(n + n log n), which is equivalent to O(n log n) because n < n log n for
    // large values of n. So we always calculate it as n + k log k:
    sort_cost = kSortOneRowCost *
                (num_input_rows +
                 num_output_rows * std::max(log2(num_output_rows), 1.0));
  }

  path->set_num_output_rows(num_output_rows);
  path->cost = path->init_cost = child->cost + sort_cost;
  path->init_once_cost = 0.0;
  path->num_output_rows_before_filter = path->num_output_rows();
  path->cost_before_filter = path->cost;
}

void AddCost(THD *thd, const ContainedSubquery &subquery, double num_rows,
             FilterCost *cost) {
  switch (subquery.strategy) {
    case ContainedSubquery::Strategy::kMaterializable: {
      // We can't ask the handler for costs at this stage, since that
      // requires an actual TABLE, and we don't want to be creating
      // them every time we're evaluating a cost-> Thus, instead,
      // we ask the cost model for an estimate. Longer-term, these two
      // estimates should really be guaranteed to be the same somehow.
      Cost_model_server::enum_tmptable_type tmp_table_type;
      if (subquery.row_width * num_rows < thd->variables.max_heap_table_size) {
        tmp_table_type = Cost_model_server::MEMORY_TMPTABLE;
      } else {
        tmp_table_type = Cost_model_server::DISK_TMPTABLE;
      }
      cost->cost_if_materialized += thd->cost_model()->tmptable_readwrite_cost(
          tmp_table_type, /*write_rows=*/0,
          /*read_rows=*/num_rows);
      cost->cost_to_materialize +=
          subquery.path->cost +
          kMaterializeOneRowCost * subquery.path->num_output_rows();

      cost->cost_if_not_materialized += num_rows * subquery.path->cost;
    } break;

    case ContainedSubquery::Strategy::kNonMaterializable:
      cost->cost_if_not_materialized += num_rows * subquery.path->cost;
      cost->cost_if_materialized += num_rows * subquery.path->cost;
      break;

    case ContainedSubquery::Strategy::kIndependentSingleRow:
      cost->cost_if_materialized += subquery.path->cost;
      cost->cost_if_not_materialized += subquery.path->cost;
      cost->init_cost_if_not_materialized += subquery.path->cost;
      break;

    default:
      assert(false);
  }
}

FilterCost EstimateFilterCost(THD *thd, double num_rows, Item *condition,
                              const Query_block *outer_query_block) {
  FilterCost cost;
  cost.cost_if_not_materialized = num_rows * kApplyOneFilterCost;
  cost.cost_if_materialized = num_rows * kApplyOneFilterCost;
  FindContainedSubqueries(
      condition, outer_query_block,
      [thd, num_rows, &cost](const ContainedSubquery &subquery) {
        AddCost(thd, subquery, num_rows, &cost);
      });
  return cost;
}

// Very rudimentary (assuming no deduplication; it's better to overestimate
// than to understimate), so that we get something that isn't “unknown”.
void EstimateMaterializeCost(THD *thd, AccessPath *path) {
  AccessPath *table_path = path->materialize().table_path;
  double &subquery_cost = path->materialize().subquery_cost;

  path->set_num_output_rows(0);
  double cost_for_cacheable = 0.0;
  bool left_block = true;
  subquery_cost = 0.0;
  for (const MaterializePathParameters::QueryBlock &block :
       path->materialize().param->query_blocks) {
    if (block.subquery_path->num_output_rows() >= 0.0) {
      // For INTERSECT and EXCEPT we can never get more rows than we have in
      // the left block, so do not add unless we are looking at left block or
      // we have a UNION.
      if (left_block || path->materialize().param->table == nullptr ||
          path->materialize().param->table->is_union_or_table()) {
        path->set_num_output_rows(path->num_output_rows() +
                                  block.subquery_path->num_output_rows());
      } else if (!left_block &&
                 path->materialize().param->table->is_intersect()) {
        // INTERSECT can never give more rows than that of its smallest operand
        path->set_num_output_rows(std::min(
            path->num_output_rows(), block.subquery_path->num_output_rows()));
      }
      subquery_cost += block.subquery_path->cost;
      if (block.join != nullptr && block.join->query_block->is_cacheable()) {
        cost_for_cacheable += block.subquery_path->cost;
      }
    }
    left_block = false;
  }

