1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004
|
/* Copyright (c) 2020, 2025, Oracle and/or its affiliates.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is designed to work with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have either included with
the program or referenced in the documentation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
#include "sql/join_optimizer/join_optimizer.h"
#include <assert.h>
#include <float.h>
#include <math.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <algorithm>
#include <bitset>
#include <initializer_list>
#include <memory>
#include <string>
#include <type_traits>
#include <unordered_map>
#include <utility>
#include <vector>
#include "ft_global.h"
#include "map_helpers.h"
#include "mem_root_deque.h"
#include "my_alloc.h"
#include "my_base.h"
#include "my_bitmap.h"
#include "my_dbug.h"
#include "my_inttypes.h"
#include "my_sqlcommand.h"
#include "my_sys.h"
#include "my_table_map.h"
#include "mysql/components/services/bits/psi_bits.h"
#include "mysql/udf_registration_types.h"
#include "mysqld_error.h"
#include "prealloced_array.h"
#include "scope_guard.h"
#include "sql/field.h"
#include "sql/filesort.h"
#include "sql/handler.h"
#include "sql/item.h"
#include "sql/item_cmpfunc.h"
#include "sql/item_func.h"
#include "sql/item_sum.h"
#include "sql/join_optimizer/access_path.h"
#include "sql/join_optimizer/bit_utils.h"
#include "sql/join_optimizer/build_interesting_orders.h"
#include "sql/join_optimizer/compare_access_paths.h"
#include "sql/join_optimizer/cost_model.h"
#include "sql/join_optimizer/estimate_selectivity.h"
#include "sql/join_optimizer/explain_access_path.h"
#include "sql/join_optimizer/find_contained_subqueries.h"
#include "sql/join_optimizer/graph_simplification.h"
#include "sql/join_optimizer/hypergraph.h"
#include "sql/join_optimizer/interesting_orders.h"
#include "sql/join_optimizer/interesting_orders_defs.h"
#include "sql/join_optimizer/make_join_hypergraph.h"
#include "sql/join_optimizer/node_map.h"
#include "sql/join_optimizer/overflow_bitset.h"
#include "sql/join_optimizer/print_utils.h"
#include "sql/join_optimizer/relational_expression.h"
#include "sql/join_optimizer/secondary_engine_costing_flags.h"
#include "sql/join_optimizer/subgraph_enumeration.h"
#include "sql/join_optimizer/walk_access_paths.h"
#include "sql/join_type.h"
#include "sql/key.h"
#include "sql/key_spec.h"
#include "sql/mem_root_array.h"
#include "sql/opt_costmodel.h"
#include "sql/parse_tree_node_base.h"
#include "sql/partition_info.h"
#include "sql/query_options.h"
#include "sql/range_optimizer/index_range_scan_plan.h"
#include "sql/range_optimizer/internal.h"
#include "sql/range_optimizer/path_helpers.h"
#include "sql/range_optimizer/range_analysis.h"
#include "sql/range_optimizer/range_opt_param.h"
#include "sql/range_optimizer/range_optimizer.h"
#include "sql/range_optimizer/tree.h"
#include "sql/sql_array.h"
#include "sql/sql_base.h"
#include "sql/sql_bitmap.h"
#include "sql/sql_class.h"
#include "sql/sql_cmd.h"
#include "sql/sql_const.h"
#include "sql/sql_executor.h"
#include "sql/sql_lex.h"
#include "sql/sql_list.h"
#include "sql/sql_opt_exec_shared.h"
#include "sql/sql_optimizer.h"
#include "sql/sql_partition.h"
#include "sql/sql_select.h"
#include "sql/sql_tmp_table.h"
#include "sql/system_variables.h"
#include "sql/table.h"
#include "sql/table_function.h"
#include "sql/temp_table_param.h"
#include "sql/uniques.h"
#include "sql/window.h"
#include "template_utils.h"
using hypergraph::Hyperedge;
using hypergraph::Node;
using hypergraph::NodeMap;
using std::find_if;
using std::min;
using std::pair;
using std::string;
using std::swap;
using std::vector;
namespace {
string PrintAccessPath(const AccessPath &path, const JoinHypergraph &graph,
const char *description_for_trace);
void PrintJoinOrder(const AccessPath *path, string *join_order);
AccessPath *CreateMaterializationPath(THD *thd, JOIN *join, AccessPath *path,
TABLE *temp_table,
Temp_table_param *temp_table_param,
bool copy_items);
AccessPath *GetSafePathToSort(THD *thd, JOIN *join, AccessPath *path,
bool need_rowid);
/**
CostingReceiver contains the main join planning logic, selecting access paths
based on cost. It receives subplans from DPhyp (see enumerate_subgraph.h),
assigns them costs based on a cost model, and keeps the ones that are
cheapest. In the end, this means it will be left with a root access path that
gives the lowest total cost for joining the tables in the query block, ie.,
without ORDER BY etc.
Currently, besides the expected number of produced rows (which is the same no
matter how we access the table) we keep only a single value per subplan
(total cost), and thus also only a single best access path. In the future,
we will have more dimensions to worry about, such as initial cost versus total
cost (relevant for LIMIT), ordering properties, and so on. At that point,
there is not necessarily a single “best” access path anymore, and we will need
to keep multiple ones around, and test all of them as candidates when building
larger subplans.
*/
class CostingReceiver {
public:
CostingReceiver(
THD *thd, Query_block *query_block, JoinHypergraph &graph,
const LogicalOrderings *orderings,
const Mem_root_array<SortAheadOrdering> *sort_ahead_orderings,
const Mem_root_array<ActiveIndexInfo> *active_indexes,
const Mem_root_array<FullTextIndexInfo> *fulltext_searches,
NodeMap fulltext_tables, uint64_t sargable_fulltext_predicates,
table_map update_delete_target_tables,
table_map immediate_update_delete_candidates, bool need_rowid,
SecondaryEngineFlags engine_flags, int subgraph_pair_limit,
secondary_engine_modify_access_path_cost_t secondary_engine_cost_hook,
string *trace)
: m_thd(thd),
m_query_block(query_block),
m_access_paths(thd->mem_root),
m_graph(&graph),
m_orderings(orderings),
m_sort_ahead_orderings(sort_ahead_orderings),
m_active_indexes(active_indexes),
m_fulltext_searches(fulltext_searches),
m_fulltext_tables(fulltext_tables),
m_sargable_fulltext_predicates(sargable_fulltext_predicates),
m_update_delete_target_nodes(GetNodeMapFromTableMap(
update_delete_target_tables, graph.table_num_to_node_num)),
m_immediate_update_delete_candidates(GetNodeMapFromTableMap(
immediate_update_delete_candidates, graph.table_num_to_node_num)),
m_need_rowid(need_rowid),
m_engine_flags(engine_flags),
m_subgraph_pair_limit(subgraph_pair_limit),
m_secondary_engine_cost_hook(secondary_engine_cost_hook),
m_trace(trace) {
// At least one join type must be supported.
assert(Overlaps(engine_flags,
MakeSecondaryEngineFlags(
SecondaryEngineFlag::SUPPORTS_HASH_JOIN,
SecondaryEngineFlag::SUPPORTS_NESTED_LOOP_JOIN)));
}
// Not copyable, but movable so that we can reset it after graph
// simplification if needed.
CostingReceiver &operator=(const CostingReceiver &) = delete;
CostingReceiver &operator=(CostingReceiver &&) = default;
CostingReceiver(const CostingReceiver &) = delete;
CostingReceiver(CostingReceiver &&) = default;
bool HasSeen(NodeMap subgraph) const {
return m_access_paths.count(subgraph) != 0;
}
bool FoundSingleNode(int node_idx);
// Called EmitCsgCmp() in the DPhyp paper.
bool FoundSubgraphPair(NodeMap left, NodeMap right, int edge_idx);
const Prealloced_array<AccessPath *, 4> &root_candidates() {
const auto it =
m_access_paths.find(TablesBetween(0, m_graph->nodes.size()));
assert(it != m_access_paths.end());
return it->second.paths;
}
FunctionalDependencySet active_fds_at_root() const {
const auto it =
m_access_paths.find(TablesBetween(0, m_graph->nodes.size()));
assert(it != m_access_paths.end());
return it->second.active_functional_dependencies;
}
size_t num_subplans() const { return m_access_paths.size(); }
size_t num_access_paths() const {
size_t access_paths = 0;
for (const auto &[nodes, pathset] : m_access_paths) {
access_paths += pathset.paths.size();
}
return access_paths;
}
/// True if the result of the join is found to be always empty, typically
/// because of an impossible WHERE clause.
bool always_empty() const {
const auto it =
m_access_paths.find(TablesBetween(0, m_graph->nodes.size()));
return it != m_access_paths.end() && it->second.always_empty;
}
AccessPath *ProposeAccessPath(
AccessPath *path, Prealloced_array<AccessPath *, 4> *existing_paths,
OrderingSet obsolete_orderings, const char *description_for_trace) const;
bool HasSecondaryEngineCostHook() const {
return m_secondary_engine_cost_hook != nullptr;
}
private:
THD *m_thd;
/// The query block we are planning.
Query_block *m_query_block;
/**
Besides the access paths for a set of nodes (see m_access_paths),
AccessPathSet contains information that is common between all access
paths for that set. One would believe num_output_rows would be such
a member (a set of tables should produce the same number of output
rows no matter the join order), but due to parameterized paths,
different access paths could have different outputs. delayed_predicates
is another, but currently, it's already efficiently hidden space-wise
due to the use of a union.
*/
struct AccessPathSet {
Prealloced_array<AccessPath *, 4> paths;
FunctionalDependencySet active_functional_dependencies{0};
// Once-interesting orderings that we don't care about anymore,
// e.g. because they were interesting for a semijoin but that semijoin
// is now done (with or without using the ordering). This reduces
// the number of access paths we have to keep in play, since they are
// de-facto equivalent.
//
// Note that if orderings were merged, this could falsely prune out
// orderings that we would actually need, but as long as all of the
// relevant ones are semijoin orderings (which are never identical,
// and never merged with the relevant-at-end orderings), this
// should not happen.
OrderingSet obsolete_orderings{0};
// True if the join of the tables in this set has been found to be always
// empty (typically because of an impossible WHERE clause).
bool always_empty{false};
};
/**
For each subset of tables that are connected in the join hypergraph,
keeps the current best access paths for producing said subset.
There can be several that are best in different ways; see comments
on ProposeAccessPath().
Also used for communicating connectivity information back to DPhyp
(in HasSeen()); if there's an entry here, that subset will induce
a connected subgraph of the join hypergraph.
*/
mem_root_unordered_map<NodeMap, AccessPathSet> m_access_paths;
/**
How many subgraph pairs we've seen so far. Used to give up
if we end up allocating too many resources (prompting us to
create a simpler join graph and try again).
*/
int m_num_seen_subgraph_pairs = 0;
/// The graph we are running over.
JoinHypergraph *m_graph;
/// Whether we have applied clamping due to a multi-column EQ_REF at any
/// point. There is a known issue (see bug #33550360) where this can cause
/// row count estimates to be inconsistent between different access paths.
/// Obviously, we should fix this bug by adjusting the selectivities
/// (and we do for single-column indexes), but for multipart indexes,
/// this is nontrivial. See the bug for details on some ideas, but the
/// gist of it is that we probably will want a linear program to adjust
/// multi-selectivities so that they are consistent, and not above 1/N
/// (for N-row tables) if there are unique indexes on them.
///
/// The only reason why we collect this information, like
/// JoinHypergraph::has_reordered_left_joins, is to be able to assert
/// on inconsistent row counts between APs, excluding this (known) issue.
bool has_clamped_multipart_eq_ref = false;
/// Whether we have a semijoin where the inner child is parameterized on the
/// outer child, and the row estimate of the inner child is possibly clamped,
/// for example because of some other semijoin. In this case, we may see
/// inconsistent row count estimates between the ordinary semijoin plan and
/// the rewrite_semi_to_inner plan, because it's hard to tell how much the
/// already-applied-as-sargable selectivity affected the row count estimate of
/// the child.
///
/// The only reason why we collect this information, is to be able to assert
/// on inconsistent row counts between access paths, excluding this known
/// issue.
bool has_semijoin_with_possibly_clamped_child = false;
/// Keeps track of interesting orderings in this query block.
/// See LogicalOrderings for more information.
const LogicalOrderings *m_orderings;
/// List of all orderings that are candidates for sort-ahead
/// (because they are, or may eventually become, an interesting ordering).
const Mem_root_array<SortAheadOrdering> *m_sort_ahead_orderings;
/// List of all indexes that are active and that we can apply in this query.
/// Indexes can be useful in several ways: We can use them for ref access,
/// for index-only scans, or to get interesting orderings.
const Mem_root_array<ActiveIndexInfo> *m_active_indexes;
/// List of all active full-text indexes that we can apply in this query.
const Mem_root_array<FullTextIndexInfo> *m_fulltext_searches;
/// A map of tables that are referenced by a MATCH function (those tables that
/// have Table_ref::is_fulltext_searched() == true). It is used for
/// preventing hash joins involving tables that are full-text searched.
NodeMap m_fulltext_tables = 0;
/// The set of WHERE predicates which are on a form that can be satisfied by a
/// full-text index scan. This includes calls to MATCH with no comparison
/// operator, and predicates on the form MATCH > const or MATCH >= const
/// (where const must be high enough to make the comparison return false for
/// documents with zero score).
uint64_t m_sargable_fulltext_predicates = 0;
/// The target tables of an UPDATE or DELETE statement.
NodeMap m_update_delete_target_nodes = 0;
/// The set of tables that are candidates for immediate update or delete.
/// Immediate update/delete means that the rows from the table are deleted
/// while reading the rows from the topmost iterator. (As opposed to buffered
/// update/delete, where the row IDs are stored in temporary tables, and only
/// updated or deleted after the topmost iterator has been read to the end.)
/// The candidates are those target tables that are only referenced once in
/// the query. The requirement for immediate deletion is that the deleted row
/// will not have to be read again later. Currently, at most one of the
/// candidate tables is chosen, and it is always the outermost table in the
/// join tree.
NodeMap m_immediate_update_delete_candidates = 0;
/// Whether we will be needing row IDs from our tables, typically for
/// a later sort. If this happens, derived tables cannot use streaming,
/// but need an actual materialization, since filesort expects to be
/// able to go back and ask for a given row. (This is different from
/// when we need row IDs for weedout, which doesn't preclude streaming.
/// The hypergraph optimizer does not use weedout.)
bool m_need_rowid;
/// The flags declared by the secondary engine. In particular, it describes
/// what kind of access path types should not be created.
SecondaryEngineFlags m_engine_flags;
/// The maximum number of pairs of subgraphs we are willing to accept,
/// or -1 if no limit. If this limit gets hit, we stop traversing the graph
/// and return an error; the caller will then have to modify the hypergraph
/// (see GraphSimplifier) to make for a graph with fewer options, so that
/// planning time will come under an acceptable limit.
int m_subgraph_pair_limit;
/// Pointer to a function that modifies the cost estimates of an access path
/// for execution in a secondary storage engine, or nullptr otherwise.
secondary_engine_modify_access_path_cost_t m_secondary_engine_cost_hook;
/// If not nullptr, we store human-readable optimizer trace information here.
string *m_trace;
/// A map of tables that can never be on the right side of any join,
/// ie., they have to be leftmost in the tree. This only affects recursive
/// table references (ie., when WITH RECURSIVE is in use); they work by
/// continuously tailing new records, which wouldn't work if we were to
/// scan them multiple times or put them in a hash table. Naturally,
/// there must be zero or one bit here; the common case is zero.
NodeMap forced_leftmost_table = 0;
/// A special MEM_ROOT for allocating OverflowBitsets that we might end up
/// discarding, ie. for AccessPaths that do not yet live in m_access_paths.
/// For any AccessPath that is to have a permanent life (ie., not be
/// immediately discarded as inferior), the OverflowBitset _must_ be taken
/// out of this MEM_ROOT and onto the regular one, as it is cleared often.
/// (This significantly reduces the amount of memory used in situations
/// where lots of AccessPaths are produced and discarded. Of course,
/// it only matters for queries with >= 64 predicates.)
///
/// The copying is using CommitBitsetsToHeap(). ProposeAccessPath() will
/// automatically call CommitBitsetsToHeap() for accepted access paths,
/// but it will not call it on any of their children. Thus, if you've
/// added more than one AccessPath in the chain (e.g. if you add a join,
/// then a sort of that join, and then propose the sort), you will need
/// to make sure there are no stray bitsets left on this MEM_ROOT.
///
/// Because this can be a source of subtle bugs, you should be conservative
/// about what bitsets you put here; really, only the ones you could be
/// allocating many of (like joins) should be candidates.
MEM_ROOT m_overflow_bitset_mem_root;
/// A special MEM_ROOT for temporary data for the range optimizer.
/// It can be discarded immediately after we've decided on the range scans
/// for a given table (but we reuse its memory as long as there are more
/// tables left to scan).
MEM_ROOT m_range_optimizer_mem_root;
/// For trace use only.
string PrintSet(NodeMap x) const {
std::string ret = "{";
bool first = true;
for (size_t node_idx : BitsSetIn(x)) {
if (!first) {
ret += ",";
}
first = false;
ret += m_graph->nodes[node_idx].table->alias;
}
return ret + "}";
}
/// For trace use only.
string PrintSubgraphHeader(const JoinPredicate *edge,
const AccessPath &join_path, NodeMap left,
NodeMap right) const;
/// Checks whether the given engine flag is active or not.
bool SupportedEngineFlag(SecondaryEngineFlag flag) const {
return Overlaps(m_engine_flags, MakeSecondaryEngineFlags(flag));
}
bool FindIndexRangeScans(int node_idx, bool *impossible,
double *num_output_rows_after_filter);
void ProposeIndexMerge(TABLE *table, int node_idx, const SEL_IMERGE &imerge,
int pred_idx, bool inexact,
bool allow_clustered_primary_key_scan,
int num_where_predicates,
double num_output_rows_after_filter,
RANGE_OPT_PARAM *param,
bool *has_clustered_primary_key_scan);
void TraceAccessPaths(NodeMap nodes);
void ProposeAccessPathForBaseTable(int node_idx,
double force_num_output_rows_after_filter,
const char *description_for_trace,
AccessPath *path);
void ProposeAccessPathForIndex(int node_idx,
OverflowBitset applied_predicates,
OverflowBitset subsumed_predicates,
double force_num_output_rows_after_filter,
const char *description_for_trace,
AccessPath *path);
void ProposeAccessPathWithOrderings(NodeMap nodes,
FunctionalDependencySet fd_set,
OrderingSet obsolete_orderings,
AccessPath *path,
const char *description_for_trace);
bool ProposeTableScan(TABLE *table, int node_idx,
double force_num_output_rows_after_filter);
bool ProposeIndexScan(TABLE *table, int node_idx,
double force_num_output_rows_after_filter,
unsigned key_idx, bool reverse, int ordering_idx);
bool ProposeRefAccess(TABLE *table, int node_idx, unsigned key_idx,
double force_num_output_rows_after_filter, bool reverse,
table_map allowed_parameter_tables, int ordering_idx);
bool ProposeAllUniqueIndexLookupsWithConstantKey(int node_idx, bool *found);
bool RedundantThroughSargable(
OverflowBitset redundant_against_sargable_predicates,
const AccessPath *left_path, const AccessPath *right_path, NodeMap left,
NodeMap right);
inline pair<bool, bool> AlreadyAppliedAsSargable(
Item *condition, const AccessPath *left_path,
const AccessPath *right_path);
bool ProposeAllFullTextIndexScans(TABLE *table, int node_idx,
double force_num_output_rows_after_filter);
bool ProposeFullTextIndexScan(TABLE *table, int node_idx,
Item_func_match *match, int predicate_idx,
int ordering_idx,
double force_num_output_rows_after_filter);
void ProposeNestedLoopJoin(NodeMap left, NodeMap right, AccessPath *left_path,
AccessPath *right_path, const JoinPredicate *edge,
bool rewrite_semi_to_inner,
FunctionalDependencySet new_fd_set,
OrderingSet new_obsolete_orderings,
bool *wrote_trace);
void ProposeHashJoin(NodeMap left, NodeMap right, AccessPath *left_path,
AccessPath *right_path, const JoinPredicate *edge,
FunctionalDependencySet new_fd_set,
OrderingSet new_obsolete_orderings,
bool rewrite_semi_to_inner, bool *wrote_trace);
void ApplyPredicatesForBaseTable(int node_idx,
OverflowBitset applied_predicates,
OverflowBitset subsumed_predicates,
bool materialize_subqueries,
AccessPath *path,
FunctionalDependencySet *new_fd_set);
void ApplyDelayedPredicatesAfterJoin(
NodeMap left, NodeMap right, const AccessPath *left_path,
const AccessPath *right_path, int join_predicate_first,
int join_predicate_last, bool materialize_subqueries,
AccessPath *join_path, FunctionalDependencySet *new_fd_set);
double FindAlreadyAppliedSelectivity(const JoinPredicate *edge,
const AccessPath *left_path,
const AccessPath *right_path,
NodeMap left, NodeMap right);
void CommitBitsetsToHeap(AccessPath *path) const;
bool BitsetsAreCommitted(AccessPath *path) const;
};
/// Lists the current secondary engine flags in use. If there is no secondary
/// engine, will use a default set of permissive flags suitable for
/// non-secondary engine use.
SecondaryEngineFlags EngineFlags(const THD *thd) {
if (const handlerton *secondary_engine = SecondaryEngineHandlerton(thd);
secondary_engine != nullptr) {
return secondary_engine->secondary_engine_flags;
}
return MakeSecondaryEngineFlags(
SecondaryEngineFlag::SUPPORTS_HASH_JOIN,
SecondaryEngineFlag::SUPPORTS_NESTED_LOOP_JOIN);
}
/// Gets the secondary storage engine cost modification function, if any.
secondary_engine_modify_access_path_cost_t SecondaryEngineCostHook(
const THD *thd) {
const handlerton *secondary_engine = SecondaryEngineHandlerton(thd);
if (secondary_engine == nullptr) {
return nullptr;
} else {
return secondary_engine->secondary_engine_modify_access_path_cost;
}
}
/// Returns the MATCH function of a predicate that can be pushed down to a
/// full-text index. This can be done if the predicate is a MATCH function,
/// or in some cases (see IsSargableFullTextIndexPredicate() for details)
/// where the predicate is a comparison function which compares the result
/// of MATCH with a constant. For example, predicates on this form could be
/// pushed down to a full-text index:
///
/// WHERE MATCH (x) AGAINST ('search string') AND @<more predicates@>
///
/// WHERE MATCH (x) AGAINST ('search string') > 0.5 AND @<more predicates@>
///
/// Since full-text index scans return documents with positive scores only, an
/// index scan can only be used if the predicate excludes negative or zero
/// scores.
Item_func_match *GetSargableFullTextPredicate(const Predicate &predicate) {
Item_func *func = down_cast<Item_func *>(predicate.condition);
switch (func->functype()) {
case Item_func::MATCH_FUNC:
// The predicate is MATCH (x) AGAINST ('search string'), which can be
// pushed to the index.
return down_cast<Item_func_match *>(func->get_arg(0))->get_master();
case Item_func::LT_FUNC:
case Item_func::LE_FUNC:
// The predicate is const < MATCH or const <= MATCH, with a constant value
// which makes it pushable.
assert(func->get_arg(0)->const_item());
return down_cast<Item_func_match *>(func->get_arg(1))->get_master();
case Item_func::GT_FUNC:
case Item_func::GE_FUNC:
// The predicate is MATCH > const or MATCH >= const, with a constant value
// which makes it pushable.
assert(func->get_arg(1)->const_item());
return down_cast<Item_func_match *>(func->get_arg(0))->get_master();
default:
// The predicate is not on a form that can be pushed to a full-text index
// scan. We should not get here.
assert(false);
return nullptr;
}
}
/// Is the current statement a DELETE statement?
bool IsDeleteStatement(const THD *thd) {
return thd->lex->sql_command == SQLCOM_DELETE ||
thd->lex->sql_command == SQLCOM_DELETE_MULTI;
}
/// Is the current statement a DELETE statement?
bool IsUpdateStatement(const THD *thd) {
return thd->lex->sql_command == SQLCOM_UPDATE ||
thd->lex->sql_command == SQLCOM_UPDATE_MULTI;
}
void CostingReceiver::TraceAccessPaths(NodeMap nodes) {
auto it = m_access_paths.find(nodes);
if (it == m_access_paths.end()) {
*m_trace += " - ";
*m_trace += PrintSet(nodes);
*m_trace += " has no access paths (this should not normally happen)\n";
return;
}
*m_trace += " - current access paths for ";
*m_trace += PrintSet(nodes);
*m_trace += ": ";
bool first = true;
for (const AccessPath *path : it->second.paths) {
if (!first) {
*m_trace += ", ";
}
*m_trace += PrintAccessPath(*path, *m_graph, "");
first = false;
}
*m_trace += ")\n";
}
/**
Called for each table in the query block, at some arbitrary point before we
start seeing subsets where it's joined to other tables.
We support table scans and ref access, so we create access paths for both
(where possible) and cost them. In this context, “tables” in a query block
also includes virtual tables such as derived tables, so we need to figure out
if there is a cost for materializing them.
*/
bool CostingReceiver::FoundSingleNode(int node_idx) {
if (m_thd->is_error()) return true;
m_graph->secondary_engine_costing_flags &=
~SecondaryEngineCostingFlag::HAS_MULTIPLE_BASE_TABLES;
TABLE *table = m_graph->nodes[node_idx].table;
Table_ref *tl = table->pos_in_table_list;
if (m_trace != nullptr) {
*m_trace += StringPrintf("\nFound node %s [rows=%llu]\n",
m_graph->nodes[node_idx].table->alias,
table->file->stats.records);
}
// First look for unique index lookups that use only constants.
{
bool found_eq_ref = false;
if (ProposeAllUniqueIndexLookupsWithConstantKey(node_idx, &found_eq_ref)) {
return true;
}
// If we found an unparameterized EQ_REF path, we can skip looking for
// alternative access methods, like parameterized or non-unique index
// lookups, index range scans or table scans, as they are unlikely to be any
// better. Returning early to reduce time spent planning the query, which is
// especially beneficial for point selects.
if (found_eq_ref) {
if (m_trace != nullptr) {
TraceAccessPaths(TableBitmap(node_idx));
}
return false;
}
}
// We run the range optimizer before anything else, because we can use
// its estimates to adjust predicate selectivity, giving us consistent
// row count estimation between the access paths. (It is also usually
// more precise for complex range conditions than our default estimates.
// This is also the reason why we run it even if HA_NO_INDEX_ACCESS is set.)
double range_optimizer_row_estimate = -1.0;
{
auto cleanup_mem_root = create_scope_guard([this, node_idx] {
if (node_idx == 0) {
// We won't be calling the range optimizer anymore, so we don't need
// to keep its temporary allocations around. Note that FoundSingleNode()
// counts down from N-1 to 0, not up.
m_range_optimizer_mem_root.Clear();
} else {
m_range_optimizer_mem_root.ClearForReuse();
}
});
if (!tl->is_recursive_reference() && m_graph->num_where_predicates > 0) {
// Note that true error returns in itself is not enough to fail the query;
// the range optimizer could be out of RAM easily enough, which is
// nonfatal. That just means we won't be using it for this table.
bool impossible = false;
if (FindIndexRangeScans(node_idx, &impossible,
&range_optimizer_row_estimate) &&
m_thd->is_error()) {
return true;
}
if (impossible) {
const char *const cause = "WHERE condition is always false";
if (!IsBitSet(tl->tableno(), m_graph->tables_inner_to_outer_or_anti)) {
// The entire top-level join is going to be empty, so we can abort the
// planning and return a zero rows plan.
m_query_block->join->zero_result_cause = cause;
return true;
}
AccessPath *table_path =
NewTableScanAccessPath(m_thd, table, /*count_examined_rows=*/false);
AccessPath *zero_path = NewZeroRowsAccessPath(m_thd, table_path, cause);
// We need to get the set of functional dependencies right,
// even though we don't need to actually apply any filters.
FunctionalDependencySet new_fd_set;
ApplyPredicatesForBaseTable(
node_idx,
/*applied_predicates=*/
MutableOverflowBitset{m_thd->mem_root, m_graph->predicates.size()},
/*subsumed_predicates=*/
MutableOverflowBitset{m_thd->mem_root, m_graph->predicates.size()},
/*materialize_subqueries=*/false, zero_path, &new_fd_set);
zero_path->filter_predicates =
MutableOverflowBitset{m_thd->mem_root, m_graph->predicates.size()};
zero_path->ordering_state =
m_orderings->ApplyFDs(zero_path->ordering_state, new_fd_set);
ProposeAccessPathWithOrderings(TableBitmap(node_idx), new_fd_set,
/*obsolete_orderings=*/0, zero_path, "");
if (m_trace != nullptr) {
TraceAccessPaths(TableBitmap(node_idx));
}
return false;
}
}
}
if (ProposeTableScan(table, node_idx, range_optimizer_row_estimate)) {
return true;
}
if (Overlaps(table->file->ha_table_flags(), HA_NO_INDEX_ACCESS) ||
tl->is_recursive_reference()) {
// We can't use any indexes, so end here.
if (m_trace != nullptr) {
TraceAccessPaths(TableBitmap(node_idx));
}
return false;
}
// Propose index scan (for getting interesting orderings).
// We only consider those that are more interesting than a table scan;
// for the others, we don't even need to create the access path and go
// through the tournament.
for (const ActiveIndexInfo &order_info : *m_active_indexes) {
if (order_info.table != table) {
continue;
}
const int forward_order =
m_orderings->RemapOrderingIndex(order_info.forward_order);
const int reverse_order =
m_orderings->RemapOrderingIndex(order_info.reverse_order);
for (bool reverse : {false, true}) {
if (reverse && reverse_order == 0) {
continue;
}
const int order = reverse ? reverse_order : forward_order;
if (order != 0) {
if (ProposeIndexScan(table, node_idx, range_optimizer_row_estimate,
order_info.key_idx, reverse, order)) {
return true;
}
}
// Propose ref access using only sargable predicates that reference no
// other table.
if (ProposeRefAccess(table, node_idx, order_info.key_idx,
range_optimizer_row_estimate, reverse,
/*allowed_parameter_tables=*/0, order)) {
return true;
}
// Propose ref access using all sargable predicates that also refer to
// other tables (e.g. t1.x = t2.x). Such access paths can only be used
// on the inner side of a nested loop join, where all the other
// referenced tables are among the outer tables of the join. Such path
// is called a parameterized path.
//
// Since indexes can have multiple parts, the access path can also end
// up being parameterized on multiple outer tables. However, since
// parameterized paths are less flexible in joining than
// non-parameterized ones, it can be advantageous to not use all parts
// of the index; it's impossible to say locally. Thus, we enumerate all
// possible subsets of table parameters that may be useful, to make sure
// we don't miss any such paths.
table_map want_parameter_tables = 0;
for (const SargablePredicate &sp :
m_graph->nodes[node_idx].sargable_predicates) {
if (sp.field->table == table &&
sp.field->part_of_key.is_set(order_info.key_idx) &&
!Overlaps(sp.other_side->used_tables(),
PSEUDO_TABLE_BITS | table->pos_in_table_list->map())) {
want_parameter_tables |= sp.other_side->used_tables();
}
}
for (table_map allowed_parameter_tables :
NonzeroSubsetsOf(want_parameter_tables)) {
if (ProposeRefAccess(table, node_idx, order_info.key_idx,
range_optimizer_row_estimate, reverse,
allowed_parameter_tables, order)) {
return true;
}
}
}
}
if (tl->is_fulltext_searched()) {
if (ProposeAllFullTextIndexScans(table, node_idx,
range_optimizer_row_estimate)) {
return true;
}
}
if (m_trace != nullptr) {
TraceAccessPaths(TableBitmap(node_idx));
}
return false;
}
// Figure out which predicates we have that are not applied/subsumed
// by scanning this specific index; we already did a check earlier,
// but that was on predicates applied by scanning _any_ index.
// The difference is those that
//
// a) Use a field that's not part of this index.
// b) Use a field that our index is only partial for; these are still
// counted as applied for selectivity purposes (which is possibly
// overcounting), but need to be rechecked (ie., not subsumed).
// c) Use a field where we've been told by get_ranges_from_tree()
// that it had to set up a range that was nonexact (because it was
// part of a predicate that had a non-equality condition on an
// earlier keypart). These are handled as for b).
