1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748
|
/* Copyright (c) 2020, 2025, Oracle and/or its affiliates.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is designed to work with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have either included with
the program or referenced in the documentation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
#include "sql/join_optimizer/make_join_hypergraph.h"
#include <assert.h>
#include <stddef.h>
#include <algorithm>
#include <array>
#include <iterator>
#include <numeric>
#include <string>
#include <utility>
#include <vector>
#include "limits.h"
#include "mem_root_deque.h"
#include "my_alloc.h"
#include "my_bit.h"
#include "my_inttypes.h"
#include "my_sys.h"
#include "my_table_map.h"
#include "mysqld_error.h"
#include "sql/current_thd.h"
#include "sql/item.h"
#include "sql/item_cmpfunc.h"
#include "sql/item_func.h"
#include "sql/join_optimizer/access_path.h"
#include "sql/join_optimizer/bit_utils.h"
#include "sql/join_optimizer/common_subexpression_elimination.h"
#include "sql/join_optimizer/cost_model.h"
#include "sql/join_optimizer/estimate_selectivity.h"
#include "sql/join_optimizer/find_contained_subqueries.h"
#include "sql/join_optimizer/hypergraph.h"
#include "sql/join_optimizer/print_utils.h"
#include "sql/join_optimizer/relational_expression.h"
#include "sql/join_optimizer/subgraph_enumeration.h"
#include "sql/nested_join.h"
#include "sql/sql_class.h"
#include "sql/sql_const.h"
#include "sql/sql_executor.h"
#include "sql/sql_lex.h"
#include "sql/sql_optimizer.h"
#include "sql/table.h"
#include "template_utils.h"
using hypergraph::Hyperedge;
using hypergraph::Hypergraph;
using hypergraph::NodeMap;
using std::array;
using std::max;
using std::min;
using std::string;
using std::swap;
using std::vector;
namespace {
RelationalExpression *MakeRelationalExpressionFromJoinList(
THD *thd, const mem_root_deque<Table_ref *> &join_list);
bool EarlyNormalizeConditions(THD *thd, RelationalExpression *join,
Mem_root_array<Item *> *conditions,
bool *always_false);
inline bool IsMultipleEquals(Item *cond) {
return cond->type() == Item::FUNC_ITEM &&
down_cast<Item_func *>(cond)->functype() == Item_func::MULT_EQUAL_FUNC;
}
Item_func_eq *MakeEqItem(Item *a, Item *b,
Item_equal *source_multiple_equality) {
Item_func_eq *eq_item = new Item_func_eq(a, b);
eq_item->set_cmp_func();
eq_item->update_used_tables();
eq_item->quick_fix_field();
eq_item->source_multiple_equality = source_multiple_equality;
return eq_item;
}
/**
Helper function for ReorderConditions(), which counts how many tables are
referenced by an equijoin condition. This enables ReorderConditions() to sort
the conditions on their complexity (referencing more tables == more complex).
Multiple equalities are considered simple, referencing two tables, regardless
of how many tables are actually referenced by them. This is because multiple
equalities will be split into one or more single equalities later, referencing
no more than two tables each.
*/
int CountTablesInEquiJoinCondition(Item *cond) {
assert(cond->type() == Item::FUNC_ITEM &&
down_cast<Item_func *>(cond)->contains_only_equi_join_condition());
if (IsMultipleEquals(cond)) {
// It's not a join condition if it has a constant argument.
assert(down_cast<Item_equal *>(cond)->const_arg() == nullptr);
return 2;
} else {
return PopulationCount(cond->used_tables());
}
}
/**
Reorders the predicates in such a way that equalities are placed ahead
of other types of predicates. These will be followed by predicates having
subqueries and the expensive predicates at the end.
This is used in the early stage of optimization. Predicates are not ordered
based on their selectivity yet. The call to optimize_cond() would have put
all the equalities at the end (because it tries to create multiple
equalities out of them). It is always better to see the equalties ahead of
other types of conditions when pushing join conditions down.
E.g:
(t1.f1 != t2.f1) and (t1.f2 = t3.f2 OR t4.f1 = t5.f3) and (3 = select #2) and
(t1.f3 = t3.f3) and multi_equal(t1.f2,t2.f3,t3.f4)
will be split in this order
(t1.f3 = t3.f3) and
multi_equal(t1.f2,t2.f3,t3.f4) and
(t1.f1 != t2.f1) and
(t1.f2 = t3.f2 OR t4.f1 = t5.f3) and
(3 = select #2)
Simple equijoin conditions (like t1.x=t2.x) are placed ahead of more complex
ones (like t1.x=t2.x+t3.x), so that we prefer making simple edges and avoid
hyperedges when we can.
*/
void ReorderConditions(Mem_root_array<Item *> *condition_parts) {
// First equijoin conditions, followed by other conditions, then
// subqueries (which can be expensive), then stored procedures
// (which are unknown, so potentially _very_ expensive).
const auto equi_cond_end = std::stable_partition(
condition_parts->begin(), condition_parts->end(), [](Item *item) {
return item->type() == Item::FUNC_ITEM &&
down_cast<Item_func *>(item)
->contains_only_equi_join_condition();
});
std::stable_sort(condition_parts->begin(), equi_cond_end,
[](Item *a, Item *b) {
return CountTablesInEquiJoinCondition(a) <
CountTablesInEquiJoinCondition(b);
});
std::stable_partition(condition_parts->begin(), condition_parts->end(),
[](Item *item) { return !item->has_subquery(); });
std::stable_partition(condition_parts->begin(), condition_parts->end(),
[](Item *item) { return !item->is_expensive(); });
}
/**
For a multiple equality, split out any conditions that refer to the
same table, without touching the multi-equality; e.g. for equal(t1.a, t2.a,
t2.b, t3.a), will return t2.a=t2.b AND (original item). This means that later
stages can ignore such duplicates, and also that we can push these parts
independently of the multiple equality as a whole.
*/
void ExpandSameTableFromMultipleEquals(Item_equal *equal,
table_map tables_in_subtree,
List<Item> *eq_items) {
// Look for pairs of items that touch the same table.
for (auto it1 = equal->get_fields().begin(); it1 != equal->get_fields().end();
++it1) {
if (!Overlaps(it1->used_tables(), tables_in_subtree)) {
continue;
}
for (auto it2 = std::next(it1); it2 != equal->get_fields().end(); ++it2) {
if (it1->field->table == it2->field->table) {
eq_items->push_back(MakeEqItem(&*it1, &*it2, equal));
// If there are more, i.e., *it2 = *it3, they will be dealt with
// in a future iteration of the outer loop; so stop now to avoid
// duplicates.
break;
}
}
}
}
/**
Expand multiple equalities that can (and should) be expanded before join
pushdown. These are the ones that touch at most two tables, or that
are against a constant. They can be expanded unambiguously; no matter the join
order, they will be the same. Fields on tables not in “tables_in_subtree” are
assumed to be irrelevant to the equality and ignored (see the comment on
PushDownCondition() for more details).
For multi-equalities that are kept, split out any conditions that refer to the
same table. See ExpandSameTableFromMultipleEquals().
The return value is an AND conjunction, so most likely, it needs to be split.
*/
Item *EarlyExpandMultipleEquals(Item *condition, table_map tables_in_subtree) {
return CompileItem(
condition, [](Item *) { return true; },
[tables_in_subtree](Item *item) -> Item * {
if (!IsMultipleEquals(item)) {
return item;
}
Item_equal *equal = down_cast<Item_equal *>(item);
List<Item> eq_items;
// If this condition is a constant, do the evaluation
// and add a "false" condition if needed.
// This cannot be skipped as optimize_cond() expects
// the value stored in "cond_false" to be checked for
// Item_equal before creating equalities from it.
// We do not need to check for the const item evaluating
// to be "true", as that could happen only when const table
// optimization is used (It is currently not done for
// hypergraph).
if (equal->const_item() && !equal->val_int()) {
eq_items.push_back(new Item_func_false);
} else if (equal->const_arg() != nullptr) {
// If there is a constant element, do a simple expansion.
for (Item_field &field : equal->get_fields()) {
if (IsSubset(field.used_tables(), tables_in_subtree)) {
eq_items.push_back(MakeEqItem(&field, equal->const_arg(), equal));
}
}
} else if (my_count_bits(equal->used_tables() & tables_in_subtree) >
2) {
// Only look at partial expansion.
ExpandSameTableFromMultipleEquals(equal, tables_in_subtree,
&eq_items);
eq_items.push_back(equal);
} else {
// Prioritize expanding equalities from the same table if possible;
// e.g., if we have t1.a = t2.a = t2.b, we want to have t2.a = t2.b
// included (ie., not t1.a = t2.a AND t1.a = t2.b). The primary reason
// for this is that such single-table equalities will be pushable
// as table filters, and not left on the joins. This means we avoid an
// issue where we have a hypergraph cycle where the edge we do not
// follow (and thus ignore) has more join conditions than we skip,
// causing us to wrongly “forget” constraining one degree of freedom.
//
// Thus, we first pick out every equality that touches only one table,
// and then link one equality from each table into an arbitrary one.
//
// It's not given that this will always give us the fastest possible
// plan; e.g. if there's a composite index on (t1.a, t1.b), it could
// be faster to use it for lookups against (t2.a, t2.b) instead of
// pushing t1.a = t1.b. But it doesn't seem worth it to try to keep
// multiple such variations around.
ExpandSameTableFromMultipleEquals(equal, tables_in_subtree,
&eq_items);
table_map included_tables = 0;
Item_field *base_item = nullptr;
for (Item_field &field : equal->get_fields()) {
assert(IsSingleBitSet(field.used_tables()));
if (!IsSubset(field.used_tables(), tables_in_subtree) ||
Overlaps(field.used_tables(), included_tables)) {
continue;
}
included_tables |= field.used_tables();
if (base_item == nullptr) {
base_item = &field;
continue;
}
eq_items.push_back(MakeEqItem(base_item, &field, equal));
// Since we have at most two tables, we can have only one link.
break;
}
}
assert(!eq_items.is_empty());
return CreateConjunction(&eq_items);
});
}
RelationalExpression *MakeRelationalExpression(THD *thd, const Table_ref *tl) {
if (tl->nested_join == nullptr) {
// A single table.
RelationalExpression *ret = new (thd->mem_root) RelationalExpression(thd);
ret->type = RelationalExpression::TABLE;
ret->table = tl;
ret->tables_in_subtree = tl->map();
ret->join_conditions_pushable_to_this.init(thd->mem_root);
return ret;
} else {
// A join or multijoin.
return MakeRelationalExpressionFromJoinList(thd, tl->nested_join->m_tables);
}
}
/**
Convert the Query_block's join lists into a RelationalExpression,
ie., a join tree with tables at the leaves.
*/
RelationalExpression *MakeRelationalExpressionFromJoinList(
THD *thd, const mem_root_deque<Table_ref *> &join_list) {
assert(!join_list.empty());
RelationalExpression *ret = nullptr;
for (auto it = join_list.rbegin(); it != join_list.rend();
++it) { // The list goes backwards.
const Table_ref *tl = *it;
if (ret == nullptr) {
// The first table in the list.
ret = MakeRelationalExpression(thd, tl);
continue;
}
RelationalExpression *join = new (thd->mem_root) RelationalExpression(thd);
join->left = ret;
if (tl->is_sj_or_aj_nest()) {
join->right =
MakeRelationalExpressionFromJoinList(thd, tl->nested_join->m_tables);
join->type = tl->is_sj_nest() ? RelationalExpression::SEMIJOIN
: RelationalExpression::ANTIJOIN;
} else {
join->right = MakeRelationalExpression(thd, tl);
if (tl->outer_join) {
join->type = RelationalExpression::LEFT_JOIN;
} else if (tl->straight) {
join->type = RelationalExpression::STRAIGHT_INNER_JOIN;
} else {
join->type = RelationalExpression::INNER_JOIN;
}
}
join->tables_in_subtree =
join->left->tables_in_subtree | join->right->tables_in_subtree;
if (tl->is_aj_nest()) {
assert(tl->join_cond_optim() != nullptr);
}
if (tl->join_cond_optim() != nullptr) {
Item *join_cond = EarlyExpandMultipleEquals(tl->join_cond_optim(),
join->tables_in_subtree);
ExtractConditions(join_cond, &join->join_conditions);
bool always_false = false;
EarlyNormalizeConditions(thd, join, &join->join_conditions,
&always_false);
ReorderConditions(&join->join_conditions);
}
ret = join;
}
return ret;
}
void ComputeCompanionSets(RelationalExpression *expr, int current_set,
int *num_companion_sets,
int table_num_to_companion_set[MAX_TABLES]) {
switch (expr->type) {
case RelationalExpression::TABLE:
expr->companion_set = current_set;
table_num_to_companion_set[expr->table->tableno()] = current_set;
return;
case RelationalExpression::STRAIGHT_INNER_JOIN:
case RelationalExpression::FULL_OUTER_JOIN:
ComputeCompanionSets(expr->left, /*current_set=*/-1, num_companion_sets,
table_num_to_companion_set);
ComputeCompanionSets(expr->right, /*current_set=*/-1, num_companion_sets,
table_num_to_companion_set);
break;
case RelationalExpression::INNER_JOIN:
if (current_set == -1) {
// Start a new set.
current_set = (*num_companion_sets)++;
}
ComputeCompanionSets(expr->left, current_set, num_companion_sets,
table_num_to_companion_set);
ComputeCompanionSets(expr->right, current_set, num_companion_sets,
table_num_to_companion_set);
break;
case RelationalExpression::LEFT_JOIN:
case RelationalExpression::SEMIJOIN:
case RelationalExpression::ANTIJOIN:
if (current_set == -1) {
// Start a new set.
current_set = (*num_companion_sets)++;
}
ComputeCompanionSets(expr->left, current_set, num_companion_sets,
table_num_to_companion_set);
ComputeCompanionSets(expr->right, /*current_set=*/-1, num_companion_sets,
table_num_to_companion_set);
break;
case RelationalExpression::MULTI_INNER_JOIN:
assert(false);
}
}
/**
Convert a multi-join into a simple inner join. expr must already have
the correct companion set filled out.
Only the top level will be converted, so there may still be a multi-join
below the modified node, e.g.:
MULTIJOIN(a, b) -> a JOIN b
MULTIJOIN(a, b, c, ...) -> a JOIN MULTIJOIN(b, c, ...)
If you want full unflattening, call UnflattenInnerJoins(), which calls this
function recursively.
