File: interesting_orders.cc

package info (click to toggle)
mysql-8.0 8.0.43-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,273,924 kB
  • sloc: cpp: 4,684,605; ansic: 412,450; pascal: 108,398; java: 83,641; perl: 30,221; cs: 27,067; sql: 26,594; sh: 24,181; python: 21,816; yacc: 17,169; php: 11,522; xml: 7,388; javascript: 7,076; makefile: 2,194; lex: 1,075; awk: 670; asm: 520; objc: 183; ruby: 97; lisp: 86
file content (2319 lines) | stat: -rw-r--r-- 87,729 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
/* Copyright (c) 2021, 2025, Oracle and/or its affiliates.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License, version 2.0,
   as published by the Free Software Foundation.

   This program is designed to work with certain software (including
   but not limited to OpenSSL) that is licensed under separate terms,
   as designated in a particular file or component or in included license
   documentation.  The authors of MySQL hereby grant you an additional
   permission to link the program and your derivative works with the
   separately licensed software that they have either included with
   the program or referenced in the documentation.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License, version 2.0, for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301  USA */

#include "sql/join_optimizer/interesting_orders.h"

#include <algorithm>
#include <cstddef>
#include <functional>
#include <type_traits>

#include "map_helpers.h"
#include "my_hash_combine.h"
#include "my_pointer_arithmetic.h"
#include "sql/item.h"
#include "sql/item_func.h"
#include "sql/item_sum.h"
#include "sql/join_optimizer/bit_utils.h"
#include "sql/join_optimizer/print_utils.h"
#include "sql/mem_root_array.h"
#include "sql/parse_tree_nodes.h"
#include "sql/sql_array.h"
#include "sql/sql_class.h"
#include "sql/sql_executor.h"

using std::all_of;
using std::bind;
using std::distance;
using std::equal;
using std::fill;
using std::lower_bound;
using std::make_pair;
using std::max;
using std::none_of;
using std::pair;
using std::sort;
using std::string;
using std::swap;
using std::unique;
using std::upper_bound;

/**
   A scope-guard class for allocating an Ordering::Elements instance
   which is automatically returned to the pool when we exit the scope of
   the OrderingElementsGuard instance.
*/
class OrderingElementsGuard final {
 public:
  /**
     @param context The object containing the pool.
     @param mem_root For allocating additional Ordering::Elements instances if
     needed.
   */
  OrderingElementsGuard(LogicalOrderings *context, MEM_ROOT *mem_root)
      : m_context{context} {
    m_elements = context->RetrieveElements(mem_root);
  }

  // No copying of this class.
  OrderingElementsGuard(const OrderingElementsGuard &) = delete;
  OrderingElementsGuard &operator=(const OrderingElementsGuard &) = delete;

  ~OrderingElementsGuard() { m_context->ReturnElements(m_elements); }

  Ordering::Elements &Get() { return m_elements; }

 private:
  /// The object containing the pool.
  LogicalOrderings *m_context;

  /// The instance fetched from the pool.
  Ordering::Elements m_elements;
};

namespace {

// Set some maximum limits on the size of the FSMs, in order to prevent runaway
// computation on pathological queries. As rough reference: As of 8.0.26,
// there is a single query in the test suite hitting these limits (it wants 8821
// NFSM states and an estimated 2^50 DFSM states). Excluding that query, the
// test suite contains the following largest FSMs:
//
//  - Largest NFSM: 63 NFSM states => 2 DFSM states
//  - Largest DFSM: 37 NFSM states => 152 DFSM states
//
// And for DBT-3:
//
//  - Largest NFSM: 43 NFSM states => 3 DFSM states
//  - Largest DFSM: 8 NFSM states => 8 DFSM states
//
// We could make system variables out of these if needed, but they would
// probably have to be settable by superusers only, in order to prevent runaway
// unabortable queries from taking down the server. Having them as fixed limits
// is good enough for now.
constexpr int kMaxNFSMStates = 200;
constexpr int kMaxDFSMStates = 2000;

/**
   Check if 'elements' contains 'item'.
*/
bool Contains(Ordering::Elements elements, int item) {
  return std::any_of(elements.cbegin(), elements.cend(),
                     [item](OrderElement elem) { return elem.item == item; });
}

// Calculates the hash for a DFSM state given by an index into
// LogicalOrderings::m_dfsm_states. The hash is based on the set of NFSM states
// the DFSM state corresponds to.
template <typename DFSMState>
struct DFSMStateHash {
  const Mem_root_array<DFSMState> *dfsm_states;
  size_t operator()(int idx) const {
    size_t hash = 0;
    for (int nfsm_state : (*dfsm_states)[idx].nfsm_states) {
      my_hash_combine<size_t>(hash, nfsm_state);
    }
    return hash;
  }
};

// Checks if two DFSM states represent the same set of NFSM states.
template <typename DFSMState>
struct DFSMStateEqual {
  const Mem_root_array<DFSMState> *dfsm_states;
  bool operator()(int idx1, int idx2) const {
    return equal((*dfsm_states)[idx1].nfsm_states.begin(),
                 (*dfsm_states)[idx1].nfsm_states.end(),
                 (*dfsm_states)[idx2].nfsm_states.begin(),
                 (*dfsm_states)[idx2].nfsm_states.end());
  }
};

}  // namespace

void Ordering::Deduplicate() {
  assert(Valid());
  size_t length = 0;
  for (size_t i = 0; i < m_elements.size(); ++i) {
    if (!Contains(m_elements.prefix(length), m_elements[i].item)) {
      m_elements[length++] = m_elements[i];
    }
  }
  m_elements.resize(length);
}

bool Ordering::Valid() const {
  switch (m_kind) {
    case Kind::kEmpty:
      return m_elements.empty();

    case Kind::kOrder:
      return !m_elements.empty() &&
             std::all_of(m_elements.cbegin(), m_elements.cend(),
                         [](OrderElement e) {
                           return e.direction != ORDER_NOT_RELEVANT;
                         });

    case Kind::kRollup:
    case Kind::kGroup:
      return !m_elements.empty() &&
             std::all_of(m_elements.cbegin(), m_elements.cend(),
                         [](OrderElement e) {
                           return e.direction == ORDER_NOT_RELEVANT;
                         });
  }

  assert(false);
  return false;
}

LogicalOrderings::LogicalOrderings(THD *thd)
    : m_items(thd->mem_root),
      m_orderings(thd->mem_root),
      m_fds(thd->mem_root),
      m_states(thd->mem_root),
      m_dfsm_states(thd->mem_root),
      m_dfsm_edges(thd->mem_root),
      m_elements_pool(thd->mem_root) {
  GetHandle(nullptr);  // Always has the zero handle.

  // Add the empty ordering/grouping.
  m_orderings.push_back(OrderingWithInfo{Ordering(),
                                         OrderingWithInfo::UNINTERESTING,
                                         /*used_at_end=*/true});

  FunctionalDependency decay_fd;
  decay_fd.type = FunctionalDependency::DECAY;
  decay_fd.tail = 0;
  decay_fd.always_active = true;
  m_fds.push_back(decay_fd);
}

int LogicalOrderings::AddOrderingInternal(THD *thd, Ordering order,
                                          OrderingWithInfo::Type type,
                                          bool used_at_end,
                                          table_map homogenize_tables) {
  assert(!m_built);

#ifndef NDEBUG
  if (order.GetKind() == Ordering::Kind::kGroup) {
    Ordering::Elements elements = order.GetElements();
    // Verify that the grouping is sorted and deduplicated.
    for (size_t i = 1; i < elements.size(); ++i) {
      assert(elements[i].item > elements[i - 1].item);
      assert(elements[i].direction == ORDER_NOT_RELEVANT);
    }

    // Verify that none of the items are of ROW_RESULT,
    // as RemoveDuplicatesIterator cannot handle them.
    // (They would theoretically be fine for orderings.)
    for (size_t i = 0; i < elements.size(); ++i) {
      assert(m_items[elements[i].item].item->result_type() != ROW_RESULT);
    }
  }
#endif

  if (type != OrderingWithInfo::UNINTERESTING) {
    for (OrderElement element : order.GetElements()) {
      if (element.direction == ORDER_ASC) {
        m_items[element.item].used_asc = true;
      }
      if (element.direction == ORDER_DESC) {
        m_items[element.item].used_desc = true;
      }
      if (element.direction == ORDER_NOT_RELEVANT) {
        m_items[element.item].used_in_grouping = true;
      }
    }
  }

  // Deduplicate against all the existing ones.
  for (size_t i = 0; i < m_orderings.size(); ++i) {
    if (m_orderings[i].ordering == order) {
      // Potentially promote the existing one.
      m_orderings[i].type = std::max(m_orderings[i].type, type);
      m_orderings[i].homogenize_tables |= homogenize_tables;
      return i;
    }
  }

  m_orderings.push_back(OrderingWithInfo{order.Clone(thd->mem_root), type,
                                         used_at_end, homogenize_tables});
  m_longest_ordering = std::max<int>(m_longest_ordering, order.size());

  return m_orderings.size() - 1;
}

int LogicalOrderings::AddFunctionalDependency(THD *thd,
                                              FunctionalDependency fd) {
  assert(!m_built);

  // Deduplicate against all the existing ones.
  for (size_t i = 0; i < m_fds.size(); ++i) {
    if (m_fds[i].type != fd.type) {
      continue;
    }
    if (fd.type == FunctionalDependency::EQUIVALENCE) {
      // Equivalences are symmetric.
      if (m_fds[i].head[0] == fd.head[0] && m_fds[i].tail == fd.tail) {
        return i;
      }
      if (m_fds[i].tail == fd.head[0] && m_fds[i].head[0] == fd.tail) {
        return i;
      }
    } else {
      if (m_fds[i].tail == fd.tail &&
          equal(m_fds[i].head.begin(), m_fds[i].head.end(), fd.head.begin(),
                fd.head.end())) {
        return i;
      }
    }
  }

  fd.head = fd.head.Clone(thd->mem_root);
  m_fds.push_back(fd);
  return m_fds.size() - 1;
}

void LogicalOrderings::Build(THD *thd, string *trace) {
  // If we have no interesting orderings or groupings, just create a DFSM
  // directly with a single state for the empty ordering.
  if (m_orderings.size() == 1) {
    m_dfsm_states.reserve(1);
    m_dfsm_states.emplace_back();
    DFSMState &initial = m_dfsm_states.back();
    initial.nfsm_states.init(thd->mem_root);
    initial.nfsm_states.reserve(1);
    initial.nfsm_states.push_back(0);
    initial.next_state =
        Bounds_checked_array<int>::Alloc(thd->mem_root, m_fds.size());
    m_optimized_ordering_mapping =
        Bounds_checked_array<int>::Alloc(thd->mem_root, 1);
    m_built = true;
    return;
  }