  if (table_path->type == AccessPath::TABLE_SCAN) {
    path->cost = 0.0;
    path->init_cost = 0.0;
    path->init_once_cost = 0.0;
    table_path->set_num_output_rows(path->num_output_rows());
    table_path->init_cost = subquery_cost;
    table_path->init_once_cost = cost_for_cacheable;

    if (Overlaps(test_flags, TEST_NO_TEMP_TABLES)) {
      // Unit tests don't load any temporary table engines,
      // so just make up a number.
      table_path->cost = subquery_cost + path->num_output_rows() * 0.1;
    } else {
      TABLE dummy_table;
      TABLE *temp_table = table_path->table_scan().table;
      if (temp_table == nullptr) {
        // We need a dummy TABLE object to get estimates.
        handlerton *handlerton = ha_default_temp_handlerton(thd);
        dummy_table.file =
            handlerton->create(handlerton, /*share=*/nullptr,
                               /*partitioned=*/false, thd->mem_root);
        dummy_table.file->set_ha_table(&dummy_table);
        dummy_table.init_cost_model(thd->cost_model());
        temp_table = &dummy_table;
      }

      // Try to get usable estimates. Ignored by InnoDB, but used by
      // TempTable.
      temp_table->file->stats.records =
          min(path->num_output_rows(), LLONG_MAX_DOUBLE);
      table_path->cost =
          subquery_cost + temp_table->file->table_scan_cost().total_cost();
    }
  } else {
    // Use the costs of the subquery.
    path->init_cost = subquery_cost;
    path->init_once_cost = cost_for_cacheable;
    path->cost = subquery_cost;
  }

  path->init_cost += std::max(table_path->init_cost, 0.0) +
                     kMaterializeOneRowCost * path->num_output_rows();

  path->init_once_cost += std::max(table_path->init_once_cost, 0.0);

  path->cost += std::max(table_path->cost, 0.0) +
                kMaterializeOneRowCost * path->num_output_rows();
}

namespace {

/// Array of aggregation terms.
using TermArray = Mem_root_array<const Item *>;

/**
   This class finds disjoint sets of aggregation terms that form prefixes of
   some non-hash index, and makes row estimates for those sets based on index
   metadata.
*/
class AggregateRowEstimator {
 public:
  /// @param terms The aggregation terms.
  /// @param trace Append optimizer trace text to this if non-null.
  AggregateRowEstimator(const TermArray &terms, string *trace);

  // No copying of this type.
  AggregateRowEstimator(const AggregateRowEstimator &) = delete;
  AggregateRowEstimator &operator=(const AggregateRowEstimator &) = delete;

  /// Used to indicate that no more suitable indexes could be found.
  static constexpr double kNoEstimate = -1.0;

  /**
      Get the next row estimate. We make the estimate as follows:

      1. Find the (non-hash) index where the remaining aggregation terms form
         the longest prefix of the index fields. For example, if we have
         aggregation terms [a,b,c,d] and we have indexes ix1 on [a,b], ix2 on
         [d,c,b,e], we pick ix2.

      2. Make an estimate of the number of distinct values for those fields
         (i.e. [d,c,b]) using index statistics. This is the row estimate.

      3. Remove those fields from the set of remaining terms. (In the example
         above, only [a] would now remain.

      4. Return the row estimate to the caller.

      @returns The estimate, or kNoEstimate if no more suitable indexes could be
      found.
  */
  double MakeNextEstimate();

  /// Get the set of terms for which we have found an index.
  /// Bit number corresponds to position in the 'terms' argument to the
  /// constructor.
  const MutableOverflowBitset &GetConsumedTerms() const {
    return m_consumed_terms;
  }

 private:
  /// A prefix of some key where each key_part corresponds to an aggregation
  /// term.
  struct Prefix {
    /// The key (index).
    const KEY *m_key;
    /// The number of key_parts found in 'terms'.
    uint m_length;

    /// @returns A string representation of this object (for optimizer trace).
    string Print() const;
  };

  ///  The aggregation terms.
  const TermArray *m_terms;

  /// The set of terms mapped to an index so far.
  MutableOverflowBitset m_consumed_terms;

  /// The index prefixes we found for 'm_terms'.
  Mem_root_array<Prefix *> m_prefixes{current_thd->mem_root};