*/
void CreateInnerJoinFromChildList(
Mem_root_array<RelationalExpression *> children,
RelationalExpression *expr) {
expr->type = RelationalExpression::INNER_JOIN;
expr->tables_in_subtree = 0;
expr->nodes_in_subtree = 0;
for (RelationalExpression *child : children) {
expr->tables_in_subtree |= child->tables_in_subtree;
expr->nodes_in_subtree |= child->nodes_in_subtree;
}
if (children.size() == 2) {
expr->left = children[0];
expr->right = children[1];
} else {
// Split arbitrarily.
expr->right = children.back();
children.pop_back();
RelationalExpression *left =
new (current_thd->mem_root) RelationalExpression(current_thd);
left->type = RelationalExpression::MULTI_INNER_JOIN;
left->tables_in_subtree = 0;
left->nodes_in_subtree = 0;
left->companion_set = expr->companion_set;
for (RelationalExpression *child : children) {
left->tables_in_subtree |= child->tables_in_subtree;
left->nodes_in_subtree |= child->nodes_in_subtree;
}
left->multi_children = std::move(children);
expr->left = left;
}
expr->multi_children.clear();
}
/**
Find all inner joins under “expr” without a join condition, and convert them
to a flattened join (MULTI_INNER_JOIN). We do this even for the joins that
have only two children, as it makes it easier to absorb them into higher
multi-joins.
The primary motivation for flattening is more flexible pushdown; when there is
a large multi-way join, we can push pretty much any equality condition down
to it, no matter how the join tree was written by the user.
See PartiallyUnflattenJoinForCondition() for details.
Note that this (currently) does not do any rewrites to flatten even more.
E.g., for the tree (a JOIN (b LEFT JOIN c)), it would be beneficial to use
associativity to rewrite into (a JOIN b) LEFT JOIN c (assuming a and b
could be combined further with other joins). This also means that there may
be items in the companion set that are not part of the same multi-join.
*/
void FlattenInnerJoins(RelationalExpression *expr) {
if (expr->type == RelationalExpression::MULTI_INNER_JOIN) {
// Already flattened, but grandchildren might need re-flattening.
for (RelationalExpression *child : expr->multi_children) {
FlattenInnerJoins(child);
assert(child->type != RelationalExpression::MULTI_INNER_JOIN);
}
return;
}
if (expr->type != RelationalExpression::TABLE) {
FlattenInnerJoins(expr->left);
FlattenInnerJoins(expr->right);
}
assert(expr->equijoin_conditions
.empty()); // MakeHashJoinConditions() has not run yet.
if (expr->type == RelationalExpression::INNER_JOIN &&
expr->join_conditions.empty()) {
// Collect and flatten children.
assert(expr->multi_children.empty());
expr->type = RelationalExpression::MULTI_INNER_JOIN;
if (expr->left->type == RelationalExpression::MULTI_INNER_JOIN) {
for (RelationalExpression *child : expr->left->multi_children) {
expr->multi_children.push_back(child);
}
} else {
expr->multi_children.push_back(expr->left);
}
if (expr->right->type == RelationalExpression::MULTI_INNER_JOIN) {
for (RelationalExpression *child : expr->right->multi_children) {
expr->multi_children.push_back(child);
}
} else {
expr->multi_children.push_back(expr->right);
}
expr->left = nullptr;
expr->right = nullptr;
}
}
/**
The opposite of FlattenInnerJoins(); converts all flattened joins to
a series of (right-deep) binary joins.
*/
void UnflattenInnerJoins(RelationalExpression *expr) {
if (expr->type == RelationalExpression::TABLE) {
return;
}
if (expr->type == RelationalExpression::MULTI_INNER_JOIN) {
// Peel off one table, then recurse. We could probably be
// somewhat more efficient than this if it's important.
CreateInnerJoinFromChildList(std::move(expr->multi_children), expr);
}
UnflattenInnerJoins(expr->left);
UnflattenInnerJoins(expr->right);
}
/**
For the given flattened join (multi-join), pull out (only) the parts we need
to push the given condition, and make a binary join for it. For instance,
if we have
MULTIJOIN(t1, t2, t3, t4 LJ t5)
and we have a condition t2.x = t5.x, we need to pull out the parts referring
to t2 and t5, partially exploding the multi-join:
MULTIJOIN(t1, t3, t2 JOIN (t4 LJ t5))
The newly created child will be returned, and the condition can be pushed
onto it. Note that there may be flattened joins under it; it is only the
returned node itself that is guaranteed to be a binary join.
If the condition touches all tables in the flattened join, the newly created
binary node will completely replace the former. (The simplest case of this is
a multi-join with only two nodes, and a condition referring to both of them.)
For instance, given
MULTIJOIN(t1, t2, t3)
and a condition t1.x = t2.x + t3.x, the entire node will be replaced by
t1 JOIN MULTIJOIN(t2, t3)
on which it is possible to push the condition. Which node is pulled out to
the left side is undefined.
See also CreateInnerJoinFromChildList().
*/
RelationalExpression *PartiallyUnflattenJoinForCondition(
table_map used_tables, RelationalExpression *expr) {
Mem_root_array<RelationalExpression *> affected_children(
current_thd->mem_root);
for (RelationalExpression *child : expr->multi_children) {
if (Overlaps(used_tables, child->tables_in_subtree) ||
Overlaps(used_tables, RAND_TABLE_BIT)) {
affected_children.push_back(child);
}
}
assert(affected_children.size() > 1);
if (affected_children.size() == expr->multi_children.size()) {
// We need all of the nodes, so replace ourself entirely.
CreateInnerJoinFromChildList(std::move(affected_children), expr);
return expr;
}
RelationalExpression *new_expr =
new (current_thd->mem_root) RelationalExpression(current_thd);
new_expr->companion_set = expr->companion_set;
CreateInnerJoinFromChildList(std::move(affected_children), new_expr);
// Insert the new node as one of the children, and take out
// the ones we've moved down into it.
auto new_end =
std::remove_if(expr->multi_children.begin(), expr->multi_children.end(),
[used_tables](const RelationalExpression *child) {
return Overlaps(used_tables, child->tables_in_subtree) ||
Overlaps(used_tables, RAND_TABLE_BIT);
});
expr->multi_children.erase(new_end, expr->multi_children.end());
expr->multi_children.push_back(new_expr);
return new_expr;
}
string PrintRelationalExpression(RelationalExpression *expr, int level) {
string result;
for (int i = 0; i < level * 2; ++i) result += ' ';
switch (expr->type) {
case RelationalExpression::TABLE:
if (expr->companion_set != -1) {
result += StringPrintf("* %s [companion set %d]\n", expr->table->alias,
expr->companion_set);
} else {
result += StringPrintf("* %s\n", expr->table->alias);
}
// Do not try to descend further.
return result;
case RelationalExpression::INNER_JOIN:
case RelationalExpression::MULTI_INNER_JOIN:
result += "* Inner join";
break;
case RelationalExpression::STRAIGHT_INNER_JOIN:
result += "* Inner join [forced noncommutative]";
break;
case RelationalExpression::LEFT_JOIN:
result += "* Left join";
break;
case RelationalExpression::SEMIJOIN:
result += "* Semijoin";
break;
case RelationalExpression::ANTIJOIN:
result += "* Antijoin";
break;
case RelationalExpression::FULL_OUTER_JOIN:
result += "* Full outer join";
break;
}
if (expr->type == RelationalExpression::MULTI_INNER_JOIN) {
// Should only exist before pushdown.
assert(expr->equijoin_conditions.empty() && expr->join_conditions.empty());
result += " (flattened)\n";
for (RelationalExpression *child : expr->multi_children) {
result += PrintRelationalExpression(child, level + 1);
}
return result;
}
if (!expr->equijoin_conditions.empty() && !expr->join_conditions.empty()) {
result += StringPrintf(" (equijoin condition = %s, extra = %s)",
ItemsToString(expr->equijoin_conditions).c_str(),
ItemsToString(expr->join_conditions).c_str());
} else if (!expr->equijoin_conditions.empty()) {
result += StringPrintf(" (equijoin condition = %s)",
ItemsToString(expr->equijoin_conditions).c_str());
} else if (!expr->join_conditions.empty()) {
result += StringPrintf(" (extra join condition = %s)",
ItemsToString(expr->join_conditions).c_str());
} else {
result += " (no join conditions)";
}
result += '\n';
result += PrintRelationalExpression(expr->left, level + 1);
result += PrintRelationalExpression(expr->right, level + 1);
return result;
}
// Returns whether the join condition for “expr” is null-rejecting (also known
// as strong or strict) on the given relations; that is, if it is guaranteed to
// return FALSE or NULL if _all_ tables in “tables” consist only of NULL values.
// (This means that adding tables in “tables” which are not part of any of the
// predicates is legal, and has no effect on the result.)
//
// A typical example of a null-rejecting condition would be a simple equality,
// e.g. t1.x = t2.x, which would reject NULLs on t1 and t2.
bool IsNullRejecting(const RelationalExpression &expr, table_map tables) {
for (Item *cond : expr.join_conditions) {
if (Overlaps(tables, cond->not_null_tables())) {
return true;
}
}
for (Item *cond : expr.equijoin_conditions) {
if (Overlaps(tables, cond->not_null_tables())) {
return true;
}
}
return false;
}
bool IsInnerJoin(RelationalExpression::Type type) {
return type == RelationalExpression::INNER_JOIN ||
type == RelationalExpression::STRAIGHT_INNER_JOIN ||
type == RelationalExpression::MULTI_INNER_JOIN;
}
// Returns true if (t1 <a> t2) <b> t3 === t1 <a> (t2 <b> t3).
//
// Note that this is not symmetric; e.g.
//
// (t1 JOIN t2) LEFT JOIN t3 === t1 JOIN (t2 LEFT JOIN t3)
//
// but
//
// (t1 LEFT JOIN t2) JOIN t3 != t1 LEFT JOIN (t2 JOIN t3)
//
// Note that this does not check that the rewrite would be _syntatically_ valid,
// i.e., that <b> does not refer to tables from t1. That is the job of the SES
// (syntactic eligibility set), which forms the base of the hyperedge
// representing the join, and not conflict rules -- if <b> refers to t1, the
// edge will include t1 no matter what we return here. This also goes for
// l-asscom and r-asscom below.
//
// When generating conflict rules, we call this function in a generalized sense:
//
// 1. t1, t2 and t3 could be join expressions, not just single tables.
// 2. <a> may not be a direct descendant of <b>, but further down the tree.
// 3. <b> may be below <a> in the tree, instead of the other way round.
//
// Due to #1 and #2, we need to take care when checking for null-rejecting
// conditions. Specifically, when the tables say we should check whether a
// condition mentioning (t2,t3) is null-rejecting on t2, we need to check the
// left arm of <b> instead of the right arm of <a>, as the condition might
// refer to a table that is not even part of <a> (ie., the “t2” in the condition
// is not the same “t2” as is under <a>). Otherwise, we might be rejecting
// valid plans. An example (where LJmn is LEFT JOIN with a null-rejecting
// predicate between tables m and n):
//
// ((t1 LJ12 t2) LJ23 t3) LJ34 t4
//
// At some point, we will be called with <a> = LJ12 and <b> = LJ34.
// If we check whether LJ34 is null-rejecting on t2 (a.right), instead of
// checking wheher it is null-rejecting on {t1,t2,t3} (b.left), we will
// erroneously create a conflict rule {t2} → {t1}, since we believe the
// LJ34 predicate is not null-rejecting on its left side.
//
// A special note on semijoins not covered in [Moe13]: If the inner side
// is known to be free of duplicates on the key (e.g. because we removed
// them), semijoin is equivalent to inner join and is both commutative
// and associative. (We use this in the join optimizer.) However, we don't
// actually need to care about this here, because the way semijoin is
// defined, it is impossible to do an associate rewrite without there being
// degenerate join predicates, and we already accept missing some rewrites
// for them. Ie., for associativity to matter, one would need to have a
// rewrite like
//
// (t1 SJ12 t2) J23 t3 === t1 SJ12 (t2 J23 t3)
//
// but there's no way we could have a condition J23 on the left side
// to begin with; semijoin in SQL comes from IN or EXISTS, which makes
// the attributes from t2 inaccessible after the join. Thus, J23 would
// have to be J3 (degenerate). The same argument explains why we don't
// need to worry about r-asscom, and semijoins are already l-asscom.
bool OperatorsAreAssociative(const RelationalExpression &a,
const RelationalExpression &b) {
// Table 2 from [Moe13]; which operator pairs are associative.
if ((a.type == RelationalExpression::LEFT_JOIN ||
a.type == RelationalExpression::FULL_OUTER_JOIN) &&
b.type == RelationalExpression::LEFT_JOIN) {
// True if and only if the second join predicate rejects NULLs
// on all tables in e2.
return IsNullRejecting(b, b.left->tables_in_subtree);
}
if (a.type == RelationalExpression::FULL_OUTER_JOIN &&
b.type == RelationalExpression::FULL_OUTER_JOIN) {
// True if and only if both join predicates rejects NULLs
// on all tables in e2.
return IsNullRejecting(a, a.right->tables_in_subtree) &&
IsNullRejecting(b, b.left->tables_in_subtree);
}
// Secondary engine does not want us to treat STRAIGHT_JOINs as
// associative.
if ((current_thd->secondary_engine_optimization() ==
Secondary_engine_optimization::SECONDARY) &&
(a.type == RelationalExpression::STRAIGHT_INNER_JOIN ||
b.type == RelationalExpression::STRAIGHT_INNER_JOIN)) {
return false;
}
// For the operations we support, it can be collapsed into this simple
// condition. (Cartesian products and inner joins are treated the same.)
return IsInnerJoin(a.type) && b.type != RelationalExpression::FULL_OUTER_JOIN;
}
// Returns true if (t1 <a> t2) <b> t3 === (t1 <b> t3) <a> t2,
// ie., the order of right-applying <a> and <b> don't matter.
//
// This is a symmetric property. The name comes from the fact that
// associativity and commutativity together would imply l-asscom;
// however, the converse is not true, so this is a more lenient property.
//
// See comments on OperatorsAreAssociative().
bool OperatorsAreLeftAsscom(const RelationalExpression &a,
const RelationalExpression &b) {
// Associative and asscom implies commutativity, and since STRAIGHT_JOIN
// is associative and we don't want it to be commutative, we can't make it
// asscom. As an example, a user writing
//
// (t1 STRAIGHT_JOIN t2) STRAIGHT_JOIN t3
//
// would never expect it to be rewritten to
//
// (t1 STRAIGHT_JOIN t3) STRAIGHT_JOIN t2
//
// since that would effectively switch the order of t2 and t3.