//
// We use this information to build up sets of which fields an
// applied or subsumed predicate is allowed to reference,
// then check each predicate against those lists.
void FindAppliedAndSubsumedPredicatesForRangeScan(
THD *thd, KEY *key, unsigned used_key_parts, unsigned num_exact_key_parts,
TABLE *table, OverflowBitset tree_applied_predicates,
OverflowBitset tree_subsumed_predicates, const JoinHypergraph &graph,
OverflowBitset *applied_predicates_out,
OverflowBitset *subsumed_predicates_out) {
MutableOverflowBitset applied_fields{thd->mem_root, table->s->fields};
MutableOverflowBitset subsumed_fields{thd->mem_root, table->s->fields};
MutableOverflowBitset applied_predicates(thd->mem_root,
graph.predicates.size());
MutableOverflowBitset subsumed_predicates(thd->mem_root,
graph.predicates.size());
for (unsigned keypart_idx = 0; keypart_idx < used_key_parts; ++keypart_idx) {
const KEY_PART_INFO &keyinfo = key->key_part[keypart_idx];
applied_fields.SetBit(keyinfo.field->field_index());
if (keypart_idx < num_exact_key_parts &&
!Overlaps(keyinfo.key_part_flag, HA_PART_KEY_SEG)) {
subsumed_fields.SetBit(keyinfo.field->field_index());
}
}
for (int predicate_idx : BitsSetIn(tree_applied_predicates)) {
Item *condition = graph.predicates[predicate_idx].condition;
bool any_not_applied =
WalkItem(condition, enum_walk::POSTFIX, [&applied_fields](Item *item) {
return item->type() == Item::FIELD_ITEM &&
!IsBitSet(down_cast<Item_field *>(item)->field->field_index(),
applied_fields);
});
if (any_not_applied) {
continue;
}
applied_predicates.SetBit(predicate_idx);
if (IsBitSet(predicate_idx, tree_subsumed_predicates)) {
bool any_not_subsumed = WalkItem(
condition, enum_walk::POSTFIX, [&subsumed_fields](Item *item) {
return item->type() == Item::FIELD_ITEM &&
!IsBitSet(
down_cast<Item_field *>(item)->field->field_index(),
subsumed_fields);
});
if (!any_not_subsumed) {
subsumed_predicates.SetBit(predicate_idx);
}
}
}
*applied_predicates_out = std::move(applied_predicates);
*subsumed_predicates_out = std::move(subsumed_predicates);
}
struct PossibleRangeScan {
unsigned idx;
unsigned mrr_flags;
unsigned mrr_buf_size;
unsigned used_key_parts;
double cost;
ha_rows num_rows;
bool is_ror_scan;
bool is_imerge_scan;
OverflowBitset applied_predicates;
OverflowBitset subsumed_predicates;
Quick_ranges ranges;
};
bool CollectPossibleRangeScans(
THD *thd, SEL_TREE *tree, RANGE_OPT_PARAM *param,
OverflowBitset tree_applied_predicates,
OverflowBitset tree_subsumed_predicates, const JoinHypergraph &graph,
Mem_root_array<PossibleRangeScan> *possible_scans) {
for (unsigned idx = 0; idx < param->keys; idx++) {
SEL_ROOT *root = tree->keys[idx];
if (root == nullptr || root->type == SEL_ROOT::Type::MAYBE_KEY ||
root->root->maybe_flag) {
continue;
}
const uint keynr = param->real_keynr[idx];
const bool covering_index = param->table->covering_keys.is_set(keynr);
unsigned mrr_flags, buf_size;
Cost_estimate cost;
bool is_ror_scan, is_imerge_scan;
// NOTE: We give in ORDER_NOT_RELEVANT now, but will re-run with
// ORDER_ASC/ORDER_DESC when actually proposing the index, if that
// yields an interesting order.
ha_rows num_rows = check_quick_select(
thd, param, idx, covering_index, root, /*update_tbl_stats=*/true,
ORDER_NOT_RELEVANT, /*skip_records_in_range=*/false, &mrr_flags,
&buf_size, &cost, &is_ror_scan, &is_imerge_scan);
if (num_rows == HA_POS_ERROR) {
continue;
}
// TODO(sgunders): See if we could have had a pre-filtering mechanism
// that allowed us to skip extracting these ranges if the path would
// obviously too high cost. As it is, it's a bit hard to just propose
// the path and see if it came in, since we need e.g. num_exact_key_parts
// as an output from this call, and that in turn affects filter cost.
Quick_ranges ranges(param->return_mem_root);
unsigned used_key_parts, num_exact_key_parts;
if (get_ranges_from_tree(param->return_mem_root, param->table,
param->key[idx], keynr, root, MAX_REF_PARTS,
&used_key_parts, &num_exact_key_parts, &ranges)) {
return true;
}
KEY *key = ¶m->table->key_info[keynr];
PossibleRangeScan scan;
scan.idx = idx;
scan.mrr_flags = mrr_flags;
scan.mrr_buf_size = buf_size;
scan.used_key_parts = used_key_parts;
scan.cost = cost.total_cost();
scan.num_rows = num_rows;
scan.is_ror_scan = is_ror_scan;
scan.is_imerge_scan = is_imerge_scan;
scan.ranges = std::move(ranges);
FindAppliedAndSubsumedPredicatesForRangeScan(
thd, key, used_key_parts, num_exact_key_parts, param->table,
tree_applied_predicates, tree_subsumed_predicates, graph,
&scan.applied_predicates, &scan.subsumed_predicates);
possible_scans->push_back(std::move(scan));
}
return false;
}
/**
Based on estimates for all the different range scans (which cover different
but potentially overlapping combinations of predicates), try to find an
estimate for the number of rows scanning the given table, with all predicates
applied.
The #1 priority here is to get a single estimate for all (non-parameterized)
scans over this table (including non-range scans), that we can reuse for all
access paths. This makes sure they are fairly compared on cost (and ordering)
alone; different estimates would be nonsensical, and cause those where we
happen to have lower estimates to get preferred as they are joined higher up
in the tree. Obviously, however, it is also attractive to get an estimate that
is as good as possible. We only really care about the total selectivity of all
predicates; we don't care to adjust each individual selectivity.
[Mar07] describes an unbiased estimator that is exactly what we want,
and [Hav20] demonstrates an efficient calculation method (up to about 20–25
possible predicates) of this estimator. Long-term, implementing this would be
our best choice. However, the implementation is not entirely trivial:
- If the selectivity estimates are not consistent (e.g. S(a AND b) <
S(a)S(b)), the algorithm will fail to converge. Extra steps are needed to
correct for this.
- The efficient algorithm (in [Hav20]) requires a linear algebra library
(for performant matrix multiplication and Cholesky decomposition).
- If we have a _lot_ of estimates, even the efficient algorithm fails to
converge in time (just the answers require 2^n space), and we would need
additional logic to partition the problem.
Thus, for the time being, we use an ad-hoc algorithm instead. The estimate
will not be as good, but it will hopefully be on the pessimistic side
(overestimating the number of rows). It goes as follows:
1. Pick the most-covering index (ie., the range scan that applies
the most number of predicates) that does not cover any predicates we've
already accounted for. If there are multiple ones, choose the least
selective.
2. Multiply in its selectivity, and mark all the predicates it covers
as accounted for. Repeat #1 and #2 for as long as possible.
3. For any remaining predicates, multiply by their existing estimate
(ie., the one not coming from the range optimizer).
The hope is that in #1, we will usually prefer using selectivity information
from indexes with more keyparts; e.g., it's better to use an index on (a,b)
than on (a) alone, since it will take into account the correlation between
predicates on a and predicates on b.
[Mar07]: Markl et al: “Consistent Selectivity Estimation Via Maximum Entropy”
[Hav20]: Havenstein et al: “Fast Entropy Maximization for Selectivity
Estimation of Conjunctive Predicates on CPUs and GPUs”
*/
double EstimateOutputRowsFromRangeTree(
THD *thd, const RANGE_OPT_PARAM ¶m, ha_rows total_rows,
const Mem_root_array<PossibleRangeScan> &possible_scans,
const JoinHypergraph &graph, OverflowBitset predicates, string *trace) {
MutableOverflowBitset remaining_predicates = predicates.Clone(thd->mem_root);
double selectivity = 1.0;
while (!IsEmpty(remaining_predicates)) {
const PossibleRangeScan *best_scan = nullptr;
int best_cover_size = 0; // Just a cache, for convenience.
double best_selectivity = -1.0; // Same.
for (const PossibleRangeScan &scan : possible_scans) {
if (IsEmpty(scan.applied_predicates) ||
!IsSubset(scan.applied_predicates, remaining_predicates)) {
continue;
}
int cover_size = PopulationCount(scan.applied_predicates);
// NOTE: The check for num_rows >= total_rows is because total_rows may be
// outdated, and we wouldn't want to have selectivities above 1.0, or NaN
// or Inf if total_rows is zero.
const double scan_selectivity =
scan.num_rows >= total_rows
? 1.0
: scan.num_rows / static_cast<double>(total_rows);
if (cover_size > best_cover_size ||
(cover_size == best_cover_size &&
scan_selectivity > best_selectivity)) {
best_scan = &scan;
best_cover_size = cover_size;
best_selectivity = scan_selectivity;
}
}
if (best_scan == nullptr) {
// Couldn't use any more range scans (possibly because all have
// been used).
break;
}
selectivity *= best_selectivity;
// Mark these predicates as being dealt with.
for (int predicate_idx : BitsSetIn(best_scan->applied_predicates)) {
remaining_predicates.ClearBit(predicate_idx);
}
if (trace != nullptr) {
const unsigned keynr = param.real_keynr[best_scan->idx];
KEY *key = ¶m.table->key_info[keynr];
*trace += StringPrintf(
" - using selectivity %.3f (%llu rows) from range scan on index %s "
"to cover ",
best_selectivity, best_scan->num_rows, key->name);
bool first = true;
for (int predicate_idx : BitsSetIn(best_scan->applied_predicates)) {
if (!first) {
*trace += " AND ";
}
first = false;
*trace +=
"(" + ItemToString(graph.predicates[predicate_idx].condition) + ")";
}
*trace += "\n";
}
}
// Cover any remaining predicates by single-predicate estimates.
for (int predicate_idx : BitsSetIn(std::move(remaining_predicates))) {
if (trace != nullptr) {
*trace += StringPrintf(
" - using existing selectivity %.3f from outside range scan "
"to cover %s\n",
graph.predicates[predicate_idx].selectivity,
ItemToString(graph.predicates[predicate_idx].condition).c_str());
}
selectivity *= graph.predicates[predicate_idx].selectivity;
}
return total_rows * selectivity;
}
/**
From a collection of index scans, find the single cheapest one and generate an
AccessPath for it. This is similar to CollectPossibleRangeScans(), except that
this is for index merge, where we don't want to enumerate all possibilities;
since we don't care about the ordering of the index (we're going to sort all
of the rows to deduplicate them anyway), cost is the only interesting metric,
so we only need to pick out and collect ranges for one of them.
(This isn't strictly true; sometimes, it can be attractive to choose a
clustered primary key, so we prefer one if we allow them. See the code about
is_preferred_cpk below, and the comment on the caller. Also, see about
exactness below.)
This function can probably be extended to find ROR-capable scans later
(just check is_ror_scan instead of is_imerge_scan).
Note that all such scans are index-only (covering), which is reflected in
the cost parameters we use.
*inexact is set to true if and only if the chosen path does not reflect its
predicate faithfully, and needs to be rechecked. We do not currently take
into account that this may affect the cost higher up, as the difference
should be small enough that we don't want the combinatorial explosion.
*/
AccessPath *FindCheapestIndexRangeScan(THD *thd, SEL_TREE *tree,
RANGE_OPT_PARAM *param,
bool prefer_clustered_primary_key_scan,
bool *inexact) {
double best_cost = DBL_MAX;
int best_key = -1;
int best_num_rows = -1;
unsigned best_mrr_flags = 0, best_mrr_buf_size = 0;
for (unsigned idx = 0; idx < param->keys; idx++) {
SEL_ROOT *root = tree->keys[idx];
if (root == nullptr || root->type == SEL_ROOT::Type::MAYBE_KEY ||
root->root->maybe_flag) {
continue;
}
unsigned mrr_flags, buf_size;
Cost_estimate cost;
bool is_ror_scan, is_imerge_scan;
ha_rows num_rows =
check_quick_select(thd, param, idx, /*index_only=*/true, root,
/*update_tbl_stats=*/true, ORDER_NOT_RELEVANT,
/*skip_records_in_range=*/false, &mrr_flags,
&buf_size, &cost, &is_ror_scan, &is_imerge_scan);
if (num_rows == HA_POS_ERROR || !is_imerge_scan) {
continue;
}
const bool is_preferred_cpk =
prefer_clustered_primary_key_scan &&
param->table->file->primary_key_is_clustered() &&
param->real_keynr[idx] == param->table->s->primary_key;
if (!is_preferred_cpk && cost.total_cost() > best_cost) {
continue;
}
best_key = idx;
best_cost = cost.total_cost();
best_num_rows = num_rows;
best_mrr_flags = mrr_flags;
best_mrr_buf_size = buf_size;
if (is_preferred_cpk) {
break;
}
}
if (best_key == -1) {
return nullptr;
}
const uint keynr = param->real_keynr[best_key];
SEL_ROOT *root = tree->keys[best_key];
Quick_ranges ranges(param->return_mem_root);
unsigned used_key_parts, num_exact_key_parts;
if (get_ranges_from_tree(param->return_mem_root, param->table,
param->key[best_key], keynr, root, MAX_REF_PARTS,
&used_key_parts, &num_exact_key_parts, &ranges)) {
return nullptr;
}
KEY *key = ¶m->table->key_info[keynr];
AccessPath *path = new (param->return_mem_root) AccessPath;
path->type = AccessPath::INDEX_RANGE_SCAN;
path->init_cost = 0.0;
path->cost = path->cost_before_filter = best_cost;
path->set_num_output_rows(best_num_rows);
path->num_output_rows_before_filter = best_num_rows;
path->index_range_scan().index = keynr;
path->index_range_scan().num_used_key_parts = used_key_parts;
path->index_range_scan().used_key_part = param->key[best_key];
path->index_range_scan().ranges = &ranges[0];
path->index_range_scan().num_ranges = ranges.size();
path->index_range_scan().mrr_flags = best_mrr_flags;
path->index_range_scan().mrr_buf_size = best_mrr_buf_size;
path->index_range_scan().can_be_used_for_ror =
tree->ror_scans_map.is_set(best_key);
path->index_range_scan().need_rows_in_rowid_order = false;
path->index_range_scan().can_be_used_for_imerge = true;
path->index_range_scan().reuse_handler = false;
path->index_range_scan().geometry = Overlaps(key->flags, HA_SPATIAL);
path->index_range_scan().reverse = false;
path->index_range_scan().using_extended_key_parts = false;
*inexact |= (num_exact_key_parts != used_key_parts);
return path;
}
/**
Represents a candidate index merge, ie. an OR expression of several
range scans across different indexes (that can be reconciled by doing
deduplication by sorting on row IDs).
Each predicate (in our usual sense of “part of a top-level AND conjunction in
WHERE”) can give rise to multiple index merges (if there are AND conjunctions
within ORs), but one index merge arises from exactly one predicate.
This is not an inherent limitation, but it is how tree_and() does it;
if it takes two SEL_TREEs with index merges, it just combines their candidates
wholesale; each will deal with one predicate, and the other one would just
have to be applied as a filter.
This is obviously suboptimal, as there are many cases where we could do
better. Imagine something like (a = 3 OR b > 3) AND b <= 5, with separate
indexes on a and b; obviously, we could have applied this as a single index
merge between two range scans: (a = 3 AND b <= 5) OR (b > 3 AND b <= 5). But
this is probably not a priority for us, so we follow the range optimizer's
lead here and record each index merge as covering a separate, single
predicate.
*/
struct PossibleIndexMerge {
// The index merge itself (a list of range optimizer trees,
// implicitly ORed together).
SEL_IMERGE *imerge;
// Which WHERE predicate it came from.
size_t pred_idx;
// If true, the index merge does not faithfully represent the entire
// predicate (it could return more rows), and needs to be re-checked
// with a filter.
bool inexact;
};
bool CostingReceiver::FindIndexRangeScans(
int node_idx, bool *impossible, double *num_output_rows_after_filter) {
*impossible = false;
*num_output_rows_after_filter = -1.0;
TABLE *table = m_graph->nodes[node_idx].table;
RANGE_OPT_PARAM param;
if (setup_range_optimizer_param(
m_thd, m_thd->mem_root, &m_range_optimizer_mem_root,
table->keys_in_use_for_query, table, m_query_block, ¶m)) {
return true;
}
m_thd->push_internal_handler(¶m.error_handler);
auto cleanup =
create_scope_guard([thd{m_thd}] { thd->pop_internal_handler(); });
// For each predicate touching this table only, try to include it into our
// tree of ranges if we can.
MutableOverflowBitset all_predicates{m_thd->mem_root,
m_graph->predicates.size()};
MutableOverflowBitset tree_applied_predicates{m_thd->mem_root,
m_graph->predicates.size()};
MutableOverflowBitset tree_subsumed_predicates{m_thd->mem_root,
m_graph->predicates.size()};
Mem_root_array<PossibleIndexMerge> index_merges(&m_range_optimizer_mem_root);
const NodeMap my_map = TableBitmap(node_idx);
SEL_TREE *tree = nullptr;
for (size_t i = 0; i < m_graph->num_where_predicates; ++i) {
if (m_graph->predicates[i].total_eligibility_set != my_map) {
// Only base predicates are eligible for being pushed into range scans.
continue;
}
all_predicates.SetBit(i);
SEL_TREE *new_tree = get_mm_tree(
m_thd, ¶m, INNER_TABLE_BIT, INNER_TABLE_BIT,
table->pos_in_table_list->map(),
/*remove_jump_scans=*/true, m_graph->predicates[i].condition);
if (param.has_errors()) {
// Probably out of RAM; give up using the range optimizer.
return true;
}
if (new_tree == nullptr || new_tree->type == SEL_TREE::ALWAYS) {
// Nothing in this predicate could be used as range scans for any of
// the indexes on this table. Skip the predicate for our purposes;
// we'll be applying it as a normal one later.
continue;
}
if (new_tree->keys_map.is_clear_all()) {
// The predicate was not converted into a range scan, so it won't be
// applied or subsumed by any index range scan.
} else if (new_tree->inexact) {
// The predicate was converted into a range scan, but there was some part
// of it that couldn't be completely represented. We need to note that
// it was converted, so that we don't double-count its
// selectivity, but we also need to re-apply it as a filter afterwards,
// so we cannot set it in subsumed_range_predicates.
// Of course, we don't know the selectivity of the non-applied parts
// of the predicate, but it's OK to overcount rows (much better than to
// undercount them).
tree_applied_predicates.SetBit(i);
} else {
// The predicate was completely represented as a range scan for at least
// one index. This means we can mark it as subsumed for now, but note that
// if we end up choosing some index that doesn't include the field as a
// keypart, or one where (some of) its ranges have to be skipped, we could
// revert this decision. See SEL_TREE::inexact and get_ranges_from_tree().
tree_applied_predicates.SetBit(i);
tree_subsumed_predicates.SetBit(i);
}
// Store any index merges this predicate gives rise to. The final ANDed tree
// will also have a list of index merges, but it's only a combined list of
// the ones from individual predicates, so we collect them here to know
// which predicate they came from.
for (SEL_IMERGE &imerge : new_tree->merges) {
PossibleIndexMerge merge;
merge.imerge = &imerge;
merge.pred_idx = i;
// If there is more than one candidate merge arising from this predicate,
// it must be because we had an AND inside an OR (tree_and() is the only
// case that creates multiple candidates). ANDs in index merges are pretty
// much always handled nonexactly (see the comment on PossibleIndexMerge),
// ie., we pick one part of the conjunction and have to check the other
// by filter. So we need to note here that this has happened.
merge.inexact = (new_tree->merges.size() > 1);
// Similarly, if there is also range scan arising from this predicate
// (again because of an AND inside an OR), we need to handle the index
// merge nonexactly, as the index merge will need to have the range
// predicate in a filter on top of it.
merge.inexact |= !new_tree->keys_map.is_clear_all();
index_merges.push_back(merge);
}
if (tree == nullptr) {
tree = new_tree;
} else {
tree = tree_and(¶m, tree, new_tree);
if (param.has_errors()) {
// Probably out of RAM; give up using the range optimizer.
return true;
}
}
if (tree->type == SEL_TREE::IMPOSSIBLE) {
*impossible = true;
return false;
}
}
if (tree == nullptr) {
// There were no range predicates on this table.
return false;
}
assert(tree->type == SEL_TREE::KEY);
Mem_root_array<PossibleRangeScan> possible_scans(&m_range_optimizer_mem_root);
OverflowBitset tree_applied_predicates_fixed =
std::move(tree_applied_predicates);
OverflowBitset tree_subsumed_predicates_fixed =
std::move(tree_subsumed_predicates);
if (CollectPossibleRangeScans(
m_thd, tree, ¶m, tree_applied_predicates_fixed,
tree_subsumed_predicates_fixed, *m_graph, &possible_scans)) {
return true;
}
*num_output_rows_after_filter = EstimateOutputRowsFromRangeTree(
m_thd, param, table->file->stats.records, possible_scans, *m_graph,
std::move(all_predicates), m_trace);
if (Overlaps(table->file->ha_table_flags(), HA_NO_INDEX_ACCESS)) {
// We only wanted to use the index for estimation, and now we've done that.
return false;
}
// Propose all single-index index range scans.
for (PossibleRangeScan &scan : possible_scans) {
const uint keynr = param.real_keynr[scan.idx];
KEY *key = ¶m.table->key_info[keynr];
AccessPath path;
path.type = AccessPath::INDEX_RANGE_SCAN;
path.init_cost = 0.0;
path.cost = path.cost_before_filter = scan.cost;
path.num_output_rows_before_filter = scan.num_rows;
path.index_range_scan().index = keynr;
path.index_range_scan().num_used_key_parts = scan.used_key_parts;
path.index_range_scan().used_key_part = param.key[scan.idx];
path.index_range_scan().ranges = &scan.ranges[0];
path.index_range_scan().num_ranges = scan.ranges.size();
path.index_range_scan().mrr_flags = scan.mrr_flags;
path.index_range_scan().mrr_buf_size = scan.mrr_buf_size;
path.index_range_scan().can_be_used_for_ror =
tree->ror_scans_map.is_set(scan.idx);
path.index_range_scan().need_rows_in_rowid_order = false;
path.index_range_scan().can_be_used_for_imerge = scan.is_imerge_scan;
path.index_range_scan().reuse_handler = false;
path.index_range_scan().geometry = Overlaps(key->flags, HA_SPATIAL);
path.index_range_scan().reverse = false;
path.index_range_scan().using_extended_key_parts = false;
if (IsBitSet(node_idx, m_immediate_update_delete_candidates)) {
path.immediate_update_delete_table = node_idx;
// Don't allow immediate update of the key that is being scanned.
if (IsUpdateStatement(m_thd) &&
uses_index_on_fields(&path, table->write_set)) {
path.immediate_update_delete_table = -1;
}
}
bool contains_subqueries = false; // Filled on the first iteration below.
// First propose the unordered scan, optionally with sorting afterwards.
for (bool materialize_subqueries : {false, true}) {
AccessPath new_path = path;
FunctionalDependencySet new_fd_set;
ApplyPredicatesForBaseTable(
node_idx, scan.applied_predicates, scan.subsumed_predicates,
materialize_subqueries, &new_path, &new_fd_set);
// Override the number of estimated rows, so that all paths get the same.
new_path.set_num_output_rows(*num_output_rows_after_filter);
string description_for_trace = string(key->name) + " range";
ProposeAccessPathWithOrderings(
TableBitmap(node_idx), new_fd_set,
/*obsolete_orderings=*/0, &new_path,
materialize_subqueries ? "mat. subq" : description_for_trace.c_str());
if (!materialize_subqueries) {
contains_subqueries = Overlaps(path.filter_predicates,
m_graph->materializable_predicates);
if (!contains_subqueries) {
// Nothing to try to materialize.
break;
}
}
}
// Now the ordered scans, if they are interesting.
for (enum_order order_direction : {ORDER_ASC, ORDER_DESC}) {
const auto it =
find_if(m_active_indexes->begin(), m_active_indexes->end(),
[table, keynr](const ActiveIndexInfo &info) {
return info.table == table &&
info.key_idx == static_cast<int>(keynr);
});
assert(it != m_active_indexes->end());
const int ordering_idx = m_orderings->RemapOrderingIndex(
order_direction == ORDER_ASC ? it->forward_order : it->reverse_order);
if (ordering_idx == 0) {
// Not an interesting order.
continue;
}
// Rerun cost estimation, since sorting may have a cost.
const bool covering_index = param.table->covering_keys.is_set(keynr);
bool is_ror_scan, is_imerge_scan;
Cost_estimate cost;
ha_rows num_rows [[maybe_unused]] = check_quick_select(
m_thd, ¶m, scan.idx, covering_index, tree->keys[scan.idx],
/*update_tbl_stats=*/true, order_direction,
/*skip_records_in_range=*/false, &path.index_range_scan().mrr_flags,
&path.index_range_scan().mrr_buf_size, &cost, &is_ror_scan,
&is_imerge_scan);
// NOTE: num_rows may be different from scan.num_rows, if the statistics
// changed in the meantime. If so, we keep the old estimate, in order to
// get consistent values.
path.cost = path.cost_before_filter = cost.total_cost();
path.index_range_scan().can_be_used_for_imerge = is_imerge_scan;
path.ordering_state = m_orderings->SetOrder(ordering_idx);
path.index_range_scan().reverse = (order_direction == ORDER_DESC);
// Reverse index range scans need to be told whether they should be using
// extended key parts. If the requested scan ordering follows more
// interesting orderings than a scan ordered by the user-defined key parts
// only, it means the extended key parts are needed.
path.index_range_scan().using_extended_key_parts =
path.index_range_scan().reverse &&
m_orderings->MoreOrderedThan(
path.ordering_state,
m_orderings->SetOrder(m_orderings->RemapOrderingIndex(
it->reverse_order_without_extended_key_parts)),
/*obsolete_orderings=*/0);
for (bool materialize_subqueries : {false, true}) {
AccessPath new_path = path;
FunctionalDependencySet new_fd_set;
ApplyPredicatesForBaseTable(
node_idx, scan.applied_predicates, scan.subsumed_predicates,
materialize_subqueries, &new_path, &new_fd_set);
// Override the number of estimated rows, so that all paths get the
// same.
new_path.set_num_output_rows(*num_output_rows_after_filter);
string description_for_trace = string(key->name) + " ordered range";
auto access_path_it = m_access_paths.find(TableBitmap(node_idx));
assert(access_path_it != m_access_paths.end());
ProposeAccessPath(&new_path, &access_path_it->second.paths,
/*obsolete_orderings=*/0,
materialize_subqueries
? "mat. subq"
: description_for_trace.c_str());
if (!contains_subqueries) {
// Nothing to try to materialize.
break;
}
}
}
}
// Propose all index merges we have collected. Note that this is only
// “sort-index” merges, ie., generally collect all the row IDs,
// deduplicate them by sorting (in a Unique object) and then read all the
// rows. If the indexes are “ROR compatible” (give out their rows in row ID
// order directly, without any sort -- typically only for InnoDB indexes with
// the primary key appended directly after the last key part), we can
// union/intersect them directly without any sorts (“ROR scans”). However, we
// do not support that yet; it will be for a future worklog.
for (const PossibleIndexMerge &imerge : index_merges) {
for (bool allow_clustered_primary_key_scan : {true, false}) {
bool has_clustered_primary_key_scan;
ProposeIndexMerge(table, node_idx, *imerge.imerge, imerge.pred_idx,
imerge.inexact, allow_clustered_primary_key_scan,
m_graph->num_where_predicates,
*num_output_rows_after_filter, ¶m,
&has_clustered_primary_key_scan);
if (!has_clustered_primary_key_scan) {
// No need to check scans with clustered key scans disallowed
// if we didn't choose one to begin with.
break;
}
}
}
return false;
}
void CostingReceiver::ProposeIndexMerge(
TABLE *table, int node_idx, const SEL_IMERGE &imerge, int pred_idx,
bool inexact, bool allow_clustered_primary_key_scan,
int num_where_predicates, double num_output_rows_after_filter,
RANGE_OPT_PARAM *param, bool *has_clustered_primary_key_scan) {
double cost = 0.0;
double num_output_rows = 0.0;
// Clustered primary keys are special; we can deduplicate
// against them cheaper than running through the Unique object,
// so we want to keep track of its size to cost them.
// However, they destroy ordering properties, and if there are
// very few rows in the scan, it's probably better to avoid the
// compare, so we need to try both with and without
// (done in a for loop outside this function).
*has_clustered_primary_key_scan = false;
double non_cpk_cost = 0.0;
double non_cpk_rows = 0.0;
Mem_root_array<AccessPath *> paths(m_thd->mem_root);
for (SEL_TREE *tree : imerge.trees) {
inexact |= tree->inexact;
// NOTE: If we allow clustered primary key scans, we prefer
// them here even with a higher cost, in case they make the
// entire query cheaper due to lower sort costs. (There can
// only be one in any given index merge, since there is only
// one primary key.) If we end up choosing it, we will be
// called again with allow_clustered_primary_key_scan=false.
AccessPath *path = FindCheapestIndexRangeScan(
m_thd, tree, param,
/*prefer_clustered_primary_key_scan=*/allow_clustered_primary_key_scan,
&inexact);
if (path == nullptr) {
// Something failed; ignore.
return;
}
paths.push_back(path);
cost += path->cost;
num_output_rows += path->num_output_rows();
if (allow_clustered_primary_key_scan &&
table->file->primary_key_is_clustered() &&
path->index_range_scan().index == table->s->primary_key) {
assert(!*has_clustered_primary_key_scan);
*has_clustered_primary_key_scan = true;
} else {
non_cpk_cost += path->cost;
non_cpk_rows = path->num_output_rows();
}
}
double init_cost = non_cpk_cost;
// If we have a clustered primary key scan, we scan it separately, without
// going through the deduplication-by-sort. But that means we need to make
// sure no other rows overlap with it; there's a special operation for this
// (check if a given row ID falls inside a given primary key range),
// but it's not free, so add it costs here.
if (*has_clustered_primary_key_scan) {
double compare_cost = table->cost_model()->key_compare_cost(non_cpk_rows);
init_cost += compare_cost;
cost += compare_cost;
}
// Add the cost for the Unique operations. Note that since we read
// the clustered primary key _last_, we cannot get out a single row
// before everything has been read and deduplicated. If we want
// lower init_cost (i.e., for LIMIT), we should probably change this.
const double rows_to_deduplicate =
*has_clustered_primary_key_scan ? non_cpk_rows : num_output_rows;
const double dup_removal_cost =
Unique::get_use_cost(rows_to_deduplicate, table->file->ref_length,
m_thd->variables.sortbuff_size, table->cost_model());
init_cost += dup_removal_cost;
cost += dup_removal_cost;
// Add the cost for converting the sorted row IDs into rows
// (which is done for all rows, except for clustered primary keys).
// This happens running for each row, so doesn't get added to init_cost.
// NOTE: We always give is_interrupted = false, because we don't
// really know where we will be in the join tree.
Cost_estimate sweep_cost;
get_sweep_read_cost(table, non_cpk_rows, /*interrupted=*/false, &sweep_cost);
cost += sweep_cost.total_cost();
AccessPath imerge_path;
imerge_path.type = AccessPath::INDEX_MERGE;
imerge_path.index_merge().table = table;
imerge_path.index_merge().forced_by_hint = false;
imerge_path.index_merge().allow_clustered_primary_key_scan =
allow_clustered_primary_key_scan;
imerge_path.index_merge().children = new (param->return_mem_root)
Mem_root_array<AccessPath *>(std::move(paths));
imerge_path.cost = imerge_path.cost_before_filter = cost;
imerge_path.init_cost = init_cost;
imerge_path.num_output_rows_before_filter =
min<double>(num_output_rows, num_output_rows_after_filter);
imerge_path.set_num_output_rows(imerge_path.num_output_rows_before_filter);
if (IsBitSet(node_idx, m_immediate_update_delete_candidates)) {
imerge_path.immediate_update_delete_table = node_idx;
// Don't allow immediate update of any keys being scanned.
if (IsUpdateStatement(m_thd) &&
uses_index_on_fields(&imerge_path, table->write_set)) {
imerge_path.immediate_update_delete_table = -1;
}
}
// Find out which ordering we would follow, if any. We nominally sort
// everything by row ID (which follows the primary key), but if we have a
// clustered primary key scan, it is taken after everything else and thus
// out-of-order (ironically enough).
if (!*has_clustered_primary_key_scan &&
table->file->primary_key_is_clustered()) {
const auto it = find_if(
m_active_indexes->begin(), m_active_indexes->end(),
[table](const ActiveIndexInfo &info) {
return info.table == table &&
info.key_idx == static_cast<int>(table->s->primary_key);
});
if (it != m_active_indexes->end()) {
imerge_path.ordering_state = m_orderings->SetOrder(
m_orderings->RemapOrderingIndex(it->forward_order));
}
}
// An index merge corresponds to one predicate (see comment on
// PossibleIndexMerge), and subsumes that predicate if and only if it is a
// faithful representation of everything in it.
MutableOverflowBitset this_predicate(param->temp_mem_root,
num_where_predicates);
this_predicate.SetBit(pred_idx);
OverflowBitset applied_predicates(std::move(this_predicate));
OverflowBitset subsumed_predicates =
inexact ? OverflowBitset(MutableOverflowBitset(param->temp_mem_root,
num_where_predicates))
: applied_predicates;
const bool contains_subqueries = Overlaps(imerge_path.filter_predicates,
m_graph->materializable_predicates);
for (bool materialize_subqueries : {false, true}) {
AccessPath new_path = imerge_path;
FunctionalDependencySet new_fd_set;
ApplyPredicatesForBaseTable(node_idx, applied_predicates,
subsumed_predicates, materialize_subqueries,
&new_path, &new_fd_set);
// Override the number of estimated rows, so that all paths get the
// same.
new_path.set_num_output_rows(num_output_rows_after_filter);
ProposeAccessPathWithOrderings(
TableBitmap(node_idx), new_fd_set,
/*obsolete_orderings=*/0, &new_path,
materialize_subqueries ? "mat. subq" : "index merge");
if (!contains_subqueries) {
// Nothing to try to materialize.
break;
}
}
}
// Specifies a mapping in an Index_lookup between an index keypart and a
// condition, with the intention to satisfy the condition with the index keypart
// (ref access). Roughly comparable to Key_use in the non-hypergraph optimizer.
struct KeypartForRef {
// The condition we are pushing down (e.g. t1.f1 = 3).
Item *condition;
// The field that is to be matched (e.g. t1.f1).
Field *field;
// The value we are matching against (e.g. 3). Could be another field.