  /// Optimizer trace text.
  string *m_trace;

  /// Find an Item_field pointing to 'field' in 'm_terms', if there is one.
  /// @param field The field we look for.
  /// @returns An iterator to the position of 'field' in m_terms, or
  /// m_terms->cend().
  TermArray::const_iterator FindField(const Field *field) const {
    return std::find_if(
        m_terms->cbegin(), m_terms->cend(), [field](const Item *item) {
          assert(field != nullptr);
          return item->type() == Item::FIELD_ITEM &&
                 down_cast<const Item_field *>(item)->field == field;
        });
  }
};

AggregateRowEstimator::AggregateRowEstimator(const TermArray &terms,
                                             string *trace)
    : m_terms{&terms},
      m_consumed_terms{current_thd->mem_root, terms.size()},
      m_trace(trace) {
  /* Find keys (indexes) for which:
     - One or more of 'terms' form a prefix of the key.
     - Records per key estimates are available for some prefix of the key.
  */
  for (const Item *aggregate_term : terms) {
    if (aggregate_term->type() == Item::FIELD_ITEM) {
      // aggregate_term is a field, so it may be the first field of an index.
      const Field *const field =
          down_cast<const Item_field *>(aggregate_term)->field;
      Key_map key_map = field->key_start;
      uint key_idx = key_map.get_first_set();

      // Loop over the indexes where aggregate_term is the first field.
      while (key_idx != MY_BIT_NONE) {
        const KEY *const key = &field->table->key_info[key_idx];
        uint key_part_no = 1;

        if (key->has_records_per_key(0)) {
          /*
            Find the number of aggregation terms that form a prefix of 'key'
            and allows records_per_key to be calculated.
          */
          while (key_part_no < key->actual_key_parts &&
                 key->has_records_per_key(key_part_no) &&
                 FindField(key->key_part[key_part_no].field) != terms.end()) {
            key_part_no++;
          }

          m_prefixes.push_back(new (current_thd->mem_root)
                                   Prefix({key, key_part_no}));
          if (m_trace != nullptr) {
            *m_trace += "Adding prefix: " + m_prefixes.back()->Print() + "\n";
          }
        }
        key_map.clear_bit(key_idx);
        key_idx = key_map.get_first_set();
      }
    }
  }
}

double AggregateRowEstimator::MakeNextEstimate() {
  // Pick the longest prefix until we have used all terms or m_prefixes,
  // or until all prefixes have length==0.
  while (m_terms->size() >
             static_cast<size_t>(PopulationCount(m_consumed_terms)) &&
         !m_prefixes.empty()) {
    // Find the longest prefix.
    auto prefix_iter = std::max_element(m_prefixes.begin(), m_prefixes.end(),
                                        [](const Prefix *a, const Prefix *b) {
                                          return a->m_length < b->m_length;
                                        });

    Prefix *const prefix = *prefix_iter;

    if (prefix->m_length == 0) {
      return kNoEstimate;
    }

    bool terms_missing = false;

    for (uint key_part_no = 0; key_part_no < prefix->m_length; key_part_no++) {
      Field *const field = prefix->m_key->key_part[key_part_no].field;
      /*
        For each KEY_PART, check if there is still a corresponding aggregation
        item in m_terms.
      */
      if (IsBitSet(FindField(field) - m_terms->cbegin(), m_consumed_terms)) {
        // We did not find it, so it must have been removed when we examined
        // some earlier key. We can thus only use the prefix 0..key_part_no of
        // this key.
        const Prefix shortened_prefix{prefix->m_key, key_part_no};
        if (m_trace != nullptr) {
          *m_trace += "Shortening prefix " + prefix->Print() + "\n  into  " +
                      shortened_prefix.Print() + ",\n  since field '" +
                      field->field_name +
                      "' is already covered by an earlier estimate.\n";
        }
        *prefix = shortened_prefix;
        terms_missing = true;
        break;
      }
    }

    if (!terms_missing) {
      m_prefixes.erase(prefix_iter);

      for (uint key_part_no = 0; key_part_no < prefix->m_length;
           key_part_no++) {
        // Remove the term, so that we do not use two indexes to estimate the
        // row count from a single term.
        m_consumed_terms.SetBit(
            FindField(prefix->m_key->key_part[key_part_no].field) -
            m_terms->begin());
      }