// It's possible we could be slightly more lenient here for some cases
// (e.g. if t1/t2 were a regular inner join), but presumably, people
// write STRAIGHT_JOIN to get _less_ leniency, so we just block them
// off entirely.
if (a.type == RelationalExpression::STRAIGHT_INNER_JOIN ||
b.type == RelationalExpression::STRAIGHT_INNER_JOIN) {
return false;
}
// Table 3 from [Moe13]; which operator pairs are l-asscom.
// (Cartesian products and inner joins are treated the same.)
if (a.type == RelationalExpression::LEFT_JOIN) {
if (b.type == RelationalExpression::FULL_OUTER_JOIN) {
return IsNullRejecting(a, a.left->tables_in_subtree);
} else {
return true;
}
}
if (a.type == RelationalExpression::FULL_OUTER_JOIN) {
if (b.type == RelationalExpression::LEFT_JOIN) {
return IsNullRejecting(b, b.right->tables_in_subtree);
}
if (b.type == RelationalExpression::FULL_OUTER_JOIN) {
return IsNullRejecting(a, a.left->tables_in_subtree) &&
IsNullRejecting(b, b.left->tables_in_subtree);
}
return false;
}
return b.type != RelationalExpression::FULL_OUTER_JOIN;
}
// Returns true if e1 <a> (e2 <b> e3) === e2 <b> (e1 <a> e3),
// ie., the order of left-applying <a> and <b> don't matter.
// Similar to OperatorsAreLeftAsscom().
bool OperatorsAreRightAsscom(const RelationalExpression &a,
const RelationalExpression &b) {
// Table 3 from [Moe13]; which operator pairs are r-asscom.
// (Cartesian products and inner joins are treated the same.)
if (a.type == RelationalExpression::FULL_OUTER_JOIN &&
b.type == RelationalExpression::FULL_OUTER_JOIN) {
return IsNullRejecting(a, a.right->tables_in_subtree) &&
IsNullRejecting(b, b.right->tables_in_subtree);
}
// See OperatorsAreLeftAsscom() for why we don't accept STRAIGHT_INNER_JOIN.
return a.type == RelationalExpression::INNER_JOIN &&
b.type == RelationalExpression::INNER_JOIN;
}
enum class AssociativeRewritesAllowed { ANY, RIGHT_ONLY, LEFT_ONLY };
/**
Find a bitmap of used tables for all conditions on \<expr\>.
Note that after all conditions have been pushed, you can check
expr.conditions_used_tables instead (see FindConditionsUsedTables()).
NOTE: The map might be wider than expr.tables_in_subtree due to
multiple equalities; you should normally just ignore those bits.
*/
table_map UsedTablesForCondition(const RelationalExpression &expr) {
assert(expr.equijoin_conditions
.empty()); // MakeHashJoinConditions() has not run yet.
table_map used_tables = 0;
for (Item *cond : expr.join_conditions) {
used_tables |= cond->used_tables();
}
return used_tables;
}
/**
Like UsedTablesForCondition(), but multiple equalities set no bits unless
they're certain, i.e., cannot be avoided no matter how we break up the
multiple equality. This is the case for tables that are the only ones on
their side of the join. E.g.: For a multiple equality {A,C,D} on a join
(A,B) JOIN (C,D), A is certain; either A=C or A=D has to be included
no matter what.
*/
table_map CertainlyUsedTablesForCondition(const RelationalExpression &expr) {
assert(expr.equijoin_conditions
.empty()); // MakeHashJoinConditions() has not run yet.
table_map used_tables = 0;
for (Item *cond : expr.join_conditions) {
table_map this_used_tables = cond->used_tables();
if (IsMultipleEquals(cond)) {
table_map left_bits = this_used_tables & GetVisibleTables(expr.left);
table_map right_bits = this_used_tables & GetVisibleTables(expr.right);
if (IsSingleBitSet(left_bits)) {
used_tables |= left_bits;
}
if (IsSingleBitSet(right_bits)) {
used_tables |= right_bits;
}
} else {
used_tables |= this_used_tables;
}
}
return used_tables;
}
/**
For a given set of tables, find the companion set they are part of (see
RelationalExpression::companion_set for an explanation of companion sets).
Returns -1 if the tables are in different (ie., incompatible) companion sets;
if so, a condition using this set of tables can _not_ induce a new (cycle)
edge in the hypergraph, as there are non-inner joins in the way.
*/
int CompanionSetUsedByCondition(
table_map tables, const int table_num_to_companion_set[MAX_TABLES]) {
assert(tables != 0);
int ret = -1;
for (int table_num : BitsSetIn(tables)) {
if (table_num >= int{MAX_TABLES} ||
table_num_to_companion_set[table_num] == -1) {
// This table is not part of a companion set.
return -1;
}
if (ret == -1) {
// First table.
ret = table_num_to_companion_set[table_num];
} else if (ret != table_num_to_companion_set[table_num]) {
// Incompatible sets.
return -1;
}
}
return ret;
}
/**
Check whether we are allowed to make an extra join edge with the given
condition, instead of pushing the condition onto the given point in the
join tree (which we have presumably found out that we don't want).
*/
bool IsCandidateForCycle(RelationalExpression *expr, Item *cond,
const int table_num_to_companion_set[MAX_TABLES]) {
if (cond->type() != Item::FUNC_ITEM) {
return false;
}
if (Overlaps(cond->used_tables(), PSEUDO_TABLE_BITS)) {
return false;
}
Item_func *func_item = down_cast<Item_func *>(cond);
if (!IsMultipleEquals(func_item)) {
// Don't try to make cycle edges out of hyperpredicates, at least for now;
// simple equalities and multi-equalities only.
if (!func_item->contains_only_equi_join_condition()) {
return false;
}
if (my_count_bits(cond->used_tables()) != 2) {
return false;
}
}
// Check that we are not combining together anything that is not part of
// the same companion set (either by means of the condition, or by making
// a cycle through an already-existing condition).
table_map used_tables = cond->used_tables();
assert(expr->equijoin_conditions
.empty()); // MakeHashJoinConditions() has not run yet.
for (Item *other_cond : expr->join_conditions) {
used_tables |= other_cond->used_tables();
}
return CompanionSetUsedByCondition(used_tables & expr->tables_in_subtree,
table_num_to_companion_set) != -1;
}
bool ComesFromMultipleEquality(Item *item, Item_equal *equal) {
return is_function_of_type(item, Item_func::EQ_FUNC) &&
down_cast<Item_func_eq *>(item)->source_multiple_equality == equal;
}
int FindSourceMultipleEquality(Item *item,
const Mem_root_array<Item_equal *> &equals) {
if (!is_function_of_type(item, Item_func::EQ_FUNC)) {
return -1;
}
Item_func_eq *eq = down_cast<Item_func_eq *>(item);
for (size_t equals_idx = 0; equals_idx < equals.size(); ++equals_idx) {
if (eq->source_multiple_equality == equals[equals_idx]) {
return static_cast<int>(equals_idx);
}
}
return -1;
}
bool MultipleEqualityAlreadyExistsOnJoin(Item_equal *equal,
const RelationalExpression &expr) {
// Could be called both before and after MakeHashJoinConditions(),
// so check for join_conditions and equijoin_conditions.
for (Item *item : expr.join_conditions) {
if (ComesFromMultipleEquality(item, equal)) {
return true;
}
}
for (Item_eq_base *item : expr.equijoin_conditions) {
if (item->source_multiple_equality == equal) {
return true;
}
}
return false;
}
bool AlreadyExistsOnJoin(Item *cond, const RelationalExpression &expr) {
assert(expr.equijoin_conditions
.empty()); // MakeHashJoinConditions() has not run yet.
constexpr bool binary_cmp = true;
for (Item *item : expr.join_conditions) {
if (cond->eq(item, binary_cmp)) {
return true;
}
}
// If "cond" is an equality created from a multiple equality, it might already
// be present on the join in a slightly different shape, because it can be a
// bit arbitrary exactly which single equalities a multiple equality is
// expanded to.
//
// For example, a=b and b=a should be considered the same. Also, if we have a
// multiple equality t1.x=t2.x=t2.y, we should consider t1.x=t2.x as present
// on the join if t1.x=t2.y is already there. We can do this because we know
// the t2.x=t2.y predicate will be pushed down as a table predicate (see
// EarlyExpandMultipleEquals() and ExpandSameTableFromMultipleEquals()), and
// t1.x=t2.x is implied by t1.x=t2.y and t2.x=t2.y.
//
// Similarly, if we have a hyperedge {t1,t2,t3}-{t4} and we already have
// t1.x=t4.x, we shouldn't add t2.x=t4.x if it comes from the same multiple
// equality, as in this case we know t1.x=t2.x will already have been applied
// on the {t1,t2,t3} subplan, and t2.x=t4.x is therefore implied by t1.x=t4.x.
//
// This means we only need to check if the join condition already has another
// equality that comes from the same multiple equality.
if (is_function_of_type(cond, Item_func::EQ_FUNC)) {
if (Item_equal *equal =
down_cast<Item_func_eq *>(cond)->source_multiple_equality;
equal != nullptr && MultipleEqualityAlreadyExistsOnJoin(equal, expr)) {
return true;
}
}
return false;
}
/**
Returns whether adding “cond” to the given join would unduly enlarge
the number of tables it references, or create a degenerate join.
The former is suboptimal since it would create a wider hyperedge
than is usually needed, ie., it restricts join ordering.
Consider for instance a join such as
a JOIN (b JOIN c ON TRUE) ON a.x=b.x WHERE a.y=c.y
If pushing the WHERE condition down on the a/bc join, that join would
get a dependency on both b and c, hindering (ab) and (ac) as subplans.
This function allows us to detect this and look for other opportunities
(see AddJoinCondition()).
*/
bool IsBadJoinForCondition(const RelationalExpression &expr, Item *cond) {
const table_map used_tables = cond->used_tables();
// Making a degenerate join is rarely good.
if (!Overlaps(used_tables, expr.left->tables_in_subtree) ||
!Overlaps(used_tables, expr.right->tables_in_subtree)) {
return true;
}
const table_map already_used_tables = CertainlyUsedTablesForCondition(expr);
if (already_used_tables == 0) {
// Making a Cartesian join into a proper join is good.
return false;
}
if (IsMultipleEquals(cond)) {
// Don't apply the same multi-equality twice on the same join. This fixes an
// issue that goes roughly like this:
//
// 1. A multi-equality, e.g. (t1.x, t2.x, t3.x), is pushed on the lower
// level of a join like t1 JOIN (t2 JOIN (t3 JOIN t4)), and concretized
// to t2.x = t3.x (we happen to push the lower levels before the higher
// levels).
// 2. Now we want to push the same multi-equality on the higher level,
// but assume there's already a condition there that makes it a bad join
// for us, e.g. t1.y = t4.y already exists. This causes us to try an
// associative rewrite to (t1 JOIN t2) JOIN (t3 JOIN t4). Note that
// the top join still carries the t2.x = t3.x condition.
// 3. Now we see that we can reliably push the multi-equality onto the
// top join again without extending the join condition -- by concretizing
// it to t2.x = t3.x!
//
// This obviously subverts the requirement that we have (N-1) different
// concretizations of the multi-equality, since two are the same. Thus,
// we have this explicit check here.
//
// See the unit test MultipleEqualityIsNotPushedMultipleTimes for an example
// that goes horribly wrong without this.
if (MultipleEqualityAlreadyExistsOnJoin(down_cast<Item_equal *>(cond),
expr)) {
return true;
}
// For multi-equalities, we can pick any table from the left and any table
// from the right, so see if we can make any such choice that doesn't
// broaden the condition.
const table_map candidate_tables = used_tables & already_used_tables;
if (Overlaps(candidate_tables, expr.left->tables_in_subtree) &&
Overlaps(candidate_tables, expr.right->tables_in_subtree)) {
return false;
}
}
return !IsSubset(used_tables, already_used_tables);
}
/**
Applies the following rewrite on \<op\>:
A \<op\> (B \<op2\> C) => (A \<op\> B) \<op2\> C
Importantly, the pointer \<op\> still points to the new top node
(that is, \<op2\>), so you don't need to rewrite any nodes higher
up in the tree. Join conditions and types are left as-is,
ie., if \<op2\> is a LEFT JOIN, it will remain one.
Does not check that the transformation is actually legal.
*/
void RotateRight(RelationalExpression *op) {
RelationalExpression *op2 = op->right;
RelationalExpression *b = op2->left;
RelationalExpression *c = op2->right;
op->right = b;
op2->left = op;
op2->right = c;
// Update tables_in_subtree; order matters.
op->tables_in_subtree =
op->left->tables_in_subtree | op->right->tables_in_subtree;
op2->tables_in_subtree =
op2->left->tables_in_subtree | op2->right->tables_in_subtree;
swap(*op, *op2);
op->left = op2;
}
/**
Opposite of RotateRight; that is:
(A \<op2\> B) \<op\> C => A \<op2\> (B \<op\> C)
See RotateRight for details.
*/
void RotateLeft(RelationalExpression *op) {
RelationalExpression *op2 = op->left;
RelationalExpression *a = op2->left;
RelationalExpression *b = op2->right;
op->left = b;
op2->left = a;
op2->right = op;
// Update tables_in_subtree; order matters.
op->tables_in_subtree =
op->left->tables_in_subtree | op->right->tables_in_subtree;
op2->tables_in_subtree =
op2->left->tables_in_subtree | op2->right->tables_in_subtree;
swap(*op, *op2);
op->right = op2;
}
/**
From “cond”, create exactly one simple equality that will connect the
left and right sides of “expr”. E.g. for joining (A,B) and (C,D),
and given the multi-equality (A.x,B.x,D.x), it may pick A.x = D.x
or B.x = D.x (but never A.x = B.x).
*/
Item_func_eq *ConcretizeMultipleEquals(Item_equal *cond,
const RelationalExpression &expr) {
const table_map already_used_tables = CertainlyUsedTablesForCondition(expr);
Item_field *left = nullptr;
Item_field *right = nullptr;
// Go through and pick a candidate for each side of the equality.
// This is fairly arbitrary (we will add cycles later), but if there is
// already a condition present, we prefer to pick one that refers to an
// already-used table.
// Try to find a candidate from visible tables for this join.
