1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
|
/* Copyright (c) 2020, 2025, Oracle and/or its affiliates.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is designed to work with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have either included with
the program or referenced in the documentation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
#include <assert.h>
#include <list>
#include <utility>
#include "mem_root_deque.h"
#include "my_alloc.h"
#include "my_base.h"
#include "my_inttypes.h"
#include "my_sqlcommand.h"
#include "prealloced_array.h"
#include "sql/filesort.h"
#include "sql/item.h"
#include "sql/item_sum.h"
#include "sql/join_optimizer/access_path.h"
#include "sql/join_optimizer/bit_utils.h"
#include "sql/join_optimizer/join_optimizer.h"
#include "sql/join_optimizer/materialize_path_parameters.h"
#include "sql/join_optimizer/node_map.h"
#include "sql/join_optimizer/relational_expression.h"
#include "sql/join_optimizer/replace_item.h"
#include "sql/join_optimizer/walk_access_paths.h"
#include "sql/mem_root_array.h"
#include "sql/sql_class.h"
#include "sql/sql_const.h"
#include "sql/sql_executor.h"
#include "sql/sql_insert.h"
#include "sql/sql_lex.h"
#include "sql/sql_list.h"
#include "sql/sql_optimizer.h"
#include "sql/sql_resolver.h"
#include "sql/sql_select.h"
#include "sql/sql_tmp_table.h"
#include "sql/table.h"
#include "sql/temp_table_param.h"
#include "sql/visible_fields.h"
#include "sql/window.h"
#include "template_utils.h"
/**
Replaces field references in an ON DUPLICATE KEY UPDATE clause with references
to corresponding fields in a temporary table. The changes will be rolled back
at the end of execution and will have to be redone during optimization in the
next execution.
*/
static void ReplaceUpdateValuesWithTempTableFields(
Sql_cmd_insert_select *sql_cmd, Query_block *query_block,
const mem_root_deque<Item *> &original_fields,
const mem_root_deque<Item *> &temp_table_fields) {
assert(CountVisibleFields(original_fields) ==
CountVisibleFields(temp_table_fields));
if (sql_cmd->update_value_list.empty()) return;
auto tmp_field_it = VisibleFields(temp_table_fields).begin();
for (Item *orig_field : VisibleFields(original_fields)) {
Item *tmp_field = *tmp_field_it++;
if (orig_field->type() == Item::FIELD_ITEM) {
Item::Item_field_replacement replacement(
down_cast<Item_field *>(orig_field)->field,
down_cast<Item_field *>(tmp_field), query_block);
for (Item *&orig_item : sql_cmd->update_value_list) {
uchar *dummy;
Item *new_item = orig_item->compile(
&Item::visit_all_analyzer, &dummy, &Item::replace_item_field,
pointer_cast<uchar *>(&replacement));
if (new_item != orig_item) {
query_block->join->thd->change_item_tree(&orig_item, new_item);
}
}
}
}
}
/**
Collects the set of items in the item tree that satisfy the following:
1) Neither the item itself nor any of its descendants have a reference to a
ROLLUP expression (item->has_rollup_expr() evaluates to false).
2) The item is either the root item or its parent item does not satisfy 1).
In other words, we do not collect _every_ item without rollup in the tree.
Instead we collect the root item of every largest possible subtree where none
of the items in the subtree have rollup.
@param root The root item of the tree to search.
@param items A collection of items. We add items that satisfy the search
criteria to this collection.
*/
static void CollectItemsWithoutRollup(Item *root,
mem_root_deque<Item *> *items) {
CompileItem(
root,
[items](Item *item) {
if (item->has_rollup_expr()) {
// Skip the item and continue searching down the item tree.
return true;
} else {
// Add the item and terminate the search in this branch.
items->push_back(item);
return false;
}
},
[](Item *item) { return item; });
}
/**
Creates a temporary table with columns matching the SELECT list of the given
query block. (In FinalizePlanForQueryBlock(), the SELECT list of the
query block is updated to point to the fields in the temporary table, but not
here.)