Item *val;
// Whether this condition would never match if either side is NULL.
bool null_rejecting;
// Tables used by the condition. Necessarily includes the table “field”
// is part of.
table_map used_tables;
// Is it safe to evaluate "val" during optimization? It must be
// const_for_execution() and contain no subqueries or stored procedures.
bool can_evaluate;
};
int WasPushedDownToRef(Item *condition, const KeypartForRef *keyparts,
unsigned num_keyparts) {
for (unsigned keypart_idx = 0; keypart_idx < num_keyparts; keypart_idx++) {
if (condition->eq(keyparts[keypart_idx].condition,
/*binary_cmp=*/true)) {
return keypart_idx;
}
}
return -1;
}
bool ContainsSubqueries(Item *item_arg) {
// Nearly the same as item_arg->has_subquery(), but different for
// Item_func_not_all, which we currently do not support.
return WalkItem(item_arg, enum_walk::POSTFIX, [](Item *item) {
return item->type() == Item::SUBSELECT_ITEM;
});
}
bool CostingReceiver::ProposeRefAccess(
TABLE *table, int node_idx, unsigned key_idx,
double force_num_output_rows_after_filter, bool reverse,
table_map allowed_parameter_tables, int ordering_idx) {
KEY *key = &table->key_info[key_idx];
if (key->flags & HA_FULLTEXT) {
return false;
}
// Go through each of the sargable predicates and see how many key parts
// we can match.
unsigned matched_keyparts = 0;
unsigned length = 0;
const unsigned usable_keyparts = actual_key_parts(key);
KeypartForRef keyparts[MAX_REF_PARTS];
table_map parameter_tables = 0;
for (unsigned keypart_idx = 0;
keypart_idx < usable_keyparts && keypart_idx < MAX_REF_PARTS;
++keypart_idx) {
const KEY_PART_INFO &keyinfo = key->key_part[keypart_idx];
bool matched_this_keypart = false;
for (const SargablePredicate &sp :
m_graph->nodes[node_idx].sargable_predicates) {
if (!sp.field->part_of_key.is_set(key_idx)) {
// Quick reject.
continue;
}
Item_func_eq *item = down_cast<Item_func_eq *>(
m_graph->predicates[sp.predicate_index].condition);
if (sp.field->eq(keyinfo.field)) {
const table_map other_side_tables =
sp.other_side->used_tables() & ~PSEUDO_TABLE_BITS;
if (IsSubset(other_side_tables, allowed_parameter_tables)) {
parameter_tables |= other_side_tables;
matched_this_keypart = true;
keyparts[keypart_idx].field = sp.field;
keyparts[keypart_idx].condition = item;
keyparts[keypart_idx].val = sp.other_side;
keyparts[keypart_idx].null_rejecting = true;
keyparts[keypart_idx].used_tables = item->used_tables();
keyparts[keypart_idx].can_evaluate = sp.can_evaluate;
++matched_keyparts;
length += keyinfo.store_length;
break;
}
}
}
if (!matched_this_keypart) {
break;
}
}
if (matched_keyparts == 0) {
return false;
}
if (parameter_tables != allowed_parameter_tables) {
// We've already seen this before, with a more lenient subset,
// so don't try it again.
return false;
}
if (matched_keyparts < usable_keyparts &&
(table->file->index_flags(key_idx, 0, false) & HA_ONLY_WHOLE_INDEX)) {
if (m_trace != nullptr) {
*m_trace += StringPrintf(
" - %s is whole-key only, and we could only match %d/%d "
"key parts for ref access\n",
key->name, matched_keyparts, usable_keyparts);
}
return false;
}
if (m_trace != nullptr) {
if (matched_keyparts < usable_keyparts) {
*m_trace += StringPrintf(
" - %s is applicable for ref access (using %d/%d key parts only)\n",
key->name, matched_keyparts, usable_keyparts);
} else {
*m_trace +=
StringPrintf(" - %s is applicable for ref access\n", key->name);
}
}
// Create Index_lookup for this ref, and set it up based on the chosen
// keyparts.
Index_lookup *ref = new (m_thd->mem_root) Index_lookup;
if (init_ref(m_thd, matched_keyparts, length, key_idx, ref)) {
return true;
}
uchar *key_buff = ref->key_buff;
uchar *null_ref_key = nullptr;
bool null_rejecting_key = true;
for (unsigned keypart_idx = 0; keypart_idx < matched_keyparts;
keypart_idx++) {
KeypartForRef *keypart = &keyparts[keypart_idx];
const KEY_PART_INFO *keyinfo = &key->key_part[keypart_idx];
if (init_ref_part(m_thd, keypart_idx, keypart->val, /*cond_guard=*/nullptr,
keypart->null_rejecting, /*const_tables=*/0,
keypart->used_tables, keyinfo->null_bit, keyinfo,
key_buff, ref)) {
return true;
}
// TODO(sgunders): When we get support for REF_OR_NULL,
// set null_ref_key = key_buff here if appropriate.
/*
The selected key will reject matches on NULL values if:
- the key field is nullable, and
- predicate rejects NULL values (keypart->null_rejecting is true), or
- JT_REF_OR_NULL is not effective.
*/
if ((keyinfo->field->is_nullable() || table->is_nullable()) &&
(!keypart->null_rejecting || null_ref_key != nullptr)) {
null_rejecting_key = false;
}
key_buff += keyinfo->store_length;
}
double num_output_rows = table->file->stats.records;
double join_condition_selectivity = 1.0;
MutableOverflowBitset applied_predicates{m_thd->mem_root,
m_graph->predicates.size()};
MutableOverflowBitset subsumed_predicates{m_thd->mem_root,
m_graph->predicates.size()};
for (size_t i = 0; i < m_graph->predicates.size(); ++i) {
const Predicate &pred = m_graph->predicates[i];
int keypart_idx =
WasPushedDownToRef(pred.condition, keyparts, matched_keyparts);
if (keypart_idx == -1) {
continue;
}
if (pred.was_join_condition) {
// This predicate was promoted from a join condition to a WHERE predicate,
// since it was part of a cycle. For purposes of sargable predicates,
// we always see all relevant join conditions, so skip it this time
// so that we don't double-count its selectivity.
applied_predicates.SetBit(i);
continue;
}
if (i < m_graph->num_where_predicates &&
!IsSingleBitSet(pred.total_eligibility_set)) {
// This is a WHERE condition that is either nondeterministic,
// or after an outer join, so it is not sargable. (Having these
// show up here is very rare, but will get more common when we
// get to (x=... OR NULL) predicates.)
continue;
}
if (!IsSubset(pred.condition->used_tables() & ~PSEUDO_TABLE_BITS,
table->pos_in_table_list->map())) {
join_condition_selectivity *= pred.selectivity;
}
num_output_rows *= pred.selectivity;
applied_predicates.SetBit(i);
const KeypartForRef &keypart = keyparts[keypart_idx];
bool subsumes;
if (ref_lookup_subsumes_comparison(m_thd, keypart.field, keypart.val,
keypart.can_evaluate, &subsumes)) {
return true;
}
if (subsumes) {
if (m_trace != nullptr) {
*m_trace += StringPrintf(" - %s is subsumed by ref access on %s.%s\n",
ItemToString(pred.condition).c_str(),
table->alias, keypart.field->field_name);
}
subsumed_predicates.SetBit(i);
} else {
if (m_trace != nullptr) {
*m_trace += StringPrintf(
" - %s is not fully subsumed by ref access on %s.%s, keeping\n",
ItemToString(pred.condition).c_str(), table->alias,
keypart.field->field_name);
}
}
}
if (force_num_output_rows_after_filter >= 0.0) {
// The range optimizer has given us an estimate for the number of
// rows after all filters have been applied, that we should be
// consistent with. However, that is only filters; not join conditions.
// The join conditions we apply are completely independent of the
// filters, so we make our usual independence assumption.
force_num_output_rows_after_filter *= join_condition_selectivity;
}
// We are guaranteed to get a single row back if all of these hold:
//
// - The index must be unique.
// - We can never query it with NULL (ie., no keyparts are nullable,
// or our condition is already NULL-rejecting), since NULL is
// an exception for unique indexes.
// - We use all key parts.
//
// This matches the logic in create_ref_for_key().
const bool single_row = Overlaps(actual_key_flags(key), HA_NOSAME) &&
(!Overlaps(actual_key_flags(key), HA_NULL_PART_KEY) ||
null_rejecting_key) &&
matched_keyparts == usable_keyparts;
if (single_row) {
// FIXME: This can cause inconsistent row estimates between different access
// paths doing the same thing, which is bad (it causes index lookups to be
// unfairly preferred, especially as we add more tables to the join -- and
// it also causes access path pruning to work less efficiently). See
// comments in EstimateFieldSelectivity() and on has_clamped_eq_ref.
if (num_output_rows > 1.0 && matched_keyparts >= 2) {
has_clamped_multipart_eq_ref = true;
}
num_output_rows = std::min(num_output_rows, 1.0);
}
const double cost =
EstimateCostForRefAccess(m_thd, table, key_idx, num_output_rows);
AccessPath path;
if (single_row) {
path.type = AccessPath::EQ_REF;
path.eq_ref().table = table;
path.eq_ref().ref = ref;
// We could set really any ordering here if we wanted to.
// It's very rare that it should matter, though.
path.ordering_state = m_orderings->SetOrder(ordering_idx);
} else {
path.type = AccessPath::REF;
path.ref().table = table;
path.ref().ref = ref;
path.ref().reverse = reverse;
// TODO(sgunders): Some storage engines, like NDB, can benefit from
// use_order = false if we don't actually need the ordering later.
// Consider adding a cost model for this, and then proposing both
// with and without order.
path.ordering_state = m_orderings->SetOrder(ordering_idx);
path.ref().use_order = (path.ordering_state != 0);
}
path.num_output_rows_before_filter = num_output_rows;
path.cost_before_filter = cost;
path.init_cost = path.init_once_cost = 0.0;
path.parameter_tables = GetNodeMapFromTableMap(
parameter_tables & ~table->pos_in_table_list->map(),
m_graph->table_num_to_node_num);
if (IsBitSet(node_idx, m_immediate_update_delete_candidates)) {
path.immediate_update_delete_table = node_idx;
// Disallow immediate update on the key being looked up for REF_OR_NULL and
// REF. It might be safe to update the key on which the REF lookup is
// performed, but we follow the lead of the old optimizer and don't try it,
// since we don't know how the engine behaves if doing an index lookup on a
// changing index.
//
// EQ_REF should be safe, though. I has at most one matching row, with a
// constant lookup value as this is the first table. So this row won't be
// seen a second time; the iterator won't even try a second read.
if (path.type != AccessPath::EQ_REF && IsUpdateStatement(m_thd) &&
is_key_used(table, key_idx, table->write_set)) {
path.immediate_update_delete_table = -1;
}
}
ProposeAccessPathForIndex(
node_idx, std::move(applied_predicates), std::move(subsumed_predicates),
force_num_output_rows_after_filter, key->name, &path);
return false;
}
/**
Do we have a sargable predicate which checks if "field" is equal to a
constant?
*/
bool HasConstantEqualityForField(
const Mem_root_array<SargablePredicate> &sargable_predicates,
const Field *field) {
return std::any_of(sargable_predicates.begin(), sargable_predicates.end(),
[field](const SargablePredicate &sp) {
return sp.other_side->const_for_execution() &&
field->eq(sp.field);
});
}
/**
Proposes all possible unique index lookups using only constants on the given
table. This is done before exploring any other plans for the table, in order
to allow early return for point selects, which do not benefit from using other
access methods.
@param node_idx The table to propose index lookups for.
@param[out] found Set to true if a unique index lookup is proposed.
@return True on error.
*/
bool CostingReceiver::ProposeAllUniqueIndexLookupsWithConstantKey(int node_idx,
bool *found) {
const Mem_root_array<SargablePredicate> &sargable_predicates =
m_graph->nodes[node_idx].sargable_predicates;
if (sargable_predicates.empty()) {
return false;
}
TABLE *const table = m_graph->nodes[node_idx].table;
assert(!table->pos_in_table_list->is_recursive_reference());
assert(!Overlaps(table->file->ha_table_flags(), HA_NO_INDEX_ACCESS));
for (const ActiveIndexInfo &index_info : *m_active_indexes) {
if (index_info.table != table) {
continue;
}
const KEY *const key = &table->key_info[index_info.key_idx];
// EQ_REF is only possible on UNIQUE non-FULLTEXT indexes.
if (!Overlaps(key->flags, HA_NOSAME) || Overlaps(key->flags, HA_FULLTEXT)) {
continue;
}
const size_t num_key_parts = key->user_defined_key_parts;
if (num_key_parts > sargable_predicates.size()) {
// There are not enough predicates to satisfy this key with constants.
continue;
}
if (std::all_of(key->key_part, key->key_part + num_key_parts,
[&sargable_predicates](const KEY_PART_INFO &key_part) {
return HasConstantEqualityForField(sargable_predicates,
key_part.field);
})) {
*found = true;
if (ProposeRefAccess(
table, node_idx, index_info.key_idx,
/*force_num_output_rows_after_filter=*/-1.0, /*reverse=*/false,
/*allowed_parameter_tables=*/0,
m_orderings->RemapOrderingIndex(index_info.forward_order))) {
return true;
}
}
}
return false;
}
void CostingReceiver::ProposeAccessPathForIndex(
int node_idx, OverflowBitset applied_predicates,
OverflowBitset subsumed_predicates,
double force_num_output_rows_after_filter,
const char *description_for_trace, AccessPath *path) {
MutableOverflowBitset applied_sargable_join_predicates_tmp =
applied_predicates.Clone(m_thd->mem_root);
applied_sargable_join_predicates_tmp.ClearBits(0,
m_graph->num_where_predicates);
OverflowBitset applied_sargable_join_predicates =
std::move(applied_sargable_join_predicates_tmp);
MutableOverflowBitset subsumed_sargable_join_predicates_tmp =
subsumed_predicates.Clone(m_thd->mem_root);
subsumed_sargable_join_predicates_tmp.ClearBits(
0, m_graph->num_where_predicates);
OverflowBitset subsumed_sargable_join_predicates =
std::move(subsumed_sargable_join_predicates_tmp);
for (bool materialize_subqueries : {false, true}) {
FunctionalDependencySet new_fd_set;
ApplyPredicatesForBaseTable(node_idx, applied_predicates,
subsumed_predicates, materialize_subqueries,
path, &new_fd_set);
if (force_num_output_rows_after_filter >= 0.0) {
path->set_num_output_rows(force_num_output_rows_after_filter);
}
path->ordering_state =
m_orderings->ApplyFDs(path->ordering_state, new_fd_set);
path->applied_sargable_join_predicates() = OverflowBitset::Or(
m_thd->mem_root, path->applied_sargable_join_predicates(),
applied_sargable_join_predicates);
path->subsumed_sargable_join_predicates() = OverflowBitset::Or(
m_thd->mem_root, path->subsumed_sargable_join_predicates(),
subsumed_sargable_join_predicates);
ProposeAccessPathWithOrderings(
TableBitmap(node_idx), new_fd_set, /*obsolete_orderings=*/0, path,
materialize_subqueries ? "mat. subq" : description_for_trace);
if (!Overlaps(path->filter_predicates,
m_graph->materializable_predicates)) {
// Nothing to try to materialize.
break;
}
}
}
bool CostingReceiver::ProposeTableScan(
TABLE *table, int node_idx, double force_num_output_rows_after_filter) {
Table_ref *tl = table->pos_in_table_list;
AccessPath path;
if (tl->is_recursive_reference()) {
path.type = AccessPath::FOLLOW_TAIL;
path.follow_tail().table = table;
assert(forced_leftmost_table == 0); // There can only be one, naturally.
forced_leftmost_table = NodeMap{1} << node_idx;
} else {
path.type = AccessPath::TABLE_SCAN;
path.table_scan().table = table;
}
path.count_examined_rows = true;
path.ordering_state = 0;
// Doing at least one table scan (this one), so mark the query as such.
// TODO(sgunders): Move out when we get more types and this access path could
// be replaced by something else.
m_thd->set_status_no_index_used();
const double num_output_rows = table->file->stats.records;
const double cost = table->file->table_scan_cost().total_cost();
path.num_output_rows_before_filter = num_output_rows;
path.init_cost = path.init_once_cost = 0.0;
path.cost_before_filter = path.cost = cost;
if (IsBitSet(node_idx, m_immediate_update_delete_candidates)) {
path.immediate_update_delete_table = node_idx;
// This is a table scan, but it might be using the clustered key under the
// cover. If so, don't allow immediate update if it's modifying the
// primary key.
if (IsUpdateStatement(m_thd) &&
Overlaps(table->file->ha_table_flags(), HA_PRIMARY_KEY_IN_READ_INDEX) &&
!table->s->is_missing_primary_key() &&
is_key_used(table, table->s->primary_key, table->write_set)) {
path.immediate_update_delete_table = -1;
}
}
// See if this is an information schema table that must be filled in before
// we scan.
if (tl->schema_table != nullptr && tl->schema_table->fill_table) {
// TODO(sgunders): We don't need to allocate materialize_path on the
// MEM_ROOT.
AccessPath *new_path = new (m_thd->mem_root) AccessPath(path);
AccessPath *materialize_path =
NewMaterializeInformationSchemaTableAccessPath(m_thd, new_path, tl,
/*condition=*/nullptr);
materialize_path->num_output_rows_before_filter = num_output_rows;
materialize_path->init_cost = path.cost; // Rudimentary.
materialize_path->init_once_cost = path.cost; // Rudimentary.
materialize_path->cost_before_filter = path.cost;
materialize_path->cost = path.cost;
materialize_path->filter_predicates = path.filter_predicates;
materialize_path->delayed_predicates = path.delayed_predicates;
new_path->filter_predicates.Clear();
new_path->delayed_predicates.Clear();
new_path->set_num_output_rows(num_output_rows);
assert(!tl->uses_materialization());
path = *materialize_path;
assert(path.cost >= 0.0);
} else if (tl->uses_materialization()) {
// Move the path to stable storage, since we'll be referring to it.
AccessPath *stable_path = new (m_thd->mem_root) AccessPath(path);
// TODO(sgunders): We don't need to allocate materialize_path on the
// MEM_ROOT.
AccessPath *materialize_path;
const char *always_empty_cause = nullptr;
if (tl->is_table_function()) {
materialize_path = NewMaterializedTableFunctionAccessPath(
m_thd, table, tl->table_function, stable_path);
CopyBasicProperties(*stable_path, materialize_path);
materialize_path->cost_before_filter = materialize_path->init_cost =
materialize_path->init_once_cost = materialize_path->cost;
materialize_path->num_output_rows_before_filter = num_output_rows;
materialize_path->parameter_tables = GetNodeMapFromTableMap(
tl->table_function->used_tables() & ~PSEUDO_TABLE_BITS,
m_graph->table_num_to_node_num);
if (Overlaps(tl->table_function->used_tables(),
OUTER_REF_TABLE_BIT | RAND_TABLE_BIT)) {
// Make sure the table function is never hashed, ever.
materialize_path->parameter_tables |= RAND_TABLE_BIT;
}
} else {
// If the derived table is known to be always empty, we may be able to
// optimize away parts of the outer query block too.
if (const AccessPath *derived_table_path =
tl->derived_query_expression()->root_access_path();
derived_table_path != nullptr &&
derived_table_path->type == AccessPath::ZERO_ROWS) {
always_empty_cause = derived_table_path->zero_rows().cause;
}
if (always_empty_cause != nullptr &&
!IsBitSet(tl->tableno(), m_graph->tables_inner_to_outer_or_anti)) {
// The entire query block can be optimized away. Stop planning.
m_query_block->join->zero_result_cause = always_empty_cause;
return true;
}
bool rematerialize = Overlaps(tl->derived_query_expression()->uncacheable,
UNCACHEABLE_DEPENDENT);
if (tl->common_table_expr()) {
// Handled in clear_corr_derived_tmp_tables(), not here.
rematerialize = false;
}
materialize_path = GetAccessPathForDerivedTable(
m_thd, tl, table, rematerialize,
/*invalidators=*/nullptr, m_need_rowid, stable_path);
// Handle LATERAL.
materialize_path->parameter_tables =
GetNodeMapFromTableMap(tl->derived_query_expression()->m_lateral_deps,
m_graph->table_num_to_node_num);
// If we don't need row IDs, we also don't care about row ID safety.
// This keeps us from retaining many extra unneeded paths.
if (!m_need_rowid) {
materialize_path->safe_for_rowid = AccessPath::SAFE;
}
}
materialize_path->filter_predicates = path.filter_predicates;
materialize_path->delayed_predicates = path.delayed_predicates;
stable_path->filter_predicates.Clear();
stable_path->delayed_predicates.Clear();
path = *materialize_path;
assert(path.cost >= 0.0);
if (always_empty_cause != nullptr) {
// The entire query block cannot be optimized away, only the inner block
// for the derived table. But the materialization step is unnecessary, so
// return a ZERO_ROWS path directly for the derived table. This also
// allows subtrees of this query block to be removed (if the derived table
// is inner-joined to some other tables).
path = *NewZeroRowsAccessPath(
m_thd, new (m_thd->mem_root) AccessPath(path), always_empty_cause);
}
}
assert(path.cost >= 0.0);
ProposeAccessPathForBaseTable(node_idx, force_num_output_rows_after_filter,
/*description_for_trace=*/"", &path);
return false;
}
bool CostingReceiver::ProposeIndexScan(
TABLE *table, int node_idx, double force_num_output_rows_after_filter,
unsigned key_idx, bool reverse, int ordering_idx) {
AccessPath path;
path.type = AccessPath::INDEX_SCAN;
path.index_scan().table = table;
path.index_scan().idx = key_idx;
path.index_scan().use_order = true;
path.index_scan().reverse = reverse;
path.count_examined_rows = true;
path.ordering_state = m_orderings->SetOrder(ordering_idx);
double num_output_rows = table->file->stats.records;
double cost;
// If a table scan and a primary key scan is the very same thing,
// they should also have the same cost. However, read_cost()
// is based on number of rows, and table_scan_cost() is based on
// on-disk size, so it's complete potluck which one gives the
// higher number. We force primary scan cost to be table scan cost
// plus an arbitrary 0.1% factor, so that we will always prefer
// table scans if we don't need the ordering (both for user experience,
// and in case there _is_ a performance difference in the storage
// engine), but primary index scans otherwise.
//
// Note that this will give somewhat more access paths than is
// required in some cases.
if (table->s->primary_key == key_idx &&
table->file->primary_key_is_clustered()) {
cost = table->file->table_scan_cost().total_cost() * 1.001;
} else if (table->covering_keys.is_set(key_idx)) {
// The index is covering, so we can do an index-only scan.
cost =
table->file->index_scan_cost(key_idx, /*ranges=*/1.0, num_output_rows)
.total_cost();
} else {
cost = table->file->read_cost(key_idx, /*ranges=*/1.0, num_output_rows)
.total_cost();
}
path.num_output_rows_before_filter = num_output_rows;
path.init_cost = path.init_once_cost = 0.0;
path.cost_before_filter = path.cost = cost;
if (IsBitSet(node_idx, m_immediate_update_delete_candidates)) {
path.immediate_update_delete_table = node_idx;
// Don't allow immediate update of the key that is being scanned.
if (IsUpdateStatement(m_thd) &&
is_key_used(table, key_idx, table->write_set)) {
path.immediate_update_delete_table = -1;
}
}
ProposeAccessPathForBaseTable(node_idx, force_num_output_rows_after_filter,
table->key_info[key_idx].name, &path);
return false;
}
// Checks if a given predicate can be subsumed by a full-text index. It can
// be subsumed if it returns TRUE for all documents returned by the full-text
// index, and FALSE for all other documents. Since a full-text index scan
// returns the documents with a positive score, predicates that are either a
// standalone call to MATCH, a comparison of MATCH > 0, or a comparison of
// 0 < MATCH, are considered subsumable.
//
// We assume that this function is only called on predicates for which
// IsSargableFullTextIndexPredicate() has returned true, so that we
// already know the predicate is a standalone MATCH function or a <, <=, >
// or >= comparing match to a constant.
bool IsSubsumableFullTextPredicate(Item_func *condition) {
switch (condition->functype()) {
case Item_func::MATCH_FUNC: {
// WHERE MATCH (col) AGAINST ('search string') is subsumable.
return true;
}
case Item_func::GT_FUNC: {
// WHERE MATCH (col) AGAINST ('search string') > 0 is subsumable.
assert(is_function_of_type(condition->get_arg(0), Item_func::FT_FUNC));
assert(condition->get_arg(1)->const_item());
const double value = condition->get_arg(1)->val_real();
assert(!condition->get_arg(1)->null_value);
return value == 0;
}
case Item_func::LT_FUNC: {
// WHERE 0 < MATCH (col) AGAINST ('search string') subsumable.
assert(condition->get_arg(0)->const_item());
assert(is_function_of_type(condition->get_arg(1), Item_func::FT_FUNC));
const double value = condition->get_arg(0)->val_real();
assert(!condition->get_arg(0)->null_value);
return value == 0;
}
case Item_func::GE_FUNC:
// WHERE MATCH >= const is not subsumable, but assert the predicate is on
// the expected form.
assert(is_function_of_type(condition->get_arg(0), Item_func::FT_FUNC));
assert(condition->get_arg(1)->const_item());
return false;
case Item_func::LE_FUNC:
// WHERE const <= MATCH is not subsumable, but assert the predicate is on
// the expected form.
assert(condition->get_arg(0)->const_item());
assert(is_function_of_type(condition->get_arg(1), Item_func::FT_FUNC));
return false;
default:
// Not a sargable full-text predicate, so we don't expect to be called on
// it.
assert(false);
return false;
}
}
// Assuming that we have chosen a full-text index scan on the given predicate,
// can we pass the LIMIT of the query block as a hint to the storage engine?
//
// We can do this if we know that the number of rows seen before the LIMIT
// clause is processed, is the same number of rows as returned by the index
// scan. This is the case when:
//
// 1) It is a single-table query. No joins.
//
// 2) There is no aggregation or DISTINCT which could reduce the number of rows.
//
// 3) There is no filtering of the rows returned from the index. That is, there
// is no HAVING clause, and the WHERE clause contains no predicates apart from
// those that can be subsumed by the index.
bool IsLimitHintPushableToFullTextSearch(const Item_func_match *match,
const JoinHypergraph &graph,
uint64_t fulltext_predicates) {
const Query_block *query_block = graph.query_block();
assert(query_block->has_ft_funcs());
// The query has a LIMIT clause.
if (query_block->join->m_select_limit == HA_POS_ERROR) {
return false;
}
// A single table, no joins.
if (graph.nodes.size() != 1) {
return false;
}
// No aggregation, DISTINCT or HAVING.
if (query_block->is_grouped() || query_block->is_distinct() ||
query_block->join->having_cond != nullptr) {
return false;
}
// The WHERE clause contains full-text predicates only.
if (fulltext_predicates != BitsBetween(0, graph.predicates.size())) {
return false;
}
// And all the full-text predicates must be subsumed by the index scan.
for (const Predicate &predicate : graph.predicates) {
Item_func_match *cond = GetSargableFullTextPredicate(predicate);
if (cond != match || !IsSubsumableFullTextPredicate(
down_cast<Item_func *>(predicate.condition))) {
return false;
}
}
return true;
}
// Propose full-text index scans for all full-text predicates found in the
// WHERE clause, if any. If an interesting order can be satisfied by an ordered
// full-text index scan using one of the predicates, propose an ordered scan.
// Otherwise, propose an unordered scan. (For completeness, we should have
// proposed both an ordered and an unordered scan when we have an interesting
// order. But we don't have a good estimate for the extra cost of making the
// scan ordered, so we only propose the ordered scan for simplicity. InnoDB, for
// example, uses an ordered scan regardless of whether we request it, so an
// explicitly ordered scan is no more expensive than an implicitly ordered scan,
// and it could potentially avoid a sort higher up in the query plan.)
bool CostingReceiver::ProposeAllFullTextIndexScans(
TABLE *table, int node_idx, double force_num_output_rows_after_filter) {
for (const FullTextIndexInfo &info : *m_fulltext_searches) {
if (info.match->table_ref != table->pos_in_table_list) {
continue;
}
// Propose a full-text index scan for each predicate that uses the MATCH
// function given by info.match. Note that several predicates can use the
// same MATCH function, due to Item_func_match's linking equivalent callers
// to one canonical Item_func_match object (via set_master()/get_master()).
//
// For example, we may have:
//
// WHERE MATCH (col) AGAINST ('string') AND
// MATCH (col) AGAINST ('string') > 0.3
//
// Both MATCH invocations have the same canonical Item_func_match object,
// since they have the same set of columns and search for the same string.
// In this case, we want to propose two index scans, and let the optimizer
// pick the one that gives the plan with the lowest estimated cost.
for (size_t i : BitsSetIn(m_sargable_fulltext_predicates)) {
Item_func_match *match =
GetSargableFullTextPredicate(m_graph->predicates[i]);
assert(match != nullptr);
if (match != info.match) continue;
if (ProposeFullTextIndexScan(table, node_idx, match, i, info.order,
force_num_output_rows_after_filter)) {
return true;
}
}
// Even if we have no predicates, we may use a full-text index scan if it is
// possible to pass the LIMIT clause to the index scan, and the LIMIT is no
// greater than the number of documents returned by the index scan. We only
// do this if the index scan produces rows in an interesting order. And only
// if the storage engine supports the extended full-text API, which is
// required for counting the matches in the index.
if (m_graph->predicates.empty() && info.order != 0 &&
IsLimitHintPushableToFullTextSearch(info.match, *m_graph,
m_sargable_fulltext_predicates) &&
Overlaps(table->file->ha_table_flags(), HA_CAN_FULLTEXT_EXT)) {
// The full-text function must be initialized before get_count() is
// called. Even though we call init_search() on it again after the final
// plan has been chosen, this does not mean the search is performed twice.
if (info.match->init_search(m_thd)) {
return true;
}
if (m_query_block->join->m_select_limit <= info.match->get_count()) {
if (ProposeFullTextIndexScan(table, node_idx, info.match,
/*predicate_idx=*/-1, info.order,
force_num_output_rows_after_filter)) {
return true;
}
}
}
}
return false;
}
bool CostingReceiver::ProposeFullTextIndexScan(
TABLE *table, int node_idx, Item_func_match *match, int predicate_idx,
int ordering_idx, double force_num_output_rows_after_filter) {
const unsigned key_idx = match->key;
Index_lookup *ref = new (m_thd->mem_root) Index_lookup;
if (init_ref(m_thd, /*keyparts=*/1, /*length=*/0, key_idx, ref)) {
return true;
}
ref->items[0] = match->key_item();
const Predicate *predicate =
predicate_idx == -1 ? nullptr : &m_graph->predicates[predicate_idx];
assert(predicate_idx == -1 ||
match == GetSargableFullTextPredicate(*predicate));
MutableOverflowBitset applied_predicates{m_thd->mem_root,
m_graph->predicates.size()};
MutableOverflowBitset subsumed_predicates{m_thd->mem_root,
m_graph->predicates.size()};
double num_output_rows;
double num_output_rows_from_index;
if (predicate == nullptr) {
// We have no predicate. The index is used only for ordering. We only do
// this if we have a limit. Note that we keep the full row number count
// here, to get consistent results; we only apply the limit for cost
// calculations.
assert(m_query_block->join->m_select_limit != HA_POS_ERROR);
num_output_rows = table->file->stats.records;
num_output_rows_from_index =
min(table->file->stats.records, m_query_block->join->m_select_limit);
} else {
num_output_rows_from_index =
table->file->stats.records * predicate->selectivity;
if (TableBitmap(node_idx) == predicate->total_eligibility_set) {
applied_predicates.SetBit(predicate_idx);
if (IsSubsumableFullTextPredicate(
down_cast<Item_func *>(predicate->condition))) {
// The predicate can be fully subsumed by the index. Apply the full
// selectivity on the index scan and mark the predicate as subsumed.
subsumed_predicates.SetBit(predicate_idx);
}
num_output_rows = num_output_rows_from_index;
} else {
// We have a MATCH() predicate pushed down to a table that is on the inner
// side of an outer join. It needs to be re-checked later, so we don't set
// applied_predicates (and thus, we also cannot set subsumed_predicates).
// In reality, we've done all the filtering already, but if we said that,
// we'd get an inconsistent row count. This is one of the few cases where
// inconsistent row counts are actually possible to get, but given that
// the situation is so rare (and would have been even rarer if MATCH()
// conditions triggered outer-to-inner conversions through
// not_null_tables(), which it cannot as long as MATCH() on NULL returns
// 0.0 instead of NULL), we opt for the lesser evil and delay the
// selectivity application to the point of the WHERE().
num_output_rows = table->file->stats.records;
}
}
const double cost = EstimateCostForRefAccess(m_thd, table, key_idx,
num_output_rows_from_index);
const LogicalOrderings::StateIndex ordering_state =
m_orderings->SetOrder(ordering_idx);
const bool use_order = ordering_state != 0;
AccessPath *path = NewFullTextSearchAccessPath(
m_thd, table, ref, match, use_order,
IsLimitHintPushableToFullTextSearch(match, *m_graph,
m_sargable_fulltext_predicates),
/*count_examined_rows=*/true);
path->set_num_output_rows(num_output_rows);
path->num_output_rows_before_filter = num_output_rows;
path->cost = path->cost_before_filter = cost;
path->init_cost = path->init_once_cost = 0;
path->ordering_state = ordering_state;
if (IsBitSet(node_idx, m_immediate_update_delete_candidates)) {
path->immediate_update_delete_table = node_idx;
// Don't allow immediate update of the key that is being scanned.
if (IsUpdateStatement(m_thd) &&
is_key_used(table, key_idx, table->write_set)) {
path->immediate_update_delete_table = -1;
}
}
ProposeAccessPathForIndex(
node_idx, std::move(applied_predicates), std::move(subsumed_predicates),
force_num_output_rows_after_filter, table->key_info[key_idx].name, path);
return false;
}
void CostingReceiver::ProposeAccessPathForBaseTable(
int node_idx, double force_num_output_rows_after_filter,
const char *description_for_trace, AccessPath *path) {
for (bool materialize_subqueries : {false, true}) {
FunctionalDependencySet new_fd_set;
ApplyPredicatesForBaseTable(
node_idx,
/*applied_predicates=*/
MutableOverflowBitset{m_thd->mem_root, m_graph->predicates.size()},
/*subsumed_predicates=*/
MutableOverflowBitset{m_thd->mem_root, m_graph->predicates.size()},
materialize_subqueries, path, &new_fd_set);
path->ordering_state =
m_orderings->ApplyFDs(path->ordering_state, new_fd_set);
if (force_num_output_rows_after_filter >= 0.0) {
path->set_num_output_rows(force_num_output_rows_after_filter);
}
ProposeAccessPathWithOrderings(
TableBitmap(node_idx), new_fd_set, /*obsolete_orderings=*/0, path,
materialize_subqueries ? "mat. subq" : description_for_trace);
if (!Overlaps(path->filter_predicates,
m_graph->materializable_predicates)) {
// Nothing to try to materialize.
return;
}
}
}
/**
See which predicates that apply to this table. Some can be applied
right away, some require other tables first and must be delayed.