// It is correct indeed and also that HeatWave does not support
// seeing inner tables of a semijoin from outside the semijoin.
for (Item_field &item_field : cond->get_fields()) {
if (Overlaps(item_field.used_tables(), GetVisibleTables(expr.left))) {
if (left == nullptr ||
!Overlaps(left->used_tables(), already_used_tables)) {
left = &item_field;
}
} else if (Overlaps(item_field.used_tables(),
GetVisibleTables(expr.right))) {
if (right == nullptr ||
!Overlaps(right->used_tables(), already_used_tables)) {
right = &item_field;
}
}
}
// If a candidate was not found from the visible tables, try with
// all tables in the join. For certain cases, query transformations
// could have placed a semijoin condition outside of the semijoin
// or even as part of a WHERE condition. It might succeed here for
// such conditions. Such queries are not offloaded to HeatWave.
if (left == nullptr || right == nullptr) {
for (Item_field &item_field : cond->get_fields()) {
if (Overlaps(item_field.used_tables(), expr.left->tables_in_subtree)) {
if (left == nullptr ||
!Overlaps(left->used_tables(), already_used_tables)) {
left = &item_field;
}
} else if (Overlaps(item_field.used_tables(),
expr.right->tables_in_subtree)) {
if (right == nullptr ||
!Overlaps(right->used_tables(), already_used_tables)) {
right = &item_field;
}
}
}
}
assert(left != nullptr);
assert(right != nullptr);
return MakeEqItem(left, right, cond);
}
/**
From “cond”, create exactly as many simple equalities that are needed
to connect all tables in “allowed_tables”. E.g. for joining (A,B) and (C,D)
(ie., allowed_tables={A,B,C,D}), and given the multi-equality
(A.x, B.x, D.x, E.x), it will generate A.x = B.x and B.x = D.x
(E.x is ignored).
The given container must support push_back(Item_func_eq *).
*/
template <class T>
static void FullyConcretizeMultipleEquals(Item_equal *cond,
table_map allowed_tables, T *result) {
Item_field *last_field = nullptr;
table_map seen_tables = 0;
for (Item_field &field : cond->get_fields()) {
if (!Overlaps(field.used_tables(), allowed_tables)) {
// From outside this join.
continue;
}
if (Overlaps(field.used_tables(), seen_tables)) {
// We've already seen something from this table,
// which has been dealt with in ExpandSameTableFromMultipleEquals().
continue;
}
if (last_field != nullptr) {
result->push_back(MakeEqItem(last_field, &field, cond));
}
last_field = &field;
seen_tables |= field.used_tables();
}
}
/**
Finalize a condition (join condition or WHERE predicate); resolve any
remaining multiple equalities.
Caches around constant arguments are not added here but during finalize,
since we might plan two times, and the caches from the first time may confuse
remove_eq_cond() in the second.
*/
Item *CanonicalizeCondition(Item *condition, table_map visible_tables,
table_map all_tables) {
// Convert any remaining (unpushed) multiple equals to a series of equijoins.
// Note this is a last-ditch resort, and should almost never happen;
// thus, it's fine just to fully expand the multi-equality, even though it
// might mean adding conditions that have already been dealt with further down
// the tree. This is also the only place that we expand multi-equalities
// within OR conjunctions or the likes.
condition = CompileItem(
condition, [](Item *) { return true; },
[visible_tables, all_tables](Item *item) -> Item * {
if (!IsMultipleEquals(item)) {
return item;
}
Item_equal *equal = down_cast<Item_equal *>(item);
assert(equal->const_arg() == nullptr);
List<Item> eq_items;
FullyConcretizeMultipleEquals(equal, visible_tables, &eq_items);
if (eq_items.is_empty()) {
// It is possible that for some semijoin conditions, we might
// not find replacements in only visible tables. So we try again
// with all tables which includes the non-visible tables as well.
FullyConcretizeMultipleEquals(equal, all_tables, &eq_items);
}
assert(!eq_items.is_empty());
return CreateConjunction(&eq_items);
});
// Account for tables not in allowed_tables having been removed.
condition->update_used_tables();
return condition;
}
// Split any conditions that have been transformed into a conjunction (typically
// by expansion of multiple equalities or removal of constant subconditions).
Mem_root_array<Item *> ResplitConditions(
THD *thd, const Mem_root_array<Item *> &conditions) {
Mem_root_array<Item *> new_conditions(thd->mem_root);
for (Item *condition : conditions) {
ExtractConditions(condition, &new_conditions);
}
return new_conditions;
}
// Calls CanonicalizeCondition() for each condition in the given array.
bool CanonicalizeConditions(THD *thd, table_map visible_tables,
table_map all_tables,
Mem_root_array<Item *> *conditions) {
bool need_resplit = false;
for (Item *&condition : *conditions) {
condition = CanonicalizeCondition(condition, visible_tables, all_tables);
if (condition == nullptr) {
return true;
}
if (IsAnd(condition)) {
// Canonicalization converted something (probably an Item_equal) to a
// conjunction, which we need to split back to new conditions again.
need_resplit = true;
}
}
if (need_resplit) {
*conditions = ResplitConditions(thd, *conditions);
}
return false;
}
/**
Add “cond” as a join condition to “expr”, but if it would enlarge the set
of referenced tables, try to rewrite the join tree using associativity
(either left or right) to be able to put the condition on a more favorable
node. (See IsBadJoinForCondition().)
a JOIN (b JOIN c ON TRUE) ON a.x=b.x WHERE a.y=c.y
In this case, we'd try rewriting the join tree into
(a JOIN b ON a.x=b.x) JOIN c ON TRUE WHERE a.y=c.y
which would then allow the push with no issues:
(a JOIN b ON a.x=b.x) JOIN c ON a.y=c.y
Note that with flattening, we don't need this for inner joins (flattening
solves all inner-join cases without needing this machinery), so this is only
ever called when outer joins are involved (inner joins are used in the example
above for ease of exposition).
This function works recursively, and returns true if the condition
was pushed.
*/
bool AddJoinConditionPossiblyWithRewrite(RelationalExpression *expr, Item *cond,
AssociativeRewritesAllowed allowed,
bool used_commutativity,
bool *need_flatten, string *trace) {
// We should never reach this from a top-level caller, and due to the call
// to UnflattenInnerJoins() below, we should also never see it through
// rotates.
assert(expr->type != RelationalExpression::MULTI_INNER_JOIN);
// We can only promote filters to join conditions on inner joins and
// semijoins, but having a left join doesn't stop us from doing the rewrites
// below. Due to special semijoin rules in MySQL (see comments in
// PushDownCondition()), we also disallow making join conditions on semijoins.
if (!IsBadJoinForCondition(*expr, cond) && IsInnerJoin(expr->type)) {
if (IsMultipleEquals(cond)) {
cond = ConcretizeMultipleEquals(down_cast<Item_equal *>(cond), *expr);
}
expr->join_conditions.push_back(cond);
if (trace != nullptr && allowed != AssociativeRewritesAllowed::ANY) {
*trace += StringPrintf(
"- applied associativity%s to better push condition %s\n",
used_commutativity ? " and commutativity" : "",
ItemToString(cond).c_str());
}
return true;
}
// Flattening in itself causes some headaches (it's not obvious how to do
// rotates), so before any such rewrites, we unflatten the tree. This isn't
// particularly efficient, and it may also cause us to miss some rewrites,
// but it's an OK tradeoff. The top-level caller will have to flatten again.
//
// NOTE: When/if we support rotating through flattened joins, we can
// drop all the commutativity code.
UnflattenInnerJoins(expr);
*need_flatten = true;
// Try (where ABC are arbitrary expressions, and <op1> is expr):
//
// A <op1> (B <op2> C) => (A <op1> B) <op2> C
//
// and see if we can push upon <op2>, possibly doing the same
// rewrite repeatedly if it helps.
if (allowed != AssociativeRewritesAllowed::LEFT_ONLY &&
expr->right->type != RelationalExpression::TABLE &&
OperatorsAreAssociative(*expr, *expr->right)) {
// Note that we need to use the conservative check here
// (UsedTablesForCondition() instead of CertainlyUsedTablesForCondition()),
// in order not to do possibly illegal rewrites. (It should only matter
// for the rare case where we have unpushed multiple equalities.)
if (!Overlaps(UsedTablesForCondition(*expr),
expr->right->right->tables_in_subtree)) {
RotateRight(expr);
if (AddJoinConditionPossiblyWithRewrite(
expr, cond, AssociativeRewritesAllowed::RIGHT_ONLY,
used_commutativity, need_flatten, trace)) {
return true;
}
// It failed, so undo what we did.
RotateLeft(expr);
}
if (OperatorIsCommutative(*expr->right) &&
!Overlaps(UsedTablesForCondition(*expr),
expr->right->left->tables_in_subtree)) {
swap(expr->right->left, expr->right->right);
RotateRight(expr);
if (AddJoinConditionPossiblyWithRewrite(
expr, cond, AssociativeRewritesAllowed::RIGHT_ONLY,
/*used_commutativity=*/false, need_flatten, trace)) {
return true;
}
// It failed, so undo what we did.
RotateLeft(expr);
swap(expr->right->left, expr->right->right);
}
}
// Similarly, try:
//
// (A <op2> B) <op1> C => A <op2> (B <op1> C)
//
// and see if we can push upon <op2>.
if (allowed != AssociativeRewritesAllowed::RIGHT_ONLY &&
expr->left->type != RelationalExpression::TABLE &&
OperatorsAreAssociative(*expr->left, *expr)) {
if (!Overlaps(UsedTablesForCondition(*expr),
expr->left->left->tables_in_subtree)) {
RotateLeft(expr);
if (AddJoinConditionPossiblyWithRewrite(
expr, cond, AssociativeRewritesAllowed::LEFT_ONLY,
used_commutativity, need_flatten, trace)) {
return true;
}
// It failed, so undo what we did.
RotateRight(expr);
}
if (OperatorIsCommutative(*expr->left) &&
!Overlaps(UsedTablesForCondition(*expr),
expr->left->right->tables_in_subtree)) {
swap(expr->left->left, expr->left->right);
RotateLeft(expr);
if (AddJoinConditionPossiblyWithRewrite(
expr, cond, AssociativeRewritesAllowed::LEFT_ONLY,
/*used_commutativity=*/true, need_flatten, trace)) {
return true;
}
// It failed, so undo what we did.
RotateRight(expr);
swap(expr->left->left, expr->left->right);
}
}
return false;
}
/**
Try to push down the condition “cond” down in the join tree given by “expr”,
as far as possible. cond is either a join condition on expr
(is_join_condition_for_expr=true), or a filter which is applied at some point
after expr (...=false).
If the condition was not pushable, ie., it couldn't be stored as a join
condition on some lower place than it started, it will push it onto
“remaining_parts”. remaining_parts can be nullptr, in which case the condition
is simply dropped.
Since PushDownAsMuchAsPossible() only calls us for join conditions, there is
only one way we can push down something onto a single table (which naturally
has no concept of “join condition”), and it does not affect the return
condition. That is partial pushdown:
In addition to regular pushdown, PushDownCondition() will do partial pushdown
if appropriate. Some expressions cannot be fully pushed down, but we can
push down necessary-but-not-sufficient conditions to get earlier filtering.
(This is a performance win for e.g. hash join and the left side of a
nested loop join, but not for the right side of a nested loop join. Note that
we currently do not compensate for the errors in selectivity estimation
this may incur.) An example would be
(t1.x = 1 AND t2.y=2) OR (t1.x = 3 AND t2.y=4);
we could push down the conditions (t1.x = 1 OR t1.x = 3) to t1 and similarly
for t2, but we could not delete the original condition. If we get all the way
down to a table, we store the condition in “table_filters”. These are
conditions that can be evaluated directly on the given table, without any
concern for what is joined in before (ie., TES = SES).
Multiple equalities
===================
Pushing down multiple equalities is somewhat tricky. To recap, a multiple
equality (Item_equal) is a set of N fields (a,b,c,...) that are all assumed
to be equal to each other. As part of pushdown, we concretize these into
(N-1) regular equalities (where every field is referred to at least once);
this is enough for query correctness, and the remaining options will be added
to the query graph later. E.g., if we have multiple equals (a,b,c), we could
add a=b AND b=c, or equivalently a=c AND b=c. But for (a,b,c,d), we couldn't
do with a=b AND a=c AND b=c; even though it would be (N-1) equalities,
d still needs to be in the mix.
We solve this by pushing down multiple equalities as usual down the tree until
it becomes a join condition at the current node (ie., it refers to tables from
both sides). At that point, we can pick an arbitrary table from each sides to
create an equality. E.g. for (a,b,c,d) pushed onto (a,b) JOIN (c,d), we can
choose an equality a=c, or a=d, or similar. However, this only resolves one
equality; we need to keep pushing it down on both sides. This will create the
(N-1) ones we want in the end. But at this point, the multiple equality will
refer to tables not part of the join; e.g. trying to push down equals(a,b,c,d)
onto a JOIN b. If so, we simply ignore the fields belonging to tables not part
of the join, so we create a=b (the only possibility).
If we at some point end up with a multiple equality we cannot push
(e.g., because it hit an outer join), we will resolve it at the latest
in CanonicalizeCondition().
*/
void PushDownCondition(Item *cond, RelationalExpression *expr,
bool is_join_condition_for_expr,
const int table_num_to_companion_set[MAX_TABLES],
Mem_root_array<Item *> *table_filters,
Mem_root_array<Item *> *cycle_inducing_edges,
Mem_root_array<Item *> *remaining_parts, string *trace) {
if (expr->type == RelationalExpression::TABLE) {
assert(!IsMultipleEquals(cond));
table_filters->push_back(cond);
return;
}
const table_map used_tables =
cond->used_tables() & (expr->tables_in_subtree | RAND_TABLE_BIT);
if (expr->type == RelationalExpression::MULTI_INNER_JOIN) {
// See if we can push this condition down to a single child.
for (RelationalExpression *child : expr->multi_children) {
if (IsSubset(used_tables, child->tables_in_subtree)) {
PushDownCondition(cond, child,
/*is_join_condition_for_expr=*/false,
table_num_to_companion_set, table_filters,
cycle_inducing_edges, remaining_parts, trace);
return;
}
}
// We couldn't, so we'll need to unflatten the join (either partially
// or completely) to get a place where we can store the condition.
expr = PartiallyUnflattenJoinForCondition(used_tables, expr);
// Fall through, presumably storing the condition as a join condition
// on the given node.
}
assert(
!Overlaps(expr->left->tables_in_subtree, expr->right->tables_in_subtree));
// See if we can push down into the left side, ie., it only touches
// tables on the left side of the join.