This function is used for materializing the query result, either as an
intermediate step before sorting the final result if the sort requires the
rows to come from a single table instead of a join, or as the last step if the
SQL_BUFFER_RESULT query option has been specified. It is also used for setting
up the output temporary table for window functions.
NOTE: If after_aggregation = true, it is impossible to call this function
again later with after_aggregation = false, as count_field_types() will
remove item->has_aggregation() once called. Thus, we need to set up all
these temporary tables in FinalizePlanForQueryBlock(), in the right order.
*/
static TABLE *CreateTemporaryTableFromSelectList(
THD *thd, Query_block *query_block, Window *window,
Temp_table_param **temp_table_param_arg, bool after_aggregation) {
JOIN *join = query_block->join;
mem_root_deque<Item *> *items_to_materialize = join->fields;
// We always materialize the items in join->fields. In the pre-aggregation
// case where we have rollup items in join->fields we additionally add the
// non-rollup descendants of rollup items to the list of items to materialize.
// We need to do this because rollup items are removed from items_to_copy in
// the temporary table and the replacement logic depends on base fields being
// included.
if (!after_aggregation &&
std::any_of(items_to_materialize->cbegin(), items_to_materialize->cend(),
[](const Item *item) { return item->has_rollup_expr(); })) {
items_to_materialize =
new (thd->mem_root) mem_root_deque<Item *>(thd->mem_root);
for (Item *item : *join->fields) {
items_to_materialize->push_back(item);
if (item->has_rollup_expr()) {
CollectItemsWithoutRollup(item, items_to_materialize);
}
}
}
Temp_table_param *temp_table_param = new (thd->mem_root) Temp_table_param;
*temp_table_param_arg = temp_table_param;
assert(!temp_table_param->precomputed_group_by);
assert(!temp_table_param->skip_create_table);
temp_table_param->m_window = window;
count_field_types(query_block, temp_table_param, *items_to_materialize,
/*reset_with_sum_func=*/after_aggregation,
/*save_sum_fields=*/after_aggregation);
TABLE *temp_table = create_tmp_table(
thd, temp_table_param, *items_to_materialize,
/*group=*/nullptr, /*distinct=*/false,
/*save_sum_fields=*/after_aggregation, query_block->active_options(),
/*rows_limit=*/HA_POS_ERROR, "<temporary>");
if (after_aggregation) {
// Most items have been added to items_to_copy in create_tmp_field(), but
// not non-window aggregate functions, so add them here.
//
// Note that MIN/MAX in the presence of an index have special semantics
// where they are filled out elsewhere and may not have a result field,
// so we need to skip those that don't have one.
for (Item *item : *join->fields) {
if (item->type() == Item::SUM_FUNC_ITEM &&
!item->real_item()->m_is_window_function &&
item->get_result_field() != nullptr) {
temp_table_param->items_to_copy->push_back(
Func_ptr{item, item->get_result_field()});
}
// Verify that all non-constant, non-window-related items
// have been added to items_to_copy. (For implicitly grouped
// queries, non-deterministic expressions that don't reference
// any tables are also considered constant by create_tmp_table(),
// because they are evaluated exactly once.)
assert(
item->const_for_execution() || item->has_wf() ||
(query_block->is_implicitly_grouped() &&
IsSubset(item->used_tables(), RAND_TABLE_BIT | INNER_TABLE_BIT)) ||
std::any_of(
temp_table_param->items_to_copy->begin(),
temp_table_param->items_to_copy->end(),
[item](const Func_ptr &ptr) { return ptr.func() == item; }));
}
} else {
// create_tmp_table() doesn't understand that rollup group items
// are not materializable before aggregation has run, so we simply
// take them out of the copy, and the replacement logic will do the rest
// (e.g. rollup_group_item(t1.x)+2 -> rollup_group_item(<temporary>.x)+2).
// This works because the base fields are always included. The logic is
// very similar to what happens in change_to_use_tmp_fields_except_sums().