      assert(prefix->m_key->records_per_key(prefix->m_length - 1) !=
             REC_PER_KEY_UNKNOWN);

      const double row_estimate =
          prefix->m_key->table->file->stats.records /
          prefix->m_key->records_per_key(prefix->m_length - 1);

      if (m_trace != nullptr) {
        *m_trace += "Choosing longest prefix " + prefix->Print() +
                    " with estimated distinct values: " +
                    StringPrintf("%.1f", row_estimate) + "\n";
      }

      return row_estimate;
    }
  }

  return kNoEstimate;
}

string AggregateRowEstimator::Prefix::Print() const {
  string result("[index: '");
  result += m_key->name;
  result += "' on '";
  result += m_key->table->alias;
  result += "', fields: '";

  for (uint i = 0; i < m_length; i++) {
    if (i > 0) {
      result += "', '";
    }
    result += m_key->key_part[i].field->field_name;
  }

  result += "']";
  return result;
}

/**
 Estimate row count for an aggregate operation (except for any rollup rows).
 We use the following data to make a row estimate, in that priority:

 1. (Non-hash) indexes where the aggregation terms form some prefix of the
  index key. The handler can give good estimates for these.

 2. Histograms for aggregation terms that are fields. The histograms
 give an estimate of the number of unique values.

 3. The table size (in rows) for terms that are fields without histograms.
 (If we have "SELECT ... FROM t1 JOIN t2 GROUP BY t2.f1", there cannot
 be more results rows than there are rows in t2.) We also make the
 pragmatic assumption that that field values are not unique, and
 therefore make a row estimate somewhat lower than the table row count.

 4. In the remaining cases we make an estimate based on the input row
 estimate. This is based on two assumptions: a) There will be fewer output
 rows than input rows, as one rarely aggregates on a set of terms that are
 unique for each row, b) The more terms there are, the more output rows one
 can expect.

 We may need to combine multiple estimates into one. As an example,
 assume that we aggregate on three fields: f1, f2 and f3. There is and index
 where f1, f2 are a key prefix, and we have a histogram on f3. Then we
 could make good estimates for "GROUP BY f1,f2" or "GROUP BY f3". But how
 do we combine these into an estimate for "GROUP BY f1,f2,f3"? If f3 and
 f1,f2 are uncorrelated, then we should multiply the individual estimates.
 But if f3 is functionally dependent on f1,f2 (or vice versa), we should
 pick the larger of the two estimates.

 Since we do not know if these fields are correlated or not, we
 multiply the individual estimates and then multiply with a
 damping factor. The damping factor is a function of the number
 of estimates (two in the example above). That way, we get a
 combined estimate that falls between the two extremes of
 functional dependence and no correlation.

@param terms The aggregation terms.
@param child_rows The row estimate for the input path.
@param trace Append optimizer trace text to this if non-null.
@returns The row estimate for the aggregate operation.
*/
double EstimateAggregateNoRollupRows(const TermArray &terms, double child_rows,
                                     string *trace) {
  // Estimated number of output rows.
  double output_rows = 1.0;
  // No of individual estimates (for disjoint subsets of the aggregation terms).
  size_t estimate_count = 0;
  // The largest individual estimate.
  double top_estimate = 1.0;

  // Make row estimates for sets of aggregation terms that form prefixes
  // of (non-hash) indexes.
  AggregateRowEstimator index_estimator(terms, trace);

  while (true) {
    const double distinct_values = index_estimator.MakeNextEstimate();
    if (distinct_values == AggregateRowEstimator::kNoEstimate) {
      break;
    }
    top_estimate = std::max(distinct_values, top_estimate);
    output_rows *= distinct_values;
    estimate_count++;
  }

  size_t remaining_term_cnt =
      terms.size() - PopulationCount(index_estimator.GetConsumedTerms());