@param node_idx Index of the base table in the nodes array.
@param applied_predicates Bitmap of predicates that are already
applied by means of ref access, and should not be recalculated selectivity
for.
@param subsumed_predicates Bitmap of predicates that are applied
by means of ref access and do not need to rechecked. Overrides
applied_predicates.
@param materialize_subqueries If true, any subqueries in the
predicate should be materialized. (If there are multiple ones,
this is an all-or-nothing decision, for simplicity.)
@param [in,out] path The access path to apply the predicates to.
Note that if materialize_subqueries is true, a FILTER access path
will be inserted (overwriting "path", although a copy of it will
be set as a child), as AccessPath::filter_predicates always assumes
non-materialized subqueries.
*/
void CostingReceiver::ApplyPredicatesForBaseTable(
int node_idx, OverflowBitset applied_predicates,
OverflowBitset subsumed_predicates, bool materialize_subqueries,
AccessPath *path, FunctionalDependencySet *new_fd_set) {
double materialize_cost = 0.0;
const NodeMap my_map = TableBitmap(node_idx);
path->set_num_output_rows(path->num_output_rows_before_filter);
path->cost = path->cost_before_filter;
MutableOverflowBitset filter_predicates{m_thd->mem_root,
m_graph->predicates.size()};
MutableOverflowBitset delayed_predicates{m_thd->mem_root,
m_graph->predicates.size()};
new_fd_set->reset();
for (size_t i = 0; i < m_graph->num_where_predicates; ++i) {
if (IsBitSet(i, subsumed_predicates)) {
// Apply functional dependencies for the base table, but no others;
// this ensures we get the same functional dependencies set no matter what
// access path we choose. (The ones that refer to multiple tables,
// which are fairly rare, are not really relevant before the other
// table(s) have been joined in.)
if (m_graph->predicates[i].total_eligibility_set == my_map) {
*new_fd_set |= m_graph->predicates[i].functional_dependencies;
} else {
// We have a WHERE predicate that refers to multiple tables,
// that we can subsume as if it were a join condition
// (perhaps because it was identical to an actual join condition).
// The other side of the join will mark it as delayed, so we
// need to do so, too. Otherwise, we would never apply the
// associated functional dependency at the right time.
delayed_predicates.SetBit(i);
}
continue;
}
// TODO(sgunders): We should also allow conditions that depend on
// parameterized tables (and also touch this table, of course). See bug
// #33477822.
if (m_graph->predicates[i].total_eligibility_set == my_map) {
filter_predicates.SetBit(i);
FilterCost cost =
EstimateFilterCost(m_thd, path->num_output_rows(),
m_graph->predicates[i].contained_subqueries);
if (materialize_subqueries) {
path->cost += cost.cost_if_materialized;
materialize_cost += cost.cost_to_materialize;
} else {
path->cost += cost.cost_if_not_materialized;
path->init_cost += cost.init_cost_if_not_materialized;
}
if (IsBitSet(i, applied_predicates)) {
// We already factored in this predicate when calculating
// the selectivity of the ref access, so don't do it again.
} else {
path->set_num_output_rows(path->num_output_rows() *
m_graph->predicates[i].selectivity);
}
*new_fd_set |= m_graph->predicates[i].functional_dependencies;
} else if (Overlaps(m_graph->predicates[i].total_eligibility_set, my_map)) {
delayed_predicates.SetBit(i);
}
}
path->filter_predicates = std::move(filter_predicates);
path->delayed_predicates = std::move(delayed_predicates);
if (materialize_subqueries) {
CommitBitsetsToHeap(path);
ExpandSingleFilterAccessPath(m_thd, path, m_query_block->join,
m_graph->predicates,
m_graph->num_where_predicates);
assert(path->type == AccessPath::FILTER);
path->filter().materialize_subqueries = true;
path->cost += materialize_cost; // Will be subtracted back for rescans.
path->init_cost += materialize_cost;
path->init_once_cost += materialize_cost;
}
}
/**
Checks if the table given by "node_idx" has all its lateral dependencies
satisfied by the set of tables given by "tables".
*/
bool LateralDependenciesAreSatisfied(int node_idx, NodeMap tables,
const JoinHypergraph &graph) {
const Table_ref *table_ref = graph.nodes[node_idx].table->pos_in_table_list;
if (table_ref->is_derived()) {
const NodeMap lateral_deps = GetNodeMapFromTableMap(
table_ref->derived_query_expression()->m_lateral_deps,
graph.table_num_to_node_num);
return IsSubset(lateral_deps, tables);
}
// Not a lateral derived table, so there are no lateral dependencies, and
// hence all lateral dependencies are satisfied.
return true;
}
/**
Find the set of tables we can join directly against, given that we have the
given set of tables on one of the sides (effectively the same concept as
DPhyp's “neighborhood”). Note that having false negatives here is fine
(it will only make DisallowParameterizedJoinPath() slightly less effective),
but false positives is not (it may disallow valid parameterized paths,
ultimately even making LATERAL queries impossible to plan). Thus, we need
to check conflict rules, and our handling of hyperedges with more than one
table on the other side may also be a bit too strict (this may need
adjustments when we get FULL OUTER JOIN).
If this calculation turns out to be slow, we could probably cache it in
AccessPathSet, or even try to build it incrementally.
*/
NodeMap FindReachableTablesFrom(NodeMap tables, const JoinHypergraph &graph) {
const Mem_root_array<Node> &nodes = graph.graph.nodes;
const Mem_root_array<Hyperedge> &edges = graph.graph.edges;
NodeMap reachable = 0;
for (int node_idx : BitsSetIn(tables)) {
for (int neighbor_idx :
BitsSetIn(nodes[node_idx].simple_neighborhood & ~reachable)) {
if (LateralDependenciesAreSatisfied(neighbor_idx, tables, graph)) {
reachable |= TableBitmap(neighbor_idx);
}
}
for (int edge_idx : nodes[node_idx].complex_edges) {
if (IsSubset(edges[edge_idx].left, tables)) {
NodeMap others = edges[edge_idx].right & ~tables;
if (IsSingleBitSet(others) && !Overlaps(others, reachable) &&
PassesConflictRules(tables, graph.edges[edge_idx / 2].expr) &&
LateralDependenciesAreSatisfied(FindLowestBitSet(others), tables,
graph)) {
reachable |= others;
}
}
}
}
return reachable;
}
// Returns whether the given set of parameter tables is partially, but not
// fully, resolved by joining towards the other side.
bool PartiallyResolvedParameterization(NodeMap parameter_tables,
NodeMap other_side) {
return (parameter_tables & ~other_side) != 0 &&
(parameter_tables & ~other_side) != parameter_tables;
}
/**
Decide whether joining the two given paths would create a disallowed
parameterized path. Parameterized paths are disallowed if they delay
joining in their parameterizations without reason (ie., they could
join in a parameterization right away, but don't). This is a trick
borrowed from Postgres, which essentially forces inner-join ref-lookup
plans to be left-deep (since such plans never gain anything from being
bushy), reducing the search space significantly without compromising
plan quality.
*/
bool DisallowParameterizedJoinPath(AccessPath *left_path,
AccessPath *right_path, NodeMap left,
NodeMap right, NodeMap left_reachable,
NodeMap right_reachable) {
const NodeMap left_parameters = left_path->parameter_tables & ~RAND_TABLE_BIT;
const NodeMap right_parameters =
right_path->parameter_tables & ~RAND_TABLE_BIT;
if (IsSubset(left_parameters | right_parameters, left | right)) {
// Not creating a parameterized path, so it's always fine.
return false;
}
if (!Overlaps(right_parameters, right_reachable) &&
!Overlaps(left_parameters, left_reachable)) {
// Either left or right cannot resolve any of their parameterizations yet
// (e.g., we're still on the inside of an outer join that we cannot
// finish yet), so we cannot avoid keeping them if we want to use index
// lookups here at all.
return false;
}
// If the outer table partially, but not fully, resolves the inner table's
// parameterization, we still allow it (otherwise, we could not have
// multi-part index lookups where the keyparts come from different tables).
// This is the so-called “star-schema exception”.
//
// We need to check both ways, in case we try to swap them for a hash join.
// Only one of these will ever be true in any given join anyway (joins where
// we try to resolve the outer path's parameterizations with the inner one
// are disallowed), so we do not allow more than is required.
if (PartiallyResolvedParameterization(left_parameters, right) ||
PartiallyResolvedParameterization(right_parameters, left)) {
return false;
}
// Disallow this join; left or right (or both) should resolve their
// parameterizations before we try to combine them.
return true;
}
/**
Checks if the result of a join is empty, given that it is known that one or
both of the join legs always produces an empty result.
*/
bool IsEmptyJoin(const RelationalExpression::Type join_type, bool left_is_empty,
bool right_is_empty) {
switch (join_type) {
case RelationalExpression::INNER_JOIN:
case RelationalExpression::STRAIGHT_INNER_JOIN:
case RelationalExpression::SEMIJOIN:
// If either side of an inner join or a semijoin is empty, the result of
// the join is also empty.
return left_is_empty || right_is_empty;
case RelationalExpression::LEFT_JOIN:
case RelationalExpression::ANTIJOIN:
// If the outer side of a left join or an antijoin is empty, the result of
// the join is also empty.
return left_is_empty;
case RelationalExpression::FULL_OUTER_JOIN:
// If both sides of a full outer join are empty, the result of the join is
// also empty.
return left_is_empty && right_is_empty;
case RelationalExpression::TABLE:
case RelationalExpression::MULTI_INNER_JOIN:
break;
}
assert(false);
return false;
}
/**
If the ON clause of a left join only references tables on the right side of
the join, pushing the condition into the right side is a valid thing to do. If
such conditions are not pushed down for some reason, and are left in the ON
clause, HeatWave might reject the query. This happens if the entire join
condition is degenerate and only references the right side. Such conditions
are most commonly seen in queries that have gone through subquery_to_derived
transformation.
This limitation is worked around here by moving the degenerate join condition
from the join predicate to a filter path on top of the right path. This is
only done for secondary storage engines.
TODO(khatlen): If HeatWave gets capable of processing queries with such
conditions, this workaround should be removed.
*/
void MoveDegenerateJoinConditionToFilter(THD *thd, Query_block *query_block,
const JoinPredicate **edge,
AccessPath **right_path) {
assert(SecondaryEngineHandlerton(thd) != nullptr);
const RelationalExpression *expr = (*edge)->expr;
assert(expr->type == RelationalExpression::LEFT_JOIN);
// If we have a degenerate join condition which references some tables on the
// inner side of the join, and no tables on the outer side, we are allowed to
// filter on that condition before the join. Do so
if (expr->conditions_used_tables == 0 ||
!IsSubset(expr->conditions_used_tables, expr->right->tables_in_subtree)) {
return;
}
// If the join condition only references tables on one side of the join, there
// cannot be any equijoin conditions, as they reference both sides.
assert(expr->equijoin_conditions.empty());
assert(!expr->join_conditions.empty());
// Create a filter on top of right_path. This filter contains the entire
// (degenerate) join condition.
List<Item> conds;
for (Item *cond : expr->join_conditions) {
conds.push_back(cond);
}
Item *filter_cond = CreateConjunction(&conds);
AccessPath *filter_path = NewFilterAccessPath(thd, *right_path, filter_cond);
CopyBasicProperties(**right_path, filter_path);
filter_path->set_num_output_rows(filter_path->num_output_rows() *
(*edge)->selectivity);
filter_path->cost += EstimateFilterCost(thd, (*right_path)->num_output_rows(),
filter_cond, query_block)
.cost_if_not_materialized;
// Build a new join predicate with no join condition.
RelationalExpression *new_expr =
new (thd->mem_root) RelationalExpression(thd);
new_expr->type = expr->type;
new_expr->tables_in_subtree = expr->tables_in_subtree;
new_expr->nodes_in_subtree = expr->nodes_in_subtree;
new_expr->left = expr->left;
new_expr->right = expr->right;
JoinPredicate *new_edge = new (thd->mem_root) JoinPredicate{
new_expr, /*selectivity=*/1.0, (*edge)->estimated_bytes_per_row,
(*edge)->functional_dependencies, /*functional_dependencies_idx=*/{}};
// Use the filter path and the new join edge with no condition for creating
// the hash join.
*right_path = filter_path;
*edge = new_edge;
}
/**
Called to signal that it's possible to connect the non-overlapping
table subsets “left” and “right” through the edge given by “edge_idx”
(which corresponds to an index in m_graph->edges), ie., we have found
a legal subplan for joining (left ∪ right). Assign it a cost based on
the cost of the children and the join method we use. (Currently, there
is only one -- hash join.)
There may be multiple such calls for the same subplan; e.g. for
inner-joining {t1,t2,t3}, we will get calls for both {t1}/{t2,t3}
and {t1,t2}/{t3}, and need to assign costs to both and keep the
cheapest one. However, we will not get calls with the two subsets
in reversed order.
*/
bool CostingReceiver::FoundSubgraphPair(NodeMap left, NodeMap right,
int edge_idx) {
if (m_thd->is_error()) return true;
m_graph->secondary_engine_costing_flags |=
SecondaryEngineCostingFlag::HAS_MULTIPLE_BASE_TABLES;
if (++m_num_seen_subgraph_pairs > m_subgraph_pair_limit &&
m_subgraph_pair_limit >= 0) {
// Bail out; we're going to be needing graph simplification,
// which the caller will handle for us.
return true;
}
assert(left != 0);
assert(right != 0);
assert((left & right) == 0);
const JoinPredicate *edge = &m_graph->edges[edge_idx];
if (!PassesConflictRules(left | right, edge->expr)) {
return false;
}
bool is_commutative = OperatorIsCommutative(*edge->expr);
// If we have an equi-semijoin, and the inner side is deduplicated
// on the group given by the join predicates, we can rewrite it to an
// inner join, which is commutative. This is a win in some cases
// where we have an index on the outer side but not the inner side.
// (It is rarely a significant win in hash join, especially as we
// don't propagate orders through it, but we propose it anyway for
// simplicity.)
//
// See the comment on OperatorsAreAssociative() for why we don't
// also need to change the rules about associativity or l-asscom.
bool can_rewrite_semi_to_inner =
edge->expr->type == RelationalExpression::SEMIJOIN &&
edge->ordering_idx_needed_for_semijoin_rewrite != -1;
// Enforce that recursive references need to be leftmost.
if (Overlaps(right, forced_leftmost_table)) {
if (!is_commutative) {
assert(IsSingleBitSet(forced_leftmost_table));
const int node_idx = FindLowestBitSet(forced_leftmost_table);
my_error(ER_CTE_RECURSIVE_FORBIDDEN_JOIN_ORDER, MYF(0),
m_graph->nodes[node_idx].table->alias);
return true;
}
swap(left, right);
}
if (Overlaps(left, forced_leftmost_table)) {
is_commutative = false;
can_rewrite_semi_to_inner = false;
}
auto left_it = m_access_paths.find(left);
assert(left_it != m_access_paths.end());
auto right_it = m_access_paths.find(right);
assert(right_it != m_access_paths.end());
const FunctionalDependencySet new_fd_set =
left_it->second.active_functional_dependencies |
right_it->second.active_functional_dependencies |
edge->functional_dependencies;
OrderingSet new_obsolete_orderings =
left_it->second.obsolete_orderings | right_it->second.obsolete_orderings;
if (edge->ordering_idx_needed_for_semijoin_rewrite >= 1 &&
edge->ordering_idx_needed_for_semijoin_rewrite < kMaxSupportedOrderings) {
// This ordering won't be needed anymore after the join is done,
// so mark it as obsolete.
new_obsolete_orderings.set(edge->ordering_idx_needed_for_semijoin_rewrite);
}
// Check if the join is known to produce an empty result. If so, we will
// return a ZERO_ROWS path instead of a join path, but we cannot do that just
// yet. We need to create the join path first and attach it to the ZERO_ROWS
// path, in case a join higher up in the join tree needs to know which tables
// are pruned away (typically for null-complementing in outer joins).
const bool always_empty =
IsEmptyJoin(edge->expr->type, left_it->second.always_empty,
right_it->second.always_empty);
// If the join is known to produce an empty result, and will be replaced by a
// ZERO_ROWS path further down, temporarily disable the secondary engine cost
// hook. There's no point in asking the secondary engine to provide a cost
// estimate for an access path we know will be discarded.
const secondary_engine_modify_access_path_cost_t saved_cost_hook =
m_secondary_engine_cost_hook;
if (always_empty) {
m_secondary_engine_cost_hook = nullptr;
}
bool wrote_trace = false;
const NodeMap left_reachable = FindReachableTablesFrom(left, *m_graph);
const NodeMap right_reachable = FindReachableTablesFrom(right, *m_graph);
for (AccessPath *right_path : right_it->second.paths) {
assert(BitsetsAreCommitted(right_path));
if (edge->expr->join_conditions_reject_all_rows &&
edge->expr->type != RelationalExpression::FULL_OUTER_JOIN) {
// If the join condition can never be true, we also don't need to read the
// right side. For inner joins and semijoins, we can actually just skip
// reading the left side as well, but if so, the join condition would
// normally be pulled up into a WHERE condition (or into the join
// condition of the next higher non-inner join), so we'll never see that
// in practice, and thus, don't care particularly about the case. We also
// don't need to care much about the ordering, since we don't propagate
// the right-hand ordering properties through joins.
AccessPath *zero_path = NewZeroRowsAccessPath(
m_thd, right_path, "Join condition rejects all rows");
MutableOverflowBitset applied_sargable_join_predicates =
right_path->applied_sargable_join_predicates().Clone(m_thd->mem_root);
applied_sargable_join_predicates.ClearBits(0,
m_graph->num_where_predicates);
zero_path->filter_predicates =
std::move(applied_sargable_join_predicates);
zero_path->delayed_predicates = right_path->delayed_predicates;
right_path = zero_path;
}
for (AccessPath *left_path : left_it->second.paths) {
if (DisallowParameterizedJoinPath(left_path, right_path, left, right,
left_reachable, right_reachable)) {
continue;
}
assert(BitsetsAreCommitted(left_path));
// For inner joins and full outer joins, the order does not matter.
// In lieu of a more precise cost model, always keep the one that hashes
// the fewest amount of rows. (This has lower initial cost, and the same
// cost.)
//
// Finally, if either of the sides are parameterized on something
// external, flipping the order will not necessarily be allowed (and would
// cause us to not give a hash join for these tables at all).
if (is_commutative &&
!Overlaps(left_path->parameter_tables | right_path->parameter_tables,
RAND_TABLE_BIT)) {
if (left_path->num_output_rows() < right_path->num_output_rows()) {
ProposeHashJoin(right, left, right_path, left_path, edge, new_fd_set,
new_obsolete_orderings,
/*rewrite_semi_to_inner=*/false, &wrote_trace);
} else {
ProposeHashJoin(left, right, left_path, right_path, edge, new_fd_set,
new_obsolete_orderings,
/*rewrite_semi_to_inner=*/false, &wrote_trace);
}
} else {
ProposeHashJoin(left, right, left_path, right_path, edge, new_fd_set,
new_obsolete_orderings,
/*rewrite_semi_to_inner=*/false, &wrote_trace);
if (is_commutative || can_rewrite_semi_to_inner) {
ProposeHashJoin(right, left, right_path, left_path, edge, new_fd_set,
new_obsolete_orderings,
/*rewrite_semi_to_inner=*/can_rewrite_semi_to_inner,
&wrote_trace);
}
}
ProposeNestedLoopJoin(left, right, left_path, right_path, edge,
/*rewrite_semi_to_inner=*/false, new_fd_set,
new_obsolete_orderings, &wrote_trace);
if (is_commutative || can_rewrite_semi_to_inner) {
ProposeNestedLoopJoin(
right, left, right_path, left_path, edge,
/*rewrite_semi_to_inner=*/can_rewrite_semi_to_inner, new_fd_set,
new_obsolete_orderings, &wrote_trace);
}
m_overflow_bitset_mem_root.ClearForReuse();
}
}
if (always_empty) {
m_secondary_engine_cost_hook = saved_cost_hook;
const auto it = m_access_paths.find(left | right);
if (it != m_access_paths.end() && !it->second.paths.empty() &&
!it->second.always_empty) {
AccessPath *first_candidate = it->second.paths.front();
AccessPath *zero_path =
NewZeroRowsAccessPath(m_thd, first_candidate, "impossible WHERE");
MutableOverflowBitset applied_sargable_join_predicates =
first_candidate->applied_sargable_join_predicates().Clone(
m_thd->mem_root);
applied_sargable_join_predicates.ClearBits(0,
m_graph->num_where_predicates);
zero_path->filter_predicates =
std::move(applied_sargable_join_predicates);
zero_path->delayed_predicates = first_candidate->delayed_predicates;
zero_path->ordering_state = first_candidate->ordering_state;
ProposeAccessPathWithOrderings(
left | right, it->second.active_functional_dependencies,
it->second.obsolete_orderings, zero_path, "empty join");
}
}
if (m_trace != nullptr) {
TraceAccessPaths(left | right);
}
return false;
}
/**
Build an access path that deduplicates its input on a certain grouping.
This is used for converting semijoins to inner joins. If the grouping is
empty, all rows are the same, and we make a simple LIMIT 1 instead.
*/
AccessPath *DeduplicateForSemijoin(THD *thd, AccessPath *path,
Item **semijoin_group,
int semijoin_group_size) {
AccessPath *dedup_path;
if (semijoin_group_size == 0) {
dedup_path = NewLimitOffsetAccessPath(thd, path, /*limit=*/1, /*offset=*/0,
/*count_all_rows=*/false,
/*reject_multiple_rows=*/false,
/*send_records_override=*/nullptr);
} else {
dedup_path = NewRemoveDuplicatesAccessPath(thd, path, semijoin_group,
semijoin_group_size);
CopyBasicProperties(*path, dedup_path);
// TODO(sgunders): Model the actual reduction in rows somehow.
dedup_path->cost += kAggregateOneRowCost * path->num_output_rows();
}
return dedup_path;
}
string CostingReceiver::PrintSubgraphHeader(const JoinPredicate *edge,
const AccessPath &join_path,
NodeMap left, NodeMap right) const {
string ret =
StringPrintf("\nFound sets %s and %s, connected by condition %s\n",
PrintSet(left).c_str(), PrintSet(right).c_str(),
GenerateExpressionLabel(edge->expr).c_str());
for (int pred_idx : BitsSetIn(join_path.filter_predicates)) {
ret += StringPrintf(
" - applied (delayed) predicate %s\n",
ItemToString(m_graph->predicates[pred_idx].condition).c_str());
}
return ret;
}
void CostingReceiver::ProposeHashJoin(
NodeMap left, NodeMap right, AccessPath *left_path, AccessPath *right_path,
const JoinPredicate *edge, FunctionalDependencySet new_fd_set,
OrderingSet new_obsolete_orderings, bool rewrite_semi_to_inner,
bool *wrote_trace) {
if (!SupportedEngineFlag(SecondaryEngineFlag::SUPPORTS_HASH_JOIN)) return;
if (Overlaps(left_path->parameter_tables, right) ||
Overlaps(right_path->parameter_tables, left | RAND_TABLE_BIT)) {
// Parameterizations must be resolved by nested loop.
// We can still have parameters from outside the join, though
// (even in the hash table; but it must be cleared for each Init() then).
return;
}
if (Overlaps(left | right, m_fulltext_tables)) {
// Evaluation of a full-text function requires that the underlying scan is
// positioned on the row that contains the value to be searched. It is not
// enough that table->record[0] contains the row; the handler needs to be
// actually positioned on the row. This does not work so well with hash
// joins, since they may return rows in a different order than that of the
// underlying scan.
//
// For now, be conservative and don't propose a hash join if either side of
// the join contains a full-text searched table. It is possible to be more
// lenient and allow hash joins if all the full-text search functions on the
// accessed tables have been fully pushed down to the table/index scan and
// don't need to be evaluated again outside of the join.
return;
}
// A semijoin by definition should have a semijoin condition to work with and
// also that the inner table of a semijoin should not be visible outside of
// the semijoin. However, MySQL's semijoin transformation when combined with
// outer joins might result in a transformation which might do just that. This
// transformation cannot be interpreted as is, but instead needs some special
// handling in optimizer to correctly do the semijoin and outer join. However,
// this is a problem for hypergraph. For a pattern like:
// t1 left join (t2 semijoin t3 on true) on t1.a = t2.a and t1.b = t3.a, where
// a semijoin does not have any condition to work with, it is expected that
// all joins including the outer join be performed before the duplicate
// removal happens for semijoin (Complete details in WL#5561). This is not
// possible with hash joins. Such a pattern is a result of having a subquery
// in an ON condition like:
// SELECT * FROM t1 LEFT JOIN t2 ON t1.a= t2.a AND t1.b IN (SELECT a FROM t3);
// So we ban the transformation itself for hypergraph during resolving.
//
// However, this also bans the transformation for a query like this:
// SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.a AND t1.a IN (SELECT a FROM t3).
// For the above query, because of the multiple equalities, we could have
// t1 LEFT JOIN (t2 SEMIJOIN t3 ON t2.a=t3.a) ON t1.a=t2.a which could be
// executed using hash joins. This is a problem for secondary engine, as
// without the semijoin transformation, it needs to process subqueries which
// it cannot at present. So we allow the transformation to go through during
// resolving when secondary engine optimization is ON and recognize the
// pattern when hash join is not possible and reject it here. This is not an
// issue for secondary engine as it eventually rejects such a query because
// it can only perform hash joins. However it's a problem if we allow for
// primary engine as hypergraph can go ahead and produce a mix of NLJ and hash
// joins which leads to wrong results.
// TODO(Chaithra): It is possible that the various join nests are looked at
// carefully when relational expressions are created and forcing only NLJ's
// for such cases.
if (edge->expr->type == RelationalExpression::LEFT_JOIN &&
edge->expr->right->type == RelationalExpression::SEMIJOIN) {
// Check if there is a condition connecting the left side of the outer
// join and inner side of the semijoin. This is a deviation from the
// definition of a semijoin which makes it not possible to execute such
// a plan with hash joins.
RelationalExpression *semijoin = edge->expr->right;
const table_map disallowed_tables =
semijoin->tables_in_subtree & ~GetVisibleTables(semijoin);
if (disallowed_tables != 0) {
for (Item *cond : edge->expr->equijoin_conditions) {
if (Overlaps(disallowed_tables, cond->used_tables()) &&
Overlaps(edge->expr->left->tables_in_subtree,
cond->used_tables())) {
return;
}
}
for (Item *cond : edge->expr->join_conditions) {
if (Overlaps(disallowed_tables, cond->used_tables()) &&
Overlaps(edge->expr->left->tables_in_subtree,
cond->used_tables())) {
return;
}
}
}
}
if (edge->expr->type == RelationalExpression::LEFT_JOIN &&
SecondaryEngineHandlerton(m_thd) != nullptr) {
MoveDegenerateJoinConditionToFilter(m_thd, m_query_block, &edge,
&right_path);
}
assert(BitsetsAreCommitted(left_path));
assert(BitsetsAreCommitted(right_path));
AccessPath join_path;
join_path.type = AccessPath::HASH_JOIN;
join_path.parameter_tables =
(left_path->parameter_tables | right_path->parameter_tables) &
~(left | right);
join_path.hash_join().outer = left_path;
join_path.hash_join().inner = right_path;
join_path.hash_join().join_predicate = edge;
join_path.hash_join().store_rowids = false;
join_path.hash_join().rewrite_semi_to_inner = rewrite_semi_to_inner;
join_path.hash_join().tables_to_get_rowid_for = 0;
join_path.hash_join().allow_spill_to_disk = true;
// The rows from the inner side of a hash join come in different order from
// that of the underlying scan, so we need to store row IDs for any
// update/delete target tables on the inner side, so that we know which rows
// to update or delete. The same applies to rows from the outer side, if the
// hash join spills to disk, so we need to store row IDs for both sides.
if (Overlaps(m_update_delete_target_nodes, left | right)) {
FindTablesToGetRowidFor(&join_path);
}
// See the equivalent code in ProposeNestedLoopJoin().
if (rewrite_semi_to_inner) {
int ordering_idx = edge->ordering_idx_needed_for_semijoin_rewrite;
assert(ordering_idx != -1);
if (ordering_idx != 0 && !m_orderings->DoesFollowOrder(
left_path->ordering_state, ordering_idx)) {
return;
}
assert(edge->expr->type == RelationalExpression::SEMIJOIN);
// NOTE: We purposefully don't overwrite left_path here, so that we
// don't have to worry about copying ordering_state etc.
CommitBitsetsToHeap(left_path);
join_path.hash_join().outer = DeduplicateForSemijoin(
m_thd, left_path, edge->semijoin_group, edge->semijoin_group_size);
}
// TODO(sgunders): Consider removing redundant join conditions.
// Normally, it's better to have more equijoin conditions than fewer,
// but in this case, every row should fall into the same hash bucket anyway,
// so they do not help.
double num_output_rows;
{
double right_path_already_applied_selectivity =
FindAlreadyAppliedSelectivity(edge, left_path, right_path, left, right);
if (right_path_already_applied_selectivity < 0.0) {
return;
}
double outer_input_rows = left_path->num_output_rows();
double inner_input_rows =
right_path->num_output_rows() / right_path_already_applied_selectivity;
// If left and right are flipped for semijoins, we need to flip
// them back for row calculation (or we'd clamp to the wrong value).
if (rewrite_semi_to_inner) {
swap(outer_input_rows, inner_input_rows);
}
num_output_rows =
FindOutputRowsForJoin(outer_input_rows, inner_input_rows, edge);
}
// left_path and join_path.hash_join().outer are intentionally different if
// rewrite_semi_to_inner is true. See comment where DeduplicateForSemijoin()
// is called above. We want to calculate join cost based on the actual left
// child, so use join_path.hash_join().outer in cost calculations for
// join_path.
const AccessPath *outer = join_path.hash_join().outer;
// TODO(sgunders): Add estimates for spill-to-disk costs.
// NOTE: Keep this in sync with SimulateJoin().
const double build_cost =
right_path->cost + right_path->num_output_rows() * kHashBuildOneRowCost;
double cost = outer->cost + build_cost +
outer->num_output_rows() * kHashProbeOneRowCost +
num_output_rows * kHashReturnOneRowCost;
// Note: This isn't strictly correct if the non-equijoin conditions
// have selectivities far from 1.0; the cost should be calculated
// on the number of rows after the equijoin conditions, but before
// the non-equijoin conditions.
cost += num_output_rows * edge->expr->join_conditions.size() *
kApplyOneFilterCost;
join_path.num_output_rows_before_filter = num_output_rows;
join_path.cost_before_filter = cost;
join_path.set_num_output_rows(num_output_rows);
join_path.init_cost = build_cost + outer->init_cost;
double estimated_bytes_per_row = edge->estimated_bytes_per_row;
// If the edge is part of a cycle in the hypergraph, there may be other usable
// join predicates in other edges. MoveFilterPredicatesIntoHashJoinCondition()
// will widen the hash join predicate in that case, so account for that here.
// Only relevant when joining more than two tables. Say {t1,t2} HJ {t3}, which
// could be joined both along a t1-t3 edge and a t2-t3 edge.
//
// TODO(khatlen): The cost is still calculated as if the hash join only uses
// "edge", and that the alternative edges are put in filters on top of the
// join.
if (edge->expr->join_predicate_first != edge->expr->join_predicate_last &&
PopulationCount(left | right) > 2) {
// Only inner joins are part of cycles.
assert(edge->expr->type == RelationalExpression::INNER_JOIN);
for (size_t edge_idx = 0; edge_idx < m_graph->graph.edges.size();
++edge_idx) {
Hyperedge hyperedge = m_graph->graph.edges[edge_idx];
if (IsSubset(hyperedge.left, left) && IsSubset(hyperedge.right, right)) {
const JoinPredicate *other_edge = &m_graph->edges[edge_idx / 2];
assert(other_edge->expr->type == RelationalExpression::INNER_JOIN);
if (other_edge != edge &&
PassesConflictRules(left | right, other_edge->expr)) {
estimated_bytes_per_row += EstimateHashJoinKeyWidth(other_edge->expr);
}
}
}
}
const double reuse_buffer_probability = [&]() {
if (right_path->parameter_tables > 0) {
// right_path has external dependencies, so the buffer cannot be reused.
return 0.0;
} else {
/*
If the full data set from right_path fits in the join buffer,
we never need to rebuild the hash table. build_cost should
then be counted as init_once_cost. Otherwise, build_cost will
be incurred for each re-scan. To get a good estimate of
init_once_cost we therefor need to estimate the chance of
exceeding the join buffer size. We estimate this probability as:
(expected_data_volume / join_buffer_size)^2
for expected_data_volume < join_buffer_size and 1.0 otherwise.