//
// TODO(sgunders): Consider removing the rollup group items on the inner
// levels, similar to what change_to_use_tmp_fields_except_sums() does.
auto new_end = std::remove_if(
temp_table_param->items_to_copy->begin(),
temp_table_param->items_to_copy->end(),
[](const Func_ptr &func) { return func.func()->has_rollup_expr(); });
temp_table_param->items_to_copy->erase(
new_end, temp_table_param->items_to_copy->end());
}
// We made a new table, so make sure it gets properly cleaned up
// at the end of execution.
join->temp_tables.push_back(
JOIN::TemporaryTableToCleanup{temp_table, temp_table_param});
return temp_table;
}
/**
Replaces the items in the SELECT list with items that point to fields in a
temporary table. See FinalizePlanForQueryBlock() for more information.
*/
static void ReplaceSelectListWithTempTableFields(
THD *thd, JOIN *join, const Func_ptr_array &items_to_copy) {
auto fields = new (thd->mem_root) mem_root_deque<Item *>(thd->mem_root);
for (Item *item : *join->fields) {
fields->push_back(
FindReplacementOrReplaceMaterializedItems(thd, item, items_to_copy,
/*need_exact_match=*/true));
}
join->fields = fields;
}
void ReplaceOrderItemsWithTempTableFields(THD *thd, ORDER *order,
const Func_ptr_array &items_to_copy) {
for (; order != nullptr; order = order->next) {
Item *temp_field_item = FindReplacementOrReplaceMaterializedItems(
thd, *order->item, items_to_copy, /*need_exact_match=*/true);
if (temp_field_item != *order->item) {
// *order->item points into a memory area (the “base ref slice”)
// where HAVING might expect to find items _not_ pointing into the
// temporary table (if there is true materialization, it should run
// before it to minimize the size of the sorted input), so in order to
// not disturb it, we create a whole new place for the Item pointer
// to live.
//
// TODO(sgunders): When we get rid of slices altogether,
// we can skip this.
thd->change_item_tree(pointer_cast<Item **>(&order->item),
pointer_cast<Item *>(new (thd->mem_root) Item *));
thd->change_item_tree(order->item, temp_field_item);
}
}
}
#ifndef NDEBUG
namespace {
/// @return The tables used by the order items.
table_map GetUsedTableMap(const ORDER *order) {
table_map tables = 0;
while (order != nullptr) {
tables |= (*order->item)->used_tables();
order = order->next;
}
return tables;
}
/**
Checks if the order items in a SORT access path reference any column that is
not available to it. Specifically, it tests that all columns referenced in the
order items belong to tables that are available from a child of "sort_path",
without any intermediate materialization step between the child and
"sort_path".
Say we have an access path tree such as this:
-> Sort
-> Nested loop join
-> Table scan on t1
-> Materialize
-> Table scan on t2
Here, the ordering elements in the sort node may reference columns from t1 or
from the materialize node, but not from t2. If they reference columns from t2
directly, it means that something is missing from the set of expressions to
materialize from t2. Or that something has gone wrong when rewriting the
expressions in the ordering elements to point into the temporary table.
*/
bool OrderItemsReferenceUnavailableTables(
const AccessPath *sort_path, table_map used_tables_before_replacement) {
// Find which of the base tables referenced from the order items are
// materialized below the sort path.
const table_map materialized_base_tables =
used_tables_before_replacement &
~GetUsedTableMap(sort_path, /*include_pruned_tables=*/true);
if (materialized_base_tables == 0) return false;
// Check if any of those base tables is still referenced directly, instead of
// via the temporary table. They should not be referenced directly. Ideally,
// we'd want to simply check (*order->item)->used_tables() for each order
// element, but temporary tables are indistinguishable from the base table
// with tableno() == 0 in the returned table_map (see
// Item_field::used_tables(), which returns 1 for temporary tables). So
// instead we walk the order items and check each contained Item_field
// individually.
for (const ORDER *order = sort_path->sort().order; order != nullptr;
order = order->next) {
if (WalkItem(*order->item, enum_walk::PREFIX,
[materialized_base_tables](Item *item) {
if (item->type() == Item::FIELD_ITEM) {
Item_field *item_field = down_cast<Item_field *>(item);
return item_field->table_ref != nullptr &&
!item_field->is_outer_reference() &&
Overlaps(item_field->table_ref->map(),
materialized_base_tables);
}
return false;
})) {
return true;
}
}
return false;
}
} // namespace
#endif
// If the AccessPath is an operation that copies items into a temporary
// table (MATERIALIZE, STREAM or WINDOW) within the same query block,
// returns the items it's copying (in the form of temporary table parameters).