  // Loop over the remaining aggregation terms, i.e. those that were not part of
  // a key prefix. Make row estimates for those that are fields.
  for (TermArray::const_iterator term = terms.cbegin(); term < terms.cend();
       term++) {
    if (!IsBitSet(term - terms.cbegin(), index_estimator.GetConsumedTerms()) &&
        (*term)->type() == Item::FIELD_ITEM) {
      const Field *const field = down_cast<const Item_field *>(*term)->field;
      const histograms::Histogram *const histogram =
          field->table->s->find_histogram(field->field_index());

      double distinct_values;
      if (histogram == nullptr || empty(*histogram)) {
        // Make an estimate from the table row count.
        distinct_values = std::sqrt(field->table->file->stats.records);

        if (trace != nullptr) {
          *trace += StringPrintf(
              "Estimating %.1f distinct values for field '%s'"
              " from table size.\n",
              distinct_values, field->field_name);
        }

      } else {
        // If 'term' is a field with a histogram, use that to get a row
        // estimate.
        distinct_values = histogram->get_num_distinct_values();

        if (histogram->get_null_values_fraction() > 0.0) {
          // If there are NULL values, those will form a separate row in the
          // aggregate.
          ++distinct_values;
        }

        if (trace != nullptr) {
          *trace += StringPrintf(
              "Estimating %.1f distinct values for field '%s'"
              " from histogram.\n",
              distinct_values, field->field_name);
        }
      }

      top_estimate = std::max(distinct_values, top_estimate);
      output_rows *= distinct_values;
      remaining_term_cnt--;
      estimate_count++;
    }
  }

  // Multiplying individual estimates gives too many rows if distinct estimates
  // covers dependent terms. We apply a damping formula to compensate
  // for this.
  output_rows = top_estimate * std::pow(output_rows / top_estimate, 0.67);

  // Multiply with an estimate for any non-field terms.
  const double non_field_values =
      std::pow(child_rows, remaining_term_cnt / (remaining_term_cnt + 1.0));

  output_rows *= non_field_values;

  if (trace != nullptr) {
    *trace += StringPrintf(
        "Estimating %.1f distinct values for %zu non-field terms"
        " and %.1f in total.\n",
        non_field_values, remaining_term_cnt, output_rows);
  }

  // The estimate could exceed 'child_rows' if there e.g. is a restrictive
  // WHERE-condition, as estimates from indexes or histograms will not reflect
  // that.
  if (estimate_count > 1 || (estimate_count == 1 && remaining_term_cnt > 0)) {
    // Combining estimates from different sources introduces uncertainty.
    // We therefore assume that there will be some reduction in the number
    // of rows.
    return std::min(output_rows, std::pow(child_rows, 0.9));
  } else {
    return std::min(output_rows, child_rows);
  }
}

/**
   For a function f(x) such that:
   f(x) = g(x) for x<=l
   f(x) = h(x) for x>l

   tweak f(x) so that it is continuous at l even if g(l) != h(l).
   We obtain this by doing a gradual transition between g(x) and h(x)
   in an interval [l, l+k] for some constant k.
   @param function_low g(x)
   @param function_high h(x)
   @param lower_limit l
   @param upper_limit l+k
   @param argument x (for f(x))
   @returns Tweaked f(x).
*/
template <typename FunctionLow, typename FunctionHigh>
double SmoothTransition(FunctionLow function_low, FunctionHigh function_high,
                        double lower_limit, double upper_limit,
                        double argument) {
  assert(upper_limit > lower_limit);
  if (argument <= lower_limit) {
    return function_low(argument);

  } else if (argument >= upper_limit) {
    return function_high(argument);

  } else {
    // Might use std::lerp() in C++ 20.
    const double high_fraction =
        (argument - lower_limit) / (upper_limit - lower_limit);

    return function_low(argument) * (1.0 - high_fraction) +
           function_high(argument) * high_fraction;
  }
}

/**
  Do a cheap rollup row estimate for small result sets.
  If we group on n terms and expect k rows in total (before rollup),
  we make the simplifying assumption that each term has k^(1/n)
  distinct values, and that all terms are uncorrelated from each other.
  Then the number of rollup rows can be expressed as the sum of a finite
  geometric series:

  1 + m+ m^2+m^3...m^(n-1)

  where m =  k^(1/n).