  BuildEquivalenceClasses();
  RecanonicalizeGroupings();
  AddFDsFromComputedItems(thd);
  AddFDsFromConstItems(thd);
  AddFDsFromAggregateItems(thd);
  PreReduceOrderings(thd);
  CreateOrderingsFromGroupings(thd);
  CreateHomogenizedOrderings(thd);
  PruneFDs(thd);
  if (trace != nullptr) {
    PrintFunctionalDependencies(trace);
  }
  FindElementsThatCanBeAddedByFDs();
  PruneUninterestingOrders(thd);
  if (trace != nullptr) {
    PrintInterestingOrders(trace);
  }
  BuildNFSM(thd);
  if (trace != nullptr) {
    *trace += "NFSM for interesting orders, before pruning:\n";
    PrintNFSMDottyGraph(trace);
    if (m_states.size() >= kMaxNFSMStates) {
      *trace += "NOTE: NFSM is incomplete, because it became too big.\n";
    }
  }
  PruneNFSM(thd);
  if (trace != nullptr) {
    *trace += "\nNFSM for interesting orders, after pruning:\n";
    PrintNFSMDottyGraph(trace);
  }
  ConvertNFSMToDFSM(thd);
  if (trace != nullptr) {
    *trace += "\nDFSM for interesting orders:\n";
    PrintDFSMDottyGraph(trace);
    if (m_dfsm_states.size() >= kMaxDFSMStates) {
      *trace +=
          "NOTE: DFSM does not contain all NFSM states, because it became too "
          "big.\n";
    }
  }
  FindInitialStatesForOrdering();
  m_built = true;
}

LogicalOrderings::StateIndex LogicalOrderings::ApplyFDs(
    LogicalOrderings::StateIndex state_idx, FunctionalDependencySet fds) const {
  for (;;) {  // Termination condition within loop.
    FunctionalDependencySet relevant_fds =
        m_dfsm_states[state_idx].can_use_fd & fds;
    if (relevant_fds.none()) {
      return state_idx;
    }

    // Pick an arbitrary one and follow it. Note that this part assumes
    // kMaxSupportedFDs <= 64.
    static_assert(kMaxSupportedFDs <= sizeof(unsigned long long) * CHAR_BIT);
    int fd_idx = FindLowestBitSet(relevant_fds.to_ullong()) + 1;
    state_idx = m_dfsm_states[state_idx].next_state[fd_idx];

    // Now continue for as long as we have anything to follow;
    // we'll converge on the right answer eventually. Typically,
    // there will be one or two edges to follow, but in extreme cases,
    // there could be O(k²) in the number of FDs.
  }
}

/**
  Try to get rid of uninteresting orders, possibly by discarding irrelevant
  suffixes and merging them with others. In a typical query, this removes a
  large amount of index-created orderings that will never get to something
  interesting, reducing the end FSM size (and thus, reducing the number of
  different access paths we have to keep around).

  This step is the only one that can move orderings around, and thus also
  populates m_optimized_ordering_mapping.
 */
void LogicalOrderings::PruneUninterestingOrders(THD *thd) {
  m_optimized_ordering_mapping =
      Bounds_checked_array<int>::Alloc(thd->mem_root, m_orderings.size());
  int new_length = 0;
  for (size_t ordering_idx = 0; ordering_idx < m_orderings.size();
       ++ordering_idx) {
    if (m_orderings[ordering_idx].type == OrderingWithInfo::UNINTERESTING) {
      Ordering &ordering = m_orderings[ordering_idx].ordering;

      // We are not prepared for uninteresting groupings yet.
      assert(ordering.GetKind() != Ordering::Kind::kGroup);

      // Find the longest prefix that contains only elements that are used in
      // interesting groupings. We will never shorten the uninteresting ordering
      // below this; it is overconservative in some cases, but it makes sure
      // we never miss a path to an interesting grouping.
      size_t minimum_prefix_len = 0;
      const Ordering::Elements &elements = ordering.GetElements();
      while (elements.size() > minimum_prefix_len &&
             m_items[m_items[elements[minimum_prefix_len].item].canonical_item]
                 .used_in_grouping) {
        ++minimum_prefix_len;
      }

      // Shorten this ordering one by one element, until it can (heuristically)
      // become an interesting ordering with the FDs we have. Note that it might
      // become the empty ordering, and if so, it will be deleted entirely
      // in the step below.
      while (elements.size() > minimum_prefix_len &&
             !CouldBecomeInterestingOrdering(ordering)) {
        if (elements.size() > 1) {
          ordering = Ordering(elements.without_back(), ordering.GetKind());
        } else {
          ordering = Ordering();
        }
      }
    }

    // Since some orderings may have changed, we need to re-deduplicate.
    // Note that at this point, we no longer care about used_at_end;
    // it was only used for reducing orderings in homogenization.
    m_optimized_ordering_mapping[ordering_idx] = new_length;
    for (int i = 0; i < new_length; ++i) {
      if (m_orderings[i].ordering == m_orderings[ordering_idx].ordering) {
        m_optimized_ordering_mapping[ordering_idx] = i;
        m_orderings[i].type =
            std::max(m_orderings[i].type, m_orderings[ordering_idx].type);
        break;
      }
    }
    if (m_optimized_ordering_mapping[ordering_idx] == new_length) {
      // Not a duplicate of anything earlier, so keep it.
      m_orderings[new_length++] = m_orderings[ordering_idx];
    }
  }
  m_orderings.resize(new_length);
}

void LogicalOrderings::PruneFDs(THD *thd) {
  // The definition of prunable FDs in the papers seems to be very abstract
  // and not practically realizable, so we use a simple heuristic instead:
  // A FD is useful iff it produces an item that is part of some ordering.
  // Discard all useless FDs. (Items not part of some ordering will cause
  // the new proposed ordering to immediately be pruned away, so this is
  // safe. See also the comment in the .h file about transitive dependencies.)
  //
  // Note that this will sometimes leave useless FDs; if we have e.g. a → b
  // and b is useful, we will mark the FD as useful even if nothing can
  // produce a. However, such FDs don't induce more NFSM states (which is
  // the main point of the pruning), it just slows the NFSM down slightly,
  // and by far the dominant FDs to prune in our cases are the ones
  // induced by keys, e.g. S → k where S is always the same and k
  // is useless. These are caught by this heuristic.

  m_optimized_fd_mapping =
      Bounds_checked_array<int>::Alloc(thd->mem_root, m_fds.size());
  size_t old_length = m_fds.size();

  // We always need to keep the decay FD, so start at 1.
  m_optimized_fd_mapping[0] = 0;
  int new_length = 1;

  for (size_t fd_idx = 1; fd_idx < old_length; ++fd_idx) {
    const FunctionalDependency &fd = m_fds[fd_idx];

    // See if we this FDs is useful, ie., can produce an item used in an
    // ordering.
    bool used_fd = false;
    ItemHandle tail = m_items[fd.tail].canonical_item;
    if (m_items[tail].used_asc || m_items[tail].used_desc ||
        m_items[tail].used_in_grouping) {
      used_fd = true;
    } else if (fd.type == FunctionalDependency::EQUIVALENCE) {
      ItemHandle head = m_items[fd.head[0]].canonical_item;
      if (m_items[head].used_asc || m_items[head].used_desc ||
          m_items[head].used_in_grouping) {
        used_fd = true;
      }
    }

    if (!used_fd) {
      m_optimized_fd_mapping[fd_idx] = -1;
      continue;
    }

    if (m_fds[fd_idx].always_active) {
      // Defer these for now, by moving them to the end. We will need to keep
      // them in the array so that we can apply them under FSM construction,
      // but they should not get a FD bitmap, and thus also not priority for
      // the lowest index. We could have used a separate array, but the m_fds
      // array probably already has the memory.
      m_optimized_fd_mapping[fd_idx] = -1;
      m_fds.push_back(m_fds[fd_idx]);
    } else {
      m_optimized_fd_mapping[fd_idx] = new_length;
      m_fds[new_length++] = m_fds[fd_idx];
    }
  }

  // Now include the always-on FDs we deferred earlier.
  for (size_t fd_idx = old_length; fd_idx < m_fds.size(); ++fd_idx) {
    m_fds[new_length++] = m_fds[fd_idx];
  }

  m_fds.resize(new_length);
}

void LogicalOrderings::BuildEquivalenceClasses() {
  for (size_t i = 0; i < m_items.size(); ++i) {
    m_items[i].canonical_item = i;
  }

  // In the worst case, for n items, all equal, m FDs ordered optimally bad,
  // this algorithm is O(nm) (all items shifted one step down each loop).
  // In practice, it should be much better.
  bool done_anything;
  do {
    done_anything = false;
    for (const FunctionalDependency &fd : m_fds) {
      if (fd.type != FunctionalDependency::EQUIVALENCE) {
        continue;
      }
      ItemHandle left_item = fd.head[0];
      ItemHandle right_item = fd.tail;

      if (m_items[left_item].canonical_item ==
          m_items[right_item].canonical_item) {
        // Already fully applied.
        continue;
      }

      // Merge the classes so that the lowest index always is the canonical one
      // of its equivalence class.
      ItemHandle canonical_item, duplicate_item;
      if (m_items[right_item].canonical_item <
          m_items[left_item].canonical_item) {
        canonical_item = m_items[right_item].canonical_item;
        duplicate_item = left_item;
      } else {
        canonical_item = m_items[left_item].canonical_item;
        duplicate_item = right_item;
      }
      m_items[duplicate_item].canonical_item = canonical_item;
      m_items[canonical_item].used_asc |= m_items[duplicate_item].used_asc;
      m_items[canonical_item].used_desc |= m_items[duplicate_item].used_desc;
      m_items[canonical_item].used_in_grouping |=
          m_items[duplicate_item].used_in_grouping;
      done_anything = true;
    }
  } while (done_anything);
}

// Put all groupings into a canonical form that we can compare them
// as orderings without further logic. (It needs to be on a form that
// does not change markedly after applying equivalences, and it needs
// to be deterministic, but apart from that, the order is pretty arbitrary.)
// We can only do this after BuildEquivalenceClasses().
void LogicalOrderings::RecanonicalizeGroupings() {
  for (OrderingWithInfo &ordering : m_orderings) {
    if (ordering.ordering.GetKind() == Ordering::Kind::kGroup) {
      SortElements(ordering.ordering.GetElements());
    }
  }
}

// Window functions depend on both the function argument and on the PARTITION BY
// clause, so we need to add both to the functional dependency's head.
// The order of elements is arbitrary.
Bounds_checked_array<ItemHandle>
LogicalOrderings::CollectHeadForStaticWindowFunction(THD *thd,
                                                     ItemHandle argument_item,
                                                     Window *window) {
  const PT_order_list *partition_by = window->effective_partition_by();
  int partition_len = 0;
  if (partition_by != nullptr) {
    for (ORDER *order = partition_by->value.first; order != nullptr;
         order = order->next) {
      ++partition_len;
    }
  }
  auto head =
      Bounds_checked_array<ItemHandle>::Alloc(thd->mem_root, partition_len + 1);
  if (partition_by != nullptr) {
    for (ORDER *order = partition_by->value.first; order != nullptr;
         order = order->next) {
      head[partition_len--] = GetHandle(*order->item);
    }
  }
  head[0] = argument_item;
  return head;
}

/**
  Try to add new FDs from items that are not base items; e.g., if we have
  an item (a + 1), we add {a} → (a + 1) (since addition is deterministic).
  This can help reducing orderings that are on such derived items.
  For simplicity, we only bother doing this for items that derive from a
  single base field; i.e., from (a + b), we don't add {a,b} → (a + b)
  even though we could. Also note that these are functional dependencies,
  not equivalences; even though ORDER BY (a + 1) could be satisfied by an
  ordering on (a) (barring overflow issues), this does not hold in general,
  e.g. ORDER BY (-a) is _not_ satisfied by an ordering on (a), not to mention
  ORDER BY (a*a). We do not have the framework in Item to understand which
  functions are monotonous, so we do not attempt to create equivalences.