// If not, return nullptr.
static Temp_table_param *GetItemsToCopy(AccessPath *path) {
if (path->type == AccessPath::STREAM) {
if (path->stream().table->pos_in_table_list != nullptr) {
// Materializes a different query block.
return nullptr;
}
return path->stream().temp_table_param;
}
if (path->type == AccessPath::MATERIALIZE) {
const MaterializePathParameters *param = path->materialize().param;
if (param->table->pos_in_table_list != nullptr) {
// Materializes a different query block.
return nullptr;
}
assert(param->query_blocks.size() == 1);
if (!param->query_blocks[0].copy_items) {
return nullptr;
}
return param->query_blocks[0].temp_table_param;
}
if (path->type == AccessPath::WINDOW) {
return path->window().temp_table_param;
}
return nullptr;
}
/// See FinalizePlanForQueryBlock().
static void UpdateReferencesToMaterializedItems(
THD *thd, Query_block *query_block, AccessPath *path,
bool after_aggregation,
Mem_root_array<const Func_ptr_array *> *applied_replacements) {
JOIN *join = query_block->join;
const mem_root_deque<Item *> *original_fields = join->fields;
Temp_table_param *temp_table_param = GetItemsToCopy(path);
if (temp_table_param != nullptr) {
// Update source references in this materialization.
for (const Func_ptr_array *earlier_replacement : *applied_replacements) {
for (Func_ptr &func : *temp_table_param->items_to_copy) {
func.set_func(FindReplacementOrReplaceMaterializedItems(
thd, func.func(), *earlier_replacement,
/*need_exact_match=*/true));
}
}
applied_replacements->push_back(temp_table_param->items_to_copy);
// Update SELECT list and IODKU references.
ReplaceSelectListWithTempTableFields(thd, join,
*temp_table_param->items_to_copy);
if (thd->lex->sql_command == SQLCOM_INSERT_SELECT) {
ReplaceUpdateValuesWithTempTableFields(
down_cast<Sql_cmd_insert_select *>(thd->lex->m_sql_cmd), query_block,
*original_fields, *join->fields);
}
if (after_aggregation) {
// Due to the use of Item_aggregate_ref, we can effectively sometimes have
// sum_func(rollup_wrapper(rollup_wrapper(x), n), n)), and
// ReplaceSelectListWithTempTableFields() will only be able to remove the
// inner one. This can be problematic for buffering window functions,
// which need to be able to load back old values for x and reevaluate
// the expression -- but it is not able to load back the state of the
// rollup functions, so we get inconsistency.
//
// Thus, unwrap the remaining layer here.
const auto replace_functor = [](Item *sub_item, Item *,
unsigned) -> ReplaceResult {
if (is_rollup_group_wrapper(sub_item)) {
return {ReplaceResult::REPLACE, unwrap_rollup_group(sub_item)};
} else {
return {ReplaceResult::KEEP_TRAVERSING, nullptr};
}
};
for (Item *item : *join->fields) {
WalkAndReplace(thd, item, replace_functor);
}
}
} else if (path->type == AccessPath::SORT) {
assert(path->sort().filesort == nullptr);
#ifndef NDEBUG
const table_map used_tables_before_replacement =
GetUsedTableMap(path->sort().order) & ~PSEUDO_TABLE_BITS;
#endif
for (const Func_ptr_array *earlier_replacement : *applied_replacements) {
ReplaceOrderItemsWithTempTableFields(thd, path->sort().order,
*earlier_replacement);
}
assert(!OrderItemsReferenceUnavailableTables(
path, used_tables_before_replacement));
// Set up a Filesort object for this sort.