//
// If the condition is a filter, we can do this for all join types
// except FULL OUTER JOIN, which we don't support yet. If it's a join
// condition for this join, we cannot push it for outer joins and
// antijoins, since that would remove rows that should otherwise
// be output (as NULL-complemented ones in the case if outer joins).
const bool can_push_into_left =
(IsInnerJoin(expr->type) ||
expr->type == RelationalExpression::SEMIJOIN ||
!is_join_condition_for_expr);
if (IsSubset(used_tables, expr->left->tables_in_subtree)) {
if (!can_push_into_left) {
if (remaining_parts != nullptr) {
remaining_parts->push_back(cond);
}
return;
}
PushDownCondition(cond, expr->left,
/*is_join_condition_for_expr=*/false,
table_num_to_companion_set, table_filters,
cycle_inducing_edges, remaining_parts, trace);
return;
}
// See if we can push down into the right side. For inner joins,
// we can always do this, assuming the condition refers to the right
// side only. For outer joins and antijoins, we cannot push conditions
// _through_ them; that is, we can push them if they come directly from said
// node's join condition, but not otherwise. (This is, incidentally, the exact
// opposite condition from pushing into the left side.)
//
// Normally, this also goes for semijoins, except that MySQL's semijoin
// rewriting causes conditions to appear higher up in the tree that we
// _must_ push back down and through them for correctness. Thus, we have
// no choice but to just trust that these conditions are pushable.
// (The user cannot specify semijoins directly, so all such conditions
// come from ourselves.)
const bool can_push_into_right =
(IsInnerJoin(expr->type) ||
expr->type == RelationalExpression::SEMIJOIN ||
is_join_condition_for_expr);
if (IsSubset(used_tables, expr->right->tables_in_subtree)) {
if (!can_push_into_right) {
if (remaining_parts != nullptr) {
remaining_parts->push_back(cond);
}
return;
}
PushDownCondition(cond, expr->right,
/*is_join_condition_for_expr=*/false,
table_num_to_companion_set, table_filters,
cycle_inducing_edges, remaining_parts, trace);
return;
}
// It's not a subset of left, it's not a subset of right, so it's a
// filter that must either stay after this join, or it can be promoted
// to a join condition for it.
if (AlreadyExistsOnJoin(cond, *expr) &&
!(expr->type == RelationalExpression::LEFT_JOIN ||
expr->type == RelationalExpression::ANTIJOIN)) {
// Redundant, so we can just forget about it.
// (WHERE conditions are not pushable to outer joins or antijoins,
// and thus not redundant, because post-join filters are not equivalent to
// join conditions for those types. For outer joins, NULL-complemented rows
// would need re-filtering, and for antijoins, the antijoin condition
// repeated as a filter afterwards would simply return zero rows,
// by definition.)
return;
}
// Try partial pushdown into the left side (see function comment).
if (can_push_into_left &&
Overlaps(used_tables, expr->left->tables_in_subtree)) {
Item *partial_cond = make_cond_for_table(
current_thd, cond, expr->left->tables_in_subtree, /*used_table=*/0,
/*exclude_expensive_cond=*/true);
if (partial_cond != nullptr) {
PushDownCondition(partial_cond, expr->left,
/*is_join_condition_for_expr=*/false,
table_num_to_companion_set, table_filters,
cycle_inducing_edges, /*remaining_parts=*/nullptr,
trace);
}
}
// Then the right side, if it's allowed.
if (can_push_into_right &&
Overlaps(used_tables, expr->right->tables_in_subtree)) {
Item *partial_cond = make_cond_for_table(
current_thd, cond, expr->right->tables_in_subtree, /*used_table=*/0,
/*exclude_expensive_cond=*/true);
if (partial_cond != nullptr) {
PushDownCondition(partial_cond, expr->right,
/*is_join_condition_for_expr=*/false,
table_num_to_companion_set, table_filters,
cycle_inducing_edges, /*remaining_parts=*/nullptr,
trace);
}
}
// For multiple equalities, if there are multiple referred-to tables on one
// side, then we must keep pushing down; there are still equalities left to
// resolve. E.g. if we have equal(t1.x, t2.x, t3.x) and have (t1,t2) on the
// left side and t3 on the right, we would pick e.g. t1.x=t3.x for this join,
// but need to keep pushing down on the left side to get the t1.x=t2.x
// condition further down.
//
// We can ignore the special case of a multi-equality referring to several
// fields in the same table, as ExpandSameTableFromMultipleEquals()
// has dealt with those for us.
if (IsMultipleEquals(cond)) {
table_map left_tables = cond->used_tables() & expr->left->tables_in_subtree;
table_map right_tables =
cond->used_tables() & expr->right->tables_in_subtree;
if (my_count_bits(left_tables) >= 2 && can_push_into_left) {
PushDownCondition(cond, expr->left,
/*is_join_condition_for_expr=*/false,
table_num_to_companion_set, table_filters,
cycle_inducing_edges, remaining_parts, trace);
}
if (my_count_bits(right_tables) >= 2 && can_push_into_right) {
PushDownCondition(cond, expr->right,
/*is_join_condition_for_expr=*/false,
table_num_to_companion_set, table_filters,
cycle_inducing_edges, remaining_parts, trace);
}
}
// Now that any partial pushdown has been done, see if we can promote
// the original filter to a join condition.
if (is_join_condition_for_expr) {
// We were already a join condition on this join, so there's nothing to do.
// (We leave any multiple equalities for LateConcretizeMultipleEqualities();
// see comments there. We should also not push them further, unlike WHERE
// conditions that induce inner joins.)
if (remaining_parts != nullptr) {
remaining_parts->push_back(cond);
}
return;
}
// We cannot promote filters to join conditions for outer joins
// and antijoins, but we can on inner joins and semijoins.
if (expr->type == RelationalExpression::LEFT_JOIN ||
expr->type == RelationalExpression::ANTIJOIN) {
// See if we can promote it by rewriting; if not, it has to be left
// as a filter.
bool need_flatten = false;
if (!AddJoinConditionPossiblyWithRewrite(
expr, cond, AssociativeRewritesAllowed::ANY,
/*used_commutativity=*/false, &need_flatten, trace)) {
if (remaining_parts != nullptr) {
remaining_parts->push_back(cond);
}
}
if (need_flatten) {
FlattenInnerJoins(expr);
}
return;
}
// Promote the filter to a join condition on this join.
// If it's an equijoin condition, MakeHashJoinConditions() will convert it to
// one (in expr->equijoin_conditions) when it runs later.
assert(expr->equijoin_conditions.empty());
if (expr->type == RelationalExpression::SEMIJOIN) {
// Special semijoin handling; the “WHERE conditions” from semijoins
// are not really WHERE conditions, and must not be handled as such
// (they cannot be moved to being conditions on inner joins).
// See the comment about pushability of these above.
// (Any multiple equalities should be simplified in
// LateConcretizeMultipleEqualities(), but not pushed further,
// unlike WHERE conditions that induce inner joins.)
expr->join_conditions.push_back(cond);
return;
}
bool need_flatten = false;
if (!AddJoinConditionPossiblyWithRewrite(
expr, cond, AssociativeRewritesAllowed::ANY,
/*used_commutativity=*/false, &need_flatten, trace)) {
if (expr->type == RelationalExpression::INNER_JOIN &&
IsCandidateForCycle(expr, cond, table_num_to_companion_set)) {
// We couldn't push the condition to this join without broadening its
// hyperedge, but we could add a simple edge (or multiple simple edges,
// in the case of multiple equalities -- we defer the meshing of those
// to later) to create a cycle, so we'll take it out now and then add such
// an edge in AddCycleEdges().
if (IsMultipleEquals(cond)) {
// Some of these may induce cycles and some may not.
// We need to split and push them separately.
if (trace != nullptr) {
*trace += StringPrintf(
"- condition %s may induce hypergraph cycles, splitting\n",
ItemToString(cond).c_str());
}
Mem_root_array<Item *> possible_cycle_edges(current_thd->mem_root);
FullyConcretizeMultipleEquals(down_cast<Item_equal *>(cond),
expr->tables_in_subtree,
&possible_cycle_edges);
for (Item *sub_cond : possible_cycle_edges) {
PushDownCondition(sub_cond, expr,
/*is_join_condition_for_expr=*/false,
table_num_to_companion_set, table_filters,
cycle_inducing_edges, remaining_parts, trace);
}
} else {
if (trace != nullptr) {
*trace += StringPrintf("- condition %s induces a hypergraph cycle\n",
ItemToString(cond).c_str());
}
cycle_inducing_edges->push_back(CanonicalizeCondition(
cond, expr->tables_in_subtree, expr->tables_in_subtree));
}
if (need_flatten) {
FlattenInnerJoins(expr);
}
return;
}
if (trace != nullptr) {
*trace += StringPrintf(
"- condition %s makes join reference more relations, "
"but could not do anything about it\n",
ItemToString(cond).c_str());
}
if (IsMultipleEquals(cond) && !MultipleEqualityAlreadyExistsOnJoin(
down_cast<Item_equal *>(cond), *expr)) {
expr->join_conditions.push_back(
ConcretizeMultipleEquals(down_cast<Item_equal *>(cond), *expr));
} else {
expr->join_conditions.push_back(cond);
}
}
if (need_flatten) {
FlattenInnerJoins(expr);
}
}
/**
Try to push down conditions (like PushDownCondition()), but with the intent
of pushing join conditions down to sargable conditions on tables.
Equijoin conditions can often be pushed down into indexes; e.g. t1.x = t2.x
could be pushed down into an index on t1.x. When we have pushed such a
condition all the way down onto the t1/t2 join, we are ostensibly done
with regular push (in PushDownCondition()), but here, we would push down the
condition onto both sides if possible. (E.g.: If the join was a left join, we
could push it down to t2, but not to t1.) When we hit a table in such a push,
we store the conditions in “join_conditions_pushable_to_this“ for the table
to signal that it should be investigated when we consider the table during
join optimization.
*/
void PushDownToSargableCondition(Item *cond, RelationalExpression *expr,
bool is_join_condition_for_expr) {
if (expr->type == RelationalExpression::TABLE) {
// We don't try to make sargable join predicates out of subqueries;
// it is quite marginal, and our machinery for dealing with materializing
// subqueries is not ready for it.
if (cond->has_subquery()) {
return;
}
if (!IsSubset(cond->used_tables() & ~PSEUDO_TABLE_BITS,
expr->tables_in_subtree)) {
expr->join_conditions_pushable_to_this.push_back(cond);
}
return;
}
assert(
!Overlaps(expr->left->tables_in_subtree, expr->right->tables_in_subtree));
const table_map used_tables =
cond->used_tables() & (expr->tables_in_subtree | RAND_TABLE_BIT);
// See PushDownCondition() for explanation of can_push_into_{left,right}.
const bool can_push_into_left =
(IsInnerJoin(expr->type) ||
expr->type == RelationalExpression::SEMIJOIN ||
!is_join_condition_for_expr);
const bool can_push_into_right =
(IsInnerJoin(expr->type) ||
expr->type == RelationalExpression::SEMIJOIN ||
is_join_condition_for_expr);
if (can_push_into_left &&
!IsSubset(used_tables, expr->right->tables_in_subtree)) {
PushDownToSargableCondition(cond, expr->left,
/*is_join_condition_for_expr=*/false);
}
if (can_push_into_right &&
!IsSubset(used_tables, expr->left->tables_in_subtree)) {
PushDownToSargableCondition(cond, expr->right,
/*is_join_condition_for_expr=*/false);
}
}
/**
Push down as many of the conditions in “conditions” as we can, into the join
tree under “expr”. The parts that could not be pushed are returned.
The conditions are nominally taken to be from higher up the tree than “expr”
(e.g., WHERE conditions, or join conditions from a higher join), unless
is_join_condition_for_expr is true, in which case they are taken to be
posted as join conditions posted on “expr” itself. This causes them to be
returned as remaining if “expr” is indeed their final lowest place
in the tree (otherwise, they might get lost).
*/
Mem_root_array<Item *> PushDownAsMuchAsPossible(
THD *thd, Mem_root_array<Item *> conditions, RelationalExpression *expr,
bool is_join_condition_for_expr,
const int table_num_to_companion_set[MAX_TABLES],
Mem_root_array<Item *> *table_filters,
Mem_root_array<Item *> *cycle_inducing_edges, string *trace) {
Mem_root_array<Item *> remaining_parts(thd->mem_root);
for (Item *item : conditions) {
if (!AreMultipleBitsSet(item->used_tables() & ~PSEUDO_TABLE_BITS) &&
!is_join_condition_for_expr) {
// Simple filters will stay in WHERE; we go through them with
// AddPredicate() (in MakeJoinHypergraph()) and convert them into
// table filters, then handle them separately in FoundSingleNode()
// and FoundSubgraphPair().
//
// Note that filters that were part of a join condition
// (e.g. an outer join) won't go through that path, so they will
// be sent through PushDownCondition() below, and possibly end up
// in table_filters.
remaining_parts.push_back(item);
} else if (is_join_condition_for_expr && !IsMultipleEquals(item) &&
!IsSubset(item->used_tables() & ~PSEUDO_TABLE_BITS,
expr->tables_in_subtree)) {
// Condition refers to tables outside this subtree, so it can not be
// pushed (this can only happen with semijoins).
remaining_parts.push_back(item);
} else {
PushDownCondition(item, expr, is_join_condition_for_expr,
table_num_to_companion_set, table_filters,
cycle_inducing_edges, &remaining_parts, trace);
}
}
return remaining_parts;
}
/**
For each condition posted as a join condition on “expr”, try to push
all of them further down the tree, as far as we can; then recurse to
the child nodes, if any.
This is needed because the initial optimization steps (before the join
optimizer) try to hoist join conditions as far _up_ the tree as possible,
normally all the way up to the WHERE, but could be stopped by outer joins and
antijoins. E.g. assume what the user wrote was
a LEFT JOIN (B JOIN C on b.x=c.x)
This would be pulled up to
a LEFT JOIN (B JOIN C) ON b.x=c.x
ie., a pushable join condition posted on the LEFT JOIN, that could not go into
the WHERE. When this function is called on the said join, it will push the
join condition down again.