  This is really the only the case where we can get transitive FDs that are not
  equivalences. Since our approach does not apply FDs transitively without
  adding the intermediate item (e.g., for {a} → b and {b} → c, we won't extend
  (a) to (ac), only to (abc)), we extend any existing FDs here when needed.
 */
void LogicalOrderings::AddFDsFromComputedItems(THD *thd) {
  int num_original_items = m_items.size();
  int num_original_fds = m_fds.size();
  for (int item_idx = 0; item_idx < num_original_items; ++item_idx) {
    // We only care about items that are used in some ordering,
    // not any used as base in FDs or the likes.
    const ItemHandle canonical_idx = m_items[item_idx].canonical_item;
    if (!m_items[canonical_idx].used_asc && !m_items[canonical_idx].used_desc &&
        !m_items[canonical_idx].used_in_grouping) {
      continue;
    }

    // We only want to look at items that are not already Item_field
    // or aggregate functions (the latter are handled in
    // AddFDsFromAggregateItems()), and that are generated from a single field.
    // Some quick heuristics will eliminate most of these for us.
    Item *item = m_items[item_idx].item;
    const table_map used_tables = item->used_tables();
    if (item->type() == Item::FIELD_ITEM || item->has_aggregation() ||
        Overlaps(used_tables, PSEUDO_TABLE_BITS) ||
        !IsSingleBitSet(used_tables)) {
      continue;
    }

    // Window functions have much more state than just the parameter,
    // so we cannot say that e.g. {a} → SUM(a) OVER (...), unless we
    // know that the function is over the entire frame (unbounded).
    //
    // TODO(sgunders): We could also add FDs for window functions
    // where could guarantee that the partition is only one row.
    bool is_static_wf = false;
    if (item->has_wf()) {
      if (item->m_is_window_function &&
          down_cast<Item_sum *>(item)->framing() &&
          down_cast<Item_sum *>(item)->window()->static_aggregates()) {
        is_static_wf = true;
      } else {
        continue;
      }
    }

    Item_field *base_field = nullptr;
    bool error =
        WalkItem(item, enum_walk::POSTFIX, [&base_field](Item *sub_item) {
          if (sub_item->type() == Item::FUNC_ITEM &&
              down_cast<Item_func *>(sub_item)->functype() ==
                  Item_func::ROLLUP_GROUP_ITEM_FUNC) {
            // Rollup items are nondeterministic, yet don't always set
            // RAND_TABLE_BIT.
            return true;
          }
          if (sub_item->type() == Item::FIELD_ITEM) {
            if (base_field != nullptr &&
                !base_field->eq(sub_item, /*binary_cmp=*/true)) {
              // More than one field in use.
              return true;
            }
            base_field = down_cast<Item_field *>(sub_item);
          }
          return false;
        });
    if (error || base_field == nullptr) {
      // More than one field in use, or no fields in use
      // (can happen even when used_tables is set, e.g. for
      // an Item_view_ref to a constant).
      continue;
    }

    if (!base_field->field->binary()) {
      // Fields with collations can have equality (with no tiebreaker)
      // even with fields that contain differing binary data.
      // Thus, functions do not always preserve equality; a == b
      // does not mean f(a) == f(b), and thus, the FD does not
      // hold either.
      continue;
    }

    ItemHandle head_item = GetHandle(base_field);
    FunctionalDependency fd;
    fd.type = FunctionalDependency::FD;
    if (is_static_wf) {
      fd.head = CollectHeadForStaticWindowFunction(
          thd, head_item, down_cast<Item_sum *>(item)->window());
    } else {
      fd.head = Bounds_checked_array<ItemHandle>(&head_item, 1);
    }
    fd.tail = item_idx;
    fd.always_active = true;
    AddFunctionalDependency(thd, fd);

    if (fd.head.size() == 1) {
      // Extend existing FDs transitively (see function comment).
      // E.g. if we have S → base, also add S → item.
      for (int fd_idx = 0; fd_idx < num_original_fds; ++fd_idx) {
        if (m_fds[fd_idx].type == FunctionalDependency::FD &&
            m_fds[fd_idx].tail == head_item && m_fds[fd_idx].always_active) {
          fd = m_fds[fd_idx];
          fd.tail = item_idx;
          AddFunctionalDependency(thd, fd);
        }
      }
    }
  }
}

/**
  Try to add FDs from items that are constant by themselves, e.g. if someone
  does ORDER BY 'x', add a new FD {} → 'x' so that the ORDER BY can be elided.

  TODO(sgunders): This can potentially remove subqueries or other functions
  that would throw errors if actually executed, potentially modifying
  semantics. See if that is illegal, and thus, if we need to test-execute them
  at least once somehow (ideally not during optimization).
 */
void LogicalOrderings::AddFDsFromConstItems(THD *thd) {
  int num_original_items = m_items.size();
  for (int item_idx = 0; item_idx < num_original_items; ++item_idx) {
    // We only care about items that are used in some ordering,
    // not any used as base in FDs or the likes.
    const ItemHandle canonical_idx = m_items[item_idx].canonical_item;
    if (!m_items[canonical_idx].used_asc && !m_items[canonical_idx].used_desc &&
        !m_items[canonical_idx].used_in_grouping) {
      continue;
    }

    if (m_items[item_idx].item->const_for_execution()) {
      // Add {} → item.
      FunctionalDependency fd;
      fd.type = FunctionalDependency::FD;
      fd.head = Bounds_checked_array<ItemHandle>();
      fd.tail = item_idx;
      fd.always_active = true;
      AddFunctionalDependency(thd, fd);
    }
  }
}

void LogicalOrderings::AddFDsFromAggregateItems(THD *thd) {
  // If ROLLUP is active, and we have nullable GROUP BY expressions, we could
  // get two different NULL groups with different aggregates; one for the actual
  // NULL value, and one for the rollup group. If so, these FDs no longer hold,
  // and we cannot add them.
  if (m_rollup) {
    for (ItemHandle item : m_aggregate_head) {
      if (m_items[item].item->is_nullable()) {
        return;
      }
    }
  }

  int num_original_items = m_items.size();
  for (int item_idx = 0; item_idx < num_original_items; ++item_idx) {
    // We only care about items that are used in some ordering,
    // not any used as base in FDs or the likes.
    const ItemHandle canonical_idx = m_items[item_idx].canonical_item;
    if (!m_items[canonical_idx].used_asc && !m_items[canonical_idx].used_desc &&
        !m_items[canonical_idx].used_in_grouping) {
      continue;
    }

    if (m_items[item_idx].item->has_aggregation() &&
        !m_items[item_idx].item->has_wf()) {
      // Add {all GROUP BY items} → item.
      // Note that the head might be empty, for implicit grouping,
      // which means all aggregate items are constant (there is only one row).
      FunctionalDependency fd;
      fd.type = FunctionalDependency::FD;
      fd.head = m_aggregate_head;
      fd.tail = item_idx;
      fd.always_active = true;
      AddFunctionalDependency(thd, fd);
    }
  }
}

void LogicalOrderings::FindElementsThatCanBeAddedByFDs() {
  for (const FunctionalDependency &fd : m_fds) {
    m_items[m_items[fd.tail].canonical_item].can_be_added_by_fd = true;
    if (fd.type == FunctionalDependency::EQUIVALENCE) {
      m_items[m_items[fd.head[0]].canonical_item].can_be_added_by_fd = true;
    }
  }
}

/**
  Checks whether the given item is redundant given previous elements in
  the ordering; ie., whether adding it will never change the ordering.
  This could either be because it's a duplicate, or because it is implied
  by functional dependencies. When this is applied to all elements in turn,
  it is called “reducing” the ordering. [Neu04] claims that this operation
  is not confluent, which is erroneous (their example is faulty, ignoring
  that Simmen reduces from the back). [Neu04b] has modified the claim to
  be that it is not confluent for _groupings_, which is correct.
  We make no attempt at optimality.

  If all_fds is true, we consider all functional dependencies, including those
  that may not always be active; e.g. a FD a=b may come from a join, and thus
  does not hold before the join is actually done, but we assume it holds anyway.
  This is OK from order homogenization, which is concerned with making orderings
  that will turn into the desired interesting ordering (e.g. for ORDER BY) only
  after all joins have been done. It would not be OK if we were to use it for
  merge joins somehow.
 */
bool LogicalOrderings::ImpliedByEarlierElements(ItemHandle item,
                                                Ordering::Elements prefix,
                                                bool all_fds) const {
  // First, search for straight-up duplicates (ignoring ASC/DESC).
  if (Contains(prefix, item)) {
    return true;
  }

  // Check if this item is implied by any of the functional dependencies.
  for (size_t fd_idx = 1; fd_idx < m_fds.size(); ++fd_idx) {
    const FunctionalDependency &fd = m_fds[fd_idx];
    if (!all_fds && !fd.always_active) {
      continue;
    }
    if (fd.type == FunctionalDependency::FD) {
      if (fd.tail != item) {
        continue;
      }

      // Check if we have all the required head items.
      bool all_found = true;
      for (ItemHandle other_item : fd.head) {
        if (!Contains(prefix, other_item)) {
          all_found = false;
          break;
        }
      }
      if (all_found) {
        return true;
      }
    } else {
      // a = b implies that a → b and b → a, so we check for both of those.
      assert(fd.type == FunctionalDependency::EQUIVALENCE);
      assert(fd.head.size() == 1);
      if (fd.tail == item && Contains(prefix, fd.head[0])) {
        return true;
      }
      if (fd.head[0] == item && Contains(prefix, fd.tail)) {
        return true;
      }
    }
  }
  return false;
}

/**
  Do safe reduction on all orderings (some of them may get merged by
  PruneUninterestingOrders() later), ie., remove all items that may be removed
  using only FDs that always are active.

  There's a problem in [Neu04] that is never adequately addressed; orderings are
  only ever expanded, and then eventually compared against interesting orders.
  But the interesting order itself is not necessarily extended, due to pruning.
  For instance, if an index could yield (x,y) and we have {} → x, there's no way
  we could get it to match the interesting order (y) even though they are
  logically equivalent. For an even trickier case, imagine an index (x,y) and
  an interesting order (y,z), with {} → x and y → z. For this to match, we'd
  need to have a “super-order” (x,y,z) and infer that from both orderings.

  Instead, we do a pre-step related to Simmen's “Test Ordering” procedure;
  we reduce the orderings. In the example above, both will be reduced to (y),
  and then match. This is mostly a band-aid around the problem; for instance,
  it cannot deal with FDs that are not always active, and it does not deal
  adequately with groupings (since reduction does not).