path->sort().filesort = new (thd->mem_root)
Filesort(thd, CollectTables(thd, path),
/*keep_buffers=*/false, path->sort().order, path->sort().limit,
path->sort().remove_duplicates, path->sort().force_sort_rowids,
path->sort().unwrap_rollup);
join->filesorts_to_cleanup.push_back(path->sort().filesort);
if (!path->sort().filesort->using_addon_fields()) {
FindTablesToGetRowidFor(path);
}
} else if (path->type == AccessPath::FILTER) {
// Only really relevant for in2exists filters that run after windowing, and
// for some cases of HAVING clauses.
for (const Func_ptr_array *earlier_replacement : *applied_replacements) {
// Replace materialized items in the filter. If this is after aggregation,
// the HAVING clause may be wrapped in Item_aggregate_ref, so we need to
// see through it and don't require exact match.
const bool need_exact_match = !after_aggregation;
path->filter().condition = FindReplacementOrReplaceMaterializedItems(
thd, path->filter().condition, *earlier_replacement,
need_exact_match);
}
} else if (path->type == AccessPath::REMOVE_DUPLICATES) {
Item **group_items = path->remove_duplicates().group_items;
for (int i = 0; i < path->remove_duplicates().group_items_size; ++i) {
for (const Func_ptr_array *earlier_replacement : *applied_replacements) {
group_items[i] = FindReplacementOrReplaceMaterializedItems(
thd, group_items[i], *earlier_replacement,
/*need_exact_match=*/true);
}
}
}
}
/**
If the given access path needs a temporary table, it instantiates
said table (we cannot do this until we have a final access path
list, where we know which temporary tables are created and in which order).
For window functions, it also needs to forward this information to the
materialization access path coming right after this window, if any,
so it uses last_window_temp_table as a buffer to hold this.
*/
static void DelayedCreateTemporaryTable(THD *thd, Query_block *query_block,
AccessPath *path,
bool after_aggregation,
TABLE **last_window_temp_table,
unsigned *num_windows_seen) {
if (path->type == AccessPath::WINDOW) {
// Create the temporary table and parameters.
Window *window = path->window().window;
assert(path->window().temp_table == nullptr);
assert(path->window().temp_table_param == nullptr);
++*num_windows_seen;
window->set_is_last(*num_windows_seen ==
query_block->join->m_windows.size());
path->window().temp_table = CreateTemporaryTableFromSelectList(
thd, query_block, window, &path->window().temp_table_param,
/*after_aggregation=*/true);
path->window().temp_table_param->m_window = window;
*last_window_temp_table = path->window().temp_table;
} else if (path->type == AccessPath::MATERIALIZE) {
if (path->materialize().param->table == nullptr) {
if (*last_window_temp_table != nullptr) {
// A materialization that comes directly after a window;
// it's intended to materialize the output of that window.
path->materialize().param->table =
path->materialize().table_path->table_scan().table =
*last_window_temp_table;
} else {
// All other materializations are of the SELECT list.
assert(path->materialize().param->query_blocks.size() == 1);
TABLE *table = CreateTemporaryTableFromSelectList(
thd, query_block, nullptr,
&path->materialize().param->query_blocks[0].temp_table_param,
after_aggregation);
path->materialize().param->table =
path->materialize().table_path->table_scan().table = table;
}
EstimateMaterializeCost(thd, path);
}
*last_window_temp_table = nullptr;
} else if (path->type == AccessPath::STREAM) {
if (path->stream().table == nullptr) {
path->stream().table = CreateTemporaryTableFromSelectList(
thd, query_block, nullptr, &path->stream().temp_table_param,
after_aggregation);
}
*last_window_temp_table = nullptr;
} else {
*last_window_temp_table = nullptr;
}
}
/// See FinalizePlanForQueryBlock().