*/
const double buffer_usage = std::min(
1.0, estimated_bytes_per_row * right_path->num_output_rows() /
m_thd->variables.join_buff_size);
return 1.0 - buffer_usage * buffer_usage;
}
}();
join_path.init_once_cost =
outer->init_once_cost +
(1.0 - reuse_buffer_probability) * right_path->init_once_cost +
reuse_buffer_probability * build_cost;
join_path.cost = cost;
// For each scan, hash join will read the left side once and the right side
// once, so we are as safe as the least safe of the two. (This isn't true
// if we set spill_to_disk = false, but we never do that in the hypergraph
// optimizer.) Note that if the right side fits entirely in RAM, we don't
// scan it the second time (so we could make the operation _more_ safe
// than the right side, and we should consider both ways of doing
// an inner join), but we cannot know that when planning.
join_path.safe_for_rowid =
std::max(left_path->safe_for_rowid, right_path->safe_for_rowid);
// Only trace once; the rest ought to be identical.
if (m_trace != nullptr && !*wrote_trace) {
*m_trace += PrintSubgraphHeader(edge, join_path, left, right);
*wrote_trace = true;
}
for (bool materialize_subqueries : {false, true}) {
AccessPath new_path = join_path;
FunctionalDependencySet filter_fd_set;
ApplyDelayedPredicatesAfterJoin(
left, right, left_path, right_path, edge->expr->join_predicate_first,
edge->expr->join_predicate_last, materialize_subqueries, &new_path,
&filter_fd_set);
// Hash join destroys all ordering information (even from the left side,
// since we may have spill-to-disk).
new_path.ordering_state = m_orderings->ApplyFDs(m_orderings->SetOrder(0),
new_fd_set | filter_fd_set);
ProposeAccessPathWithOrderings(left | right, new_fd_set | filter_fd_set,
new_obsolete_orderings, &new_path,
materialize_subqueries ? "mat. subq." : "");
if (!Overlaps(new_path.filter_predicates,
m_graph->materializable_predicates)) {
break;
}
}
}
// Of all delayed predicates, see which ones we can apply now, and which
// ones that need to be delayed further.
void CostingReceiver::ApplyDelayedPredicatesAfterJoin(
NodeMap left, NodeMap right, const AccessPath *left_path,
const AccessPath *right_path, int join_predicate_first,
int join_predicate_last, bool materialize_subqueries, AccessPath *join_path,
FunctionalDependencySet *new_fd_set) {
// We build up a new FD set each time; it should be the same for the same
// left/right pair, so it is somewhat redundant, but it allows us to verify
// that property through the assert in ProposeAccessPathWithOrderings().
new_fd_set->reset();
// Keep track of which multiple equalities we have created predicates for
// so far. We use this to avoid applying redundant predicates, ie. predicates
// that have already been checked. (This is not only to avoid unneeded work,
// but to avoid double-counting the selectivity.)
//
// Avoiding redundant predicates for a multi-equality is equivalent to never
// applying those that would cause loops in the subgraph induced by the tables
// involved in the multi-equality. (In other words, we are building spanning
// trees in the induced subgraph.) In general, every time we connect two
// subgraphs, we must apply every relevant multi-equality exactly once,
// and ignore the others. (This is vaguely reminiscent of Kruskal's algorithm
// for constructing minimum spanning trees.)
//
// DPhyp only ever connects subgraphs that are not already connected
// (ie., it already constructs spanning trees), so we know that the join
// conditions applied earlier are never redundant wrt. the rest of the graph.
// Thus, we only need to test the delayed predicates below; they _may_ contain
// a multiple equality we haven't already applied, but they may also be new,
// e.g. in this graph:
//
// b
// /|\ .
// a | d
// \|/
// c
//
// If we have a multiple equality over {b,c,d}, and connect a-b and then a-c,
// the edge b-c will come into play and contain a multi-equality that was not
// applied before. We will need to apply that multi-equality (we will
// only get one of d-b and d-c). However, if we instead connected d-b
// and d-c, the edge b-c will now be redundant and must be ignored
// (except for functional dependencies). We simply track which ones have been
// applied this iteration by keeping a bitmap of them.
uint64_t multiple_equality_bitmap = 0;
for (int pred_idx = join_predicate_first; pred_idx < join_predicate_last;
++pred_idx) {
const Predicate &pred = m_graph->predicates[pred_idx];
if (pred.source_multiple_equality_idx != -1) {
multiple_equality_bitmap |= uint64_t{1}
<< pred.source_multiple_equality_idx;
}
}
double materialize_cost = 0.0;
// filter_predicates holds both filter_predicates and
// applied_sargable_join_predicates. Keep the information about the latter,
// but reset the one pertaining to the former.
MutableOverflowBitset filter_predicates =
OverflowBitset::Or(&m_overflow_bitset_mem_root,
left_path->applied_sargable_join_predicates(),
right_path->applied_sargable_join_predicates());
filter_predicates.ClearBits(0, m_graph->num_where_predicates);
// Predicates we are still delaying.
MutableOverflowBitset delayed_predicates = OverflowBitset::Xor(
&m_overflow_bitset_mem_root, left_path->delayed_predicates,
right_path->delayed_predicates);
delayed_predicates.ClearBits(join_predicate_first, join_predicate_last);
// Predicates that were delayed, but that we need to check now.
// (We don't need to allocate a MutableOverflowBitset for this.)
const NodeMap ready_tables = left | right;
for (int pred_idx : BitsSetInBoth(left_path->delayed_predicates,
right_path->delayed_predicates)) {
if (pred_idx >= join_predicate_first && pred_idx < join_predicate_last) {
continue;
}
const Predicate &pred = m_graph->predicates[pred_idx];
if (IsSubset(pred.total_eligibility_set, ready_tables)) {
const auto [already_applied_as_sargable, subsumed] =
AlreadyAppliedAsSargable(pred.condition, left_path, right_path);
if (pred.source_multiple_equality_idx == -1 ||
!IsBitSet(pred.source_multiple_equality_idx,
multiple_equality_bitmap)) {
if (!subsumed) {
FilterCost cost = EstimateFilterCost(
m_thd, join_path->num_output_rows(), pred.contained_subqueries);
if (materialize_subqueries) {
join_path->cost += cost.cost_if_materialized;
materialize_cost += cost.cost_to_materialize;
} else {
join_path->cost += cost.cost_if_not_materialized;
}
if (!already_applied_as_sargable) {
join_path->set_num_output_rows(join_path->num_output_rows() *
pred.selectivity);
filter_predicates.SetBit(pred_idx);
}
}
if (pred.source_multiple_equality_idx != -1) {
multiple_equality_bitmap |= uint64_t{1}
<< pred.source_multiple_equality_idx;
}
} else if (already_applied_as_sargable) {
// The two subgraphs are joined by at least two (additional) edges
// both belonging to the same multiple equality (of which this predicate
// is one). One of them, not a sargable predicate, happened to be
// earlier in the list, and was thus deemed to be the representative of
// that multiple equality. However, we now see another one that is
// already applied as sargable, and thus, its selectivity has already
// been included. Thus, we need to remove that selectivity again to
// avoid double-counting and row count inconsistencies.
//
// This is a bit of a hack, but it happens pretty rarely, and it's
// fairly straightforward. An alternative would be to have a separate
// scan over all the delayed predicates that were already applied as
// sargable (predicates like the one we are considering right now),
// in order to force them into being representative for their multiple
// equality.
if (pred.selectivity > 1e-6) {
join_path->set_num_output_rows(join_path->num_output_rows() /
pred.selectivity);
}
}
*new_fd_set |= pred.functional_dependencies;
} else {
delayed_predicates.SetBit(pred_idx);
}
}
join_path->filter_predicates = std::move(filter_predicates);
join_path->delayed_predicates = std::move(delayed_predicates);
if (materialize_subqueries) {
CommitBitsetsToHeap(join_path);
ExpandSingleFilterAccessPath(m_thd, join_path, m_query_block->join,
m_graph->predicates,
m_graph->num_where_predicates);
assert(join_path->type == AccessPath::FILTER);
join_path->filter().materialize_subqueries = true;
join_path->cost +=
materialize_cost; // Will be subtracted back for rescans.
join_path->init_cost += materialize_cost;
join_path->init_once_cost += materialize_cost;
}
}
/**
Check if we're about to apply a join condition that would be redundant
with regards to an already-applied sargable predicate, ie., whether our
join condition and the sargable predicate applies the same multiple equality.
E.g. if we try to join {t1,t2} and {t3} along t1=t3, but the access path
for t3 already has applied the join condition t2=t3, and these are from the
same multiple equality, return true.
Even though this is totally _legal_, having such a situation is bad, because
a) It double-counts the selectivity, causing the overall row estimate
to become too low.
b) It causes unneeded work by adding a redundant filter.
b) would normally cause the path to be pruned out due to cost, except that
the artificially low row count due to a) could make the path attractive as a
subplan of a larger join. Thus, we simply reject these joins; we'll see a
different alternative for this join at some point that is not redundant
(e.g., in the given example, we'd see the t2=t3 join).
*/
bool CostingReceiver::RedundantThroughSargable(
OverflowBitset redundant_against_sargable_predicates,
const AccessPath *left_path, const AccessPath *right_path, NodeMap left,
NodeMap right) {
// For a join condition to be redundant against an already applied sargable
// predicate, the applied predicate must somehow connect the left side and the
// right side. This means either:
//
// - One of the paths must be parameterized on at least one of the tables in
// the other path. In the example above, because t2=t3 is applied on the {t3}
// path, and t2 is not included in the path, the {t3} path is parameterized on
// t2. (It is only necessary to check if right_path is parameterized on
// left_path, since parameterization is always resolved by nested-loop joining
// in the parameter tables from the outer/left side into the parameterized
// path on the inner/right side.)
//
// - Or both paths are parameterized on some common table that is not part of
// either path. Say if {t1,t2} has sargable t1=t4 and {t3} has sargable t3=t4,
// then both paths are parameterized on t4, and joining {t1,t2} with {t3}
// along t1=t3 is redundant, given all three predicates (t1=t4, t3=t4, t1=t3)
// are from the same multiple equality.
//
// If the parameterization is not like that, we don't need to check any
// further.
assert(!Overlaps(left_path->parameter_tables, right));
if (!Overlaps(right_path->parameter_tables,
left | left_path->parameter_tables)) {
return false;
}
const auto redundant_and_applied = [](uint64_t redundant_sargable,
uint64_t left_applied,
uint64_t right_applied) {
return redundant_sargable & (left_applied | right_applied);
};
bool redundant_against_something_in_left = false;
bool redundant_against_something_in_right = false;
for (size_t predicate_idx :
OverflowBitsetBitsIn<3, decltype(redundant_and_applied)>(
{redundant_against_sargable_predicates,
left_path->applied_sargable_join_predicates(),
right_path->applied_sargable_join_predicates()},
redundant_and_applied)) {
// The sargable condition must work as a join condition for this join
// (not between tables we've already joined in). Note that the joining
// could be through two different sargable predicates; they do not have
// to be the same. E.g., if we have
//
// - t1, with sargable t1.x = t3.x
// - t2, with sargable t2.x = t3.x
// - Join condition t1.x = t2.x
//
// then the join condition is redundant and should be refused,
// even though neither sargable condition joins t1 and t2 directly.
//
// Note that there are more complicated situations, e.g. if t2 instead
// had t2.x = t4.x in the example above, where we could reject non-redundant
// join orderings. However, in nearly all such cases,
// DisallowParameterizedJoinPath() would reject them anyway, and it is not
// an issue for successfully planning the query, as there would always exist
// a non-parameterized path that we could use instead.
const Predicate &sargable_predicate = m_graph->predicates[predicate_idx];
redundant_against_something_in_left |=
Overlaps(sargable_predicate.used_nodes, left);
redundant_against_something_in_right |=
Overlaps(sargable_predicate.used_nodes, right);
if (redundant_against_something_in_left &&
redundant_against_something_in_right) {
return true;
}
}
return false;
}
/**
Whether the given join condition is already applied as a sargable predicate
earlier in the tree (presumably on the right side). This is different from
RedundantThroughSargable() in that this checks whether we have already applied
this exact join condition earlier, while the former checks whether we are
trying to apply a different join condition that is redundant against something
we've applied earlier.
The first boolean is whether “condition” is a join condition we've applied
earlier (as sargable; so we should not count its selectivity again),
and the second argument is whether that sargable also subsumed the entire
join condition (so we need not apply it as a filter).
*/
pair<bool, bool> CostingReceiver::AlreadyAppliedAsSargable(
Item *condition, const AccessPath *left_path,
const AccessPath *right_path) {
const auto it = m_graph->sargable_join_predicates.find(condition);
if (it == m_graph->sargable_join_predicates.end()) {
return {false, false};
}
// NOTE: It is rare that join predicates already have been applied as
// ref access on the outer side, but not impossible if conditions are
// duplicated; see e.g. bug #33383388.
const bool applied =
IsBitSet(it->second, left_path->applied_sargable_join_predicates()) ||
IsBitSet(it->second, right_path->applied_sargable_join_predicates());
const bool subsumed =
IsBitSet(it->second, left_path->subsumed_sargable_join_predicates()) ||
IsBitSet(it->second, right_path->subsumed_sargable_join_predicates());
if (subsumed) {
assert(applied);
}
return {applied, subsumed};
}
void CostingReceiver::ProposeNestedLoopJoin(
NodeMap left, NodeMap right, AccessPath *left_path, AccessPath *right_path,
const JoinPredicate *edge, bool rewrite_semi_to_inner,
FunctionalDependencySet new_fd_set, OrderingSet new_obsolete_orderings,
bool *wrote_trace) {
if (!SupportedEngineFlag(SecondaryEngineFlag::SUPPORTS_NESTED_LOOP_JOIN))
return;
if (Overlaps(left_path->parameter_tables, right)) {
// The outer table cannot pick up values from the inner,
// only the other way around.
return;
}
assert(BitsetsAreCommitted(left_path));
assert(BitsetsAreCommitted(right_path));
// FULL OUTER JOIN is not possible with nested-loop join.
assert(edge->expr->type != RelationalExpression::FULL_OUTER_JOIN);
AccessPath join_path;
join_path.type = AccessPath::NESTED_LOOP_JOIN;
join_path.parameter_tables =
(left_path->parameter_tables | right_path->parameter_tables) &
~(left | right);
join_path.nested_loop_join().pfs_batch_mode = false;
join_path.nested_loop_join().already_expanded_predicates = false;
join_path.nested_loop_join().outer = left_path;
join_path.nested_loop_join().inner = right_path;
if (rewrite_semi_to_inner) {
// This join is a semijoin (which is non-commutative), but the caller wants
// us to try to invert it anyway; or to be precise, it has already inverted
// it for us, and wants us to make sure that's OK. This is only
// allowed if we can remove the duplicates from the outer (originally inner)
// side, so check that it is grouped correctly, and then deduplicate on it.
//
// Note that in many cases, the grouping/ordering here would be due to an
// earlier sort-ahead inserted into the tree. (The other case is due to
// scanning along an index, but then, we'd usually prefer to
// use that index for lookups instead of inverting the join. It is possible,
// though.) If so, it would have been nice to just do a deduplicating sort
// instead, but it would require is to track deduplication information in
// the access paths (possibly as part of the ordering state somehow) and
// track them throughout the join tree, which we don't do at the moment.
// Thus, there may be an inefficiency here.
assert(edge->expr->type == RelationalExpression::SEMIJOIN);
int ordering_idx = edge->ordering_idx_needed_for_semijoin_rewrite;
assert(ordering_idx != -1);
if (ordering_idx != 0 && !m_orderings->DoesFollowOrder(
left_path->ordering_state, ordering_idx)) {
return;
}
join_path.nested_loop_join().join_type = JoinType::INNER;
// NOTE: We purposefully don't overwrite left_path here, so that we
// don't have to worry about copying ordering_state etc.
join_path.nested_loop_join().outer = DeduplicateForSemijoin(
m_thd, left_path, edge->semijoin_group, edge->semijoin_group_size);
} else if (edge->expr->type == RelationalExpression::STRAIGHT_INNER_JOIN) {
join_path.nested_loop_join().join_type = JoinType::INNER;
} else {
join_path.nested_loop_join().join_type =
static_cast<JoinType>(edge->expr->type);
}
join_path.nested_loop_join().join_predicate = edge;
// Nested loop joins read the outer table exactly once, and the inner table
// potentially many times, so we can only perform immediate update or delete
// on the outer table.
// TODO(khatlen): If left_path is guaranteed to return at most one row (like a
// unique index lookup), it should be possible to perform immediate delete
// from both sides of the nested loop join. The old optimizer already does
// that for const tables.
join_path.immediate_update_delete_table =
left_path->immediate_update_delete_table;
const AccessPath *inner = join_path.nested_loop_join().inner;
double filter_cost = 0.0;
double right_path_already_applied_selectivity = 1.0;
join_path.nested_loop_join().equijoin_predicates = OverflowBitset{};
if (edge->expr->join_conditions_reject_all_rows) {
// We've already taken out all rows from the right-hand side
// (by means of a ZeroRowsIterator), so no need to add filters;
// they'd only clutter the EXPLAIN.
//
// Note that for obscure cases (inner joins where the join condition
// was not pulled up due to a pass ordering issue), we might see
// the left and right path be switched around due to commutativity.
assert(left_path->type == AccessPath::ZERO_ROWS ||
right_path->type == AccessPath::ZERO_ROWS);
} else if (!edge->expr->equijoin_conditions.empty() ||
!edge->expr->join_conditions.empty()) {
// Apply join filters. Don't update num_output_rows, as the join's
// selectivity will already be applied in FindOutputRowsForJoin().
// NOTE(sgunders): We don't model the effect of short-circuiting filters on
// the cost here.
double rows_after_filtering = inner->num_output_rows();
right_path_already_applied_selectivity =
FindAlreadyAppliedSelectivity(edge, left_path, right_path, left, right);
if (right_path_already_applied_selectivity < 0.0) {
return;
}
// num_output_rows is only for cost calculation and display purposes;
// we hard-code the use of edge->selectivity below, so that we're
// seeing the same number of rows as for hash join. This might throw
// the filtering cost off slightly.
MutableOverflowBitset equijoin_predicates{
m_thd->mem_root, edge->expr->equijoin_conditions.size()};
for (size_t join_cond_idx = 0;
join_cond_idx < edge->expr->equijoin_conditions.size();
++join_cond_idx) {
Item_eq_base *condition = edge->expr->equijoin_conditions[join_cond_idx];
const CachedPropertiesForPredicate &properties =
edge->expr->properties_for_equijoin_conditions[join_cond_idx];
const auto [already_applied_as_sargable, subsumed] =
AlreadyAppliedAsSargable(condition, left_path, right_path);
if (!subsumed) {
equijoin_predicates.SetBit(join_cond_idx);
filter_cost += EstimateFilterCost(m_thd, rows_after_filtering,
properties.contained_subqueries)
.cost_if_not_materialized;
rows_after_filtering *= properties.selectivity;
}
}
for (const CachedPropertiesForPredicate &properties :
edge->expr->properties_for_join_conditions) {
filter_cost += EstimateFilterCost(m_thd, rows_after_filtering,
properties.contained_subqueries)
.cost_if_not_materialized;
rows_after_filtering *= properties.selectivity;
}
join_path.nested_loop_join().equijoin_predicates =
std::move(equijoin_predicates);
}
// Ignores the row count from filter_path; see above.
{
assert(right_path_already_applied_selectivity >= 0.0);
double outer_input_rows = left_path->num_output_rows();
double inner_input_rows =
right_path->num_output_rows() / right_path_already_applied_selectivity;
// If left and right are flipped for semijoins, we need to flip
// them back for row calculation (or we'd clamp to the wrong value).
if (rewrite_semi_to_inner) {
swap(outer_input_rows, inner_input_rows);
if (right_path_already_applied_selectivity < 1.0 &&
PopulationCount(right) > 1) {
// If there are multiple inner tables, it is possible that the row count
// of the inner child is clamped by FindOutputRowsForJoin() by a
// semijoin nested inside the inner child, and it is therefore difficult
// to tell whether the already applied selectivity needs to be accounted
// for or not. Until we have found a way to ensure consistent row
// estimates between semijoin and rewrite_semi_to_inner with already
// applied sargable predicates, just set a flag to pacify the assert in
// ProposeAccessPath().
has_semijoin_with_possibly_clamped_child = true;
}
}
join_path.num_output_rows_before_filter =
FindOutputRowsForJoin(outer_input_rows, inner_input_rows, edge);
join_path.set_num_output_rows(join_path.num_output_rows_before_filter);
}
// left_path and join_path.nested_loop_join().outer are intentionally
// different if rewrite_semi_to_inner is true. See comment where
// DeduplicateForSemijoin() is called above. We want to calculate join cost
// based on the actual left child, so use join_path.nested_loop_join().outer
// in cost calculations for join_path.
const AccessPath *outer = join_path.nested_loop_join().outer;
join_path.init_cost = outer->init_cost;
// NOTE: The ceil() around the number of rows on the left side is a workaround
// for an issue where we think the left side has a very low cardinality,
// e.g. 1e-5 rows, and we believe that justifies having something hugely
// expensive on the right side (e.g. a large table scan). Obviously, this is a
// band-aid (we should “just” have better row estimation and/or braking
// factors), but it should be fairly benign in general.
const double first_loop_cost = (inner->cost + filter_cost) *
std::min(1.0, ceil(outer->num_output_rows()));
const double subsequent_loops_cost =
(inner->rescan_cost() + filter_cost) *
std::max(0.0, outer->num_output_rows() - 1.0);
join_path.cost_before_filter = join_path.cost =
outer->cost + first_loop_cost + subsequent_loops_cost;
// Nested-loop preserves any ordering from the outer side. Note that actually,
// the two orders are _concatenated_ (if you nested-loop join something
// ordered on (a,b) with something joined on (c,d), the order will be
// (a,b,c,d)), but the state machine has no way of representing that.
join_path.ordering_state =
m_orderings->ApplyFDs(left_path->ordering_state, new_fd_set);
// We may scan the right side several times, but the left side maybe once.
// So if the right side is not safe to scan for row IDs after multiple scans,
// neither are we. But if it's safe, we're exactly as safe as the left side.
if (right_path->safe_for_rowid != AccessPath::SAFE) {
join_path.safe_for_rowid = AccessPath::UNSAFE;
} else {
join_path.safe_for_rowid = left_path->safe_for_rowid;
}
// Only trace once; the rest ought to be identical.
if (m_trace != nullptr && !*wrote_trace) {
*m_trace += PrintSubgraphHeader(edge, join_path, left, right);
*wrote_trace = true;
}
for (bool materialize_subqueries : {false, true}) {
AccessPath new_path = join_path;
FunctionalDependencySet filter_fd_set;
ApplyDelayedPredicatesAfterJoin(
left, right, left_path, right_path, edge->expr->join_predicate_first,
edge->expr->join_predicate_last, materialize_subqueries, &new_path,
&filter_fd_set);
new_path.ordering_state = m_orderings->ApplyFDs(new_path.ordering_state,
new_fd_set | filter_fd_set);
const char *description_for_trace = "";
if (m_trace != nullptr) {
if (materialize_subqueries && rewrite_semi_to_inner) {
description_for_trace = "dedup to inner nested loop, mat. subq";
} else if (rewrite_semi_to_inner) {
description_for_trace = "dedup to inner nested loop";
} else if (materialize_subqueries) {
description_for_trace = "mat. subq";
}
}
ProposeAccessPathWithOrderings(left | right, new_fd_set | filter_fd_set,
new_obsolete_orderings, &new_path,
description_for_trace);
if (!Overlaps(new_path.filter_predicates,
m_graph->materializable_predicates)) {
break;
}
}
}
/**
Go through all equijoin conditions for the given join, and find out how much
of its selectivity that has already been applied as ref accesses (which should
thus be divided away from the join's selectivity).
Returns -1.0 if there is at least one sargable predicate that is entirely
redundant, and that this subgraph pair should not be attempted joined at all.
*/
double CostingReceiver::FindAlreadyAppliedSelectivity(
const JoinPredicate *edge, const AccessPath *left_path,
const AccessPath *right_path, NodeMap left, NodeMap right) {
double already_applied = 1.0;
for (size_t join_cond_idx = 0;
join_cond_idx < edge->expr->equijoin_conditions.size();
++join_cond_idx) {
Item_eq_base *condition = edge->expr->equijoin_conditions[join_cond_idx];
const CachedPropertiesForPredicate &properties =
edge->expr->properties_for_equijoin_conditions[join_cond_idx];
const auto [already_applied_as_sargable, subsumed] =
AlreadyAppliedAsSargable(condition, left_path, right_path);
if (already_applied_as_sargable) {
// This predicate was already applied as a ref access earlier.
// Make sure not to double-count its selectivity, and also
// that we don't reapply it if it was subsumed by the ref access.
const auto it = m_graph->sargable_join_predicates.find(condition);
already_applied *= m_graph->predicates[it->second].selectivity;
} else if (RedundantThroughSargable(
properties.redundant_against_sargable_predicates, left_path,
right_path, left, right)) {
if (m_trace != nullptr) {
*m_trace += " - " + PrintAccessPath(*right_path, *m_graph, "") +
" has a sargable predicate that is redundant with our join "
"predicate, skipping\n";
}
return -1.0;
}
}
return already_applied;
}
uint32_t AddFlag(uint32_t flags, FuzzyComparisonResult flag) {
return flags | static_cast<uint32_t>(flag);
}
bool HasFlag(uint32_t flags, FuzzyComparisonResult flag) {
return (flags & static_cast<uint32_t>(flag));
}
} // namespace
// See if one access path is better than the other across all cost dimensions
// (if so, we say it dominates the other one). If not, we return
// DIFFERENT_STRENGTHS so that both must be kept.
//
// TODO(sgunders): Support turning off certain cost dimensions; e.g., init_cost
// only matters if we have a LIMIT or nested loop semijoin somewhere in the
// query, and it might not matter for secondary engine.
PathComparisonResult CompareAccessPaths(const LogicalOrderings &orderings,
const AccessPath &a,
const AccessPath &b,
OrderingSet obsolete_orderings) {
#ifndef NDEBUG
// Manual preference overrides everything else.
// If they're both preferred, tie-break by ordering.
if (a.forced_by_dbug) {
return PathComparisonResult::FIRST_DOMINATES;
} else if (b.forced_by_dbug) {
return PathComparisonResult::SECOND_DOMINATES;
}
#endif
uint32_t flags = 0;
if (a.parameter_tables != b.parameter_tables) {
if (!IsSubset(a.parameter_tables, b.parameter_tables)) {
flags = AddFlag(flags, FuzzyComparisonResult::SECOND_BETTER);
}
if (!IsSubset(b.parameter_tables, a.parameter_tables)) {
flags = AddFlag(flags, FuzzyComparisonResult::FIRST_BETTER);
}
}
// If we have a parameterized path, this means that at some point, it _must_
// be on the right side of a nested-loop join. This destroys ordering
// information (at least in our implementation -- see comment in
// NestedLoopJoin()), so in this situation, consider all orderings as equal.
// (This is a trick borrowed from Postgres to keep the number of unique access
// paths down in such situations.)
const int a_ordering_state = (a.parameter_tables == 0) ? a.ordering_state : 0;
const int b_ordering_state = (b.parameter_tables == 0) ? b.ordering_state : 0;
if (orderings.MoreOrderedThan(a_ordering_state, b_ordering_state,
obsolete_orderings)) {
flags = AddFlag(flags, FuzzyComparisonResult::FIRST_BETTER);
}
if (orderings.MoreOrderedThan(b_ordering_state, a_ordering_state,
obsolete_orderings)) {
flags = AddFlag(flags, FuzzyComparisonResult::SECOND_BETTER);
}
// If one path is safe for row IDs and another one is not,
// that is also something we need to take into account.
// Safer values have lower numerical values, so we can compare them
// as integers.
if (a.safe_for_rowid < b.safe_for_rowid) {
flags = AddFlag(flags, FuzzyComparisonResult::FIRST_BETTER);
} else if (b.safe_for_rowid < a.safe_for_rowid) {
flags = AddFlag(flags, FuzzyComparisonResult::SECOND_BETTER);
}
// A path that allows immediate update or delete of a table is better than
// a path that allows none.
if (a.immediate_update_delete_table != b.immediate_update_delete_table) {
if (a.immediate_update_delete_table == -1) {
flags = AddFlag(flags, FuzzyComparisonResult::SECOND_BETTER);
} else if (b.immediate_update_delete_table == -1) {
flags = AddFlag(flags, FuzzyComparisonResult::FIRST_BETTER);
}
}
// Numerical cost dimensions are compared fuzzily in order to treat paths
// with insignificant differences as identical.
constexpr double fuzz_factor = 1.01;
// Normally, two access paths for the same subplan should have the same
// number of output rows. However, for parameterized paths, this need not
// be the case; due to pushdown of sargable conditions into indexes;
// some filters may be applied earlier, causing fewer rows to be
// carried around temporarily (until the parameterization is resolved).
// This can have an advantage in causing less work later even if it's
// non-optimal now, e.g. by saving on filtering work, or having less work
// done in other joins. Thus, we need to keep it around as an extra
// cost dimension.
flags = AddFlag(flags, FuzzyComparison(a.num_output_rows(),
b.num_output_rows(), fuzz_factor));
flags = AddFlag(flags, FuzzyComparison(a.cost, b.cost, fuzz_factor));
flags =
AddFlag(flags, FuzzyComparison(a.init_cost, b.init_cost, fuzz_factor));
flags = AddFlag(
flags, FuzzyComparison(a.rescan_cost(), b.rescan_cost(), fuzz_factor));
bool a_is_better = HasFlag(flags, FuzzyComparisonResult::FIRST_BETTER);
bool b_is_better = HasFlag(flags, FuzzyComparisonResult::SECOND_BETTER);
if (a_is_better && b_is_better) {
return PathComparisonResult::DIFFERENT_STRENGTHS;
} else if (a_is_better && !b_is_better) {
return PathComparisonResult::FIRST_DOMINATES;
} else if (!a_is_better && b_is_better) {
return PathComparisonResult::SECOND_DOMINATES;
} else { // Fuzzily identical
bool a_is_slightly_better =
HasFlag(flags, FuzzyComparisonResult::FIRST_SLIGHTLY_BETTER);
bool b_is_slightly_better =
HasFlag(flags, FuzzyComparisonResult::SECOND_SLIGHTLY_BETTER);
// If one path is no worse in all dimensions and strictly better
// in at least one dimension we identify it as dominant.
if (a_is_slightly_better && !b_is_slightly_better) {
return PathComparisonResult::FIRST_DOMINATES;
} else if (!a_is_slightly_better && b_is_slightly_better) {
return PathComparisonResult::SECOND_DOMINATES;
}
return PathComparisonResult::IDENTICAL;
}
}
namespace {
string PrintAccessPath(const AccessPath &path, const JoinHypergraph &graph,
const char *description_for_trace) {
string str = "{";
string join_order;
switch (path.type) {
case AccessPath::TABLE_SCAN:
str += "TABLE_SCAN";
break;
case AccessPath::INDEX_SCAN:
str += "INDEX_SCAN";
break;
case AccessPath::REF:
str += "REF";
break;
case AccessPath::REF_OR_NULL:
str += "REF_OR_NULL";
break;
case AccessPath::EQ_REF:
str += "EQ_REF";
break;
case AccessPath::PUSHED_JOIN_REF:
str += "PUSHED_JOIN_REF";
break;
case AccessPath::FULL_TEXT_SEARCH:
str += "FULL_TEXT_SEARCH";
break;
case AccessPath::CONST_TABLE:
str += "CONST_TABLE";
break;
case AccessPath::MRR:
str += "MRR";
break;
case AccessPath::FOLLOW_TAIL:
str += "FOLLOW_TAIL";
break;
case AccessPath::INDEX_RANGE_SCAN:
str += "INDEX_RANGE_SCAN";
break;
case AccessPath::INDEX_MERGE:
str += "INDEX_MERGE";
break;
case AccessPath::ROWID_INTERSECTION:
str += "ROWID_INTERSECTION";
break;
case AccessPath::ROWID_UNION:
str += "ROWID_UNION";
break;
case AccessPath::INDEX_SKIP_SCAN:
str += "INDEX_SKIP_SCAN";
break;
case AccessPath::GROUP_INDEX_SKIP_SCAN:
str += "GROUP_INDEX_SKIP_SCAN";
break;
case AccessPath::DYNAMIC_INDEX_RANGE_SCAN:
str += "DYNAMIC_INDEX_RANGE_SCAN";
break;
case AccessPath::TABLE_VALUE_CONSTRUCTOR:
str += "TABLE_VALUE_CONSTRUCTOR";
break;
case AccessPath::FAKE_SINGLE_ROW:
str += "FAKE_SINGLE_ROW";
break;
case AccessPath::ZERO_ROWS:
str += "ZERO_ROWS";
break;
case AccessPath::ZERO_ROWS_AGGREGATED:
str += "ZERO_ROWS_AGGREGATED";
break;
case AccessPath::MATERIALIZED_TABLE_FUNCTION:
str += "MATERIALIZED_TABLE_FUNCTION";
break;
case AccessPath::UNQUALIFIED_COUNT:
str += "UNQUALIFIED_COUNT";
break;
case AccessPath::NESTED_LOOP_JOIN:
str += "NESTED_LOOP_JOIN";
PrintJoinOrder(&path, &join_order);
break;
case AccessPath::NESTED_LOOP_SEMIJOIN_WITH_DUPLICATE_REMOVAL:
str += "NESTED_LOOP_SEMIJOIN_WITH_DUPLICATE_REMOVAL";
PrintJoinOrder(&path, &join_order);
break;
case AccessPath::BKA_JOIN:
str += "BKA_JOIN";
PrintJoinOrder(&path, &join_order);
break;
case AccessPath::HASH_JOIN:
str += "HASH_JOIN";
PrintJoinOrder(&path, &join_order);
break;
case AccessPath::FILTER:
str += "FILTER";
break;
case AccessPath::SORT:
str += "SORT";
break;
case AccessPath::AGGREGATE:
str += "AGGREGATE";
break;
case AccessPath::TEMPTABLE_AGGREGATE:
str += "TEMPTABLE_AGGREGATE";
break;
case AccessPath::LIMIT_OFFSET:
str += "LIMIT_OFFSET";
break;
case AccessPath::STREAM:
str += "STREAM";
break;
case AccessPath::MATERIALIZE:
str += "MATERIALIZE";
break;
case AccessPath::MATERIALIZE_INFORMATION_SCHEMA_TABLE:
str += "MATERIALIZE_INFORMATION_SCHEMA_TABLE";
break;
case AccessPath::APPEND:
str += "APPEND";
break;
case AccessPath::WINDOW:
str += "WINDOW";
break;
case AccessPath::WEEDOUT:
str += "WEEDOUT";
break;
case AccessPath::REMOVE_DUPLICATES:
str += "REMOVE_DUPLICATES";
break;
case AccessPath::REMOVE_DUPLICATES_ON_INDEX:
str += "REMOVE_DUPLICATES_ON_INDEX";
break;
case AccessPath::ALTERNATIVE:
str += "ALTERNATIVE";
break;
case AccessPath::CACHE_INVALIDATOR:
str += "CACHE_INVALIDATOR";
break;
case AccessPath::DELETE_ROWS:
str += "DELETE_ROWS";
break;
case AccessPath::UPDATE_ROWS:
str += "UPDATE_ROWS";
break;
}
str += StringPrintf(", cost=%.1f, init_cost=%.1f", path.cost, path.init_cost);
if (path.init_once_cost != 0.0) {
str += StringPrintf(", rescan_cost=%.1f", path.rescan_cost());
}
str += StringPrintf(", rows=%.1f", path.num_output_rows());
if (!join_order.empty()) str += ", join_order=" + join_order;
// Print parameter tables, if any.
if (path.parameter_tables != 0) {
str += ", parm={";
bool first = true;
for (size_t node_idx : BitsSetIn(path.parameter_tables)) {
if (!first) {
str += ", ";
}
if ((uint64_t{1} << node_idx) == RAND_TABLE_BIT) {
str += "<random>";
} else {
str += graph.nodes[node_idx].table->alias;
}
first = false;
}
str += "}";
}
if (path.ordering_state != 0) {
str += StringPrintf(", order=%d", path.ordering_state);
}
if (path.safe_for_rowid == AccessPath::SAFE_IF_SCANNED_ONCE) {
str += StringPrintf(", safe_for_rowid_once");
} else if (path.safe_for_rowid == AccessPath::UNSAFE) {
str += StringPrintf(", unsafe_for_rowid");
}
DBUG_EXECUTE_IF("subplan_tokens", {
str += ", token=";
str += GetForceSubplanToken(const_cast<AccessPath *>(&path),
graph.query_block()->join);
});
if (strcmp(description_for_trace, "") == 0) {
return str + "}";
} else {
return str + "} [" + description_for_trace + "]";
}
}
/**
Used by optimizer trace to print join order of join paths.