  Note that this could make the empty ordering interesting after merging.
 */
void LogicalOrderings::PreReduceOrderings(THD *thd) {
  for (OrderingWithInfo &ordering : m_orderings) {
    OrderingElementsGuard tmp_guard(this, thd->mem_root);
    Ordering reduced_ordering =
        ReduceOrdering(ordering.ordering,
                       /*all_fds=*/false, tmp_guard.Get());
    if (reduced_ordering.size() < ordering.ordering.size()) {
      ordering.ordering = reduced_ordering.Clone(thd->mem_root);
    }
  }
}

/**
  We don't currently have any operators that only group and do not sort
  (e.g. hash grouping), so we always implement grouping by sorting.
  This function makes that representation explicit -- for each grouping,
  it will make sure there is at least one ordering representing that
  grouping. This means we never need to “sort by a grouping”, which
  would destroy ordering information that could be useful later.

  As an example, take SELECT ... GROUP BY a, b ORDER BY a. This needs to
  group first by {a,b} (assume we're using filesort, not an index),
  then sort by (a). If we just represent the sort we're doing as going
  directly to {a,b}, we can't elide the sort on (a). Instead, we create
  a sort (a,b) (implicitly convertible to {a,b}), which makes the FSM
  understand that we're _both_ sorted on (a,b) and grouped on {a,b},
  and then also sorted on (a).

  Any given grouping would be satisfied by lots of different orderings:
  {a,b} could be (a,b), (b,a), (a DESC, b) etc.. We look through all
  interesting orders that are a subset of our grouping, and if they are,
  we extend them arbitrarily to complete the grouping. E.g., if our
  grouping is {a,b,c,d} and the ordering (c DESC, b) is interesting,
  we make a homogenized ordering (c DESC, b, a, d). This is roughly
  equivalent to Simmen's “Cover Order” procedure. If we cannot make
  such a cover, we simply make a new last-resort ordering (a,b,c,d).

  We don't consider equivalences here; perhaps we should, at least
  for at-end groupings.
 */
void LogicalOrderings::CreateOrderingsFromGroupings(THD *thd) {
  OrderingElementsGuard tmp_guard(this, thd->mem_root);
  Ordering::Elements &tmp = tmp_guard.Get();
  int num_original_orderings = m_orderings.size();
  for (int grouping_idx = 1; grouping_idx < num_original_orderings;
       ++grouping_idx) {
    const Ordering &grouping = m_orderings[grouping_idx].ordering;
    if (grouping.GetKind() != Ordering::Kind::kGroup ||
        m_orderings[grouping_idx].type != OrderingWithInfo::INTERESTING) {
      continue;
    }

    bool has_cover = false;
    for (int ordering_idx = 1; ordering_idx < num_original_orderings;
         ++ordering_idx) {
      const Ordering &ordering = m_orderings[ordering_idx].ordering;
      if (ordering.GetKind() != Ordering::Kind::kOrder ||
          m_orderings[ordering_idx].type != OrderingWithInfo::INTERESTING ||
          ordering.size() > grouping.size()) {
        continue;
      }
      bool can_cover =
          all_of(ordering.GetElements().begin(), ordering.GetElements().end(),
                 [&grouping](const OrderElement &element) {
                   return Contains(grouping.GetElements(), element.item);
                 });
      if (!can_cover) {
        continue;
      }

      has_cover = true;

      // On a full match, just note that we have a cover, don't make a new
      // ordering. We assume both are free of duplicates.
      if (ordering.size() == grouping.size()) {
        continue;
      }

      for (size_t i = 0; i < ordering.size(); ++i) {
        tmp[i] = ordering.GetElements()[i];
      }
      int len = ordering.size();
      for (const OrderElement &element : grouping.GetElements()) {
        if (!Contains(ordering.GetElements(), element.item)) {
          tmp[len].item = element.item;
          tmp[len].direction = ORDER_ASC;  // Arbitrary.
          ++len;
        }
      }
      assert(len == static_cast<int>(grouping.size()));

      AddOrderingInternal(
          thd, Ordering(tmp.prefix(len), Ordering::Kind::kOrder),
          OrderingWithInfo::HOMOGENIZED, m_orderings[grouping_idx].used_at_end,
          /*homogenize_tables=*/0);
    }

    // Make a fallback ordering if no cover was found.
    if (!has_cover) {
      for (size_t i = 0; i < grouping.size(); ++i) {
        tmp[i].item = grouping.GetElements()[i].item;
        tmp[i].direction = ORDER_ASC;  // Arbitrary.
      }

      AddOrderingInternal(
          thd, Ordering(tmp.prefix(grouping.size()), Ordering::Kind::kOrder),
          OrderingWithInfo::HOMOGENIZED, m_orderings[grouping_idx].used_at_end,
          /*homogenize_tables=*/0);
    }
  }
}

/**
  For each interesting ordering, see if we can homogenize it onto each table.
  A homogenized ordering is one that refers to fewer tables than the original
  one -- in our case, a single table. (If we wanted to, we could homogenize down
  to sets of tables instead of single tables only. However, that would open up
  for O(2^n) orderings, so we restrict to single-table.)

  The idea is to enable sort-ahead; find an ordering we can sort a single table
  in that, after later applying functional dependencies, eventually gives the
  desired ordering. This is just a heuristic (in particular, we only consider
  equivalences, not other functional dependencies), but in most cases will give
  us an ordering if any exist.

  Neumann et al do not talk much about this, so this comes from the Simmen
  paper, where it is called “Homogenize Order”.
 */
void LogicalOrderings::CreateHomogenizedOrderings(THD *thd) {
  // Collect all tables we have seen referred to in items. (Actually, we could
  // limit ourselves to the ones we've seen in functional dependencies, but this
  // is simpler.)
  table_map seen_tables = 0;
  for (const ItemInfo &item : m_items) {
    if (item.item != nullptr) {
      seen_tables |= item.item->used_tables();
    }
  }
  seen_tables &= ~PSEUDO_TABLE_BITS;

  // Build a reverse table of canonical items to items,
  // and sort it, so that we can fairly efficiently make lookups into it.
  auto reverse_canonical =
      Bounds_checked_array<pair<ItemHandle, ItemHandle>>::Alloc(thd->mem_root,
                                                                m_items.size());
  for (size_t item_idx = 0; item_idx < m_items.size(); ++item_idx) {
    reverse_canonical[item_idx].first = m_items[item_idx].canonical_item;
    reverse_canonical[item_idx].second = item_idx;
  }
  sort(reverse_canonical.begin(), reverse_canonical.end());

  // Now, for each table, try to see if we can rewrite an ordering
  // to something only referring to that table, by swapping out non-conforming
  // items for others.
  int num_original_orderings = m_orderings.size();
  for (int ordering_idx = 1; ordering_idx < num_original_orderings;
       ++ordering_idx) {
    if (m_orderings[ordering_idx].type == OrderingWithInfo::UNINTERESTING) {
      continue;
    }
    if (m_orderings[ordering_idx].ordering.GetKind() ==
        Ordering::Kind::kGroup) {
      // We've already made orderings out of these, which will be
      // homogenized, so we don't need to homogenize the grouping itself,
      // too.
      continue;
    }

    OrderingElementsGuard tmp_guard(this, thd->mem_root);
    const Ordering &reduced_ordering = ReduceOrdering(
        m_orderings[ordering_idx].ordering,
        /*all_fds=*/m_orderings[ordering_idx].used_at_end, tmp_guard.Get());
    if (reduced_ordering.GetElements().empty()) {
      continue;
    }

    // Now try to homogenize it onto all tables in turn.
    table_map homogenize_tables;
    if (m_orderings[ordering_idx].used_at_end) {
      // Try all tables.
      homogenize_tables = seen_tables;
    } else {
      // Try only the ones we were asked to (because it's not relevant
      // for later tables anyway).
      homogenize_tables = m_orderings[ordering_idx].homogenize_tables;
    }
    for (int table_idx : BitsSetIn(homogenize_tables)) {
      AddHomogenizedOrderingIfPossible(thd, reduced_ordering,
                                       m_orderings[ordering_idx].used_at_end,
                                       table_idx, reverse_canonical);
    }
  }
}

/**
  Remove redundant elements using the functional dependencies that we have,
  to give a more canonical form before homogenization. Note that we assume
  here that every functional dependency holds, so this is not applicable
  generally throughout the tree, only at the end (e.g. final ORDER BY).
  This is called “Reduce Order” in the Simmen paper.
 */
Ordering LogicalOrderings::ReduceOrdering(Ordering ordering, bool all_fds,
                                          Ordering::Elements tmp) const {
  size_t reduced_length = 0;
  for (size_t part_idx = 0; part_idx < ordering.size(); ++part_idx) {
    if (ImpliedByEarlierElements(ordering.GetElements()[part_idx].item,
                                 ordering.GetElements().prefix(part_idx),
                                 all_fds)) {
      // Delete this element.
    } else {
      tmp[reduced_length++] = ordering.GetElements()[part_idx];
    }
  }
  return {tmp.prefix(reduced_length),
          reduced_length > 0 ? ordering.GetKind() : Ordering::Kind::kEmpty};
}

/// Helper function for CreateHomogenizedOrderings().
void LogicalOrderings::AddHomogenizedOrderingIfPossible(
    THD *thd, const Ordering &reduced_ordering, bool used_at_end, int table_idx,
    Bounds_checked_array<pair<ItemHandle, ItemHandle>> reverse_canonical) {
  OrderingElementsGuard tmp_guard(this, thd->mem_root);
  Ordering::Elements &tmp = tmp_guard.Get();
  const table_map available_tables = table_map{1} << table_idx;
  int length = 0;

  for (OrderElement element : reduced_ordering.GetElements()) {
    if (IsSubset(m_items[element.item].item->used_tables(), available_tables)) {
      // Already OK.
      if (!ImpliedByEarlierElements(element.item, tmp.prefix(length),
                                    /*all_fds=*/used_at_end)) {
        tmp[length++] = element;
      }
      continue;
    }

    // Find all equivalent items.
    ItemHandle canonical_item = m_items[element.item].canonical_item;
    auto first = lower_bound(reverse_canonical.begin(), reverse_canonical.end(),
                             canonical_item,
                             [](const pair<ItemHandle, ItemHandle> &a,
                                ItemHandle b) { return a.first < b; });
    auto last =
        upper_bound(first, reverse_canonical.end(), canonical_item,
                    [](ItemHandle a, const pair<ItemHandle, ItemHandle> &b) {
                      return a < b.first;
                    });
    assert(last - first >= 1);

    bool found = false;
    for (auto it = first; it != last; ++it) {
      if (IsSubset(m_items[it->second].item->used_tables(), available_tables)) {
        if (ImpliedByEarlierElements(it->second, tmp.prefix(length),
                                     /*all_fds=*/used_at_end)) {
          // Unneeded in the new order, so delete it.
          // Similar to the reduction process above.
        } else {
          tmp[length].item = it->second;
          tmp[length].direction = element.direction;
          ++length;
        }
        found = true;
        break;
      }
    }
    if (!found) {
      // Not possible to homogenize this ordering.
      return;
    }
  }

  if (length > 0) {
    if (reduced_ordering.GetKind() == Ordering::Kind::kGroup) {
      // We've replaced some items, so we need to re-sort.
      SortElements(tmp.prefix(length));
    }