  @param aggregate_rows Number of rows after aggregation.
  @param grouping_expressions Number of terms that we aggregated on.
  @return Estimated number of rollup rows.
*/
double EstimateRollupRowsPrimitively(double aggregate_rows,
                                     size_t grouping_expressions) {
  return SmoothTransition(
      [=](double input_rows) {
        // Prevent divide by zero in the next formula for input_rows close
        // to 1.0.
        return input_rows * grouping_expressions;
      },
      [=](double input_rows) {
        const double multiplier =
            std::pow(input_rows, 1.0 / grouping_expressions);
        // Sum of infinite geometric series "1 + m+ m^2+m^3...m^(n-1)"
        // where m is 'multiplier' and n is the size of 'terms'.
        return (1.0 - input_rows) / (1.0 - multiplier);
      },
      1.01, 1.02, aggregate_rows);
}

/**
  Do more precise rollup row estimate for larger result sets.
  If we have ROLLUP, there will be additional rollup rows. If we group on N
  terms T1..TN, we assume that the number of rollup rows will be:

  1 + CARD(T1) + CARD(T1,T2) +...CARD(T1...T(N-1))

  were CARD(T1...TX) is a row estimate for aggregating on T1..TX.

  @param aggregate_rows Number of rows after aggregation.
  @param terms The group-by terms.
  @param trace Optimizer trace.
  @return Estimated number of rollup rows.
*/
double EstimateRollupRowsAdvanced(double aggregate_rows, TermArray &&terms,
                                  string *trace) {
  // Make a more accurate rollup row calculation for larger sets.
  double rollup_rows = 1.0;
  while (terms.size() > 1) {
    terms.resize(terms.size() - 1);

    if (trace != nullptr) {
      *trace += StringPrintf(
          "\nEstimating row count for ROLLUP on %zu terms.\n", terms.size());
    }
    rollup_rows += EstimateAggregateNoRollupRows(terms, aggregate_rows, trace);
  }
  return rollup_rows;
}

/**
   Estimate the row count for an aggregate operation (including ROLLUP rows
   for GROUP BY ... WITH ROLLUP).
   @param child The input to the aggregate path.
   @param query_block The query block to which the aggregation belongs.
   @param rollup True if we should add rollup rows to the estimate.
   @param trace Optimizer trace.
   @returns The row estimate.
*/
double EstimateAggregateRows(const AccessPath *child,
                             const Query_block *query_block, bool rollup,
                             string *trace) {
  const double child_rows = child->num_output_rows();
  // 'path' may represent 'GROUP BY' or (if not using Hypergraph) 'DISTINCT'. In
  // the latter case, we fetch the aggregation terms from
  // query_block->join->group_fields.
  const bool distinct = query_block->group_list.first == nullptr;
  const size_t term_count = distinct ? query_block->join->group_fields.size()
                                     : query_block->group_list.size();

  if (trace != nullptr && !query_block->is_implicitly_grouped()) {
    *trace += StringPrintf(
        "\nEstimating row count for aggregation on %zu terms.\n", term_count);
  }

  // The aggregation terms.
  TermArray terms(current_thd->mem_root);
  double output_rows;

  if (query_block->is_implicitly_grouped()) {
    // For implicit grouping there will be 1 output row.
    output_rows = 1.0;

  } else if (child_rows < 1.0) {
    output_rows = child_rows;

  } else {
    if (distinct) {
      for (Cached_item &cached : query_block->join->group_fields) {
        terms.push_back(cached.get_item());
      }
    } else {
      for (ORDER *group = query_block->group_list.first; group;
           group = group->next) {
        terms.push_back(unwrap_rollup_group(*group->item));
      }
    }

    // Do a simple but fast calculation of the row estimate if child_rows is
    // less than this.
    constexpr double simple_limit = 10.0;

    output_rows = SmoothTransition(
        [&](double input_rows) { return std::sqrt(input_rows); },
        [&](double input_rows) {
          return EstimateAggregateNoRollupRows(terms, input_rows, trace);
        },
        simple_limit, simple_limit * 1.1, child_rows);
  }

  if (rollup) {
    // Do a simple and cheap calculation for small result sets.
    constexpr double simple_rollup_limit = 50.0;

    output_rows += SmoothTransition(
        [&](double aggregate_rows) {
          return EstimateRollupRowsPrimitively(aggregate_rows, terms.size());
        },
        [&](double aggregate_rows) {
          assert(terms.size() == term_count);
          return EstimateRollupRowsAdvanced(aggregate_rows, std::move(terms),
                                            trace);
        },
        simple_rollup_limit, simple_rollup_limit * 1.1, output_rows);
  }

  return output_rows;
}

}  // Anonymous namespace.