Appends into 'join_order' a string that looks something like '(t1,(t2,t3))'
where t1 is an alias of any kind of table including materialized table, and
t1 is joined with (t2,t3) where (t2,t3) is another join.
*/
void PrintJoinOrder(const AccessPath *path, string *join_order) {
assert(path != nullptr);
auto func = [join_order](const AccessPath *subpath, const JOIN *) {
// If it's a table, append its name.
if (const TABLE *table = GetBasicTable(subpath); table != nullptr) {
*join_order += table->alias;
return true;
}
AccessPath *outer, *inner;
switch (subpath->type) {
case AccessPath::NESTED_LOOP_JOIN:
outer = subpath->nested_loop_join().outer;
inner = subpath->nested_loop_join().inner;
break;
case AccessPath::HASH_JOIN:
outer = subpath->hash_join().outer;
inner = subpath->hash_join().inner;
break;
case AccessPath::BKA_JOIN:
outer = subpath->bka_join().outer;
inner = subpath->bka_join().inner;
break;
case AccessPath::NESTED_LOOP_SEMIJOIN_WITH_DUPLICATE_REMOVAL:
outer = subpath->nested_loop_semijoin_with_duplicate_removal().outer;
inner = subpath->nested_loop_semijoin_with_duplicate_removal().inner;
break;
default:
return false; // Allow walker to continue.
}
// If we are here, we found a join path.
join_order->push_back('(');
PrintJoinOrder(outer, join_order);
join_order->push_back(',');
PrintJoinOrder(inner, join_order);
join_order->push_back(')');
return true;
};
// Fetch tables or joins at inner levels.
WalkAccessPaths(path, /*join=*/nullptr,
WalkAccessPathPolicy::STOP_AT_MATERIALIZATION, func);
return;
}
/// Commit OverflowBitsets in path (but not its children) to
/// stable storage (see m_overflow_bitset_mem_root).
void CostingReceiver::CommitBitsetsToHeap(AccessPath *path) const {
if (path->filter_predicates.IsContainedIn(&m_overflow_bitset_mem_root)) {
path->filter_predicates = path->filter_predicates.Clone(m_thd->mem_root);
}
if (path->delayed_predicates.IsContainedIn(&m_overflow_bitset_mem_root)) {
path->delayed_predicates = path->delayed_predicates.Clone(m_thd->mem_root);
}
}
/// Check if all bitsets under “path” are committed to stable storage
/// (see m_overflow_bitset_mem_root). Only relevant in debug mode,
/// as it is expensive.
[[maybe_unused]] bool CostingReceiver::BitsetsAreCommitted(
AccessPath *path) const {
// Verify that there are no uncommitted bitsets forgotten in children.
bool all_ok = true;
WalkAccessPaths(path, /*join=*/nullptr,
WalkAccessPathPolicy::STOP_AT_MATERIALIZATION,
[this, &all_ok](const AccessPath *subpath, const JOIN *) {
all_ok &= !subpath->filter_predicates.IsContainedIn(
&m_overflow_bitset_mem_root);
all_ok &= !subpath->delayed_predicates.IsContainedIn(
&m_overflow_bitset_mem_root);
return false;
});
return all_ok;
}
/**
Propose the given access path as an alternative to the existing access paths
for the same task (assuming any exist at all), and hold a “tournament” to find
whether it is better than the others. Only the best alternatives are kept,
as defined by CompareAccessPaths(); a given access path is kept only if
it is not dominated by any other path in the group (ie., the Pareto frontier
is computed). This means that the following are all possible outcomes of the
tournament:
- The path is discarded, without ever being inserted in the list
(dominated by at least one existing entry).
- The path is inserted as a new alternative in the list (dominates none
but it also not dominated by any -- or the list was empty), leaving it with
N+1 entries.
- The path is inserted as a new alternative in the list, but replaces one
or more entries (dominates them).
- The path replaces all existing alternatives, and becomes the sole entry
in the list.
“description_for_trace” is a short description of the inserted path
to distinguish it in optimizer trace, if active. For instance, one might
write “hash join” when proposing a hash join access path. It may be
the empty string.
If the access path is discarded, returns nullptr. Otherwise returns
a pointer to where it was inserted. (This is useful if you need to
call CommitBitsetsToHeap() on any of its children, or otherwise do
work only for access paths that were kept.)
*/
AccessPath *CostingReceiver::ProposeAccessPath(
AccessPath *path, Prealloced_array<AccessPath *, 4> *existing_paths,
OrderingSet obsolete_orderings, const char *description_for_trace) const {
if (m_secondary_engine_cost_hook != nullptr) {
// If an error was raised by a previous invocation of the hook, reject all
// paths.
if (m_thd->is_error()) {
return nullptr;
}
if (m_secondary_engine_cost_hook(m_thd, *m_graph, path)) {
// Rejected by the secondary engine.
return nullptr;
}
assert(!m_thd->is_error());
assert(path->init_cost <= path->cost);
if (!IsEmpty(path->filter_predicates)) {
assert(path->num_output_rows() <= path->num_output_rows_before_filter);
assert(path->cost_before_filter <= path->cost);
}
}
DBUG_EXECUTE_IF("subplan_tokens", {
string token =
"force_subplan_" + GetForceSubplanToken(path, m_query_block->join);
DBUG_EXECUTE_IF(token.c_str(), path->forced_by_dbug = true;);
});
if (existing_paths->empty()) {
if (m_trace != nullptr) {
*m_trace += " - " +
PrintAccessPath(*path, *m_graph, description_for_trace) +
" is first alternative, keeping\n";
}
AccessPath *insert_position = new (m_thd->mem_root) AccessPath(*path);
existing_paths->push_back(insert_position);
CommitBitsetsToHeap(insert_position);
return insert_position;
}
// Verify that all row counts are consistent (if someone cares, ie. we are
// either asserting they are, or tracing, so that a user can see it); we can
// only do this for unparameterized tables (even though most such
// inconsistencies probably originate further down the tree), since tables
// with different parameterizations can have different sargable predicates.
// (If we really wanted to, we could probably fix that as well, though.)
// These should never happen, up to numerical issues, but they currently do;
// see bug #33550360.
const bool has_known_row_count_inconsistency_bugs =
m_graph->has_reordered_left_joins || has_clamped_multipart_eq_ref ||
has_semijoin_with_possibly_clamped_child;
bool verify_consistency = (m_trace != nullptr);
#ifndef NDEBUG
if (!has_known_row_count_inconsistency_bugs) {
// Assert that we are consistent, even if we are not tracing.
verify_consistency = true;
}
#endif
if (verify_consistency && path->parameter_tables == 0 &&
path->num_output_rows() >= 1e-3) {
for (const AccessPath *other_path : *existing_paths) {
if (other_path->parameter_tables == 0 &&
(other_path->num_output_rows() < path->num_output_rows() * 0.99 ||
other_path->num_output_rows() > path->num_output_rows() * 1.01)) {
if (m_trace != nullptr) {
*m_trace += " - WARNING: " + PrintAccessPath(*path, *m_graph, "") +
" has inconsistent row counts with " +
PrintAccessPath(*other_path, *m_graph, "") + ".";
if (has_known_row_count_inconsistency_bugs) {
*m_trace += "\n This is a bug, but probably a known one.\n";
} else {
*m_trace += " This is a bug.\n";
}
}
if (!has_known_row_count_inconsistency_bugs) {
assert(false);
}
break;
}
}
}
AccessPath *insert_position = nullptr;
int num_dominated = 0;
for (size_t i = 0; i < existing_paths->size(); ++i) {
PathComparisonResult result = CompareAccessPaths(
*m_orderings, *path, *((*existing_paths)[i]), obsolete_orderings);
if (result == PathComparisonResult::DIFFERENT_STRENGTHS) {
continue;
}
if (result == PathComparisonResult::IDENTICAL ||
result == PathComparisonResult::SECOND_DOMINATES) {
if (m_trace != nullptr) {
*m_trace += " - " +
PrintAccessPath(*path, *m_graph, description_for_trace) +
" is not better than existing path " +
PrintAccessPath(*(*existing_paths)[i], *m_graph, "") +
", discarding\n";
}
return nullptr;
}
if (result == PathComparisonResult::FIRST_DOMINATES) {
++num_dominated;
if (insert_position == nullptr) {
// Replace this path by the new, better one. We continue to search for
// other paths to dominate. Note that we don't overwrite just yet,
// because we might want to print out the old one in optimizer trace
// below.
insert_position = (*existing_paths)[i];
} else {
// The new path is better than the old one, but we don't need to insert
// it again. Delete the old one by moving the last one into its place
// (this may be a no-op) and then chopping one off the end.
(*existing_paths)[i] = existing_paths->back();
existing_paths->pop_back();
--i;
}
}
}
if (insert_position == nullptr) {
if (m_trace != nullptr) {
*m_trace += " - " +
PrintAccessPath(*path, *m_graph, description_for_trace) +
" is potential alternative, keeping\n";
}
insert_position = new (m_thd->mem_root) AccessPath(*path);
existing_paths->emplace_back(insert_position);
CommitBitsetsToHeap(insert_position);
return insert_position;
}
if (m_trace != nullptr) {
if (existing_paths->size() == 1) { // Only one left.
if (num_dominated == 1) {
*m_trace +=
" - " + PrintAccessPath(*path, *m_graph, description_for_trace) +
" is better than previous " +
PrintAccessPath(*insert_position, *m_graph, "") + ", replacing\n";
} else {
*m_trace +=
" - " + PrintAccessPath(*path, *m_graph, description_for_trace) +
" is better than all previous alternatives, replacing all\n";
}
} else {
assert(num_dominated > 0);
*m_trace += StringPrintf(
" - %s is better than %d others, replacing them\n",
PrintAccessPath(*path, *m_graph, description_for_trace).c_str(),
num_dominated);
}
}
*insert_position = *path;
CommitBitsetsToHeap(insert_position);
return insert_position;
}
AccessPath MakeSortPathWithoutFilesort(THD *thd, AccessPath *child,
ORDER *order, int ordering_state,
int num_where_predicates) {
assert(order != nullptr);
AccessPath sort_path;
sort_path.type = AccessPath::SORT;
sort_path.ordering_state = ordering_state;
if (!child->applied_sargable_join_predicates()
.empty()) { // Will be empty after grouping.
MutableOverflowBitset applied_sargable_join_predicates =
child->applied_sargable_join_predicates().Clone(thd->mem_root);
applied_sargable_join_predicates.ClearBits(0, num_where_predicates);
sort_path.applied_sargable_join_predicates() =
std::move(applied_sargable_join_predicates);
}
sort_path.delayed_predicates = child->delayed_predicates;
sort_path.count_examined_rows = false;
sort_path.sort().child = child;
sort_path.sort().filesort = nullptr;
sort_path.sort().tables_to_get_rowid_for = 0;
sort_path.sort().order = order;
sort_path.sort().remove_duplicates = false;
sort_path.sort().unwrap_rollup = true;
sort_path.sort().limit = HA_POS_ERROR;
sort_path.sort().force_sort_rowids = false;
EstimateSortCost(&sort_path);
return sort_path;
}
void CostingReceiver::ProposeAccessPathWithOrderings(
NodeMap nodes, FunctionalDependencySet fd_set,
OrderingSet obsolete_orderings, AccessPath *path,
const char *description_for_trace) {
AccessPathSet *path_set;
// Insert an empty array if none exists.
{
const auto [it, inserted] = m_access_paths.emplace(
nodes,
AccessPathSet{Prealloced_array<AccessPath *, 4>{PSI_NOT_INSTRUMENTED},
fd_set, obsolete_orderings});
path_set = &it->second;
if (!inserted) {
assert(fd_set == path_set->active_functional_dependencies);
assert(obsolete_orderings == path_set->obsolete_orderings);
}
}
if (path_set->always_empty) {
// This subtree is already optimized away. Don't propose any alternative
// plans, since we've already found the optimal one.
return;
}
if (path->type == AccessPath::ZERO_ROWS) {
// Clear the other candidates seen for this set of nodes, so that we prefer
// a simple ZERO_ROWS path, even in the case where we have for example a
// candidate NESTED_LOOP_JOIN path with zero cost.
path_set->paths.clear();
// Mark the subtree as optimized away.
path_set->always_empty = true;
}
ProposeAccessPath(path, &path_set->paths, obsolete_orderings,
description_for_trace);
// Don't bother trying sort-ahead if we are done joining;
// there's no longer anything to be ahead of, so the regular
// sort operations will take care of it.
if (nodes == TablesBetween(0, m_graph->nodes.size())) {
return;
}
if (!SupportedEngineFlag(SecondaryEngineFlag::SUPPORTS_NESTED_LOOP_JOIN) &&
SupportedEngineFlag(SecondaryEngineFlag::AGGREGATION_IS_UNORDERED)) {
// If sortahead cannot propagate through joins to ORDER BY,
// and also cannot propagate from anything to aggregation or
// from aggregation to ORDER BY, it is pointless, so don't try.
// Note that this also removes rewrite to semijoin via duplicate
// removal, but that's fine, as it is rarely useful without having
// nested loops against an index on the outer side.
return;
}
// Don't try to sort-ahead parameterized paths; see the comment in
// CompareAccessPaths for why.
if (path->parameter_tables != 0) {
return;
}
path = GetSafePathToSort(m_thd, m_query_block->join, path, m_need_rowid);
// Try sort-ahead for all interesting orderings.
// (For the final sort, this might not be so much _ahead_, but still
// potentially useful, if there are multiple orderings where one is a
// superset of the other.)
bool path_is_on_heap = false;
for (const SortAheadOrdering &sort_ahead_ordering : *m_sort_ahead_orderings) {
if (!IsSubset(sort_ahead_ordering.required_nodes, nodes)) {
continue;
}
if (sort_ahead_ordering.aggregates_required) {
// For sort-ahead, we don't have any aggregates yet
// (since we never group-ahead).
continue;
}
LogicalOrderings::StateIndex new_state = m_orderings->ApplyFDs(
m_orderings->SetOrder(sort_ahead_ordering.ordering_idx), fd_set);
if (!m_orderings->MoreOrderedThan(new_state, path->ordering_state,
obsolete_orderings)) {
continue;
}
AccessPath sort_path =
MakeSortPathWithoutFilesort(m_thd, path, sort_ahead_ordering.order,
new_state, m_graph->num_where_predicates);
char buf[256];
if (m_trace != nullptr) {
if (description_for_trace[0] == '\0') {
snprintf(buf, sizeof(buf), "sort(%d)",
sort_ahead_ordering.ordering_idx);
} else {
snprintf(buf, sizeof(buf), "%s, sort(%d)", description_for_trace,
sort_ahead_ordering.ordering_idx);
}
}
AccessPath *insert_position = ProposeAccessPath(
&sort_path, &path_set->paths, obsolete_orderings, buf);
if (insert_position != nullptr && !path_is_on_heap) {
path = new (m_thd->mem_root) AccessPath(*path);
CommitBitsetsToHeap(path);
insert_position->sort().child = path;
assert(BitsetsAreCommitted(insert_position));
path_is_on_heap = true;
}
}
}
bool CheckSupportedQuery(THD *thd) {
if (thd->lex->m_sql_cmd != nullptr &&
thd->lex->m_sql_cmd->using_secondary_storage_engine() &&
!Overlaps(EngineFlags(thd),
MakeSecondaryEngineFlags(
SecondaryEngineFlag::SUPPORTS_HASH_JOIN,
SecondaryEngineFlag::SUPPORTS_NESTED_LOOP_JOIN))) {
my_error(ER_HYPERGRAPH_NOT_SUPPORTED_YET, MYF(0),
"the secondary engine in use");
return true;
}
return false;
}
/**
Set up an access path for streaming or materializing through a temporary
table. If none is needed (because earlier iterators already materialize
what needs to be done), returns the path itself.
The actual temporary table will be created and filled out during finalization.
*/
AccessPath *CreateMaterializationOrStreamingPath(THD *thd, JOIN *join,
AccessPath *path,
bool need_rowid,
bool copy_items) {
if (!IteratorsAreNeeded(thd, path)) {
// Let external executors decide for themselves whether they need an
// intermediate materialization or streaming step. Don't add it to the plan
// for them.
return path;
}
// See if later sorts will need row IDs from us or not.
if (!need_rowid) {
// The common case; we can use streaming.
if (!copy_items) {
// StreamingIterator exists only to copy items, so we don't need an
// iterator here at all.
return path;
}
AccessPath *stream_path = NewStreamingAccessPath(
thd, path, join, /*temp_table_param=*/nullptr, /*table=*/nullptr,
/*ref_slice=*/-1);
EstimateStreamCost(stream_path);
return stream_path;
} else {
// Filesort needs sort by row ID, possibly because large blobs are
// involved, so we need to actually materialize. (If we wanted a
// smaller temporary table at the expense of more seeks, we could
// materialize only aggregate functions and do a multi-table sort
// by docid, but this situation is rare, so we go for simplicity.)
return CreateMaterializationPath(thd, join, path, /*temp_table=*/nullptr,
/*temp_table_param=*/nullptr, copy_items);
}
}
AccessPath *GetSafePathToSort(THD *thd, JOIN *join, AccessPath *path,
bool need_rowid) {
if (need_rowid && path->safe_for_rowid == AccessPath::UNSAFE) {
// We need to materialize this path before we can sort it,
// since it might not give us stable row IDs.
return CreateMaterializationOrStreamingPath(
thd, join, new (thd->mem_root) AccessPath(*path), need_rowid,
/*copy_items=*/true);
} else {
return path;
}
}
/**
Sets up an access path for materializing the results returned from a path in a
temporary table.
*/
AccessPath *CreateMaterializationPath(THD *thd, JOIN *join, AccessPath *path,
TABLE *temp_table,
Temp_table_param *temp_table_param,
bool copy_items) {
AccessPath *table_path =
NewTableScanAccessPath(thd, temp_table, /*count_examined_rows=*/false);
AccessPath *materialize_path = NewMaterializeAccessPath(
thd,
SingleMaterializeQueryBlock(thd, path, /*select_number=*/-1, join,
copy_items, temp_table_param),
/*invalidators=*/nullptr, temp_table, table_path, /*cte=*/nullptr,
/*unit=*/nullptr, /*ref_slice=*/-1, /*rematerialize=*/true,
/*limit_rows=*/HA_POS_ERROR, /*reject_multiple_rows=*/false);
EstimateMaterializeCost(thd, materialize_path);
materialize_path->ordering_state = path->ordering_state;
materialize_path->delayed_predicates = path->delayed_predicates;
return materialize_path;
}
bool IsMaterializationPath(const AccessPath *path) {
switch (path->type) {
case AccessPath::MATERIALIZE:
case AccessPath::MATERIALIZED_TABLE_FUNCTION:
case AccessPath::MATERIALIZE_INFORMATION_SCHEMA_TABLE:
return true;
default:
return false;
}
}
/**
Is this DELETE target table a candidate for being deleted from immediately,
while scanning the result of the join? It only checks if it is a candidate for
immediate delete. Whether it actually ends up being deleted from immediately,
depends on the plan that is chosen.
*/
bool IsImmediateDeleteCandidate(const Table_ref *table_ref,
const Query_block *query_block) {
assert(table_ref->is_deleted());
// Cannot delete from the table immediately if it's joined with itself.
if (unique_table(table_ref, query_block->leaf_tables,
/*check_alias=*/false) != nullptr) {
return false;
}
return true;
}
/// Adds all fields of "table" that are referenced from "item" to
/// table->tmp_set.
void AddFieldsToTmpSet(Item *item, TABLE *table) {
item->walk(&Item::add_field_to_set_processor, enum_walk::SUBQUERY_POSTFIX,
pointer_cast<uchar *>(table));
}
/**
Is this UPDATE target table a candidate for being updated immediately, while
scanning the result of the join? It only checks if it is a candidate for
immediate update. Whether it actually ends up being updated immediately,
depends on the plan that is chosen.
*/
bool IsImmediateUpdateCandidate(const Table_ref *table_ref, int node_idx,
const JoinHypergraph &graph,
table_map target_tables) {
assert(table_ref->is_updated());
assert(Overlaps(table_ref->map(), target_tables));
assert(table_ref->table == graph.nodes[node_idx].table);
// Cannot update the table immediately if it's joined with itself.
if (unique_table(table_ref, graph.query_block()->leaf_tables,
/*check_alias=*/false) != nullptr) {
return false;
}
TABLE *const table = table_ref->table;
// Cannot update the table immediately if it modifies a partitioning column,
// as that could move the row to another partition so that it is seen more
// than once.
if (table->part_info != nullptr &&
table->part_info->num_partitions_used() > 1 &&
partition_key_modified(table, table->write_set)) {
return false;
}
// If there are at least two tables to update, t1 and t2, t1 being before t2
// in the plan, we need to collect all fields of t1 which influence the
// selection of rows from t2. If those fields are also updated, it will not be
// possible to update t1 on the fly.
if (!IsSingleBitSet(target_tables)) {
assert(bitmap_is_clear_all(&table->tmp_set));
auto restore_tmp_set =
create_scope_guard([table]() { bitmap_clear_all(&table->tmp_set); });
// Mark referenced fields in the join conditions in all the simple edges
// involving this table.
for (unsigned edge_idx : graph.graph.nodes[node_idx].simple_edges) {
const RelationalExpression *expr = graph.edges[edge_idx / 2].expr;
for (Item *condition : expr->join_conditions) {
AddFieldsToTmpSet(condition, table);
}
for (Item_eq_base *condition : expr->equijoin_conditions) {
AddFieldsToTmpSet(condition, table);
}
}
// Mark referenced fields in the join conditions in all the complex edges
// involving this table.
for (unsigned edge_idx : graph.graph.nodes[node_idx].complex_edges) {
const RelationalExpression *expr = graph.edges[edge_idx / 2].expr;
for (Item *condition : expr->join_conditions) {
AddFieldsToTmpSet(condition, table);
}
for (Item_eq_base *condition : expr->equijoin_conditions) {
AddFieldsToTmpSet(condition, table);
}
}
// And mark referenced fields in join conditions that are left in the WHERE
// clause (typically degenerate join conditions stemming from single-table
// filters that can't be pushed down due to pseudo-table bits in
// used_tables()).
for (unsigned i = 0; i < graph.num_where_predicates; ++i) {
const Predicate &predicate = graph.predicates[i];
if (IsProperSubset(TableBitmap(node_idx), predicate.used_nodes)) {
AddFieldsToTmpSet(predicate.condition, table);
}
}
if (bitmap_is_overlapping(&table->tmp_set, table->write_set)) {
return false;
}
}
return true;
}
/**
Finds all the target tables of an UPDATE or DELETE statement. It additionally
disables covering index scans on the target tables, since ha_update_row() and
ha_delete_row() can only be called on scans reading the full row.
*/
table_map FindUpdateDeleteTargetTables(const Query_block *query_block) {
table_map target_tables = 0;
for (Table_ref *tl = query_block->leaf_tables; tl != nullptr;
tl = tl->next_leaf) {
if (tl->is_updated() || tl->is_deleted()) {
target_tables |= tl->map();
// Target tables of DELETE and UPDATE need the full row, so disable
// covering index scans.
tl->table->no_keyread = true;
tl->table->covering_keys.clear_all();
}
}
assert(target_tables != 0);
return target_tables;
}
/**
Finds all of the target tables of an UPDATE or DELETE statement that are
candidates from being updated or deleted from immediately while scanning the
results of the join, without need to buffer the row IDs in a temporary table
for delayed update/delete after the join has completed. These are candidates
only; the actual tables to update while scanning, if any, will be chosen based
on cost during planning.
*/
table_map FindImmediateUpdateDeleteCandidates(const JoinHypergraph &graph,
table_map target_tables,
bool is_delete) {
table_map candidates = 0;
for (unsigned node_idx = 0; node_idx < graph.nodes.size(); ++node_idx) {
const JoinHypergraph::Node &node = graph.nodes[node_idx];
const Table_ref *tl = node.table->pos_in_table_list;
if (Overlaps(tl->map(), target_tables)) {
if (is_delete ? IsImmediateDeleteCandidate(tl, graph.query_block())
: IsImmediateUpdateCandidate(tl, node_idx, graph,
target_tables)) {
candidates |= tl->map();
}
}
}
return candidates;
}
// Returns a map containing the node indexes of all tables referenced by a
// full-text MATCH function.
NodeMap FindFullTextSearchedTables(const JoinHypergraph &graph) {
NodeMap tables = 0;
for (size_t i = 0; i < graph.nodes.size(); ++i) {
if (graph.nodes[i].table->pos_in_table_list->is_fulltext_searched()) {
tables |= TableBitmap(i);
}
}
return tables;
}
// Checks if an item represents a full-text predicate which can be satisfied by
// a full-text index scan. This can be done if the predicate is on one of the
// following forms:
//
// MATCH(col) AGAINST ('search string')
// MATCH(col) AGAINST ('search string') > const, where const >= 0
// MATCH(col) AGAINST ('search string') >= const, where const > 0
// const < MATCH(col) AGAINST ('search string'), where const >= 0
// const <= MATCH(col) AGAINST ('search string'), where const > 0
//
// That is, the predicate must return FALSE if MATCH returns zero. The predicate
// cannot be pushed to an index scan if it returns TRUE when MATCH returns zero,
// because a full-text index scan only returns documents with a positive score.
//
// If the item is sargable, the function returns true.
bool IsSargableFullTextIndexPredicate(Item *condition) {
if (condition->type() != Item::FUNC_ITEM) {
return false;
}
Item_func *func = down_cast<Item_func *>(condition);
int const_arg_idx = -1;
bool is_greater_than_op;
switch (func->functype()) {
case Item_func::MATCH_FUNC:
// A standalone MATCH in WHERE is pushable to a full-text index.
return true;
case Item_func::GT_FUNC:
// MATCH > const is pushable to a full-text index if const >= 0. Checked
// after the switch.
const_arg_idx = 1;
is_greater_than_op = true;
break;
case Item_func::GE_FUNC:
// MATCH >= const is pushable to a full-text index if const > 0. Checked
// after the switch.
const_arg_idx = 1;
is_greater_than_op = false;
break;
case Item_func::LT_FUNC:
// Normalize const < MATCH to MATCH > const.
const_arg_idx = 0;
is_greater_than_op = true;
break;
case Item_func::LE_FUNC:
// Normalize const <= MATCH to MATCH >= const.
const_arg_idx = 0;
is_greater_than_op = false;
break;
default:
// Other kinds of predicates are not pushable to a full-text index.
return false;
}
assert(func->argument_count() == 2);
assert(const_arg_idx == 0 || const_arg_idx == 1);
// Only pushable if we have a MATCH function greater-than(-or-equal) a
// constant value.
Item *const_arg = func->get_arg(const_arg_idx);
Item *match_arg = func->get_arg(1 - const_arg_idx);
if (!is_function_of_type(match_arg, Item_func::FT_FUNC) ||
!const_arg->const_item()) {
return false;
}
// Evaluate the constant.
const double value = const_arg->val_real();
if (const_arg->null_value) {
// MATCH <op> NULL cannot be pushed to a full-text index.
return false;
}
// Check if the constant is high enough to exclude MATCH = 0, which is the1
// requirement for being pushable to a full-text index.
if (is_greater_than_op) {
return value >= 0;
} else {
return value > 0;
}
}
// Finds all the WHERE predicates that can be satisfied by a full-text index
// scan, and returns a bitmap of those predicates. See
// IsSargableFullTextIndexPredicate() for a description of which predicates are
// sargable.
uint64_t FindSargableFullTextPredicates(const JoinHypergraph &graph) {
uint64_t fulltext_predicates = 0;
for (size_t i = 0; i < graph.num_where_predicates; ++i) {
const Predicate &predicate = graph.predicates[i];
if (IsSargableFullTextIndexPredicate(predicate.condition)) {
fulltext_predicates |= uint64_t{1} << i;
// If the predicate is a standalone MATCH function, flag it as such. This
// is used by Item_func_match::can_skip_ranking() to determine if ranking
// is needed. (We could also have set other operation hints here, like
// FT_OP_GT and FT_OP_GE. These hints are currently not used by any of the
// storage engines, so we don't set them for now.)
Item_func *predicate_func = down_cast<Item_func *>(predicate.condition);
if (predicate_func->functype() == Item_func::MATCH_FUNC) {
Item_func_match *parent =
down_cast<Item_func_match *>(predicate_func->get_arg(0))
->get_master();
List<Item_func_match> *funcs =
parent->table_ref->query_block->ftfunc_list;
// We only set the hint if this is the only reference to the MATCH
// function. If it is used other places (for example in the SELECT list
// or in other predicates) we may still need ranking.
if (std::none_of(funcs->begin(), funcs->end(),
[parent](const Item_func_match &match) {
return match.master == parent;
})) {
parent->set_hints_op(FT_OP_NO, 0.0);
}
}
}
}
return fulltext_predicates;
}
// Inject casts into comparisons of expressions with incompatible types.