static void FinalizeWindowPath(
THD *thd, Query_block *query_block,
const mem_root_deque<Item *> &original_fields,
const Mem_root_array<const Func_ptr_array *> &applied_replacements,
AccessPath *path) {
JOIN *join = query_block->join;
Temp_table_param *temp_table_param = path->window().temp_table_param;
Window *window = path->window().window;
for (const Func_ptr_array *earlier_replacement : applied_replacements) {
window->apply_temp_table(thd, *earlier_replacement);
}
if (path->window().needs_buffering) {
// Create the framebuffer. Note that it could exist already
// (with an identical structure) if we are planning twice,
// for in2exists.
if (window->frame_buffer() == nullptr) {
CreateFramebufferTable(thd, *path->window().temp_table_param,
*query_block, original_fields, *join->fields,
temp_table_param->items_to_copy, window);
}
} else {
for (Func_ptr &func : *temp_table_param->items_to_copy) {
// Even without buffering, some window functions will read
// their arguments out of the output table, so we need to apply
// our own temporary table to them. (For cases with buffering,
// this replacement, or a less strict version, is done in
// CreateFramebufferTable().)
if (func.should_copy(CFT_HAS_WF) || func.should_copy(CFT_WF)) {
ReplaceMaterializedItems(thd, func.func(),
*temp_table_param->items_to_copy,
/*need_exact_match=*/true);
}
}
}
window->make_special_rows_cache(thd, path->window().temp_table);
}
static Item *AddCachesAroundConstantConditions(Item *item) {
cache_const_expr_arg cache_arg;
cache_const_expr_arg *analyzer_arg = &cache_arg;
return item->compile(
&Item::cache_const_expr_analyzer, pointer_cast<uchar **>(&analyzer_arg),
&Item::cache_const_expr_transformer, pointer_cast<uchar *>(&cache_arg));
}
[[nodiscard]] static bool AddCachesAroundConstantConditionsInPath(
AccessPath *path) {
// TODO(sgunders): We could probably also add on sort and GROUP BY
// expressions, even though most of them should have been removed by the
// interesting order framework. The same with the SELECT list and
// expressions used in materializations.
switch (path->type) {
case AccessPath::FILTER:
path->filter().condition =
AddCachesAroundConstantConditions(path->filter().condition);
return path->filter().condition == nullptr;
case AccessPath::HASH_JOIN:
for (Item *&item :
path->hash_join().join_predicate->expr->join_conditions) {
item = AddCachesAroundConstantConditions(item);
if (item == nullptr) {
return true;
}
}
return false;
default:
return false;
}
}
/*
Do the final touchups of the access path tree, once we have selected a final
plan (ie., there are no more alternatives). There are currently two major
tasks to do here: Account for materializations (because we cannot do it until
we have the entire plan), and set up filesorts (because it involves
constructing new objects, so we don't want to do it for unused candidates).
The former also influences the latter.
Materializations in particular are a bit tricky due to the way our item system
works; expression evaluation cares intimately about _where_ values come from,
not just what they are (i.e., all non-leaf Items carry references to other
Items, and pull data only from there). Thus, whenever an Item is materialized,
references to that Item need to be modified to instead point into the correct
field in the temporary table. We traverse the tree bottom-up and keep track of
which materializations are active, and modify the appropriate Item lists at
any given point, so that they point to the right place. We currently modify:
- The SELECT list. (There is only one, so we can update it as we go.)
- Referenced fields for INSERT ... ON DUPLICATE KEY UPDATE (IODKU);
also updated as we go.
- Sort keys (e.g. for ORDER BY).
- The HAVING clause, if the materialize node is below an aggregate node.
(If the materialization is above aggregation, the HAVING clause has
already accomplished its mission of filtering out the uninteresting
results, and will not be evaluated anymore.)
Surprisingly enough, we also need to update the materialization parameters
themselves. Say that we first have a materialization that copies
t1.x -> <temp1>.x. After that, we have a materialization that copies
t1.x -> <temp2>.x. For this to work properly, we obviously need to go in
and modify the second one so that it instead says <temp1>.x -> <temp2>.x,
ie., the copy is done from the correct source.
You cannot yet insert temporary tables in arbitrary places in the query;
in particular, we do not yet handle these rewrites (although they would
very likely be possible):
- Group elements for aggregations (GROUP BY). Do note that
create_tmp_table() will replace elements within aggregate functions
if you set save_sum_funcs=false; you may also want to supplant
this mechanism.