    AddOrderingInternal(
        thd, Ordering(tmp.prefix(length), reduced_ordering.GetKind()),
        OrderingWithInfo::HOMOGENIZED, used_at_end,
        /*homogenize_tables=*/0);
  }
}

void LogicalOrderings::SortElements(Ordering::Elements elements) const {
  assert(std::all_of(elements.cbegin(), elements.cend(), [](OrderElement e) {
    return e.direction == ORDER_NOT_RELEVANT;
  }));

  sort(elements.begin(), elements.end(),
       [this](const OrderElement &a, const OrderElement &b) {
         return this->ItemBeforeInGroup(a, b);
       });
}

ItemHandle LogicalOrderings::GetHandle(Item *item) {
  for (size_t i = 1; i < m_items.size(); ++i) {
    if (item == m_items[i].item ||
        item->eq(m_items[i].item, /*binary_cmp=*/true)) {
      return i;
    }
  }
  m_items.push_back(ItemInfo{item, /*canonical_item=*/0});
  return m_items.size() - 1;
}

/**
  For a given ordering, check whether it ever has the hope of becoming an
  interesting ordering. In its base form, this is a prefix check; if we
  have an ordering (a,b) and an interesting order (a,b,c), it passes.
  However, we add some slightly more lax heuristics in order to make the
  graph a bit wider at build time (and thus require fewer FD applications at
  runtime); namely, if there's a prefix mismatch but the item could be added
  by some FD later (without the ordering becoming too long), we let it slide
  and just skip that item.

  E.g.: If we have an ordering (a,b) and an interesting order (a,x,b),
  we first match a. x does not match b, but we check whether x is ever on the
  right side of any FD (for instance because there might be an FD a → x).
  If it is, we skip it and match b with b. There's an example of this in the
  DoesNotStrictlyPruneOnPrefixes unit test.

  Obviously, this leads to false positives, but that is fine; this is just
  to prune down the amount of states in the NFSM. [Neu04] points out that
  such pruning is pretty much essential for performance, and our experience
  is the same.

  There is one extra quirk; the prefix check needs to take equivalences into
  account, or we would prune away orderings that could become interesting
  after equivalences. We solve this by always mapping to an equivalence class
  when doing the prefix comparison. There's an example of this in the
  TwoEquivalences unit test.
 */
bool LogicalOrderings::CouldBecomeInterestingOrdering(
    const Ordering &ordering) const {
  for (OrderingWithInfo other_ordering : m_orderings) {
    const Ordering interesting_ordering = other_ordering.ordering;
    if (other_ordering.type != OrderingWithInfo::INTERESTING ||
        interesting_ordering.size() < ordering.size()) {
      continue;
    }

    // Groupings can never become orderings. Orderings can become groupings,
    // but for simplicity, we require them to immediately become groupings then,
    // or else be pruned away.
    if (ordering.GetKind() != interesting_ordering.GetKind()) {
      continue;
    }

    // Since groupings are ordered by item (actually canonical item;
    // see RecanonicalizeGroupings(), ItemBeforeInGroup() and
    // the GroupReordering unit test), we can use the same comparison
    // for ordering-ordering and grouping-grouping comparisons.
    bool match = true;
    for (size_t i = 0, j = 0;
         i < ordering.size() || j < interesting_ordering.size();) {
      if (ordering.size() - i > interesting_ordering.size() - j) {
        // We have excess items at the end, so give up.
        match = false;
        break;
      }

      const ItemHandle needed_item =
          m_items[interesting_ordering.GetElements()[j].item].canonical_item;
      if (i < ordering.size() &&
          m_items[ordering.GetElements()[i].item].canonical_item ==
              needed_item &&
          ordering.GetElements()[i].direction ==
              interesting_ordering.GetElements()[j].direction) {
        // We have a matching item, so move both iterators along.
        ++i, ++j;
        continue;
      }

      if (m_items[needed_item].can_be_added_by_fd) {
        // We don't have this item, but it could be generated, so skip it.
        ++j;
        continue;
      }

      // We don't have this item, and it can not be added later, so give up.
      match = false;
      break;
    }
    if (match) {
      return true;
    }
  }
  return false;
}

int LogicalOrderings::AddArtificialState(THD *thd, const Ordering &ordering) {
  for (size_t i = 0; i < m_states.size(); ++i) {
    if (m_states[i].satisfied_ordering == ordering) {
      return i;
    }
  }

  NFSMState state;
  state.satisfied_ordering = ordering.Clone(thd->mem_root);
  state.satisfied_ordering_idx = -1;  // Irrelevant, but placate the compiler.
  state.outgoing_edges.init(thd->mem_root);
  state.type = NFSMState::ARTIFICIAL;
  m_states.push_back(std::move(state));
  return m_states.size() - 1;
}

void LogicalOrderings::AddEdge(THD *thd, int state_idx, int required_fd_idx,
                               const Ordering &ordering) {
  NFSMEdge edge;
  edge.required_fd_idx = required_fd_idx;
  edge.state_idx = AddArtificialState(thd, ordering);

  if (edge.state_idx == state_idx) {
    // Don't add self-edges; they are already implicit.
    return;
  }

  assert(std::find(m_states[state_idx].outgoing_edges.cbegin(),
                   m_states[state_idx].outgoing_edges.cend(),
                   edge) == m_states[state_idx].outgoing_edges.cend());

  m_states[state_idx].outgoing_edges.push_back(edge);
}

bool LogicalOrderings::FunctionalDependencyApplies(
    const FunctionalDependency &fd, const Ordering &ordering,
    int *start_point) const {
  assert(fd.type != FunctionalDependency::DECAY);
  *start_point = -1;
  for (ItemHandle head_item : fd.head) {
    bool matched = false;
    for (size_t i = 0; i < ordering.size(); ++i) {
      if (ordering.GetElements()[i].item == head_item ||
          (fd.type == FunctionalDependency::EQUIVALENCE &&
           ordering.GetElements()[i].item == fd.tail)) {
        *start_point = max<int>(*start_point, i);
        matched = true;
        break;
      }
    }
    if (!matched) {
      return false;
    }
  }
  return true;
}

/**
   Given an order O and a functional dependency FD: S → x where S
   is a subset of O, create new orderings by inserting x into O at
   different positions, and add those to the set of orderings if they
   could become interesting (@see
   LogicalOrderings::CouldBecomeInterestingOrdering(Ordering ordering)).

   This operation is implemented as a class to avoid an excessively
   long parameter list.
*/
class LogicalOrderings::OrderWithElementInserted final {
 public:
  OrderWithElementInserted &SetContext(LogicalOrderings *context) {
    m_context = context;
    return *this;
  }

  OrderWithElementInserted &SetStateIdx(int state_idx) {
    m_state_idx = state_idx;
    return *this;
  }

  OrderWithElementInserted &SetFdIdx(int fd_idx) {
    m_fd_idx = fd_idx;
    return *this;
  }

  OrderWithElementInserted &SetOldOrdering(Ordering old_ordering) {
    m_old_ordering = old_ordering;
    return *this;
  }

  OrderWithElementInserted &SetStartPoint(size_t start_point) {
    m_start_point = start_point;
    return *this;
  }

  OrderWithElementInserted &SetItemToAdd(ItemHandle item_to_add) {
    m_item_to_add = item_to_add;
    return *this;
  }

  OrderWithElementInserted &SetDirection(enum_order direction) {
    m_direction = direction;
    return *this;
  }

  /// Add any potentially interesting orders.
  void AddPotentiallyInterestingOrders(THD *thd);

 private:
  /// The enclosing  LogicalOrderings instance.
  LogicalOrderings *m_context;

  /// The originator state.
  int m_state_idx;

  /// The functional dependency with which we will extend m_old_ordering.
  int m_fd_idx;

  /// The ordering to be extended.
  Ordering m_old_ordering;

  /// The first position at which m_item_to_add. If ordering is needed,
  /// this must be behind the last element of the FD head.
  size_t m_start_point;

  /// The item to add to the ordering.
  ItemHandle m_item_to_add;

  /// The desired direction of the extended ordering.
  enum_order m_direction;
};

void LogicalOrderings::OrderWithElementInserted::
    AddPotentiallyInterestingOrders(THD *thd) {
  assert(m_direction == ORDER_NOT_RELEVANT ||
         m_old_ordering.GetKind() != Ordering::Kind::kGroup);

  if (static_cast<int>(m_old_ordering.size()) >=
      m_context->m_longest_ordering) {
    return;
  }

  for (size_t add_pos = m_start_point; add_pos <= m_old_ordering.size();
       ++add_pos) {
    if (m_direction == ORDER_NOT_RELEVANT) {
      // For groupings, only insert in the sorted sequence.
      // (If we have found the right insertion spot, we immediately
      // exit after this at the end of the loop.)
      if (add_pos < m_old_ordering.size() &&
          m_context->ItemHandleBeforeInGroup(
              m_old_ordering.GetElements()[add_pos].item, m_item_to_add)) {
        continue;
      }

      // For groupings, we just deduplicate right away.
      // TODO(sgunders): When we get C++20, use operator<=> so that we
      // can use a == b here instead of !(a < b) && !(b < a) as we do now.
      if (add_pos < m_old_ordering.size() &&
          !m_context->ItemHandleBeforeInGroup(
              m_item_to_add, m_old_ordering.GetElements()[add_pos].item)) {
        break;
      }
    }

    OrderingElementsGuard tmp_guard(m_context, thd->mem_root);
    Ordering::Elements &tmp = tmp_guard.Get();
    const Ordering::Kind kind =
        m_old_ordering.GetKind() == Ordering::Kind::kEmpty
            ? Ordering::Kind::kOrder
            : m_old_ordering.GetKind();

    std::copy(m_old_ordering.GetElements().cbegin(),
              m_old_ordering.GetElements().cbegin() + add_pos, tmp.begin());
    tmp[add_pos].item = m_item_to_add;
    tmp[add_pos].direction =
        kind == Ordering::Kind::kOrder ? m_direction : ORDER_NOT_RELEVANT;

    std::copy(m_old_ordering.GetElements().cbegin() + add_pos,
              m_old_ordering.GetElements().cend(), tmp.begin() + add_pos + 1);
    Ordering new_ordering{tmp.prefix(m_old_ordering.size() + 1), kind};

    new_ordering.Deduplicate();

    if (m_context->CouldBecomeInterestingOrdering(new_ordering)) {
      // AddEdge() makes a deep copy of new_ordering, so reusing tmp is ok.
      m_context->AddEdge(thd, m_state_idx, m_fd_idx, new_ordering);
    }

    if (m_direction == ORDER_NOT_RELEVANT) {
      break;
    }
  }
}

void LogicalOrderings::BuildNFSM(THD *thd) {
  // Add a state for each producible ordering.
  for (size_t i = 0; i < m_orderings.size(); ++i) {
    NFSMState state;
    state.satisfied_ordering = m_orderings[i].ordering;
    state.satisfied_ordering_idx = i;
    state.outgoing_edges.init(thd->mem_root);
    state.type = m_orderings[i].type == OrderingWithInfo::INTERESTING
                     ? NFSMState::INTERESTING
                     : NFSMState::ARTIFICIAL;
    m_states.push_back(std::move(state));
  }