// For example, int_col = string_col is rewritten to
// CAST(int_col AS DOUBLE) = CAST(string_col AS DOUBLE)
bool InjectCastNodes(JoinHypergraph *graph) {
// Inject cast nodes into the WHERE clause.
for (Predicate &predicate :
make_array(graph->predicates.data(), graph->num_where_predicates)) {
if (predicate.condition->walk(&Item::cast_incompatible_args,
enum_walk::POSTFIX, nullptr)) {
return true;
}
}
// Inject cast nodes into the join conditions.
for (JoinPredicate &edge : graph->edges) {
RelationalExpression *expr = edge.expr;
if (expr->join_predicate_first != expr->join_predicate_last) {
// The join predicates have been lifted to the WHERE clause, and casts are
// already injected into the WHERE clause.
continue;
}
for (Item_eq_base *item : expr->equijoin_conditions) {
if (item->walk(&Item::cast_incompatible_args, enum_walk::POSTFIX,
nullptr)) {
return true;
}
}
for (Item *item : expr->join_conditions) {
if (item->walk(&Item::cast_incompatible_args, enum_walk::POSTFIX,
nullptr)) {
return true;
}
}
}
// Inject cast nodes to the expressions in the SELECT list.
const JOIN *join = graph->join();
for (Item *item : *join->fields) {
if (item->walk(&Item::cast_incompatible_args, enum_walk::POSTFIX,
nullptr)) {
return true;
}
}
// Also GROUP BY expressions and HAVING, to be consistent everywhere.
for (ORDER *ord = join->group_list.order; ord != nullptr; ord = ord->next) {
if ((*ord->item)
->walk(&Item::cast_incompatible_args, enum_walk::POSTFIX,
nullptr)) {
return true;
}
}
if (join->having_cond != nullptr) {
if (join->having_cond->walk(&Item::cast_incompatible_args,
enum_walk::POSTFIX, nullptr)) {
return true;
}
}
return false;
}
// Checks if any of the full-text indexes are covering for a table. If the query
// only needs the document ID and the rank, there is no need to access table
// rows. Index-only access can only be used if there is an FTS_DOC_ID column in
// the table, and no other columns must be accessed. All covering full-text
// indexes that are found, are added to TABLE::covering_keys.
void EnableFullTextCoveringIndexes(const Query_block *query_block) {
for (Item_func_match &match : *query_block->ftfunc_list) {
TABLE *table = match.table_ref->table;
if (match.master == nullptr && match.key != NO_SUCH_KEY &&
table->fts_doc_id_field != nullptr &&
bitmap_is_set(table->read_set,
table->fts_doc_id_field->field_index()) &&
bitmap_bits_set(table->read_set) == 1) {
table->covering_keys.set_bit(match.key);
}
}
}
/**
Creates a ZERO_ROWS access path for an always empty join result, or a
ZERO_ROWS_AGGREGATED in case of an implicitly grouped query. The zero rows
path is wrapped in FILTER (for HAVING) or LIMIT_OFFSET paths as needed, as
well as UPDATE_ROWS/DELETE_ROWS paths for UPDATE/DELETE statements.
*/
AccessPath *CreateZeroRowsForEmptyJoin(JOIN *join, const char *cause) {
join->zero_result_cause = cause;
join->needs_finalize = true;
join->create_access_paths_for_zero_rows();
return join->root_access_path();
}
/**
Creates an AGGREGATE AccessPath, possibly with an intermediary STREAM node if
one is needed. The creation of the temporary table does not happen here, but
is left for FinalizePlanForQueryBlock().
@param thd The current thread.
@param join The join to which 'path' belongs.
@param rollup True for "GROUP BY ... WITH ROLLUP".
@param row_estimate estimated number of output rows, so that we do not
need to recalculate it, or kUnknownRowCount if unknown.
@param trace Optimizer trace.
@returns The AGGREGATE AccessPath.
*/
AccessPath CreateStreamingAggregationPath(THD *thd, AccessPath *path,
JOIN *join, bool rollup,
double row_estimate, string *trace) {
AccessPath *child_path = path;
const Query_block *query_block = join->query_block;
// Create a streaming node, if one is needed. It is needed for aggregation of
// some full-text queries, because AggregateIterator doesn't preserve the
// position of the underlying scans.
if (join->contains_non_aggregated_fts()) {
child_path = NewStreamingAccessPath(
thd, path, join, /*temp_table_param=*/nullptr, /*table=*/nullptr,
/*ref_slice=*/-1);
CopyBasicProperties(*path, child_path);
}
AccessPath aggregate_path;
aggregate_path.type = AccessPath::AGGREGATE;
aggregate_path.aggregate().child = child_path;
aggregate_path.aggregate().rollup = rollup;
aggregate_path.set_num_output_rows(row_estimate);
EstimateAggregateCost(&aggregate_path, query_block, trace);
return aggregate_path;
}
// If we are planned using in2exists, and our SELECT list has a window
// function, the HAVING condition may include parts that refer to window
// functions. (This cannot happen in standard SQL, but we add such conditions
// as part of in2exists processing.) Split them here.
void SplitHavingCondition(THD *thd, Item *cond, Item **having_cond,
Item **having_cond_wf) {
if (cond == nullptr || !cond->has_wf()) {
*having_cond = cond;
*having_cond_wf = nullptr;
return;
}
// If we have a IN-to-EXISTS with window functions and multiple columns,
// we cannot safely push even the ones that are not dependent on the
// window functions, as some of them would come before the window functions
// and change their input data incorrectly. So if so, we need to delay
// all of them.
const bool delay_all_in2exists = cond->has_wf();
Mem_root_array<Item *> cond_parts(thd->mem_root);
ExtractConditions(cond, &cond_parts);
List<Item> cond_parts_wf;
List<Item> cond_parts_normal;
for (Item *item : cond_parts) {
if (item->has_wf() ||
(delay_all_in2exists && item->created_by_in2exists())) {
cond_parts_wf.push_back(item);
} else {
cond_parts_normal.push_back(item);
}
}
*having_cond = CreateConjunction(&cond_parts_normal);
*having_cond_wf = CreateConjunction(&cond_parts_wf);
}
void ApplyHavingCondition(THD *thd, Item *having_cond, Query_block *query_block,
const char *description_for_trace, string *trace,
Prealloced_array<AccessPath *, 4> *root_candidates,
CostingReceiver *receiver) {
if (having_cond == nullptr) {
return;
}
if (trace != nullptr) {
*trace += description_for_trace;
}
Prealloced_array<AccessPath *, 4> new_root_candidates(PSI_NOT_INSTRUMENTED);
for (AccessPath *root_path : *root_candidates) {
AccessPath filter_path;
filter_path.type = AccessPath::FILTER;
filter_path.filter().child = root_path;
filter_path.filter().condition = having_cond;
// We don't currently bother with materializing subqueries
// in HAVING, as they should be rare.
filter_path.filter().materialize_subqueries = false;
filter_path.set_num_output_rows(
root_path->num_output_rows() *
EstimateSelectivity(thd, having_cond, trace));
const FilterCost filter_cost = EstimateFilterCost(
thd, root_path->num_output_rows(), having_cond, query_block);
filter_path.init_cost =
root_path->init_cost + filter_cost.init_cost_if_not_materialized;
filter_path.init_once_cost = root_path->init_once_cost;
filter_path.cost = root_path->cost + filter_cost.cost_if_not_materialized;
filter_path.num_output_rows_before_filter = filter_path.num_output_rows();
filter_path.cost_before_filter = filter_path.cost;
// TODO(sgunders): Collect and apply functional dependencies from
// HAVING conditions.
filter_path.ordering_state = root_path->ordering_state;
receiver->ProposeAccessPath(&filter_path, &new_root_candidates,
/*obsolete_orderings=*/0, "");
}
*root_candidates = std::move(new_root_candidates);
}
AccessPath MakeSortPathForDistinct(
THD *thd, AccessPath *root_path, int ordering_idx,
bool aggregation_is_unordered, const LogicalOrderings &orderings,
LogicalOrderings::StateIndex ordering_state) {
AccessPath sort_path;
sort_path.type = AccessPath::SORT;
sort_path.count_examined_rows = false;
sort_path.sort().child = root_path;
sort_path.sort().filesort = nullptr;
sort_path.sort().remove_duplicates = true;
sort_path.sort().unwrap_rollup = false;
sort_path.sort().limit = HA_POS_ERROR;
sort_path.sort().force_sort_rowids = false;
if (aggregation_is_unordered) {
// Even though we create a sort node for the distinct operation,
// the engine does not actually sort the rows. (The deduplication
// flag is the hint in this case.)
sort_path.ordering_state = 0;
} else {
sort_path.ordering_state = ordering_state;
}
// This sort is potentially after materialization, so we must make a
// copy of the ordering so that ReplaceOrderItemsWithTempTableFields()
// doesn't accidentally rewrite the items in a sort on the same
// sort-ahead ordering before the materialization.
ORDER *order_copy =
BuildSortAheadOrdering(thd, &orderings, orderings.ordering(ordering_idx));
sort_path.sort().order = order_copy;
EstimateSortCost(&sort_path);
return sort_path;
}
JoinHypergraph::Node *FindNodeWithTable(JoinHypergraph *graph, TABLE *table) {
for (JoinHypergraph::Node &node : graph->nodes) {
if (node.table == table) {
return &node;
}
}
return nullptr;
}
Prealloced_array<AccessPath *, 4> ApplyDistinctAndOrder(
THD *thd, const CostingReceiver &receiver,
const LogicalOrderings &orderings, bool aggregation_is_unordered,
int order_by_ordering_idx, int distinct_ordering_idx,
const Mem_root_array<SortAheadOrdering> &sort_ahead_orderings,
FunctionalDependencySet fd_set, Query_block *query_block, bool need_rowid,
bool force_sort_rowids, Prealloced_array<AccessPath *, 4> root_candidates,
string *trace) {
JOIN *join = query_block->join;
assert(join->select_distinct || join->order.order != nullptr);
if (root_candidates.empty()) {
// Nothing to do if the secondary engine has rejected all candidates.
assert(receiver.HasSecondaryEngineCostHook());
return root_candidates;
}
// If we have both ORDER BY and GROUP BY, we need a materialization step
// after the grouping (if windowing hasn't already given us one) -- although
// in most cases, we only need to materialize one row at a time (streaming),
// so the performance loss should be very slight. This is because when
// filesort only really deals with fields, not values; when it is to “output”
// a row, it puts back the contents of the sorted table's (or tables')
// row buffer(s). For expressions that only depend on the current row, such as
// (f1 + 1), this is fine, but aggregate functions (Item_sum) depend on
// multiple rows, so we need a field where filesort can put back its value
// (and of course, subsequent readers need to read from that field
// instead of trying to evaluate the Item_sum). A temporary table provides
// just that, so we create one based on the current field list;
// StreamingIterator (or MaterializeIterator, if we actually need to
// materialize) will evaluate all the Items in turn and put their values
// into the temporary table's fields.
//
// For simplicity, we materialize all items in the SELECT list, even those
// that are not aggregate functions. This is a tiny performance loss,
// but makes things simpler.
//
// The test on join->sum_funcs is mainly to avoid having to create temporary
// tables in unit tests; the rationale is that if there are no aggregate
// functions, we also cannot sort on them, and thus, we don't get the
// problem. Note that we can't do this if sorting by row IDs, as
// AggregateIterator doesn't preserve them (doing so would probably not be
// worth it for something that's fairly niche).
//
// NOTE: If we elide the sort due to interesting orderings, this might
// be redundant. It is fairly harmless, though.
if ((query_block->is_explicitly_grouped() &&
(*join->sum_funcs != nullptr ||
join->rollup_state != JOIN::RollupState::NONE || need_rowid)) &&
join->m_windows.is_empty()) {
Prealloced_array<AccessPath *, 4> new_root_candidates(PSI_NOT_INSTRUMENTED);
for (AccessPath *root_path : root_candidates) {
root_path =
CreateMaterializationOrStreamingPath(thd, join, root_path, need_rowid,
/*copy_items=*/true);
receiver.ProposeAccessPath(root_path, &new_root_candidates,
/*obsolete_orderings=*/0, "");
}
root_candidates = std::move(new_root_candidates);
}
// Now create iterators for DISTINCT, if applicable.
if (join->select_distinct) {
if (trace != nullptr) {
*trace += "Applying sort for DISTINCT\n";
}
// Remove redundant elements from the grouping before it is applied.
// Specifically, we want to remove elements that are constant after all
// predicates have been applied.
const Ordering grouping =
ReduceFinalOrdering(thd, orderings, distinct_ordering_idx);
Prealloced_array<AccessPath *, 4> new_root_candidates(PSI_NOT_INSTRUMENTED);
for (AccessPath *root_path : root_candidates) {
if (grouping.GetElements().empty()) {
// Only const fields.
AccessPath *limit_path = NewLimitOffsetAccessPath(
thd, root_path, /*limit=*/1, /*offset=*/0, join->calc_found_rows,
/*reject_multiple_rows=*/false,
/*send_records_override=*/nullptr);
receiver.ProposeAccessPath(limit_path, &new_root_candidates,
/*obsolete_orderings=*/0, "");
continue;
}
if (!aggregation_is_unordered &&
orderings.DoesFollowOrder(root_path->ordering_state,
distinct_ordering_idx)) {
// We don't need the sort, and can do with a simpler deduplication.
// TODO(sgunders): In some cases, we could apply LIMIT 1,
// which would be slightly more efficient; see e.g. the test for
// bug #33148369.
Item **group_items =
thd->mem_root->ArrayAlloc<Item *>(grouping.GetElements().size());
for (size_t i = 0; i < grouping.GetElements().size(); ++i) {
group_items[i] = orderings.item(grouping.GetElements()[i].item);
}
AccessPath *dedup_path = NewRemoveDuplicatesAccessPath(
thd, root_path, group_items, grouping.GetElements().size());
CopyBasicProperties(*root_path, dedup_path);
// TODO(sgunders): Model the actual reduction in rows somehow.
dedup_path->cost += kAggregateOneRowCost * root_path->num_output_rows();
receiver.ProposeAccessPath(dedup_path, &new_root_candidates,
/*obsolete_orderings=*/0, "sort elided");
continue;
}
root_path = GetSafePathToSort(thd, join, root_path, need_rowid);
// We need to sort. Try all sort-ahead, not just the one directly
// derived from DISTINCT clause, because the DISTINCT clause might
// help us elide the sort for ORDER BY later, if the DISTINCT clause
// is broader than the ORDER BY clause.
for (const SortAheadOrdering &sort_ahead_ordering :
sort_ahead_orderings) {
if (sort_ahead_ordering.sort_ahead_only) {
continue;
}
LogicalOrderings::StateIndex ordering_state = orderings.ApplyFDs(
orderings.SetOrder(sort_ahead_ordering.ordering_idx), fd_set);
// A broader DISTINCT could help elide ORDER BY. Not vice versa. Note
// that ORDER BY would generally be subset of DISTINCT, but not always.
// E.g. using ANY_VALUE() in ORDER BY would allow it to be not part of
// DISTINCT.
if (sort_ahead_ordering.ordering_idx == distinct_ordering_idx) {
// The ordering derived from DISTINCT. Always propose this one,
// regardless of whether it also satisfies the ORDER BY ordering.
} else if (grouping.size() <
orderings.ordering(sort_ahead_ordering.ordering_idx)
.size()) {
// This sort-ahead ordering is too wide and may cause duplicates to be
// returned. Don't propose it.
continue;
} else if (order_by_ordering_idx == -1) {
// There is no ORDER BY to satisfy later, so there is no point in
// trying to find a sort that satisfies both DISTINCT and ORDER BY.
continue;
} else if (!orderings.DoesFollowOrder(ordering_state,
distinct_ordering_idx) ||
!orderings.DoesFollowOrder(ordering_state,
order_by_ordering_idx)) {
// The ordering does not satisfy both of the orderings that are
// interesting to us. So it's no better than the distinct_ordering_idx
// one. Don't propose it.
continue;
}
// The force_sort_rowids flag is only set for UPDATE and DELETE,
// which don't have any syntax for specifying DISTINCT.
assert(!force_sort_rowids);
AccessPath sort_path = MakeSortPathForDistinct(
thd, root_path, sort_ahead_ordering.ordering_idx,
aggregation_is_unordered, orderings, ordering_state);
receiver.ProposeAccessPath(&sort_path, &new_root_candidates,
/*obsolete_orderings=*/0, "");
}
}
root_candidates = std::move(new_root_candidates);
}
// Apply ORDER BY, if applicable.
if (join->order.order != nullptr) {
if (root_candidates.empty()) {
// The secondary engine has rejected all candidates.
assert(receiver.HasSecondaryEngineCostHook());
return root_candidates;
}
Mem_root_array<TABLE *> tables = CollectTables(
thd, root_candidates[0]); // Should be same for all paths.
if (trace != nullptr) {
*trace += "Applying sort for ORDER BY\n";
}
// If we have LIMIT or OFFSET, we apply them here. This is done so that we
// can push the LIMIT clause down to the SORT node in order to let Filesort
// take advantage of it.
const Query_expression *query_expression = join->query_expression();
const ha_rows limit_rows = query_expression->select_limit_cnt;
const ha_rows offset_rows = query_expression->offset_limit_cnt;
Prealloced_array<AccessPath *, 4> new_root_candidates(PSI_NOT_INSTRUMENTED);
for (AccessPath *root_path : root_candidates) {
// No sort is needed if the candidate already follows the
// required ordering.
if (orderings.DoesFollowOrder(root_path->ordering_state,
order_by_ordering_idx)) {
if (limit_rows != HA_POS_ERROR || offset_rows != 0) {
root_path = NewLimitOffsetAccessPath(
thd, root_path, limit_rows, offset_rows, join->calc_found_rows,
/*reject_multiple_rows=*/false,
/*send_records_override=*/nullptr);
}
receiver.ProposeAccessPath(root_path, &new_root_candidates,
/*obsolete_orderings=*/0, "sort elided");
} else {
const bool push_limit_to_filesort =
limit_rows != HA_POS_ERROR && !join->calc_found_rows;
root_path = GetSafePathToSort(thd, join, root_path, need_rowid);
AccessPath *sort_path = new (thd->mem_root) AccessPath;
sort_path->type = AccessPath::SORT;
sort_path->count_examined_rows = false;
sort_path->immediate_update_delete_table =
root_path->immediate_update_delete_table;
sort_path->sort().child = root_path;
sort_path->sort().filesort = nullptr;
sort_path->sort().remove_duplicates = false;
sort_path->sort().unwrap_rollup = false;
sort_path->sort().limit =
push_limit_to_filesort ? limit_rows : HA_POS_ERROR;
sort_path->sort().order = join->order.order;
EstimateSortCost(sort_path);
// If this is a DELETE or UPDATE statement, row IDs must be preserved
// through the ORDER BY clause, so that we know which rows to delete or
// update.
sort_path->sort().force_sort_rowids = force_sort_rowids;
// If we have a LIMIT clause that is not pushed down to the filesort, or
// if we have an OFFSET clause, we need to add a LIMIT_OFFSET path on
// top of the SORT node.
if ((limit_rows != HA_POS_ERROR && !push_limit_to_filesort) ||
offset_rows != 0) {
sort_path = NewLimitOffsetAccessPath(
thd, sort_path, limit_rows, offset_rows, join->calc_found_rows,
/*reject_multiple_rows=*/false,
/*send_records_override=*/nullptr);
}
receiver.ProposeAccessPath(sort_path, &new_root_candidates,
/*obsolete_orderings=*/0, "");
}
}
root_candidates = std::move(new_root_candidates);
}
return root_candidates;
}
static AccessPath *ApplyWindow(THD *thd, AccessPath *root_path, Window *window,
JOIN *join, bool need_rowid_for_window) {
AccessPath *window_path =
NewWindowAccessPath(thd, root_path, window, /*temp_table_param=*/nullptr,
/*ref_slice=*/-1, window->needs_buffering());
CopyBasicProperties(*root_path, window_path);
window_path->cost += kWindowOneRowCost * window_path->num_output_rows();
// NOTE: copy_items = false, because the window iterator does the copying
// itself.
return CreateMaterializationOrStreamingPath(thd, join, window_path,
need_rowid_for_window,
/*copy_items=*/false);
}
/**
Find the ordering that allows us to process the most unprocessed windows.
If specified, we can also demand that the ordering satisfies one or two
later orderings (for DISTINCT and/or ORDER BY).
Our priorities are, in strict order:
1. Satisfying both DISTINCT and ORDER BY (if both are given;
but see below).
2. Satisfying the first operation after windowing
(which is either DISTINCT or ORDER BY).
3. Satisfying as many windows as possible.
4. The shortest possible ordering (as a tie-breaker).
If first_ordering_idx is given, #2 is mandatory. #4 is so that we don't
get strange situations where the user specifies e.g. OVER (ORDER BY i)
and we choose an ordering i,j,k,l,... because it happened to be given
somewhere else.
Note that normally, it is very hard to satisfy DISTINCT for a window
function, because generally, it isn't constant for a given input
(by nature, it also depends on other rows). But it can happen if the
window frame is static; see main.window_functions_interesting_orders.
@param join Contains the list of windows.
@param orderings Logical orderings in the query block.
@param sort_ahead_orderings Candidate orderings to consider.
@param fd_set Active functional dependencies.
@param finished_windows Windows to ignore.
@param tmp_buffer Temporary space for keeping the best list
of windows so far; must be as large as
the number of values.
@param first_ordering_idx The first ordering after the query block
that we need to satisfy (-1 if none).
@param second_ordering_idx The second ordering after the query block
that we would like to satisfy (-1 if none).
@param [out] included_windows Which windows can be sorted using the given
ordering.
@return An index into sort_ahead_orderings, or -1 if no ordering could
be found that sorts at least one window (plus, if first_ordering_idx
is set, follows that ordering).
*/
static int FindBestOrderingForWindow(
JOIN *join, const LogicalOrderings &orderings,
FunctionalDependencySet fd_set,
const Mem_root_array<SortAheadOrdering> &sort_ahead_orderings,
Bounds_checked_array<bool> finished_windows,
Bounds_checked_array<bool> tmp_buffer, int first_ordering_idx,
int second_ordering_idx, Bounds_checked_array<bool> included_windows) {
if (first_ordering_idx == -1) {
assert(second_ordering_idx == -1);
}
int best_ordering_idx = -1;
bool best_following_both_orders = false;
int best_num_matching_windows = 0;
for (size_t i = 0; i < sort_ahead_orderings.size(); ++i) {
if (sort_ahead_orderings[i].sort_ahead_only) {
continue;
}
const int ordering_idx = sort_ahead_orderings[i].ordering_idx;
LogicalOrderings::StateIndex ordering_state =
orderings.ApplyFDs(orderings.SetOrder(ordering_idx), fd_set);
bool following_both_orders = false;
if (first_ordering_idx != -1) {
if (!orderings.DoesFollowOrder(ordering_state, first_ordering_idx)) {
// Following one is mandatory.
continue;
}
if (second_ordering_idx != -1) {
if (orderings.DoesFollowOrder(ordering_state, second_ordering_idx)) {
following_both_orders = true;
} else if (best_following_both_orders) {
continue;
}
}
}
// If we are doing sortahead for DISTINCT/ORDER BY:
// Find windows that are referred to by DISTINCT/ORDER BY,
// and disallow them. E.g., if we have
//
// SELECT FOO() OVER w1 AS a ... ORDER BY a,
//
// we cannot put w1 in the group of windows that are to be sorted
// together with ORDER BY.
for (Window &window : join->m_windows) {
window.m_mark = false;
}
Ordering ordering = orderings.ordering(ordering_idx);
bool any_wf = false;
for (OrderElement elem : ordering.GetElements()) {
WalkItem(orderings.item(elem.item), enum_walk::PREFIX,
[&any_wf](Item *item) {
if (item->m_is_window_function) {
down_cast<Item_sum *>(item)->window()->m_mark = true;
any_wf = true;
}
return false;
});
if (first_ordering_idx == -1 && any_wf) {
break;
}
}
// If we are doing sorts _before_ DISTINCT/ORDER BY, simply disallow
// any sorts on window functions. There should be better options
// available for us.
if (first_ordering_idx == -1 && any_wf) {
continue;
}
// Now find out which windows can be processed under this order.
// We use tmp_buffer to hold which one we selected,
// and then copy it into included_windows if we are the best so far.
int num_matching_windows = 0;
for (size_t window_idx = 0; window_idx < join->m_windows.size();
++window_idx) {
Window *window = join->m_windows[window_idx];
if (window->m_mark || finished_windows[window_idx] ||
!orderings.DoesFollowOrder(ordering_state, window->m_ordering_idx)) {
tmp_buffer[window_idx] = false;
continue;
}
tmp_buffer[window_idx] = true;
++num_matching_windows;
}
if (num_matching_windows == 0) {
continue;
}
bool is_best;
if (best_ordering_idx == -1) {
is_best = true;
} else if (following_both_orders < best_following_both_orders) {
is_best = false;
} else if (following_both_orders > best_following_both_orders) {
is_best = true;
} else if (num_matching_windows < best_num_matching_windows) {
is_best = false;
} else if (num_matching_windows > best_num_matching_windows) {
is_best = true;
} else if (orderings.ordering(ordering_idx).GetElements().size() <
orderings
.ordering(
sort_ahead_orderings[best_ordering_idx].ordering_idx)
.GetElements()
.size()) {
is_best = true;
} else {
is_best = false;
}
if (is_best) {
best_ordering_idx = i;
best_following_both_orders = following_both_orders;
best_num_matching_windows = num_matching_windows;
memcpy(included_windows.array(), tmp_buffer.array(),
sizeof(bool) * included_windows.size());
}
}
return best_ordering_idx;
}
AccessPath *MakeSortPathAndApplyWindows(
THD *thd, JOIN *join, AccessPath *root_path, int ordering_idx, ORDER *order,
const LogicalOrderings &orderings,
Bounds_checked_array<bool> windows_this_iteration,
FunctionalDependencySet fd_set, int num_where_predicates,
bool need_rowid_for_window, int single_window_idx,
Bounds_checked_array<bool> finished_windows, int *num_windows_left) {
AccessPath sort_path =
MakeSortPathWithoutFilesort(thd, root_path, order,
/*ordering_state=*/0, num_where_predicates);
sort_path.ordering_state =
orderings.ApplyFDs(orderings.SetOrder(ordering_idx), fd_set);
root_path = new (thd->mem_root) AccessPath(sort_path);
if (single_window_idx >= 0) {
root_path = ApplyWindow(thd, root_path, join->m_windows[single_window_idx],
join, need_rowid_for_window);
finished_windows[single_window_idx] = true;
--(*num_windows_left);
return root_path;
}
for (size_t window_idx = 0; window_idx < join->m_windows.size();
++window_idx) {
if (!windows_this_iteration[window_idx]) {
continue;
}
root_path = ApplyWindow(thd, root_path, join->m_windows[window_idx], join,
need_rowid_for_window);
finished_windows[window_idx] = true;
--(*num_windows_left);
}
return root_path;
}
} // namespace
/**
Apply window functions.
Ordering of window functions is a tricky topic. We can apply window functions
in any order that we'd like, but we would like to do as few sorts as possible.
In its most general form, this would entail solving an instance of the
traveling salesman problem (TSP), and although the number of windows is
typically small (one or two in most queries), this can blow up for large
numbers of windows.
Thankfully, window functions never add or remove rows. We also assume that all
sorts are equally expensive (which isn't really true, as ones on more columns
take more processing time and buffer, but it's close enough in practice),
and we also ignore the fact that as we compute more buffers, the temporary
tables and sort buffers will get more columns. These assumptions, combined
with some reasonable assumptions about ordering transitivity (if an ordering A
is more sorted than an ordering B, and B > C, then also A > C -- the only
thing that can disturb this is groupings, which we ignore for the sake of
simplicity), mean that we need to care _only_ about the number of sorts, and
can do them greedily. Thus, at any point, we pick the ordering that allows us
to process the largest number of windows, process them, remove them from
consideration, and repeat until there are none left.
There is one more ordering complication; after windowing, we may have DISTINCT
and/or ORDER BY, which may also benefit from groupings/orderings we leave
after the last window. Thus, first of all, we see if there's an ordering that
can satisfy them (ideally both if possible) _and_ at least one window; if so,
we save that ordering and those windows for last.
Temporary tables are set up in FinalizePlanForQueryBlock(). This is so that
it is easier to have multiple different orderings for the temporary table
parameters later.
*/
static Prealloced_array<AccessPath *, 4> ApplyWindowFunctions(
THD *thd, const CostingReceiver &receiver,
const LogicalOrderings &orderings, FunctionalDependencySet fd_set,
bool aggregation_is_unordered, int order_by_ordering_idx,
int distinct_ordering_idx, const JoinHypergraph &graph,
const Mem_root_array<SortAheadOrdering> &sort_ahead_orderings,
Query_block *query_block, int num_where_predicates, bool need_rowid,
Prealloced_array<AccessPath *, 4> root_candidates, string *trace) {
JOIN *join = query_block->join;
// Figure out if windows need row IDs or not; we won't create
// the temporary tables before later (since the optimal ordering
// of windows is cost-based), so this is a conservative check.
bool need_rowid_for_window = need_rowid;
if (!need_rowid) {
for (Item *item : *join->fields) {
if (item->m_is_window_function && item->is_blob_field()) {
need_rowid_for_window = true;
break;
}
}
}
// Windows we're done processing, or have reserved for the last block.
auto finished_windows =
Bounds_checked_array<bool>::Alloc(thd->mem_root, join->m_windows.size());
// Windows we've reserved for the last block (see function comment).
auto reserved_windows =
Bounds_checked_array<bool>::Alloc(thd->mem_root, join->m_windows.size());
// Temporary space for FindBestOrderingForWindow().
auto tmp =
Bounds_checked_array<bool>::Alloc(thd->mem_root, join->m_windows.size());
// Windows we're doing in this pass.
auto included_windows =
Bounds_checked_array<bool>::Alloc(thd->mem_root, join->m_windows.size());
if (trace) {
*trace += "\n";
}
Prealloced_array<AccessPath *, 4> new_root_candidates(PSI_NOT_INSTRUMENTED);
for (AccessPath *root_path : root_candidates) {
if (trace) {
*trace += "Considering window order on top of " +
PrintAccessPath(*root_path, graph, "") + "\n";
}
// First, go through and check which windows we can do without
// any reordering, just based on the input ordering we get.
int num_windows_left = join->m_windows.size();
for (size_t window_idx = 0; window_idx < join->m_windows.size();
++window_idx) {
Window *window = join->m_windows[window_idx];
if (window->m_ordering_idx == -1 || join->implicit_grouping ||
orderings.DoesFollowOrder(root_path->ordering_state,
window->m_ordering_idx)) {
if (trace) {
*trace += std::string(" - window ") + window->printable_name() +
" does not need further sorting\n";
}
root_path =
ApplyWindow(thd, root_path, window, join, need_rowid_for_window);
finished_windows[window_idx] = true;
--num_windows_left;
} else {
finished_windows[window_idx] = false;
}
}
// Now, see if we can find an ordering that allows us to process
// at least one window _and_ an operation after the windowing
// (DISTINCT, ORDER BY). If so, that ordering will be our last.
int final_sort_ahead_ordering_idx = -1;
if ((!aggregation_is_unordered || distinct_ordering_idx == -1) &&
(distinct_ordering_idx != -1 || order_by_ordering_idx != -1)) {
int first_ordering_idx, second_ordering_idx;
if (distinct_ordering_idx == -1) {
first_ordering_idx = order_by_ordering_idx;
second_ordering_idx = -1;
} else {
first_ordering_idx = distinct_ordering_idx;
second_ordering_idx = order_by_ordering_idx;
}
final_sort_ahead_ordering_idx = FindBestOrderingForWindow(
join, orderings, fd_set, sort_ahead_orderings, finished_windows, tmp,
first_ordering_idx, second_ordering_idx, reserved_windows);
for (size_t window_idx = 0; window_idx < join->m_windows.size();
++window_idx) {
finished_windows[window_idx] |= reserved_windows[window_idx];
}
}
// Now all the other orderings, eventually reaching all windows.
while (num_windows_left > 0) {
int sort_ahead_ordering_idx = FindBestOrderingForWindow(
join, orderings, fd_set, sort_ahead_orderings, finished_windows, tmp,
/*first_ordering_idx=*/-1,
/*second_ordering_idx=*/-1, included_windows);
Bounds_checked_array<bool> windows_this_iteration = included_windows;
if (sort_ahead_ordering_idx == -1) {
// None left, so take the one we've saved for last.
sort_ahead_ordering_idx = final_sort_ahead_ordering_idx;
windows_this_iteration = reserved_windows;
final_sort_ahead_ordering_idx = -1;
}
if (sort_ahead_ordering_idx == -1) {
// No sort-ahead orderings left, but some windows are left. The
// remaining windows are handled after this loop.
break;
}
root_path = MakeSortPathAndApplyWindows(
thd, join, root_path,
sort_ahead_orderings[sort_ahead_ordering_idx].ordering_idx,
sort_ahead_orderings[sort_ahead_ordering_idx].order, orderings,
windows_this_iteration, fd_set, num_where_predicates,
need_rowid_for_window, /*single_window_idx*/ -1, finished_windows,
&num_windows_left);
}
// The remaining windows (if any) have orderings which are not present in
// the interesting orders bitmap, e.g. when the number of orders in the
// query > kMaxSupportedOrderings. Create a sort path for each of
// these windows using the window's own order instead of looking up an
// order in the interesting-orders list.
for (size_t window_idx = 0;
window_idx < join->m_windows.size() && num_windows_left > 0;
++window_idx) {
if (finished_windows[window_idx]) continue;
Bounds_checked_array<bool> windows_this_iteration;
root_path = MakeSortPathAndApplyWindows(
thd, join, root_path, join->m_windows[window_idx]->m_ordering_idx,
join->m_windows[window_idx]->sorting_order(thd), orderings,
windows_this_iteration, fd_set, num_where_predicates,
need_rowid_for_window, window_idx, finished_windows,
&num_windows_left);
}
assert(num_windows_left == 0);
receiver.ProposeAccessPath(root_path, &new_root_candidates,
/*obsolete_orderings=*/0, "");
}
if (trace) {
*trace += "\n";
}
return new_root_candidates;
}
/**
Find out if "value" has a type which is compatible with "field" so that it can
be used for an index lookup if there is an index on "field".
*/
static bool CompatibleTypesForIndexLookup(Item_func_eq *eq_item, Field *field,
Item *value) {
if (!comparable_in_index(eq_item, field, Field::itRAW, eq_item->functype(),
value)) {
// The types are not comparable in the index, so it's not sargable.
return false;
}
if (field->cmp_type() == STRING_RESULT &&
field->match_collation_to_optimize_range() &&
field->charset() != eq_item->compare_collation()) {
// The collations don't match, so it's not sargable.
return false;
}
return true;
}
/**
Find out whether “item” is a sargable condition; if so, add it to:
- The list of sargable predicate for the tables (hypergraph nodes)
the condition touches. For a regular condition, this will typically
be one table; for a join condition, it will typically be two.