- Filters (e.g. WHERE predicates); do note that partial pushdown may
present its own challenges.
- Join conditions.
*/
bool FinalizePlanForQueryBlock(THD *thd, Query_block *query_block) {
assert(query_block->join->needs_finalize);
query_block->join->needs_finalize = false;
AccessPath *const root_path = query_block->join->root_access_path();
assert(root_path != nullptr);
if (root_path->type == AccessPath::EQ_REF) {
// None of the finalization below is relevant to point selects, so just
// return immediately.
return false;
}
// If the query is offloaded to an external executor, we don't need to create
// the internal temporary tables or filesort objects, or rewrite the Item tree
// to point into them.
if (!IteratorsAreNeeded(thd, root_path)) {
return false;
}
Query_block *old_query_block = thd->lex->current_query_block();
thd->lex->set_current_query_block(query_block);
// We might have stacked multiple FILTERs on top of each other.
// Combine these into a single FILTER:
WalkAccessPaths(
root_path, query_block->join, WalkAccessPathPolicy::ENTIRE_QUERY_BLOCK,
[](AccessPath *path, JOIN *join [[maybe_unused]]) {
if (path->type == AccessPath::FILTER) {
AccessPath *child = path->filter().child;
if (child->type == AccessPath::FILTER &&
child->filter().materialize_subqueries ==
path->filter().materialize_subqueries) {
// Combine conditions into a single FILTER.
Item *condition = new Item_cond_and(child->filter().condition,
path->filter().condition);
condition->quick_fix_field();
condition->update_used_tables();
condition->apply_is_true();
path->filter().condition = condition;
path->filter().child = child->filter().child;
}
}
return false;
},
/*post_order_traversal=*/true);
Mem_root_array<const Func_ptr_array *> applied_replacements(thd->mem_root);
TABLE *last_window_temp_table = nullptr;
unsigned num_windows_seen = 0;
bool error = false;
bool after_aggregation = false;
WalkAccessPaths(
root_path, query_block->join, WalkAccessPathPolicy::ENTIRE_QUERY_BLOCK,
[thd, query_block, &applied_replacements, &last_window_temp_table,
&num_windows_seen, &error,
&after_aggregation](AccessPath *path, JOIN *join) {
if (error) return true;
DelayedCreateTemporaryTable(thd, query_block, path, after_aggregation,
&last_window_temp_table, &num_windows_seen);
const mem_root_deque<Item *> *original_fields = join->fields;
UpdateReferencesToMaterializedItems(
thd, query_block, path, after_aggregation, &applied_replacements);
if (path->type == AccessPath::WINDOW) {
FinalizeWindowPath(thd, query_block, *original_fields,
applied_replacements, path);
} else if (path->type == AccessPath::AGGREGATE) {
for (Cached_item &ci : join->group_fields) {
for (const Func_ptr_array *earlier_replacement :
applied_replacements) {
thd->change_item_tree(
ci.get_item_ptr(),
FindReplacementOrReplaceMaterializedItems(
thd, ci.get_item(), *earlier_replacement,
/*need_exact_match=*/true));
}
}
// Set up aggregators, now that fields point into the right temporary
// table.
const bool need_distinct =
true; // We don't support loose index scan yet.
for (Item_sum **func_ptr = join->sum_funcs; *func_ptr != nullptr;
++func_ptr) {
Item_sum *func = *func_ptr;
Aggregator::Aggregator_type type =
need_distinct && func->has_with_distinct()
? Aggregator::DISTINCT_AGGREGATOR
: Aggregator::SIMPLE_AGGREGATOR;
if (func->set_aggregator(type) || func->aggregator_setup(thd)) {
error = true;
return true;
}
}
after_aggregation = true;
}
if (AddCachesAroundConstantConditionsInPath(path)) {
error = true;
return true;
}
return false;
},
/*post_order_traversal=*/true);
if (query_block->join->push_to_engines()) return true;
thd->lex->set_current_query_block(old_query_block);
return error;
}
|