  // Add an edge from the initial state to each producible ordering/grouping.
  for (size_t i = 1; i < m_orderings.size(); ++i) {
    if (m_orderings[i].ordering.GetKind() == Ordering::Kind::kGroup) {
      // Not directly producible, but we've made an ordering out of it earlier.
      continue;
    }
    NFSMEdge edge;
    edge.required_fd_idx = INT_MIN + i;
    edge.state_idx = i;
    m_states[0].outgoing_edges.push_back(edge);
  }

  // Add edges from functional dependencies, in a breadth-first search
  // (the array of m_states will expand as we go).
  for (size_t state_idx = 0; state_idx < m_states.size(); ++state_idx) {
    // Refuse to apply FDs for nondeterministic orderings other than possibly
    // ordering -> grouping; ie., (a) can _not_ be satisfied by (a, rand()).
    // This is to avoid evaluating such a nondeterministic function unexpectedly
    // early, e.g. in GROUP BY when the user didn't expect it to be used in
    // ORDER BY. (We still allow it on exact matches, though.See also comments
    // on RAND_TABLE_BIT in SortAheadOrdering.)
    const Ordering old_ordering = m_states[state_idx].satisfied_ordering;
    const bool deterministic =
        none_of(old_ordering.GetElements().begin(),
                old_ordering.GetElements().end(), [this](OrderElement element) {
                  return Overlaps(m_items[element.item].item->used_tables(),
                                  RAND_TABLE_BIT);
                });

    // Apply the special decay FD; first to convert it into a grouping or rollup
    // (which we always allow, even for nondeterministic items),
    // then to shorten the ordering.
    switch (old_ordering.GetKind()) {
      case Ordering::Kind::kOrder:
        if (m_rollup) {
          AddRollupFromOrder(thd, state_idx, old_ordering);
        } else {
          // We do not add rollups if the query block does not do a grouping
          // with rollup.
          AddGroupingFromOrder(thd, state_idx, old_ordering);
        }
        break;

      case Ordering::Kind::kRollup:
        assert(m_rollup);
        AddGroupingFromRollup(thd, state_idx, old_ordering);
        break;

      default:
        break;
    }
    if (!deterministic) {
      continue;
    }
    if (old_ordering.GetKind() != Ordering::Kind::kGroup &&
        old_ordering.size() > 1) {
      AddEdge(thd, state_idx, /*required_fd_idx=*/0,
              Ordering(old_ordering.GetElements().without_back(),
                       old_ordering.GetKind()));
    }

    if (m_states.size() >= kMaxNFSMStates) {
      // Stop adding more states. We won't necessarily find the optimal query,
      // but we'll keep all essential information, and not throw away any of the
      // information we have already gathered (unless the DFSM gets too large,
      // too; see ConvertNFSMToDFSM()).
      break;
    }

    for (size_t fd_idx = 1; fd_idx < m_fds.size(); ++fd_idx) {
      const FunctionalDependency &fd = m_fds[fd_idx];

      int start_point;
      if (!FunctionalDependencyApplies(fd, old_ordering, &start_point)) {
        continue;
      }

      ItemHandle item_to_add = fd.tail;

      // On a = b, try to replace a with b or b with a.
      OrderingElementsGuard tmp_guard(this, thd->mem_root);
      Ordering::Elements &tmp = tmp_guard.Get();
      Ordering base_ordering;

      if (fd.type == FunctionalDependency::EQUIVALENCE) {
        std::copy(old_ordering.GetElements().cbegin(),
                  old_ordering.GetElements().cend(), tmp.begin());

        ItemHandle other_item = fd.head[0];
        if (tmp[start_point].item == item_to_add) {
          // b already existed, so it's a we must add.
          swap(item_to_add, other_item);
        }
        tmp[start_point].item = item_to_add;  // Keep the direction.

        Ordering new_ordering{tmp.prefix(old_ordering.size()),
                              old_ordering.GetKind()};

        new_ordering.Deduplicate();
        if (CouldBecomeInterestingOrdering(new_ordering)) {
          AddEdge(thd, state_idx, fd_idx, new_ordering);
        }

        // Now we can add back the item we just replaced,
        // at any point after this. E.g., if we had an order abc
        // and applied b=d to get adc, we can add back b to get
        // adbc or adcb. Also, we'll fall through afterwards
        // to _not_ replacing but just adding d, e.g. abdc and abcd.
        // So fall through.
        base_ordering = new_ordering;
        item_to_add = other_item;
      } else {
        base_ordering = old_ordering;
      }

      auto extended_order = [&]() {
        return OrderWithElementInserted()
            .SetContext(this)
            .SetStateIdx(state_idx)
            .SetFdIdx(fd_idx)
            .SetOldOrdering(base_ordering)
            .SetItemToAdd(item_to_add);
      };

      // On S -> b, try to add b everywhere after the last element of S.
      switch (base_ordering.GetKind()) {
        case Ordering::Kind::kGroup:
        case Ordering::Kind::kRollup:
          if (m_items[m_items[item_to_add].canonical_item].used_in_grouping) {
            extended_order()
                // For GROUP BY without ROLLUP, any ordering on the
                // grouping terms T1..TN will work, as it ensures that all
                // rows with the same values for those grouping terms will
                // appear consecutively.  But the mechanism for generating
                // the ROLLUP rows also requires the rows to be sorted on
                // T1..TN. Therefore we cannot reorder the terms in
                // 'ordering' according to the GROUP BY sequence if we
                // have ROLLUP.  (See also bug #34670701.)
                .SetStartPoint(base_ordering.GetKind() ==
                                       Ordering::Kind::kRollup
                                   ? start_point + 1
                                   : 0)
                .SetDirection(ORDER_NOT_RELEVANT)
                .AddPotentiallyInterestingOrders(thd);
          }
          break;

        default:
          // NOTE: We could have neither add_asc nor add_desc, if the item is
          // used only in groupings. If so, we don't add it at all, before we
          // convert it to a grouping.
          bool add_asc = m_items[m_items[item_to_add].canonical_item].used_asc;
          bool add_desc =
              m_items[m_items[item_to_add].canonical_item].used_desc;
          if (add_asc) {
            extended_order()
                .SetStartPoint(start_point + 1)
                .SetDirection(ORDER_ASC)
                .AddPotentiallyInterestingOrders(thd);
          }
          if (add_desc) {
            extended_order()
                .SetStartPoint(start_point + 1)
                .SetDirection(ORDER_DESC)
                .AddPotentiallyInterestingOrders(thd);
          }
      }
    }
  }
}

void LogicalOrderings::AddGroupingFromOrder(THD *thd, int state_idx,
                                            const Ordering &ordering) {
  assert(ordering.GetKind() == Ordering::Kind::kOrder);
  OrderingElementsGuard tmp_guard(this, thd->mem_root);
  Ordering::Elements &tmp = tmp_guard.Get();

  std::copy(ordering.GetElements().cbegin(), ordering.GetElements().cend(),
            tmp.begin());

  for (size_t i = 0; i < ordering.size(); ++i) {
    tmp[i].direction = ORDER_NOT_RELEVANT;
    if (!m_items[m_items[tmp[i].item].canonical_item].used_in_grouping) {
      // Pruned away.
      return;
    }
  }

  SortElements(tmp.prefix(ordering.size()));

  AddEdge(thd, state_idx, /*required_fd_idx=*/0,
          Ordering(tmp.prefix(ordering.size()), Ordering::Kind::kGroup));
}

void LogicalOrderings::AddGroupingFromRollup(THD *thd, int state_idx,
                                             const Ordering &ordering) {
  assert(ordering.GetKind() == Ordering::Kind::kRollup);
  assert(std::all_of(
      ordering.GetElements().cbegin(), ordering.GetElements().cend(),
      [this](const OrderElement &elem) {
        // Not pruned away.
        return m_items[m_items[elem.item].canonical_item].used_in_grouping;
      }));

  OrderingElementsGuard tmp_guard(this, thd->mem_root);
  Ordering::Elements &tmp = tmp_guard.Get();
  std::copy(ordering.GetElements().cbegin(), ordering.GetElements().cend(),
            tmp.begin());
  SortElements(tmp.prefix(ordering.size()));

  AddEdge(thd, state_idx, /*required_fd_idx=*/0,
          Ordering(tmp.prefix(ordering.size()), Ordering::Kind::kGroup));
}

void LogicalOrderings::AddRollupFromOrder(THD *thd, int state_idx,
                                          const Ordering &ordering) {
  assert(m_rollup);
  assert(ordering.GetKind() == Ordering::Kind::kOrder);
  OrderingElementsGuard tmp_guard(this, thd->mem_root);
  Ordering::Elements &tmp = tmp_guard.Get();
  std::copy(ordering.GetElements().cbegin(), ordering.GetElements().cend(),
            tmp.begin());

  for (size_t i = 0; i < ordering.size(); ++i) {
    tmp[i].direction = ORDER_NOT_RELEVANT;
    if (!m_items[m_items[tmp[i].item].canonical_item].used_in_grouping) {
      // Pruned away.
      return;
    }
  }

  Ordering rollup =
      Ordering(tmp.prefix(ordering.size()), Ordering::Kind::kRollup);

  AddEdge(thd, state_idx, /*required_fd_idx=*/0, rollup);
}

// Clang vectorizes the inner loop below with -O2, but GCC does not. Enable
// vectorization with GCC too, since this loop is a bottleneck when there are
// many NFSM states.
#if defined(NDEBUG) && defined(__GNUC__) && !defined(__clang__)
#pragma GCC push_options
#pragma GCC optimize("tree-loop-vectorize")
#endif

// Calculates the transitive closure of the reachability graph.
static void FindAllReachable(Bounds_checked_array<bool *> reachable) {
  const int N = reachable.size();
  for (int k = 0; k < N; ++k) {
    for (int i = 0; i < N; ++i) {
      if (reachable[i][k]) {
        for (int j = 0; j < N; ++j) {
          // If there are edges i -> k -> j, add an edge i -> j.
          reachable[i][j] |= reachable[k][j];
        }
      }
    }
  }
}

#if defined(NDEBUG) && defined(__GNUC__) && !defined(__clang__)
#pragma GCC pop_options
#endif

/**
  Try to prune away irrelevant nodes from the NFSM; it is worth spending some
  time on this, since the number of NFSM states can explode the size of the
  DFSM. Like with PruneFDs(), we don't do any of the pruning described in
  [Neu04]; it is unclear exactly what is meant, but it would seem the state
  removal/merging there is either underdefined or simply does not do anything
  except remove trivially bad nodes (those that cannot reach anything).