*/
void PushDownJoinConditions(THD *thd, RelationalExpression *expr,
const int table_num_to_companion_set[MAX_TABLES],
Mem_root_array<Item *> *table_filters,
Mem_root_array<Item *> *cycle_inducing_edges,
string *trace) {
if (expr->type == RelationalExpression::TABLE) {
return;
}
assert(expr->equijoin_conditions
.empty()); // MakeHashJoinConditions() has not run yet.
if (!expr->join_conditions.empty()) {
expr->join_conditions = PushDownAsMuchAsPossible(
thd, std::move(expr->join_conditions), expr,
/*is_join_condition_for_expr=*/true, table_num_to_companion_set,
table_filters, cycle_inducing_edges, trace);
}
if (expr->type == RelationalExpression::MULTI_INNER_JOIN) {
for (RelationalExpression *child : expr->multi_children) {
PushDownJoinConditions(thd, child, table_num_to_companion_set,
table_filters, cycle_inducing_edges, trace);
}
} else {
PushDownJoinConditions(thd, expr->left, table_num_to_companion_set,
table_filters, cycle_inducing_edges, trace);
PushDownJoinConditions(thd, expr->right, table_num_to_companion_set,
table_filters, cycle_inducing_edges, trace);
}
}
/**
Similar to PushDownJoinConditions(), but for push of sargable conditions
(see PushDownJoinConditionsForSargable()). The reason this is a separate
function, is that we want to run sargable push after all join conditions
have been finalized; in particular, that multiple equalities have been
concretized into single equalities. (We don't recognize multi-equalities
as sargable predicates in their multi-form, since they could be matching
multiple targets and generally are more complicated. It is much simpler
to wait until they are concretized.)
*/
void PushDownJoinConditionsForSargable(THD *thd, RelationalExpression *expr) {
if (expr->type == RelationalExpression::TABLE) {
return;
}
assert(expr->equijoin_conditions
.empty()); // MakeHashJoinConditions() has not run yet.
for (Item *item : expr->join_conditions) {
// These are the same conditions as PushDownAsMuchAsPossible();
// not filters (which shouldn't be here anyway), and not tables
// outside the subtree.
if (AreMultipleBitsSet(item->used_tables() & ~PSEUDO_TABLE_BITS) &&
IsSubset(item->used_tables() & ~PSEUDO_TABLE_BITS,
expr->tables_in_subtree)) {
PushDownToSargableCondition(item, expr,
/*is_join_condition_for_expr=*/true);
}
}
PushDownJoinConditionsForSargable(thd, expr->left);
PushDownJoinConditionsForSargable(thd, expr->right);
}
/**
Do a final pass of unexpanded (and non-degenerate) multiple equalities on join
conditions, deciding on what equalities to concretize them into right before
pushing join conditions to sargable predicates. The reason for doing it after
all other pushing is that we want to make sure not to expand the hyperedges
any more than necessary, and we don't know what “necessary” is before
everything else is pushed.
This is only relevant for antijoins and semijoins; inner joins (and partially
left joins) get concretized as we push, since they can resolve such conflicts
by associative rewrites and/or creating cycles in the graph. Normally,
we probably wouldn't worry about such a narrow case, but there are specific
benchmark queries that happen to exhibit this problem.
There may still be remaining ones afterwards, such as those that are
degenerate or within more complex expressions; CanonicalizeJoinConditions()
will deal with them.
*/
void LateConcretizeMultipleEqualities(THD *thd, RelationalExpression *expr) {
if (expr->type == RelationalExpression::TABLE) {
return;
}
assert(expr->equijoin_conditions
.empty()); // MakeHashJoinConditions() has not run yet.
for (Item *&item : expr->join_conditions) {
if (IsMultipleEquals(item) &&
Overlaps(item->used_tables(), expr->left->tables_in_subtree) &&
Overlaps(item->used_tables(), expr->right->tables_in_subtree)) {
item = ConcretizeMultipleEquals(down_cast<Item_equal *>(item), *expr);
}
}
LateConcretizeMultipleEqualities(thd, expr->left);
LateConcretizeMultipleEqualities(thd, expr->right);
}
// Find tables that are guaranteed to either return zero or only NULL rows.
table_map FindNullGuaranteedTables(const RelationalExpression *expr) {
if (expr->type == RelationalExpression::TABLE) {
return 0;
}
if (expr->join_conditions_reject_all_rows) {
switch (expr->type) {
case RelationalExpression::INNER_JOIN:
case RelationalExpression::STRAIGHT_INNER_JOIN:
case RelationalExpression::FULL_OUTER_JOIN:
case RelationalExpression::SEMIJOIN:
return expr->tables_in_subtree;
case RelationalExpression::LEFT_JOIN:
return expr->right->tables_in_subtree;
case RelationalExpression::ANTIJOIN:
return FindNullGuaranteedTables(expr->left);
case RelationalExpression::TABLE:
case RelationalExpression::MULTI_INNER_JOIN:
assert(false);
}
}
return FindNullGuaranteedTables(expr->left) |
FindNullGuaranteedTables(expr->right);
}
// For joins where we earlier found that the join conditions would reject
// all rows, clear the equijoins (which we know is safe from side effects).
// Also propagate this property up the tree wherever we have other equijoins
// referring to the now-pruned tables.
void ClearImpossibleJoinConditions(RelationalExpression *expr) {
if (expr->type == RelationalExpression::TABLE) {
return;
}
// Go through the equijoin conditions and check that all of them still
// refer to tables that exist. If some table was pruned away, but the
// equijoin condition still refers to it, it could become degenerate:
// The only rows it could ever see would be NULL-complemented rows,
// which would never match. In this case, we can remove the entire build path
// and propagate the zero-row property to our own join. This matches what we
// do in CreateHashJoinAccessPath() in the old executor; see the code there
// for some more comments.
if (!expr->join_conditions_reject_all_rows) {
const table_map pruned_tables = FindNullGuaranteedTables(expr);
for (Item *item : expr->equijoin_conditions) {
if (Overlaps(item->used_tables(), pruned_tables)) {
expr->join_conditions_reject_all_rows = true;
break;
}
}
}
if (expr->join_conditions_reject_all_rows) {
expr->equijoin_conditions.clear();
}
ClearImpossibleJoinConditions(expr->left);
ClearImpossibleJoinConditions(expr->right);
}
/**
Find out whether we should create mesh edges (all-to-all) for this multiple
equality. Currently, we only support full mesh, ie., those where all tables
involved in the multi-equality are part of the same companion set. One could
imagine a multi-equality where not all tables are possible to mesh, e.g.
{t1,t2,t3,t4} where {t1,t2,t3} are on the left side of an outer join and t4 is
on the right side (and thus not part of the same companion set); if so, we
could have created a mesh of the three first ones, but we don't currently.
*/
bool ShouldCompleteMeshForCondition(
Item_equal *item_equal, const int table_num_to_companion_set[MAX_TABLES]) {
if (CompanionSetUsedByCondition(item_equal->used_tables(),
table_num_to_companion_set) == -1) {
return false;
}
if (item_equal->const_arg() != nullptr) {
return false;
}
return true;
}
// Extract multiple equalities that we should create mesh edges for.
// See ShouldCompleteMeshForCondition().
void ExtractCycleMultipleEqualities(
const Mem_root_array<Item *> &conditions,
const int table_num_to_companion_set[MAX_TABLES],
Mem_root_array<Item_equal *> *multiple_equalities) {
for (Item *item : conditions) {
assert(!IsMultipleEquals(item)); // Should have been canonicalized earlier.
if (is_function_of_type(item, Item_func::EQ_FUNC)) {
Item_func_eq *eq_item = down_cast<Item_func_eq *>(item);
if (eq_item->source_multiple_equality != nullptr &&
ShouldCompleteMeshForCondition(eq_item->source_multiple_equality,
table_num_to_companion_set)) {
multiple_equalities->push_back(eq_item->source_multiple_equality);
}
}
}
}
// Extract multiple equalities that we should create mesh edges for.
// See ShouldCompleteMeshForCondition().
void ExtractCycleMultipleEqualitiesFromJoinConditions(
const RelationalExpression *expr,
const int table_num_to_companion_set[MAX_TABLES],
Mem_root_array<Item_equal *> *multiple_equalities) {
if (expr->type == RelationalExpression::TABLE) {
return;
}
for (Item_eq_base *eq_item : expr->equijoin_conditions) {
if (eq_item->source_multiple_equality != nullptr &&
ShouldCompleteMeshForCondition(eq_item->source_multiple_equality,
table_num_to_companion_set)) {
multiple_equalities->push_back(eq_item->source_multiple_equality);
}
}
ExtractCycleMultipleEqualitiesFromJoinConditions(
expr->left, table_num_to_companion_set, multiple_equalities);
ExtractCycleMultipleEqualitiesFromJoinConditions(
expr->right, table_num_to_companion_set, multiple_equalities);
}
/**
Similar to work done in JOIN::finalize_table_conditions() in the old
optimizer. Non-join predicates are done near the start in
MakeJoinHypergraph().
*/
bool CanonicalizeJoinConditions(THD *thd, RelationalExpression *expr) {
if (expr->type == RelationalExpression::TABLE) {
return false;
}
assert(expr->equijoin_conditions
.empty()); // MakeHashJoinConditions() has not run yet.
if (CanonicalizeConditions(
thd, GetVisibleTables(expr->left) | GetVisibleTables(expr->right),
expr->tables_in_subtree, &expr->join_conditions)) {
return true;
}
// Find out if any of the conditions are plain “false”.
// Note that we don't actually try to remove any of the other conditions
// if so (although they may have been optimized away earlier);
// Cartesian products make for very restrictive join edges, so it's actually
// more flexible to leave them be, until after the hypergraph construction
// (in ClearImpossibleJoinConditions(), where we also propagate this
// property up the tree).
for (Item *cond : expr->join_conditions) {
if (cond->has_subquery() || cond->is_expensive()) {
continue;
}
if (cond->const_for_execution() && cond->val_int() == 0) {
expr->join_conditions_reject_all_rows = true;
break;
}
}
if (thd->is_error()) {
// val_int() above failed.
return true;
}
return CanonicalizeJoinConditions(thd, expr->left) ||
CanonicalizeJoinConditions(thd, expr->right);
}
/**
For all join conditions on “expr”, go through and figure out which ones are
equijoin conditions, ie., suitable for hash join. An equijoin condition for us
is one that is an equality comparison (=) and pulls in relations from both
sides of the tree (so is not degenerate, and pushed as far down as possible).
We also demand that it does not use row comparison, as our hash join
implementation currently does not support that. Any condition that is found to
be an equijoin condition is moved from expr->join_conditions to
expr->equijoin_conditions.
The function recurses down the join tree.
*/
void MakeHashJoinConditions(THD *thd, RelationalExpression *expr) {
if (expr->type == RelationalExpression::TABLE) {
return;
}
if (!expr->join_conditions.empty()) {
assert(expr->equijoin_conditions.empty());
Mem_root_array<Item *> extra_conditions(thd->mem_root);
for (Item *item : expr->join_conditions) {
// See if this is a (non-degenerate) equijoin condition.
if (item->type() == Item::FUNC_ITEM) {
Item_func *func_item = down_cast<Item_func *>(item);
if (func_item->contains_only_equi_join_condition()) {
Item_eq_base *join_condition = down_cast<Item_eq_base *>(func_item);
if (IsHashEquijoinCondition(join_condition,
expr->left->tables_in_subtree,
expr->right->tables_in_subtree)) {
expr->equijoin_conditions.push_back(join_condition);
continue;
}
}
}
// It was not.
extra_conditions.push_back(item);
}
expr->join_conditions = std::move(extra_conditions);
}
MakeHashJoinConditions(thd, expr->left);
MakeHashJoinConditions(thd, expr->right);
}
void FindConditionsUsedTables(THD *thd, RelationalExpression *expr) {
if (expr->type == RelationalExpression::TABLE) {
return;
}
expr->conditions_used_tables = UsedTablesForCondition(*expr);
FindConditionsUsedTables(thd, expr->left);
FindConditionsUsedTables(thd, expr->right);
}
/**
Run simple CSE on all conditions (see CommonSubexpressionElimination()).
*/
void CSEConditions(THD *thd, Mem_root_array<Item *> *conditions) {
bool need_resplit = false;
for (Item *&item : *conditions) {
Item *new_item = CommonSubexpressionElimination(item);
if (new_item != item) {
need_resplit = true;
item = new_item;
}
}
if (need_resplit) {
*conditions = ResplitConditions(thd, *conditions);
}
}
/**
Do some equality and constant propagation, conversion/folding work needed
for correctness and performance.
*/
bool EarlyNormalizeConditions(THD *thd, RelationalExpression *join,
Mem_root_array<Item *> *conditions,
bool *always_false) {
CSEConditions(thd, conditions);
bool need_resplit = false;
for (auto it = conditions->begin(); it != conditions->end();) {
/**
For simple filters, propagate constants if there are any
established through multiple equalities. Note that most of the
propagation is already done in optimize_cond(). This is to handle
only the corner cases where equality propagation in optimize_cond()
would have been rejected (which is done in old optimizer at a later
point).
For join conditions which are not part of multiple equalities, try
to substitute fields with the fields from available tables in the
join. It's possible only if there are multiple equalities for the
fields in the join condition.
E.g.
1. t1.a = t2.a and t1.a <> t2.a would be multi-equal(t1.a, t2.a)
and t1.a <> t2.a post optimize_cond(). We could transform this
condition into multi-equal(t1.a, t2.a) and t1.a <> t1.a.
2. t1.a = t2.a + t3.a could be converted to t1.a = t2.a + t2.a
if there is multiple equality (t2.a, t3.a). This makes it an
equi-join condition rather than an extra predicate for the join.