If “force_table” is non-nullptr, only that table will be considered
(this is used for join conditions, to ensure that we do not push
down predicates that cannot, e.g. to the outer side of left joins).
- The graph's global list of predicates, if it is not already present
(predicate_index = -1). This will never happen for WHERE conditions,
only for join conditions.
*/
static void PossiblyAddSargableCondition(THD *thd, Item *item,
TABLE *force_table,
int predicate_index,
bool is_join_condition,
JoinHypergraph *graph, string *trace) {
if (!is_function_of_type(item, Item_func::EQ_FUNC)) {
return;
}
Item_func_eq *eq_item = down_cast<Item_func_eq *>(item);
if (eq_item->get_comparator()->get_child_comparator_count() >= 2) {
return;
}
for (unsigned arg_idx = 0; arg_idx < 2; ++arg_idx) {
Item **args = eq_item->arguments();
Item *left = args[arg_idx];
Item *right = args[1 - arg_idx];
if (left->type() != Item::FIELD_ITEM) {
continue;
}
Field *field = down_cast<Item_field *>(left)->field;
TABLE *table = field->table;
if (force_table != nullptr && force_table != table) {
continue;
}
if (field->part_of_key.is_clear_all()) {
// Not part of any key, so not sargable. (It could be part of a prefix
// key, though, but we include them for now.)
continue;
}
if (Overlaps(table->file->ha_table_flags(), HA_NO_INDEX_ACCESS)) {
// Can't use index lookups on this table, so not sargable.
continue;
}
JoinHypergraph::Node *node = FindNodeWithTable(graph, table);
if (node == nullptr) {
// A field in a different query block, so not sargable for us.
continue;
}
// If the equality comes from a multiple equality, we have already verified
// that the types of the arguments match exactly. For other equalities, we
// need to check more thoroughly if the types are compatible.
if (eq_item->source_multiple_equality != nullptr) {
assert(CompatibleTypesForIndexLookup(eq_item, field, right));
} else if (!CompatibleTypesForIndexLookup(eq_item, field, right)) {
continue;
}
const table_map used_tables_left = table->pos_in_table_list->map();
const table_map used_tables_right = right->used_tables();
if (Overlaps(used_tables_left, used_tables_right)) {
// Not sargable if the tables on the left and right side overlap, such as
// t1.x = t1.y + t2.x. Will not be sargable in the opposite direction
// either, so "break" instead of "continue".
break;
}
if (Overlaps(used_tables_right, RAND_TABLE_BIT)) {
// Non-deterministic predicates are not sargable. Will not be sargable in
// the opposite direction either, so "break" instead of "continue".
break;
}
if (trace != nullptr) {
if (is_join_condition) {
*trace += "Found sargable join condition " + ItemToString(item) +
" on " + node->table->alias + "\n";
} else {
*trace += "Found sargable condition " + ItemToString(item) + "\n";
}
}
if (predicate_index == -1) {
// This predicate is not already registered as a predicate
// (which means in practice that it's a join predicate,
// not a WHERE predicate), so add it so that we can refer
// to it in bitmaps.
Predicate p;
p.condition = eq_item;
p.selectivity = EstimateSelectivity(thd, eq_item, trace);
p.used_nodes =
GetNodeMapFromTableMap(eq_item->used_tables() & ~PSEUDO_TABLE_BITS,
graph->table_num_to_node_num);
p.total_eligibility_set =
~0; // Should never be applied as a WHERE predicate.
p.functional_dependencies_idx.init(thd->mem_root);
p.contained_subqueries.init(thd->mem_root); // Empty.
graph->predicates.push_back(std::move(p));
predicate_index = graph->predicates.size() - 1;
graph->sargable_join_predicates.emplace(eq_item, predicate_index);
}
// Can we evaluate the right side of the predicate during optimization (in
// ref_lookup_subsumes_comparison())? Don't consider items with subqueries
// or stored procedures constant, as we don't want to execute them during
// optimization.
const bool can_evaluate = right->const_for_execution() &&
!right->has_subquery() && !right->is_expensive();
node->sargable_predicates.push_back(
{predicate_index, field, right, can_evaluate});
// No need to check the opposite order. We have no indexes on constants.
if (can_evaluate) break;
}
}
// Find sargable predicates, ie., those that we can push down into indexes.
// See add_key_field().
//
// TODO(sgunders): Include x=y OR NULL predicates, <=> and IS NULL predicates,
// and the special case of COLLATION accepted in add_key_field().
//
// TODO(sgunders): Integrate with the range optimizer, or find some other way
// of accepting <, >, <= and >= predicates.
void FindSargablePredicates(THD *thd, string *trace, JoinHypergraph *graph) {
if (trace != nullptr) {
*trace += "\n";
}
for (unsigned i = 0; i < graph->num_where_predicates; ++i) {
if (IsSingleBitSet(graph->predicates[i].total_eligibility_set)) {
PossiblyAddSargableCondition(thd, graph->predicates[i].condition,
/*force_table=*/nullptr, i,
/*is_join_condition=*/false, graph, trace);
}
}
for (JoinHypergraph::Node &node : graph->nodes) {
for (Item *cond : node.join_conditions_pushable_to_this) {
const auto it = graph->sargable_join_predicates.find(cond);
int predicate_index =
(it == graph->sargable_join_predicates.end()) ? -1 : it->second;
PossiblyAddSargableCondition(thd, cond, node.table, predicate_index,
/*is_join_condition=*/true, graph, trace);
}
}
}
static bool ComesFromSameMultiEquality(Item *cond1, Item_eq_base *cond2) {
return cond2->source_multiple_equality != nullptr &&
is_function_of_type(cond1, Item_func::EQ_FUNC) &&
down_cast<Item_func_eq *>(cond1)->source_multiple_equality ==
cond2->source_multiple_equality;
}
/**
For each edge, cache some information for each of its join conditions.
This reduces work when repeatedly applying these join conditions later on.
In particular, FindContainedSubqueries() contains a large amount of
virtual function calls that we would like to avoid doing every time
we consider a given join.
*/
static void CacheCostInfoForJoinConditions(THD *thd,
const Query_block *query_block,
JoinHypergraph *graph,
string *trace) {
for (JoinPredicate &edge : graph->edges) {
edge.expr->properties_for_equijoin_conditions.init(thd->mem_root);
edge.expr->properties_for_join_conditions.init(thd->mem_root);
for (Item_eq_base *cond : edge.expr->equijoin_conditions) {
CachedPropertiesForPredicate properties;
properties.selectivity = EstimateSelectivity(thd, cond, trace);
properties.contained_subqueries.init(thd->mem_root);
FindContainedSubqueries(
cond, query_block, [&properties](const ContainedSubquery &subquery) {
properties.contained_subqueries.push_back(subquery);
});
// Cache information about what sargable conditions this join condition
// would be redundant against, for RedundantThroughSargable().
// But don't deduplicate against ourselves (in case we're sargable).
MutableOverflowBitset redundant(thd->mem_root, graph->predicates.size());
for (unsigned sargable_pred_idx = graph->num_where_predicates;
sargable_pred_idx < graph->predicates.size(); ++sargable_pred_idx) {
Item *sargable_condition =
graph->predicates[sargable_pred_idx].condition;
if (sargable_condition != cond &&
ComesFromSameMultiEquality(sargable_condition, cond)) {
redundant.SetBit(sargable_pred_idx);
}
}
properties.redundant_against_sargable_predicates = std::move(redundant);
edge.expr->properties_for_equijoin_conditions.push_back(
std::move(properties));
}
for (Item *cond : edge.expr->join_conditions) {
CachedPropertiesForPredicate properties;
properties.selectivity = EstimateSelectivity(thd, cond, trace);
properties.contained_subqueries.init(thd->mem_root);
FindContainedSubqueries(
cond, query_block, [&properties](const ContainedSubquery &subquery) {
properties.contained_subqueries.push_back(subquery);
});
edge.expr->properties_for_join_conditions.push_back(
std::move(properties));
}
}
}
/**
Find the lowest-cost plan (which hopefully is also the cheapest to execute)
of all the legal ways to execute the query. The overall order of operations is
largely dictated by the standard:
1. All joined tables, including join predicates.
2. WHERE predicates (we push these down into #1 where allowed)
3. GROUP BY (it is sometimes possible to push this down into #1,
but we don't have the functionality to do so).
4. HAVING.
5. Window functions.
6. DISTINCT.
7. ORDER BY.
8. LIMIT.
9. SQL_BUFFER_RESULT (a MySQL extension).
The place where we have the most leeway by far is #1, which is why this
part of the optimizer is generally called the join optimizer (there are
potentially billions of different join orderings, whereas each of the
other steps, except windowing, can only be done in one or two ways).
But the various outputs of #1 can have different properties, that can make
for higher or lower costs in the other steps. (For instance, LIMIT will
affect candidates with different init_cost differently, and ordering
properties can skip sorting in ORDER BY entirely.) Thus, we allow keeping
multiple candidates in play at every step if they are meaningfully different,
and only pick out the winning candidate based on cost at the very end.
*/
AccessPath *FindBestQueryPlan(THD *thd, Query_block *query_block,
string *trace) {
JOIN *join = query_block->join;
if (CheckSupportedQuery(thd)) return nullptr;
// The hypergraph optimizer does not do const tables,
// nor does it evaluate subqueries during optimization.
assert(
IsSubset(OPTION_NO_CONST_TABLES | OPTION_NO_SUBQUERY_DURING_OPTIMIZATION,
query_block->active_options()));
// In the case of rollup (only): After the base slice list was made, we may
// have modified the field list to add rollup group items and sum switchers.
// The resolver also takes care to update these in query_block->order_list.
// However, even though the hypergraph join optimizer doesn't use slices,
// setup_order() later modifies order->item to point into the base slice,
// where the rollup group items are _not_ updated. Thus, we need to refresh
// the base slice before we do anything.
//
// It would be better to have rollup resolving update the base slice directly,
// but this would break HAVING in the old join optimizer (see the other call
// to refresh_base_slice(), in JOIN::make_tmp_tables_info()).
if (join->rollup_state != JOIN::RollupState::NONE) {
join->refresh_base_slice();
}
// NOTE: Normally, we'd expect join->temp_tables and
// join->filesorts_to_cleanup to be empty, but since we can get called twice
// for materialized subqueries, there may already be data there that we must
// keep.
// Convert the join structures into a hypergraph.
JoinHypergraph graph(thd->mem_root, query_block);
bool where_is_always_false = false;
if (MakeJoinHypergraph(thd, trace, &graph, &where_is_always_false)) {
return nullptr;
}
if (where_is_always_false) {
if (trace != nullptr) {
*trace +=
"Skipping join order optimization because an always false condition "
"was found in the WHERE clause.\n";
}
return CreateZeroRowsForEmptyJoin(join, "WHERE condition is always false");
}
FindSargablePredicates(thd, trace, &graph);
// Now that we have all join conditions, cache some properties
// that we'd like to use many times.
CacheCostInfoForJoinConditions(thd, query_block, &graph, trace);
// Figure out if any later sort will need row IDs.
bool need_rowid = false;
if (query_block->is_explicitly_grouped() || join->order.order != nullptr ||
join->select_distinct || !join->m_windows.is_empty()) {
// NOTE: This is distinct from SortWillBeOnRowId(), as it also checks blob
// fields arising from blob-generating functions on non-blob fields.
for (Item *item : *join->fields) {
if (item->is_blob_field()) {
need_rowid = true;
break;
}
}
for (Table_ref *tl = query_block->leaf_tables; tl != nullptr && !need_rowid;
tl = tl->next_leaf) {
if (SortWillBeOnRowId(tl->table)) {
need_rowid = true;
}
}
}
// Find out which predicates contain subqueries.
MutableOverflowBitset materializable_predicates{thd->mem_root,
graph.predicates.size()};
for (unsigned i = 0; i < graph.predicates.size(); ++i) {
if (ContainsSubqueries(graph.predicates[i].condition)) {
materializable_predicates.SetBit(i);
}
}
graph.materializable_predicates = std::move(materializable_predicates);
const bool is_topmost_query_block =
query_block->outer_query_block() == nullptr;
const bool is_delete = is_topmost_query_block && IsDeleteStatement(thd);
const bool is_update = is_topmost_query_block && IsUpdateStatement(thd);
table_map update_delete_target_tables = 0;
table_map immediate_update_delete_candidates = 0;
if (is_delete || is_update) {
update_delete_target_tables = FindUpdateDeleteTargetTables(query_block);
immediate_update_delete_candidates = FindImmediateUpdateDeleteCandidates(
graph, update_delete_target_tables, is_delete);
}
NodeMap fulltext_tables = 0;
uint64_t sargable_fulltext_predicates = 0;
if (query_block->has_ft_funcs()) {
fulltext_tables = FindFullTextSearchedTables(graph);
// Check if we have full-text indexes that can be used.
sargable_fulltext_predicates = FindSargableFullTextPredicates(graph);
EnableFullTextCoveringIndexes(query_block);
}
// Collect interesting orders from ORDER BY, GROUP BY, semijoins and windows.
// See BuildInterestingOrders() for more detailed information.
SecondaryEngineFlags engine_flags = EngineFlags(thd);
LogicalOrderings orderings(thd);
Mem_root_array<SortAheadOrdering> sort_ahead_orderings(thd->mem_root);
Mem_root_array<ActiveIndexInfo> active_indexes(thd->mem_root);
Mem_root_array<FullTextIndexInfo> fulltext_searches(thd->mem_root);
int order_by_ordering_idx = -1;
int group_by_ordering_idx = -1;
int distinct_ordering_idx = -1;
BuildInterestingOrders(thd, &graph, query_block, &orderings,
&sort_ahead_orderings, &order_by_ordering_idx,
&group_by_ordering_idx, &distinct_ordering_idx,
&active_indexes, &fulltext_searches, trace);
if (InjectCastNodes(&graph)) return nullptr;
// Run the actual join optimizer algorithm. This creates an access path
// for the join as a whole (with lowest possible cost, and thus also
// hopefully optimal execution time), with all pushable predicates applied.
if (trace != nullptr) {
*trace += "\nEnumerating subplans:\n";
}
for (const JoinHypergraph::Node &node : graph.nodes) {
node.table->init_cost_model(thd->cost_model());
}
const secondary_engine_modify_access_path_cost_t secondary_engine_cost_hook =
SecondaryEngineCostHook(thd);
CostingReceiver receiver(
thd, query_block, graph, &orderings, &sort_ahead_orderings,
&active_indexes, &fulltext_searches, fulltext_tables,
sargable_fulltext_predicates, update_delete_target_tables,
immediate_update_delete_candidates, need_rowid, EngineFlags(thd),
thd->variables.optimizer_max_subgraph_pairs, secondary_engine_cost_hook,
trace);
if (graph.edges.empty()) {
// Fast path for single-table queries. No need to run the join enumeration
// when there is no join. Just visit the only node directly.
assert(graph.nodes.size() == 1);
if (receiver.FoundSingleNode(0) && thd->is_error()) {
return nullptr;
}
} else if (EnumerateAllConnectedPartitions(graph.graph, &receiver) &&
!thd->is_error() && join->zero_result_cause == nullptr) {
SimplifyQueryGraph(thd, thd->variables.optimizer_max_subgraph_pairs, &graph,
trace);
// Reset the receiver and run the query again, this time with
// the simplified hypergraph (and no query limit, in case the
// given limit was just inherently too low, e.g., one subgraph pair
// and three tables).
//
// It's not given that we _must_ reset the receiver; we could
// probably have reused its state (which could save time and
// even lead to a better plan, if we have simplified away some
// join orderings that have already been evaluated).
// However, more subgraph pairs also often means we get more access
// paths on the Pareto frontier for each subgraph, and given
// that we don't currently have any heuristics to curb the
// amount of those, it is probably good to get the second-order
// effect as well and do a full reset.
if (trace) {
*trace += "Simplified hypergraph:\n";
*trace += PrintDottyHypergraph(graph);
*trace += "\nRestarting query planning with the new graph.\n";
}
receiver = CostingReceiver(
thd, query_block, graph, &orderings, &sort_ahead_orderings,
&active_indexes, &fulltext_searches, fulltext_tables,
sargable_fulltext_predicates, update_delete_target_tables,
immediate_update_delete_candidates, need_rowid, EngineFlags(thd),
/*subgraph_pair_limit=*/-1, secondary_engine_cost_hook, trace);
// Reset the secondary engine planning flags
graph.secondary_engine_costing_flags = {};
if (EnumerateAllConnectedPartitions(graph.graph, &receiver) &&
thd->is_error()) {
return nullptr;
}
}
if (thd->is_error()) return nullptr;
if (join->zero_result_cause != nullptr) {
if (trace != nullptr) {
*trace += "The join returns zero rows. Final cost is 0.0.\n";
}
return CreateZeroRowsForEmptyJoin(join, join->zero_result_cause);
}
// Get the root candidates. If there is a secondary engine cost hook, there
// may be no candidates, as the hook may have rejected so many access paths
// that we could not build a complete plan. Otherwise, expect at least one
// candidate.
if (secondary_engine_cost_hook != nullptr &&
(!receiver.HasSeen(TablesBetween(0, graph.nodes.size())) ||
receiver.root_candidates().empty())) {
my_error(ER_SECONDARY_ENGINE, MYF(0),
"All plans were rejected by the secondary storage engine");
return nullptr;
}
Prealloced_array<AccessPath *, 4> root_candidates =
receiver.root_candidates();
assert(!root_candidates.empty());
thd->m_current_query_partial_plans += receiver.num_subplans();
if (trace != nullptr) {
*trace += StringPrintf(
"\nEnumerated %zu subplans keeping a total of %zu access paths, "
"got %zu candidate(s) to finalize:\n",
receiver.num_subplans(), receiver.num_access_paths(),
root_candidates.size());
}
// If we know the result will be empty, there is no point in adding paths for
// filters, aggregation, windowing and sorting on top of it further down. Just
// return the empty result directly.
if (receiver.always_empty()) {
for (AccessPath *root_path : root_candidates) {
if (root_path->type == AccessPath::ZERO_ROWS) {
if (trace != nullptr) {
*trace += "The join returns zero rows. Final cost is 0.0.\n";
}
return CreateZeroRowsForEmptyJoin(join, root_path->zero_rows().cause);
}
}
}
// Now we have one or more access paths representing joining all the tables
// together. (There may be multiple ones because they can be better at
// different metrics.) We apply the post-join operations to all of them in
// turn, and then finally pick out the one with the lowest total cost,
// because at the end, other metrics don't really matter any more.
//
// We could have stopped caring about e.g. init_cost after LIMIT
// has been applied (after which it no longer matters), so that we'd get
// fewer candidates in each step, but this part is so cheap that it's
// unlikely to be worth it. We go through ProposeAccessPath() mainly
// because it gives us better tracing.
if (trace != nullptr) {
*trace += "Adding final predicates\n";
}
FunctionalDependencySet fd_set = receiver.active_fds_at_root();
bool has_final_predicates = false;
for (size_t i = 0; i < graph.num_where_predicates; ++i) {
// Apply any predicates that don't belong to any
// specific table, or which are nondeterministic.
if (!Overlaps(graph.predicates[i].total_eligibility_set,
TablesBetween(0, graph.nodes.size())) ||
Overlaps(graph.predicates[i].total_eligibility_set, RAND_TABLE_BIT)) {
fd_set |= graph.predicates[i].functional_dependencies;
has_final_predicates = true;
}
}
// Add the final predicates to the root candidates, and expand FILTER access
// paths for all predicates (not only the final ones) in the entire access
// path tree of the candidates.
//
// It is an unnecessary step if there are no FILTER access paths to expand.
// It's not so expensive that it's worth spending a lot of effort to find out
// if it can be skipped, but let's skip it if our only candidate is an EQ_REF
// with no filter predicates, so that we don't waste time in point selects.
if (has_final_predicates ||
!(root_candidates.size() == 1 &&
root_candidates[0]->type == AccessPath::EQ_REF &&
IsEmpty(root_candidates[0]->filter_predicates))) {
Prealloced_array<AccessPath *, 4> new_root_candidates(PSI_NOT_INSTRUMENTED);
for (const AccessPath *root_path : root_candidates) {
for (bool materialize_subqueries : {false, true}) {
AccessPath path = *root_path;
double init_once_cost = 0.0;
MutableOverflowBitset filter_predicates =
path.filter_predicates.Clone(thd->mem_root);
// Apply any predicates that don't belong to any
// specific table, or which are nondeterministic.
for (size_t i = 0; i < graph.num_where_predicates; ++i) {
if (!Overlaps(graph.predicates[i].total_eligibility_set,
TablesBetween(0, graph.nodes.size())) ||
Overlaps(graph.predicates[i].total_eligibility_set,
RAND_TABLE_BIT)) {
filter_predicates.SetBit(i);
FilterCost cost =
EstimateFilterCost(thd, root_path->num_output_rows(),
graph.predicates[i].contained_subqueries);
if (materialize_subqueries) {
path.cost += cost.cost_if_materialized;
init_once_cost += cost.cost_to_materialize;
} else {
path.cost += cost.cost_if_not_materialized;
}
path.set_num_output_rows(path.num_output_rows() *
graph.predicates[i].selectivity);
}
}
path.ordering_state = orderings.ApplyFDs(path.ordering_state, fd_set);
path.filter_predicates = std::move(filter_predicates);
const bool contains_subqueries =
Overlaps(path.filter_predicates, graph.materializable_predicates);
// Now that we have decided on a full plan, expand all
// the applied filter maps into proper FILTER nodes
// for execution. This is a no-op in the second
// iteration.
ExpandFilterAccessPaths(thd, &path, join, graph.predicates,
graph.num_where_predicates);
if (materialize_subqueries) {
assert(path.type == AccessPath::FILTER);
path.filter().materialize_subqueries = true;
path.cost += init_once_cost; // Will be subtracted
// back for rescans.
path.init_cost += init_once_cost;
path.init_once_cost += init_once_cost;
}
receiver.ProposeAccessPath(&path, &new_root_candidates,
/*obsolete_orderings=*/0,
materialize_subqueries ? "mat. subq" : "");
if (!contains_subqueries) {
// Nothing to try to materialize.
break;
}
}
}
root_candidates = std::move(new_root_candidates);
}
// Apply GROUP BY, if applicable. We currently always do this by sorting
// first and then using streaming aggregation.
const bool aggregation_is_unordered = Overlaps(
engine_flags,
MakeSecondaryEngineFlags(SecondaryEngineFlag::AGGREGATION_IS_UNORDERED));
if (query_block->is_grouped()) {
if (join->make_sum_func_list(*join->fields, /*before_group_by=*/true))
return nullptr;
graph.secondary_engine_costing_flags |=
SecondaryEngineCostingFlag::CONTAINS_AGGREGATION_ACCESSPATH;
if (trace != nullptr) {
*trace += "Applying aggregation for GROUP BY\n";
}
// Reuse this, so that we do not have to recalculate it for each
// alternative aggregate path.
double aggregate_rows = kUnknownRowCount;
Prealloced_array<AccessPath *, 4> new_root_candidates(PSI_NOT_INSTRUMENTED);
for (AccessPath *root_path : root_candidates) {
const bool rollup = (join->rollup_state != JOIN::RollupState::NONE);
const bool group_needs_sort =
query_block->is_explicitly_grouped() && !aggregation_is_unordered &&
!orderings.DoesFollowOrder(root_path->ordering_state,
group_by_ordering_idx);
if (!group_needs_sort) {
AccessPath aggregate_path = CreateStreamingAggregationPath(
thd, root_path, join, rollup, aggregate_rows, trace);
aggregate_rows = aggregate_path.num_output_rows();
receiver.ProposeAccessPath(&aggregate_path, &new_root_candidates,
/*obsolete_orderings=*/0, "sort elided");
continue;
}
root_path = GetSafePathToSort(thd, join, root_path, need_rowid);
// We need to sort. Try all sort-ahead, not just the one directly derived
// from GROUP BY clause, because a broader one might help us elide ORDER
// BY or DISTINCT later.
for (const SortAheadOrdering &sort_ahead_ordering :
sort_ahead_orderings) {
LogicalOrderings::StateIndex ordering_state = orderings.ApplyFDs(
orderings.SetOrder(sort_ahead_ordering.ordering_idx), fd_set);
if (!orderings.DoesFollowOrder(ordering_state, group_by_ordering_idx)) {
continue;
}
if (sort_ahead_ordering.aggregates_required) {
// We can't sort by an aggregate before we've aggregated.
continue;
}
Mem_root_array<TABLE *> tables = CollectTables(thd, root_path);
AccessPath *sort_path = new (thd->mem_root) AccessPath;
sort_path->type = AccessPath::SORT;
sort_path->count_examined_rows = false;
sort_path->sort().child = root_path;
sort_path->sort().filesort = nullptr;
sort_path->sort().remove_duplicates = false;
sort_path->sort().unwrap_rollup = true;
sort_path->sort().limit = HA_POS_ERROR;
sort_path->sort().force_sort_rowids = false;
sort_path->sort().order = sort_ahead_ordering.order;
EstimateSortCost(sort_path);
assert(!aggregation_is_unordered);
sort_path->ordering_state = ordering_state;
char description[256];
if (trace != nullptr) {
snprintf(description, sizeof(description), "sort(%d)",
sort_ahead_ordering.ordering_idx);
}
AccessPath aggregate_path = CreateStreamingAggregationPath(
thd, sort_path, join, rollup, aggregate_rows, trace);
aggregate_rows = aggregate_path.num_output_rows();
receiver.ProposeAccessPath(&aggregate_path, &new_root_candidates,
/*obsolete_orderings=*/0, description);
}
}
root_candidates = std::move(new_root_candidates);
if (make_group_fields(join, join)) {
return nullptr;
}
// Final setup will be done in FinalizePlanForQueryBlock(),
// when we have all materialization done.
}
// Before we apply the HAVING condition, make sure its used_tables() cache is
// refreshed. The condition might have been rewritten by
// FinalizePlanForQueryBlock() to point into a temporary table in a previous
// execution. Even if that change was rolled back at the end of the previous
// execution, used_tables() may still say it uses the temporary table.
if (join->having_cond != nullptr) {
join->having_cond->update_used_tables();
}
// Apply HAVING, if applicable (sans any window-related in2exists parts,
// which we apply below).
Item *having_cond;
Item *having_cond_wf;
SplitHavingCondition(thd, join->having_cond, &having_cond, &having_cond_wf);
ApplyHavingCondition(thd, having_cond, query_block,
"Applying filter for HAVING\n", trace, &root_candidates,
&receiver);
// If we have GROUP BY followed by a window function (which might include
// ORDER BY), we might need to materialize before the first ordering -- see
// the comment near the top of ApplyDistinctAndOrder() for why.
if (query_block->is_explicitly_grouped() && !join->m_windows.is_empty()) {
Prealloced_array<AccessPath *, 4> new_root_candidates(PSI_NOT_INSTRUMENTED);
for (AccessPath *root_path : root_candidates) {
root_path =
CreateMaterializationOrStreamingPath(thd, join, root_path, need_rowid,
/*copy_items=*/true);
receiver.ProposeAccessPath(root_path, &new_root_candidates,
/*obsolete_orderings=*/0, "");
}
root_candidates = std::move(new_root_candidates);
}
join->m_windowing_steps = !join->m_windows.is_empty();
if (join->m_windowing_steps) {
graph.secondary_engine_costing_flags |=
SecondaryEngineCostingFlag::CONTAINS_WINDOW_ACCESSPATH;
root_candidates = ApplyWindowFunctions(
thd, receiver, orderings, fd_set, aggregation_is_unordered,
order_by_ordering_idx, distinct_ordering_idx, graph,
sort_ahead_orderings, query_block, graph.num_where_predicates,
need_rowid, std::move(root_candidates), trace);
}
ApplyHavingCondition(
thd, having_cond_wf, query_block,
"Applying filter for window function in2exists conditions\n", trace,
&root_candidates, &receiver);
graph.secondary_engine_costing_flags |=
SecondaryEngineCostingFlag::HANDLING_DISTINCT_ORDERBY_LIMITOFFSET;
if (join->select_distinct || join->order.order != nullptr) {
// UPDATE and DELETE must preserve row IDs through ORDER BY in order to keep
// track of which rows to update or delete.
const bool force_sort_rowids = update_delete_target_tables != 0;
root_candidates = ApplyDistinctAndOrder(
thd, receiver, orderings, aggregation_is_unordered,
order_by_ordering_idx, distinct_ordering_idx, sort_ahead_orderings,
fd_set, query_block, need_rowid, force_sort_rowids,
std::move(root_candidates), trace);
}
// Apply LIMIT and OFFSET, if applicable. If the query block is ordered, they
// are already applied by ApplyDistinctAndOrder().
Query_expression *query_expression = join->query_expression();
if (join->order.order == nullptr &&
(query_expression->select_limit_cnt != HA_POS_ERROR ||
query_expression->offset_limit_cnt != 0)) {
if (trace != nullptr) {
*trace += "Applying LIMIT\n";
}
Prealloced_array<AccessPath *, 4> new_root_candidates(PSI_NOT_INSTRUMENTED);
for (AccessPath *root_path : root_candidates) {
AccessPath *limit_path = NewLimitOffsetAccessPath(
thd, root_path, query_expression->select_limit_cnt,
query_expression->offset_limit_cnt, join->calc_found_rows,
/*reject_multiple_rows=*/false,
/*send_records_override=*/nullptr);
receiver.ProposeAccessPath(limit_path, &new_root_candidates,
/*obsolete_orderings=*/0, "");
}
root_candidates = std::move(new_root_candidates);
}
// Add a DELETE_ROWS or UPDATE_ROWS access path if this is the topmost query
// block of a DELETE statement or an UPDATE statement.
if (is_delete) {
Prealloced_array<AccessPath *, 4> new_root_candidates(PSI_NOT_INSTRUMENTED);
for (AccessPath *root_path : root_candidates) {
table_map immediate_tables = 0;
if (root_path->immediate_update_delete_table != -1) {
immediate_tables = graph.nodes[root_path->immediate_update_delete_table]
.table->pos_in_table_list->map();
}
AccessPath *delete_path = NewDeleteRowsAccessPath(
thd, root_path, update_delete_target_tables, immediate_tables);
EstimateDeleteRowsCost(delete_path);
receiver.ProposeAccessPath(delete_path, &new_root_candidates,
/*obsolete_orderings=*/0, "");
}
root_candidates = std::move(new_root_candidates);
} else if (is_update) {
Prealloced_array<AccessPath *, 4> new_root_candidates(PSI_NOT_INSTRUMENTED);
for (AccessPath *root_path : root_candidates) {
table_map immediate_tables = 0;
if (root_path->immediate_update_delete_table != -1) {
immediate_tables = graph.nodes[root_path->immediate_update_delete_table]
.table->pos_in_table_list->map();
}
AccessPath *update_path = NewUpdateRowsAccessPath(
thd, root_path, update_delete_target_tables, immediate_tables);
EstimateUpdateRowsCost(update_path);
receiver.ProposeAccessPath(update_path, &new_root_candidates,
/*obsolete_orderings=*/0, "");
}
root_candidates = std::move(new_root_candidates);
}
if (thd->is_error()) return nullptr;
if (root_candidates.empty()) {
// The secondary engine has rejected so many of the post-processing paths
// (e.g., sorting, limit, grouping) that we could not build a complete plan.
assert(secondary_engine_cost_hook != nullptr);
my_error(ER_SECONDARY_ENGINE, MYF(0),
"All plans were rejected by the secondary storage engine");
return nullptr;
}
// TODO(sgunders): If we are part of e.g. a derived table and are streamed,
// we might want to keep multiple root paths around for future use, e.g.,
// if there is a LIMIT higher up.
AccessPath *root_path =
*std::min_element(root_candidates.begin(), root_candidates.end(),
[](const AccessPath *a, const AccessPath *b) {
return a->cost < b->cost;
});
// Materialize the result if a top-level query block has the SQL_BUFFER_RESULT
// option, and the chosen root path isn't already a materialization path. Skip
// the materialization path when using an external executor, since it will
// have to decide for itself whether and how to do the materialization.
if (query_block->active_options() & OPTION_BUFFER_RESULT &&
is_topmost_query_block && !IsMaterializationPath(root_path) &&
IteratorsAreNeeded(thd, root_path)) {
if (trace != nullptr) {
*trace += "Adding temporary table for SQL_BUFFER_RESULT.\n";
}
// If we have windows, we may need to add a materialization for the last
// window here, or create_tmp_table() will not create fields for its window
// functions. (All other windows have already been materialized.)
bool copy_items = join->m_windows.is_empty();
root_path =
CreateMaterializationPath(thd, join, root_path, /*temp_table=*/nullptr,
/*temp_table_param=*/nullptr, copy_items);
}
if (trace != nullptr) {
*trace += StringPrintf("Final cost is %.1f.\n", root_path->cost);
}
#ifndef NDEBUG
WalkAccessPaths(root_path, join, WalkAccessPathPolicy::ENTIRE_QUERY_BLOCK,
[&](const AccessPath *path, const JOIN *) {
assert(path->cost >= path->init_cost);
assert(path->init_cost >= path->init_once_cost);
return false;
});
#endif
join->needs_finalize = true;
join->best_rowcount = lrint(root_path->num_output_rows());
join->best_read = root_path->cost;
// 0 or 1 rows has a special meaning; it means a _guarantee_ we have no more
// than one (so-called “const tables”). Make sure we don't give that
// guarantee unless we have a LIMIT.
if (join->best_rowcount <= 1 &&
query_expression->select_limit_cnt - query_expression->offset_limit_cnt >
1) {
join->best_rowcount = PLACEHOLDER_TABLE_ROW_ESTIMATE;
}
return root_path;
}
|