  This also sets the can_reach_interesting_order bitmap on each NFSM node.
 */
void LogicalOrderings::PruneNFSM(THD *thd) {
  // Find the transitive closure of the NFSM; ie., whether state A can reach
  // state B, either directly or through some other state (possibly many).
  // We use the standard Floyd-Warshall algorithm, which is O(n³); if n gets
  // to be very large, we can flip the direction of all edges and use
  // Dijkstra from each interesting order instead (since we're only interested
  // in reachability to interesting orders, and our graph is quite sparse),
  // but Floyd-Warshall is simple and has a low constant factor.
  const int N = m_states.size();
  // Create a two-dimensional array with N elements in each dimension. Each line
  // starts at an eight byte word boundary, as that seems to improve the
  // performance of the inner loop in Floyd-Warshall. reachable[i][j] == true
  // means that state j is reachable from state i.
  const size_t N_aligned = ALIGN_SIZE(m_states.size());
  auto reachable = Bounds_checked_array<bool *>::Alloc(thd->mem_root, N);
  auto reachable_buffer =
      Bounds_checked_array<bool>::Alloc(thd->mem_root, N * N_aligned);
  for (int i = 0; i < N; ++i) {
    reachable[i] = reachable_buffer.data() + i * N_aligned;
  }

  // We have multiple pruning techniques, all heuristic in nature.
  // If one removes something, it may help to run the others again,
  // so keep running until we've stabilized.
  bool pruned_anything;
  do {
    pruned_anything = false;
    fill(reachable_buffer.begin(), reachable_buffer.end(), false);

    for (int i = 0; i < N; ++i) {
      if (m_states[i].type == NFSMState::DELETED) {
        continue;
      }

      // There's always an implicit self-edge.
      reachable[i][i] = true;

      for (const NFSMEdge &edge : m_states[i].outgoing_edges) {
        reachable[i][edge.state_idx] = true;
      }
    }

    FindAllReachable(reachable);

    // Now prune away artificial m_states that cannot reach any
    // interesting orders, and m_states that are not reachable from
    // the initial node (the latter can only happen as the result
    // of other prunings).
    for (int i = 1; i < N; ++i) {
      if (m_states[i].type != NFSMState::ARTIFICIAL) {
        continue;
      }

      if (!reachable[0][i]) {
        m_states[i].type = NFSMState::DELETED;
        pruned_anything = true;
        continue;
      }

      bool can_reach_interesting = false;
      for (int j = 1; j < static_cast<int>(m_orderings.size()); ++j) {
        if (reachable[i][j] && m_states[j].type == NFSMState::INTERESTING) {
          can_reach_interesting = true;
          break;
        }
      }
      if (!can_reach_interesting) {
        m_states[i].type = NFSMState::DELETED;
        pruned_anything = true;
      }
    }

    // For each producing order, remove edges to m_states that cannot
    // reach any _other_ interesting orders. This often helps dislodging
    // such m_states from the graph as a whole, removing them in some later
    // step. This supersedes the same-destination merging step from [Neu04].
    for (size_t i = 1; i < m_orderings.size(); ++i) {
      NFSMState &state = m_states[i];
      for (size_t j = 0; j < state.outgoing_edges.size(); ++j) {
        const int next_state_idx = state.outgoing_edges[j].state_idx;
        bool can_reach_other_interesting = false;
        for (size_t k = 1; k < m_orderings.size(); ++k) {
          if (k != i && m_states[k].type == NFSMState::INTERESTING &&
              reachable[next_state_idx][k]) {
            can_reach_other_interesting = true;
            break;
          }
        }
        if (!can_reach_other_interesting) {
          // Remove this edge.
          state.outgoing_edges[j] =
              state.outgoing_edges[state.outgoing_edges.size() - 1];
          state.outgoing_edges.resize(state.outgoing_edges.size() - 1);
          pruned_anything = true;
        }
      }
    }

    // Remove any edges to deleted m_states.
    for (int i = 0; i < N; ++i) {
      NFSMState &state = m_states[i];
      if (state.type == NFSMState::DELETED) {
        continue;
      }
      int num_kept = 0;
      for (const NFSMEdge &edge : state.outgoing_edges) {
        if (edge.state(this)->type != NFSMState::DELETED) {
          state.outgoing_edges[num_kept++] = edge;
        }
      }
      state.outgoing_edges.resize(num_kept);
    }
  } while (pruned_anything);

  // Set the bitmask of what each node can reach.
  for (size_t order_idx = 0; order_idx < m_orderings.size(); ++order_idx) {
    if (m_orderings[order_idx].type != OrderingWithInfo::INTERESTING ||
        order_idx >= kMaxSupportedOrderings) {
      continue;
    }
    for (int i = 0; i < N; ++i) {
      if (m_states[i].type == NFSMState::DELETED) {
        continue;
      }
      if (reachable[i][order_idx]) {
        m_states[i].can_reach_interesting_order.set(order_idx);
      }
    }
  }
}

bool LogicalOrderings::AlwaysActiveFD(int fd_idx) {
  // Note: Includes ϵ-edges.
  return fd_idx >= 0 && m_fds[fd_idx].always_active;
}

void LogicalOrderings::FinalizeDFSMState(THD *thd, int state_idx) {
  LogicalOrderings::DFSMState &state = m_dfsm_states[state_idx];
  for (int nfsm_state_idx : state.nfsm_states) {
    int ordering_idx = m_states[nfsm_state_idx].satisfied_ordering_idx;
    if (m_states[nfsm_state_idx].type == NFSMState::INTERESTING &&
        ordering_idx < kMaxSupportedOrderings &&
        m_orderings[ordering_idx].type == OrderingWithInfo::INTERESTING) {
      state.follows_interesting_order.set(ordering_idx);
    }
    state.can_reach_interesting_order |=
        m_states[nfsm_state_idx].can_reach_interesting_order;
  }
  state.next_state =
      Bounds_checked_array<int>::Alloc(thd->mem_root, m_fds.size());
  fill(state.next_state.begin(), state.next_state.end(), state_idx);
}

void LogicalOrderings::ExpandThroughAlwaysActiveFDs(
    Mem_root_array<int> *nfsm_states, int *generation,
    int extra_allowed_fd_idx) {
  ++*generation;  // Effectively clear the “seen” flag in all NFSM states.
  for (size_t i = 0; i < nfsm_states->size(); ++i) {
    const NFSMState &state = m_states[(*nfsm_states)[i]];
    for (const NFSMEdge &edge : state.outgoing_edges) {
      if ((AlwaysActiveFD(edge.required_fd_idx) ||
           edge.required_fd_idx == extra_allowed_fd_idx) &&
          m_states[edge.state_idx].seen != *generation) {
        nfsm_states->push_back(edge.state_idx);
        m_states[edge.state_idx].seen = *generation;
      }
    }
  }
}

/**
  From the NFSM, convert an equivalent DFSM.

  This is by means of the so-called powerset conversion, which is more commonly
  used to convert NFAs to DFAs. (The only real difference is that FAs have
  accepting states, while our FSM instead needs to store information about
  constituent interesting order states.)

  The powerset algorithm works by creating DFSM states that represent sets of
  NFSM states we could be in. E.g., if we have a state (a) and an FD {} → x can
  lead to new states () (ϵ-edge), (a) (implicit self-edge), (x), (ax), (xa),
  then we create a single new DFSM state that represent all those five states,
  and an {} → x edge from {(a)} to that new state. When creating edges from
  such superstates, we need to follow that FD from _all_ of them, so the list
  of constituent states can be fairly large.

  In theory, we could get 2^n DFSM states from n NFSM states, but in practice,
  we get fewer since our orderings generally only increase, not decrease.
  We only generate DFSM states by following FDs from the initial NFSM state;
  we don't create states eagerly for all 2^n possibilities.

  When creating DFSM states, we always include states that can be reached by
  means of always-active FDs. The ϵ edge (drop the last element from the
  ordering) is always active, and the client can also mark others as such.
  This means we get fewer DFSM states and fewer FDs to follow. See
  FunctionalDependency::always_active.
 */
void LogicalOrderings::ConvertNFSMToDFSM(THD *thd) {
  // See NFSMState::seen.
  int generation = 0;

  // Keep track of which sets of NFSM states we've already seen, and which DFSM
  // state we created for that set.
  mem_root_unordered_set<int, DFSMStateHash<DFSMState>,
                         DFSMStateEqual<DFSMState>>
      constructed_states(thd->mem_root,
                         DFSMStateHash<DFSMState>{&m_dfsm_states},
                         DFSMStateEqual<DFSMState>{&m_dfsm_states});

  // Create the initial DFSM state. It consists of everything in the initial
  // NFSM state, and everything reachable from it with only always-active FDs.
  DFSMState initial;
  initial.nfsm_states.init(thd->mem_root);
  initial.nfsm_states.push_back(0);
  ExpandThroughAlwaysActiveFDs(&initial.nfsm_states, &generation,
                               /*extra_allowed_fd_idx=*/0);
  m_dfsm_states.push_back(std::move(initial));
  constructed_states.insert(0);
  FinalizeDFSMState(thd, /*state_idx=*/0);

  // Reachability information set by FinalizeDFSMState() will include those
  // that can be reached through SetOrder() nodes, so it's misleading.
  // Clear it; this isn't 100% active if interesting orderings can be reached
  // through FDs only, but it will ever cause too little pruning, not too much.
  m_dfsm_states[0].can_reach_interesting_order.reset();

  // Used in iteration below.
  Mem_root_array<int> nfsm_states(thd->mem_root);
  Mem_root_array<NFSMEdge> nfsm_edges(thd->mem_root);

  for (size_t dfsm_state_idx = 0; dfsm_state_idx < m_dfsm_states.size();
       ++dfsm_state_idx) {
    // Take the union of all outgoing edges from the constituent NFSM m_states,
    // ignoring ϵ-edges and always active FDs, since we have special handling of
    // them below.
    nfsm_edges.clear();
    for (int nfsm_state_idx : m_dfsm_states[dfsm_state_idx].nfsm_states) {
      assert(m_states[nfsm_state_idx].satisfied_ordering.GetKind() !=
                 Ordering::Kind::kRollup ||
             m_rollup);

      for (const NFSMEdge &edge : m_states[nfsm_state_idx].outgoing_edges) {
        if (!AlwaysActiveFD(edge.required_fd_idx)) {
          nfsm_edges.push_back(edge);
        }
      }
    }

    if (m_dfsm_states.size() >= kMaxDFSMStates) {
      // Stop creating new states, causing us to end fairly soon. Note that
      // since the paths representing explicit sorts are put first, they will
      // never be lost unless kMaxDFSMStates is set extremely low.
      continue;
    }

    {
      // Sort and deduplicate the edges. Note that we sort on FD first,
      // since we'll be grouping on that when creating new m_states.
      sort(nfsm_edges.begin(), nfsm_edges.end(),
           [](const NFSMEdge &a, const NFSMEdge &b) {
             return make_pair(a.required_fd_idx, a.state_idx) <
                    make_pair(b.required_fd_idx, b.state_idx);
           });
      auto new_end =
          unique(nfsm_edges.begin(), nfsm_edges.end(),
                 [](const NFSMEdge &a, const NFSMEdge &b) {
                   return make_pair(a.required_fd_idx, a.state_idx) ==
                          make_pair(b.required_fd_idx, b.state_idx);
                 });
      nfsm_edges.resize(distance(nfsm_edges.begin(), new_end));
    }