*/
const bool is_filter =
!AreMultipleBitsSet((*it)->used_tables() & ~PSEUDO_TABLE_BITS);
if (is_filter || !is_function_of_type(*it, Item_func::MULT_EQUAL_FUNC)) {
table_map tables_in_subtree = TablesBetween(0, MAX_TABLES);
// If this is a degenerate join condition i.e. all fields in the
// join condition come from the same side of the join, we need to
// find replacements if any from the same side so that the condition
// continues to be pushable to that side.
if (join != nullptr) {
tables_in_subtree =
IsSubset((*it)->used_tables(), join->left->tables_in_subtree)
? join->left->tables_in_subtree
: (IsSubset((*it)->used_tables(),
join->right->tables_in_subtree)
? join->right->tables_in_subtree
: join->tables_in_subtree);
}
*it = CompileItem(
*it, [](Item *) { return true; },
[tables_in_subtree, is_filter](Item *item) -> Item * {
if (item->type() == Item::FIELD_ITEM) {
Item_equal *item_equal =
down_cast<Item_field *>(item)->item_equal;
if (item_equal) {
Item *const_item = item_equal->const_arg();
if (is_filter && const_item != nullptr &&
item->has_compatible_context(const_item)) {
return const_item;
} else if (!is_filter && const_item == nullptr) {
for (Item_field &field : item_equal->get_fields()) {
if (IsSubset(field.used_tables(), tables_in_subtree))
return &field;
}
}
}
}
return item;
});
}
const Item *const old_item = *it;
Item::cond_result res;
if (remove_eq_conds(thd, *it, &*it, &res)) {
return true;
}
if (res == Item::COND_TRUE) {
// Remove always true conditions from the conjunction.
it = conditions->erase(it);
} else if (res == Item::COND_FALSE) {
// One always false condition makes the entire conjunction always false.
conditions->clear();
conditions->push_back(new Item_func_false);
*always_false = true;
return false;
} else {
assert(*it != nullptr);
// If the condition was replaced by a conjunction, we need to split it and
// add its children to conditions, so that its individual elements can be
// considered for condition pushdown later.
if (*it != old_item && IsAnd(*it)) {
need_resplit = true;
}
(*it)->update_used_tables();
++it;
}
}
if (need_resplit) {
*conditions = ResplitConditions(thd, *conditions);
}
return false;
}
string PrintJoinList(const mem_root_deque<Table_ref *> &join_list, int level) {
string str;
const char *join_types[] = {"inner", "left", "right"};
std::vector<Table_ref *> list(join_list.begin(), join_list.end());
for (Table_ref *tbl : list) {
for (int i = 0; i < level * 2; ++i) str += ' ';
if (tbl->join_cond_optim() != nullptr) {
str += StringPrintf("* %s %s join_type=%s\n", tbl->alias,
ItemToString(tbl->join_cond_optim()).c_str(),
join_types[tbl->outer_join]);
} else {
str += StringPrintf("* %s join_type=%s\n", tbl->alias,
join_types[tbl->outer_join]);
}
if (tbl->nested_join != nullptr) {
str += PrintJoinList(tbl->nested_join->m_tables, level + 1);
}
}
return str;
}
/**
For a condition with the SES (Syntactic Eligibility Set) “used_tables”,
find all relations in or under “expr” that are part of the condition's TES
(Total Eligibility Set). The SES contains all relations that are directly
referenced by the predicate; the TES contains all relations that are needed
to be available before the predicate can be evaluated.
The TES always contains at least SES, but may be bigger. For instance,
given the join tree (a LEFT JOIN b), a condition such as b.x IS NULL
would have a SES of {b}, but a TES of {a,b}, since joining in a could
synthesize NULLs from b. However, given (a JOIN b) (ie., an inner join
instead of an outer join), the TES would be {b}, identical to the SES.
NOTE: The terms SES and TES are often used about join conditions;
the use here is for general conditions beyond just those.
NOTE: This returns a table_map, which is later converted to a NodeMap.
*/
table_map FindTESForCondition(table_map used_tables,
const RelationalExpression *expr) {
if (expr->type == RelationalExpression::TABLE) {
// We're at the bottom of an inner join stack; nothing to see here.
// (We could just as well return 0, but this at least makes sure the
// SES is included in the TES.)
return used_tables;
} else if (expr->type == RelationalExpression::LEFT_JOIN ||
expr->type == RelationalExpression::ANTIJOIN) {
table_map tes = used_tables;
if (Overlaps(used_tables, expr->left->tables_in_subtree)) {
tes |= FindTESForCondition(used_tables, expr->left);
}
if (Overlaps(used_tables, expr->right->tables_in_subtree)) {
// The predicate needs a table from the right-hand side, but this join can
// cause that table to become NULL, so we need to delay until the join has
// happened. We do this by demanding that all tables on the left side have
// been joined in, and then at least the tables we need from the right
// side (from the SES).
//
// Note that pruning aggressively on the left-hand side is prone to
// failure due to associative rewriting of left joins; e.g., for left
// joins and suitable join conditions:
//
// (t1 <opA> t2) <opB> t3 <=> t1 <opA> (t2 <opB> t3)
//
// In particular, this means that if we have a WHERE predicate affecting
// t2 and t3 (tested against <opB>), TES still has to be {t1,t2,t3};
// if we limited it to {t2,t3}, we would push it below <opA> in the case
// of the rewrite, which is wrong. So the entire left side needs to be
// included, preventing us to push the condition down into the right side
// in any case.
tes |= expr->left->tables_in_subtree;
for (Item *condition : expr->equijoin_conditions) {
tes |= condition->used_tables();
}
for (Item *condition : expr->join_conditions) {
tes |= condition->used_tables();
}
}
return tes;
} else {
table_map tes = used_tables;
if (Overlaps(used_tables, expr->left->tables_in_subtree)) {
tes |= FindTESForCondition(used_tables, expr->left);
}
if (Overlaps(used_tables, expr->right->tables_in_subtree)) {
tes |= FindTESForCondition(used_tables, expr->right);
}
return tes;
}
}
} // namespace
/**
For the given hypergraph, make a textual representation in the form
of a dotty graph. You can save this to a file and then use Graphviz
to render this it a graphical representation of the hypergraph for
easier debugging, e.g. like this:
dot -Tps graph.dot > graph.ps
display graph.ps
See also Dbug_table_list_dumper.
*/
string PrintDottyHypergraph(const JoinHypergraph &graph) {
string digraph;
digraph =
StringPrintf("digraph G { # %zu edges\n", graph.graph.edges.size() / 2);
// Create new internal node names for all nodes, resolving conflicts between
// aliases as we go.
vector<string> aliases;
for (const JoinHypergraph::Node &node : graph.nodes) {
string alias = node.table->alias;
while (std::find(aliases.begin(), aliases.end(), alias) != aliases.end()) {
alias += '_';
}
if (alias != node.table->alias) {
digraph += StringPrintf(" %s [label=\"%s\"];\n", alias.c_str(),
node.table->alias);
}
aliases.push_back(std::move(alias));
}
for (size_t edge_idx = 0; edge_idx < graph.graph.edges.size();
edge_idx += 2) {
const Hyperedge &e = graph.graph.edges[edge_idx];
const RelationalExpression *expr = graph.edges[edge_idx / 2].expr;
string label = GenerateExpressionLabel(expr);
label += StringPrintf(" (%.3g)", graph.edges[edge_idx / 2].selectivity);
// Add conflict rules to the label.
for (const ConflictRule &rule : expr->conflict_rules) {
label += " [conflict rule: {";
bool first = true;
for (int node_idx : BitsSetIn(rule.needed_to_activate_rule)) {
if (!first) {
label += ",";
}
label += aliases[node_idx];
first = false;
}
label += "} -> {";
first = true;
for (int node_idx : BitsSetIn(rule.required_nodes)) {
if (!first) {
label += ",";
}
label += aliases[node_idx];
first = false;
}
label += "}]";
}
// Draw inner joins as undirected; it is less confusing.
// When we get full outer joins, maybe we should have double arrows here?
const char *arrowhead_str =
expr->type == RelationalExpression::INNER_JOIN ? ",arrowhead=none" : "";
// Output the edge.
if (IsSingleBitSet(e.left) && IsSingleBitSet(e.right)) {
// Simple edge.
int left_node = FindLowestBitSet(e.left);
int right_node = FindLowestBitSet(e.right);
digraph += StringPrintf(
" %s -> %s [label=\"%s\"%s]\n", aliases[left_node].c_str(),
aliases[right_node].c_str(), label.c_str(), arrowhead_str);
} else {
// Hyperedge; draw it as a tiny “virtual node”.
digraph += StringPrintf(
" e%zu [shape=circle,width=.001,height=.001,label=\"\"]\n",
edge_idx);
// Print the label only once.
string left_label, right_label;
if (IsSingleBitSet(e.right) && !IsSingleBitSet(e.left)) {
right_label = label;
} else {
left_label = label;
}
// Left side of the edge.
for (int left_node : BitsSetIn(e.left)) {
digraph += StringPrintf(" %s -> e%zu [arrowhead=none,label=\"%s\"]\n",
aliases[left_node].c_str(), edge_idx,
left_label.c_str());
left_label = "";
}
// Right side of the edge.
for (int right_node : BitsSetIn(e.right)) {
digraph += StringPrintf(" e%zu -> %s [label=\"%s\"%s]\n", edge_idx,
aliases[right_node].c_str(),
right_label.c_str(), arrowhead_str);
right_label = "";
}
}
}
digraph += "}\n";
return digraph;
}
size_t EstimateHashJoinKeyWidth(const RelationalExpression *expr) {
size_t ret = 0;
for (Item_eq_base *join_condition : expr->equijoin_conditions) {
// We heuristically limit our estimate of blobs to 4 kB.
// Otherwise, the mere presence of a LONGBLOB field would mean
// we'd estimate essentially infinite row width for a join.
//
// TODO(sgunders): Do as we do in the old optimizer,
// where we only store hashes for strings.
const Item *left = join_condition->get_arg(0);
const Item *right = join_condition->get_arg(1);
ret += min<size_t>(
max<size_t>(left->max_char_length(), right->max_char_length()),
kMaxItemLengthEstimate);
}
return ret;
}
namespace {
table_map IntersectIfNotDegenerate(table_map used_tables,
table_map available_tables) {
if (!Overlaps(used_tables, available_tables)) {
// Degenerate case.
return available_tables;
} else {
return used_tables & available_tables;
}
}
/**
When we have the conflict rules, we want to fold them into the hyperedge
we are about to create. This works by growing the TES (Total Eligibility
Set), the set of tables that needs to be present before we can do the
join; the TES will eventually be split into two and made into a hyperedge.
The TES must obviously include the SES (Syntactic Eligibility Set),
every table mentioned in the join condition. And if anything on the left
side of a conflict rule overlaps with the TES, that conflict rule would
always be active, and we can safely include the right side into the TES.
Similarly, if the TES is a superset of what's on the right side of a conflict
rule, that rule will never prevent anything (since we never see a subgraph
unless we have everything touched by its hyperedge, ie., the TES), so it
can be removed. We iterate over all the conflict rules until they are all
gone or the TES has stopped growing; then we create our hyperedge by
splitting the TES.
*/
NodeMap AbsorbConflictRulesIntoTES(
NodeMap total_eligibility_set,
Mem_root_array<ConflictRule> *conflict_rules) {
NodeMap prev_total_eligibility_set;
do {
prev_total_eligibility_set = total_eligibility_set;
for (const ConflictRule &rule : *conflict_rules) {
if (Overlaps(rule.needed_to_activate_rule, total_eligibility_set)) {
// This conflict rule will always be active, so we can add its right
// side to the TES unconditionally. (The rule is now obsolete and
// will be removed below.)
total_eligibility_set |= rule.required_nodes;
}
}
auto new_end = std::remove_if(
conflict_rules->begin(), conflict_rules->end(),
[total_eligibility_set](const ConflictRule &rule) {
// If the right side of the conflict rule is
// already part of the TES, it is obsolete
// and can be removed. It will be dealt with
// as a hyperedge.
return IsSubset(rule.required_nodes, total_eligibility_set);
});
conflict_rules->erase(new_end, conflict_rules->end());
} while (total_eligibility_set != prev_total_eligibility_set &&
!conflict_rules->empty());
return total_eligibility_set;
}
/**
For the join operator in “expr”, build a hyperedge that encapsulates its
reordering conditions as completely as possible. The conditions given by
the hyperedge are necessary and usually sufficient; for the cases where
they are not sufficient, we leave conflict rules on “expr” (see below).
This function is almost verbatim the CD-C algorithm from “On the correct and
complete enumeration of the core search space” by Moerkotte et al [Moe13].
It works by the concept of conflict rules (CRs); if a CR A → B, for relation
sets A and B, is attached on a given join, then if _any_ table from A is
present in the join, then _all_ tables from B are required. As a trivial
example, one can imagine t1 \<opA\> (t2 \<opB\> t3); if \<opA\> has a CR
{t2} → {t3}, then the rewrite (t1 \<opA\> t2) \<opB\> t3 would not be allowed,
since t2 is present but t3 is not. However, in the absence of other CRs,
and given appropriate connectivity in the graph, the rewrite
(t1 \<opA\> t3) \<opB\> t2 _would_ be allowed.
Conflict rules are both expressive enough to precisely limit invalid rewrites,
and in the majority of cases, can be folded into hyperedges, relegating
the task of producing only valid plans to the subgraph enumeration (DPhyp),
which is highly efficient at it. In the few cases that remain, they will need
to be checked manually in CostingReceiver, but this is fast (only a few bitmap
operations per remaining CR).
The gist of the algorithm is to compare every operator with every operator
below it in the join tree, looking for illegal rewrites between them, and
adding precise CRs to stop only those rewrites. For instance, assume a query
like
t1 LEFT JOIN (t2 JOIN t3 USING (y)) ON t1.x=t2.x
Looking at the root predicate (the LEFT JOIN), the question is what CRs
and hyperedge to produce. The join predicate only mentions t1 and t2,
so it only gives rise to the simple edge {t1}→{t2}. So without any conflict
rules, nothing would stop us from joining t1/t2 without including t3,
and we would allow a generated plan essentially equal to
(t1 LEFT JOIN t2 ON t1.x=t2.x) JOIN t3 USING (y)
which is illegal; we have attempted to use associativity illegally.
So when we compare the LEFT JOIN (in the original query tree) with the JOIN,
we look up those two operator types using OperatorsAreAssociative()
(which essentially does a lookup into a small table), see that the combination
LEFT JOIN and JOIN is not associative, and thus create a conflict rule that
prevents this:
{t2} → {t3}
t2 here is everything on the left side of the inner join, and t3 is every
table on the right side of the inner join that is mentioned in the join
condition (which happens to also be everything on the right side).
This rule, posted on the LEFT JOIN, prevents it from including t2 until
it has been combined with t3, which is exactly what we want. There are some
tweaks for degenerate conditions, but that's really all for associativity
conflict rules.
The other source of conflict rules comes from a parallel property
called l-asscom and r-asscom; see OperatorsAreLeftAsscom() and
OperatorsAreRightAsscom(). They work in exactly the same way; look at
every pair between and operator and its children, look it up in a table,
and add a conflict rule that prevents the rewrite if it is illegal.
When we have the CRs, we want to fold them into the hyperedge
we are about to create. See AbsorbConflictRulesIntoTES() for details.
Note that in the presence of degenerate predicates or Cartesian products,
we may make overly broad hyperedges, ie., we will disallow otherwise
valid plans (but never allow invalid plans). This is the only case where
the algorithm misses a valid join ordering, and also the only place where
we diverge somewhat from the paper, which doesn't discuss hyperedges in
the presence of such cases.