void EstimateAggregateCost(AccessPath *path, const Query_block *query_block,
                           string *trace) {
  const AccessPath *child = path->aggregate().child;
  if (path->num_output_rows() == kUnknownRowCount) {
    path->set_num_output_rows(EstimateAggregateRows(
        child, query_block, path->aggregate().rollup, trace));
  }

  path->init_cost = child->init_cost;
  path->init_once_cost = child->init_once_cost;

  path->cost = child->cost +
               kAggregateOneRowCost * std::max(0.0, child->num_output_rows());

  path->num_output_rows_before_filter = path->num_output_rows();
  path->cost_before_filter = path->cost;
  path->ordering_state = child->ordering_state;
}

void EstimateDeleteRowsCost(AccessPath *path) {
  const auto &param = path->delete_rows();
  const AccessPath *child = param.child;

  path->set_num_output_rows(child->num_output_rows());
  path->init_once_cost = child->init_once_cost;
  path->init_cost = child->init_cost;

  // Include the cost of building the temporary tables for the non-immediate
  // (buffered) deletes in the cost estimate.
  const table_map buffered_tables =
      param.tables_to_delete_from & ~param.immediate_tables;
  path->cost = child->cost + kMaterializeOneRowCost *
                                 PopulationCount(buffered_tables) *
                                 child->num_output_rows();
}

void EstimateUpdateRowsCost(AccessPath *path) {
  const auto &param = path->update_rows();
  const AccessPath *child = param.child;

  path->set_num_output_rows(child->num_output_rows());
  path->init_once_cost = child->init_once_cost;
  path->init_cost = child->init_cost;

  // Include the cost of building the temporary tables for the non-immediate
  // (buffered) updates in the cost estimate.
  const table_map buffered_tables =
      param.tables_to_update & ~param.immediate_tables;
  path->cost = child->cost + kMaterializeOneRowCost *
                                 PopulationCount(buffered_tables) *
                                 child->num_output_rows();
}

void EstimateStreamCost(AccessPath *path) {
  AccessPath &child = *path->stream().child;
  path->set_num_output_rows(child.num_output_rows());
  path->cost = child.cost;
  path->init_cost = child.init_cost;
  path->init_once_cost = 0.0;  // Never recoverable across query blocks.
  path->num_output_rows_before_filter = path->num_output_rows();
  path->cost_before_filter = path->cost;
  path->ordering_state = child.ordering_state;
  path->safe_for_rowid = child.safe_for_rowid;
  // Streaming paths are usually added after all filters have been applied, so
  // we don't expect any delayed predicates. If there are any, we need to copy
  // them into path.
  assert(IsEmpty(child.delayed_predicates));
}

void EstimateLimitOffsetCost(AccessPath *path) {
  auto &lim = path->limit_offset();
  AccessPath *&child = lim.child;

  if (child->num_output_rows() >= 0.0) {
    path->set_num_output_rows(
        lim.offset >= child->num_output_rows()
            ? 0.0
            : (std::min<double>(child->num_output_rows(), lim.limit) -
               lim.offset));
  } else {
    path->set_num_output_rows(-1.0);
  }

  if (child->init_cost < 0.0) {
    // We have nothing better, since we don't know how much is startup cost.
    path->cost = child->cost;
    path->init_cost = -1.0;
  } else if (child->num_output_rows() < 1e-6) {
    path->cost = path->init_cost = child->init_cost;
  } else {
    const double fraction_start_read =
        std::min(1.0, double(lim.offset) / child->num_output_rows());
    const double fraction_full_read =
        std::min(1.0, double(lim.limit) / child->num_output_rows());
    path->cost = child->init_cost +
                 fraction_full_read * (child->cost - child->init_cost);
    path->init_cost = child->init_cost +
                      fraction_start_read * (child->cost - child->init_cost);
  }
}

void EstimateWindowCost(AccessPath *path) {
  auto &win = path->window();
  AccessPath *child = win.child;

  path->set_num_output_rows(child->num_output_rows());
  path->init_cost = child->init_cost;
  path->init_once_cost = child->init_once_cost;
  path->cost = child->cost + kWindowOneRowCost * child->num_output_rows();
}