    // For each relevant FD, find out which set of m_states we could reach.
    m_dfsm_states[dfsm_state_idx].outgoing_edges.init(thd->mem_root);
    nfsm_states.clear();
    for (size_t edge_idx = 0; edge_idx < nfsm_edges.size(); ++edge_idx) {
      nfsm_states.push_back(nfsm_edges[edge_idx].state_idx);

      // Is this the last state in the group? If not, keep iterating.
      if (edge_idx != nfsm_edges.size() - 1 &&
          nfsm_edges[edge_idx].required_fd_idx ==
              nfsm_edges[edge_idx + 1].required_fd_idx) {
        continue;
      }

      // Add the implicit self-edges.
      for (int nfsm_state_idx : m_dfsm_states[dfsm_state_idx].nfsm_states) {
        if (nfsm_state_idx != 0) {
          nfsm_states.push_back(nfsm_state_idx);
        }
      }

      // Expand the set to contain any ϵ-edges and always active FDs,
      // in a breadth-first manner. Note that now, we might see new
      // edges for the same FD, so we should follow those as well.
      ExpandThroughAlwaysActiveFDs(&nfsm_states, &generation,
                                   nfsm_edges[edge_idx].required_fd_idx);

      // Canonicalize: Sort and deduplicate.
      sort(nfsm_states.begin(), nfsm_states.end());
      auto new_end = unique(nfsm_states.begin(), nfsm_states.end());
      nfsm_states.resize(distance(nfsm_states.begin(), new_end));

      // Add a new DFSM state for the NFSM states we've collected.
      int target_dfsm_state_idx = m_dfsm_states.size();
      m_dfsm_states.push_back(DFSMState{});
      m_dfsm_states.back().nfsm_states = std::move(nfsm_states);

      // See if there is an existing DFSM state that matches the set of
      // NFSM states we've collected.
      if (auto [place, inserted] =
              constructed_states.insert(target_dfsm_state_idx);
          inserted) {
        // There's none, so create a new one. The type doesn't really matter,
        // except for printing out the graph.
        FinalizeDFSMState(thd, target_dfsm_state_idx);
      } else {
        // Already had a DFSM state for this set of NFSM states. Remove the
        // newly added duplicate and use the original one.
        target_dfsm_state_idx = *place;
        // Allow reuse of the memory in the next iteration.
        nfsm_states = std::move(m_dfsm_states.back().nfsm_states);
        m_dfsm_states.pop_back();
      }

      // Finally, add an edge in the DFSM. Ignore self-edges; they are implicit.
      if (static_cast<size_t>(target_dfsm_state_idx) != dfsm_state_idx) {
        DFSMEdge edge;
        edge.required_fd_idx = nfsm_edges[edge_idx].required_fd_idx;
        edge.state_idx = target_dfsm_state_idx;
        m_dfsm_edges.push_back(edge);

        DFSMState &dfsm_state = m_dfsm_states[dfsm_state_idx];
        dfsm_state.outgoing_edges.push_back(m_dfsm_edges.size() - 1);
        if (edge.required_fd_idx >= 0) {
          dfsm_state.next_state[edge.required_fd_idx] = target_dfsm_state_idx;
          if (edge.required_fd_idx >= 1 &&
              edge.required_fd_idx <= kMaxSupportedFDs) {
            dfsm_state.can_use_fd.set(edge.required_fd_idx - 1);
          }
        }
      }

      // Prepare for the next group.
      nfsm_states.clear();
    }
  }
}

void LogicalOrderings::FindInitialStatesForOrdering() {
  // Find all constructor edges from the initial state, and use them
  // to populate the table.
  for (int outgoing_edge_idx : m_dfsm_states[0].outgoing_edges) {
    const DFSMEdge &edge = m_dfsm_edges[outgoing_edge_idx];
    if (edge.required_fd_idx < 0) {
      const int ordering_idx = edge.required_fd_idx - INT_MIN;
      m_orderings[ordering_idx].state_idx = edge.state_idx;
    }
  }
}

string LogicalOrderings::PrintOrdering(const Ordering &ordering) const {
  const bool is_grouping = ordering.GetKind() == Ordering::Kind::kGroup;
  string ret = is_grouping ? "{" : "(";
  if (ordering.GetKind() == Ordering::Kind::kRollup) {
    ret += "rollup: ";
  }
  for (size_t i = 0; i < ordering.size(); ++i) {
    if (i != 0) ret += ", ";
    ret += ItemToString(m_items[ordering.GetElements()[i].item].item);

    if (ordering.GetElements()[i].direction == ORDER_ASC) {
      ret += " ASC";
    } else if (ordering.GetElements()[i].direction == ORDER_DESC) {
      ret += " DESC";
    }
  }
  ret += is_grouping ? '}' : ')';
  return ret;
}

string LogicalOrderings::PrintFunctionalDependency(
    const FunctionalDependency &fd, bool html) const {
  switch (fd.type) {
    case FunctionalDependency::DECAY:
      if (html) {
        return "&epsilon;";
      } else {
        return "eps";
      }
    case FunctionalDependency::EQUIVALENCE:
      return ItemToString(m_items[fd.head[0]].item) + "=" +
             ItemToString(m_items[fd.tail].item);
    case FunctionalDependency::FD: {
      string ret = "{";
      for (size_t i = 0; i < fd.head.size(); ++i) {
        if (i != 0) {
          ret += ", ";
        }
        ret += ItemToString(m_items[fd.head[i]].item);
      }
      if (html) {
        ret += "} &rarr; ";
      } else {
        ret += "} -> ";
      }
      ret += ItemToString(m_items[fd.tail].item);
      return ret;
    }
  }
  assert(false);
  return "";
}

void LogicalOrderings::PrintFunctionalDependencies(string *trace) {
  if (m_fds.size() <= 1) {
    *trace += "\nNo functional dependencies (after pruning).\n\n";
  } else {
    *trace += "\nFunctional dependencies (after pruning):\n";
    for (size_t fd_idx = 1; fd_idx < m_fds.size(); ++fd_idx) {
      *trace +=
          " - " + PrintFunctionalDependency(m_fds[fd_idx], /*html=*/false);
      if (m_fds[fd_idx].always_active) {
        *trace += " [always active]";
      }
      *trace += "\n";
    }
    *trace += "\n";
  }
}

void LogicalOrderings::PrintInterestingOrders(string *trace) {
  *trace += "Interesting orders:\n";
  for (size_t order_idx = 0; order_idx < m_orderings.size(); ++order_idx) {
    const OrderingWithInfo &ordering = m_orderings[order_idx];
    if (order_idx == 0 && ordering.type == OrderingWithInfo::UNINTERESTING) {
      continue;
    }

    *trace += StringPrintf(" - %zu: ", order_idx);
    bool first = true;
    switch (ordering.ordering.GetKind()) {
      case Ordering::Kind::kRollup:
        *trace += "rollup ";
        break;

      case Ordering::Kind::kGroup:
        *trace += "group ";
        break;

      default:
        break;
    }
    for (OrderElement element : ordering.ordering.GetElements()) {
      if (!first) {
        *trace += ", ";
      }
      first = false;
      *trace += ItemToString(m_items[element.item].item);
      if (element.direction == ORDER_ASC) {
        *trace += " ASC";
      } else if (element.direction == ORDER_DESC) {
        *trace += " DESC";
      }
    }
    if (ordering.ordering.GetElements().empty()) {
      *trace += "()";
    }
    if (ordering.type == OrderingWithInfo::HOMOGENIZED) {
      *trace += " [homogenized from other ordering]";
    } else if (ordering.type == OrderingWithInfo::UNINTERESTING) {
      *trace += " [support order]";
    }
    *trace += "\n";
  }
  *trace += "\n";
}

void LogicalOrderings::PrintNFSMDottyGraph(string *trace) const {
  *trace += "digraph G {\n";
  for (size_t state_idx = 0; state_idx < m_states.size(); ++state_idx) {
    const NFSMState &state = m_states[state_idx];
    if (state.type == NFSMState::DELETED) {
      continue;
    }

    // We're printing the NFSM.
    *trace += StringPrintf("  s%zu [label=\"%s\"", state_idx,
                           PrintOrdering(state.satisfied_ordering).c_str());
    if (state.type == NFSMState::INTERESTING) {
      *trace += ", peripheries=2";
    }
    *trace += "]\n";

    for (const NFSMEdge &edge : state.outgoing_edges) {
      if (edge.required_fd_idx < 0) {
        // Pseudo-edge without a FD (from initial state only).
        *trace +=
            StringPrintf("  s%zu -> s%d [label=\"ordering %d\"]\n", state_idx,
                         edge.state_idx, edge.required_fd_idx - INT_MIN);
      } else {
        const FunctionalDependency *fd = edge.required_fd(this);
        *trace += StringPrintf(
            "  s%zu -> s%d [label=\"%s\"]\n", state_idx, edge.state_idx,
            PrintFunctionalDependency(*fd, /*html=*/true).c_str());
      }
    }
  }

  *trace += "}\n";
}

void LogicalOrderings::PrintDFSMDottyGraph(string *trace) const {
  *trace += "digraph G {\n";
  for (size_t state_idx = 0; state_idx < m_dfsm_states.size(); ++state_idx) {
    const DFSMState &state = m_dfsm_states[state_idx];
    *trace += StringPrintf("  s%zu [label=< ", state_idx);

    bool any_interesting = false;
    for (size_t i = 0; i < state.nfsm_states.size(); ++i) {
      const NFSMState &nsfm_state = m_states[state.nfsm_states[i]];
      if (i != 0) {
        *trace += ", ";
      }
      if (nsfm_state.type == NFSMState::INTERESTING) {
        any_interesting = true;
        *trace += "<b>";
      }
      *trace += PrintOrdering(nsfm_state.satisfied_ordering);
      if (nsfm_state.type == NFSMState::INTERESTING) {
        *trace += "</b>";
      }
    }
    *trace += " >";
    if (any_interesting) {
      *trace += ", peripheries=2";
    }
    *trace += "]\n";

    for (size_t edge_idx : state.outgoing_edges) {
      const DFSMEdge &edge = m_dfsm_edges[edge_idx];
      if (edge.required_fd_idx < 0) {
        // Pseudo-edge without a FD (from initial state only).
        *trace +=
            StringPrintf("  s%zu -> s%d [label=\"ordering %d\"]\n", state_idx,
                         edge.state_idx, edge.required_fd_idx - INT_MIN);
      } else {
        const FunctionalDependency *fd = edge.required_fd(this);
        *trace += StringPrintf(
            "  s%zu -> s%d [label=\"%s\"]\n", state_idx, edge.state_idx,
            PrintFunctionalDependency(*fd, /*html=*/true).c_str());
      }
    }
  }

  *trace += "}\n";
}