*/
Hyperedge FindHyperedgeAndJoinConflicts(THD *thd, NodeMap used_nodes,
RelationalExpression *expr,
const JoinHypergraph *graph) {
assert(expr->type != RelationalExpression::TABLE);
Mem_root_array<ConflictRule> conflict_rules(thd->mem_root);
ForEachJoinOperator(
expr->left, [expr, graph, &conflict_rules](RelationalExpression *child) {
if (!OperatorsAreAssociative(*child, *expr)) {
// Prevent associative rewriting; we cannot apply this operator
// (rule kicks in as soon as _any_ table from the right side
// is seen) until we have all nodes mentioned on the left side of
// the join condition.
const table_map left = IntersectIfNotDegenerate(
child->conditions_used_tables, child->left->tables_in_subtree);
conflict_rules.emplace_back(ConflictRule{
child->right->nodes_in_subtree,
GetNodeMapFromTableMap(left & ~PSEUDO_TABLE_BITS,
graph->table_num_to_node_num)});
}
if (!OperatorsAreLeftAsscom(*child, *expr)) {
// Prevent l-asscom rewriting; we cannot apply this operator
// (rule kicks in as soon as _any_ table from the left side
// is seen) until we have all nodes mentioned on the right side of
// the join condition.
const table_map right = IntersectIfNotDegenerate(
child->conditions_used_tables, child->right->tables_in_subtree);
conflict_rules.emplace_back(ConflictRule{
child->left->nodes_in_subtree,
GetNodeMapFromTableMap(right & ~PSEUDO_TABLE_BITS,
graph->table_num_to_node_num)});
}
});
// Exactly the same as the previous, just mirrored left/right.
ForEachJoinOperator(
expr->right, [expr, graph, &conflict_rules](RelationalExpression *child) {
if (!OperatorsAreAssociative(*expr, *child)) {
const table_map right = IntersectIfNotDegenerate(
child->conditions_used_tables, child->right->tables_in_subtree);
conflict_rules.emplace_back(ConflictRule{
child->left->nodes_in_subtree,
GetNodeMapFromTableMap(right & ~PSEUDO_TABLE_BITS,
graph->table_num_to_node_num)});
}
if (!OperatorsAreRightAsscom(*expr, *child)) {
const table_map left = IntersectIfNotDegenerate(
child->conditions_used_tables, child->left->tables_in_subtree);
conflict_rules.emplace_back(ConflictRule{
child->right->nodes_in_subtree,
GetNodeMapFromTableMap(left & ~PSEUDO_TABLE_BITS,
graph->table_num_to_node_num)});
}
});
// Now go through all of the conflict rules and use them to grow the
// hypernode, making it more restrictive if possible/needed.
NodeMap total_eligibility_set =
AbsorbConflictRulesIntoTES(used_nodes, &conflict_rules);
// Check for degenerate predicates and Cartesian products;
// we cannot have hyperedges with empty end points. If we have to
// go down this path, re-check if there are any conflict rules
// that we can now get rid of.
if (!Overlaps(total_eligibility_set, expr->left->nodes_in_subtree)) {
total_eligibility_set |= expr->left->nodes_in_subtree;
total_eligibility_set =
AbsorbConflictRulesIntoTES(total_eligibility_set, &conflict_rules);
}
if (!Overlaps(total_eligibility_set, expr->right->nodes_in_subtree)) {
total_eligibility_set |= expr->right->nodes_in_subtree;
total_eligibility_set =
AbsorbConflictRulesIntoTES(total_eligibility_set, &conflict_rules);
}
expr->conflict_rules = std::move(conflict_rules);
const NodeMap left = total_eligibility_set & expr->left->nodes_in_subtree;
const NodeMap right = total_eligibility_set & expr->right->nodes_in_subtree;
return {left, right};
}
size_t EstimateRowWidthForJoin(const JoinHypergraph &graph,
const RelationalExpression *expr) {
// Estimate size of the join keys.
size_t ret = EstimateHashJoinKeyWidth(expr);
// Estimate size of the values.
for (int node_idx : BitsSetIn(expr->nodes_in_subtree)) {
const TABLE *table = graph.nodes[node_idx].table;
for (uint i = 0; i < table->s->fields; ++i) {
if (bitmap_is_set(table->read_set, i)) {
Field *field = table->field[i];
// See above.
ret += min<size_t>(field->max_data_length(), kMaxItemLengthEstimate);
}
}
}
// Heuristically add 20 bytes for LinkedImmutableString and hash table
// overhead. (The actual overhead will vary with hash table fill factor
// and the number of keys that have multiple rows.)
ret += 20;
return ret;
}
/**
Sorts the given range of predicates so that the most selective and least
expensive predicates come first, and the less selective and more expensive
ones come last.
*/
void SortPredicates(Predicate *begin, Predicate *end) {
if (std::distance(begin, end) <= 1) return; // Nothing to sort.
// Move the most selective predicates first.
std::stable_sort(begin, end, [](const Predicate &p1, const Predicate &p2) {
return p1.selectivity < p2.selectivity;
});
// If the predicates contain subqueries, move them towards the end, regardless
// of their selectivity, since they could be expensive to evaluate. We could
// refine this by looking at the estimated cost of the contained subqueries.
std::stable_partition(begin, end, [](const Predicate &pred) {
return !pred.condition->has_subquery();
});
// UDFs and stored procedures have unknown and potentially very high cost.
// Move them last.
std::stable_partition(begin, end, [](const Predicate &pred) {
return !pred.condition->is_expensive();
});
}
/**
Add the given predicate to the list of WHERE predicates, doing some
bookkeeping that such predicates need.
*/
int AddPredicate(THD *thd, Item *condition, bool was_join_condition,
int source_multiple_equality_idx,
const RelationalExpression *root, JoinHypergraph *graph,
string *trace) {
if (source_multiple_equality_idx != -1) {
assert(was_join_condition);
}
Predicate pred;
pred.condition = condition;
table_map used_tables =
condition->used_tables() & ~(INNER_TABLE_BIT | OUTER_REF_TABLE_BIT);
pred.used_nodes =
GetNodeMapFromTableMap(used_tables, graph->table_num_to_node_num);
table_map total_eligibility_set;
if (was_join_condition) {
total_eligibility_set = used_tables;
} else {
total_eligibility_set = FindTESForCondition(used_tables, root) &
~(INNER_TABLE_BIT | OUTER_REF_TABLE_BIT);
}
pred.total_eligibility_set = GetNodeMapFromTableMap(
total_eligibility_set, graph->table_num_to_node_num);
pred.selectivity = EstimateSelectivity(thd, condition, trace);
pred.was_join_condition = was_join_condition;
pred.source_multiple_equality_idx = source_multiple_equality_idx;
pred.functional_dependencies_idx.init(thd->mem_root);
// Cache information about which subqueries are contained in this
// predicate, if any.
pred.contained_subqueries.init(thd->mem_root);
FindContainedSubqueries(condition, graph->query_block(),
[&pred](const ContainedSubquery &subquery) {
pred.contained_subqueries.push_back(subquery);
});
graph->predicates.push_back(std::move(pred));
if (trace != nullptr) {
*trace += StringPrintf("Total eligibility set for %s: {",
ItemToString(condition).c_str());
bool first = true;
for (Table_ref *tl = graph->query_block()->leaf_tables; tl != nullptr;
tl = tl->next_leaf) {
if (tl->map() & total_eligibility_set) {
if (!first) *trace += ',';
*trace += tl->alias;
first = false;
}
}
*trace += "}\n";
}
return graph->predicates.size() - 1;
}
/**
Return whether we can find a path from “source” to “destination”, without
using forbidden_edge_idx.
*/
bool AreNodesConnected(const Hypergraph &graph, int source, int destination,
int forbidden_edge_idx, NodeMap *seen_nodes) {
if (source == destination) {
return true;
}
if (Overlaps(*seen_nodes, TableBitmap(source))) {
// We've been here before and not found anything, so drop out.
// This also keeps us from getting stuck in other cycles.
return false;
}
*seen_nodes |= TableBitmap(source);
for (int edge_idx : graph.nodes[source].simple_edges) {
if (edge_idx != forbidden_edge_idx) {
if (AreNodesConnected(graph,
*BitsSetIn(graph.edges[edge_idx].right).begin(),
destination, forbidden_edge_idx, seen_nodes)) {
return true;
}
}
}
for (int edge_idx : graph.nodes[source].complex_edges) {
if (edge_idx != forbidden_edge_idx) {
for (int middle : BitsSetIn(graph.edges[edge_idx].right)) {
if (AreNodesConnected(graph, middle, destination, forbidden_edge_idx,
seen_nodes)) {
return true;
}
}
}
}
return false;
}
/**
Returns whether the given edge is part of a graph cycle; if so, its join
condition might not actually get evaluated as part of the regular structure,
and we need to take special precautions (make backup WHERE conditions for
them).
Edges that are _not_ part of a cycle are called “bridges” in graph theory.
There are efficient algorithms for finding all bridges in a graph (see e.g.
Schmidt: “A Simple Test on 2-Vertex- and 2-Edge-Connectivity”), but our graph
is small, so we opt for simplicity by simply doing a depth-first search for
all edges. We only need to consider the part of the subgraph given by inner
joins (the companion set) -- but we cannot ignore hyperedges, since we
determine companion sets before we know all the join predicates.
*/
bool IsPartOfCycle(const JoinHypergraph *graph, int edge_idx) {
const RelationalExpression *expr = graph->edges[edge_idx / 2].expr;
if (expr->type != RelationalExpression::INNER_JOIN) {
// Outer joins are always a bridge; we also ignore straight joins
// (they are a sign the user doesn't want a different ordering anyway).
return false;
}
const Hyperedge &edge = graph->graph.edges[edge_idx];
// If we can find a path from one end of an edge to the other,
// ignoring this specific edge, then we have a cycle (pretty much
// by definition).
for (int left_idx : BitsSetIn(edge.left)) {
for (int right_idx : BitsSetIn(edge.right)) {
NodeMap seen_nodes = 0;
if (AreNodesConnected(graph->graph, left_idx, right_idx, edge_idx,
&seen_nodes)) {
return true;
}
}
}
return false;
}
/**
For each of the given join conditions, add a cycle-inducing edge to the
hypergraph.
*/
void AddCycleEdges(THD *thd, const Mem_root_array<Item *> &cycle_inducing_edges,
JoinHypergraph *graph, string *trace) {
for (Item *cond : cycle_inducing_edges) {
const NodeMap used_nodes = GetNodeMapFromTableMap(
cond->used_tables(), graph->table_num_to_node_num);
RelationalExpression *expr = nullptr;
JoinPredicate *pred = nullptr;
const NodeMap left = IsolateLowestBit(used_nodes); // Arbitrary.
const NodeMap right = used_nodes & ~left;
// See if we already have a suitable edge.
for (size_t edge_idx = 0; edge_idx < graph->edges.size(); ++edge_idx) {
Hyperedge edge = graph->graph.edges[edge_idx * 2];
if ((edge.left | edge.right) == used_nodes &&
graph->edges[edge_idx].expr->type ==
RelationalExpression::INNER_JOIN) {
pred = &graph->edges[edge_idx];
expr = pred->expr;
break;
}
}
if (expr == nullptr) {
graph->graph.AddEdge(left, right);
expr = new (thd->mem_root) RelationalExpression(thd);
expr->type = RelationalExpression::INNER_JOIN;
// TODO(sgunders): This does not really make much sense, but
// estimated_bytes_per_row doesn't make that much sense to begin with; it
// will depend on the join order. See if we can replace it with a
// per-table width calculation that we can sum up in the join optimizer.
expr->tables_in_subtree = cond->used_tables();
expr->nodes_in_subtree =
GetNodeMapFromTableMap(cond->used_tables() & ~PSEUDO_TABLE_BITS,
graph->table_num_to_node_num);
double selectivity = EstimateSelectivity(thd, cond, trace);
const size_t estimated_bytes_per_row =
EstimateRowWidthForJoin(*graph, expr);
graph->edges.push_back(JoinPredicate{
expr, selectivity, estimated_bytes_per_row,
/*functional_dependencies=*/0, /*functional_dependencies_idx=*/{}});
} else {
// Skip this item if it is a duplicate (this can
// happen with multiple equalities in particular).
bool dup = false;
for (Item *other_cond : expr->equijoin_conditions) {
if (other_cond->eq(cond, /*binary_cmp=*/true)) {
dup = true;
break;
}
}
if (dup) {
continue;
}
for (Item *other_cond : expr->join_conditions) {
if (other_cond->eq(cond, /*binary_cmp=*/true)) {
dup = true;
break;
}
}
if (dup) {
continue;
}
pred->selectivity *= EstimateSelectivity(thd, cond, trace);
}
if (cond->type() == Item::FUNC_ITEM &&
down_cast<Item_func *>(cond)->contains_only_equi_join_condition()) {
expr->equijoin_conditions.push_back(down_cast<Item_eq_base *>(cond));
} else {
expr->join_conditions.push_back(cond);
}
// Make this predicate potentially sargable (cycle edges are always
// simple equalities).
assert(IsSingleBitSet(left));
assert(IsSingleBitSet(right));
const int left_node_idx = *BitsSetIn(left).begin();
const int right_node_idx = *BitsSetIn(right).begin();
graph->nodes[left_node_idx].join_conditions_pushable_to_this.push_back(
cond);
graph->nodes[right_node_idx].join_conditions_pushable_to_this.push_back(
cond);
}
}
/**
Promote join predicates that became part of (newly-formed) cycles to
WHERE predicates.
The reason for this is that when we have cycles in the graph, we can no
longer guarantee that all join predicates will be seen; e.g. if we have a
cycle A - B - C - A, and choose to complete the join by using the A-B and
C-A edges, we would miss the B-C join predicate. Thus, we promote all join
edges involved in cycles to WHERE predicates; however, we mark them as coming
from a join condition, and we also note in the join edge what the indexes of
the added predicate are. Thus, for A-B and C-A in the given example, we would
ignore the corresponding WHERE predicates so they do not get double-applied.
We need to mark which predicates came from which multiple equalities,
so that they are not added when they are redundant; see the comment on top of
CostingReceiver::ApplyDelayedPredicatesAfterJoin().
Note that join predicates may actually get added as predicates a second
time, if they are found to be sargable. However, in that case they are not
counted as WHERE predicates (they are never automatically applied), so this
is a separate use.
*/
void PromoteCycleJoinPredicates(
THD *thd, const RelationalExpression *root,
const Mem_root_array<Item_equal *> &multiple_equalities,
JoinHypergraph *graph, string *trace) {
for (size_t edge_idx = 0; edge_idx < graph->graph.edges.size();
edge_idx += 2) {
if (!IsPartOfCycle(graph, edge_idx)) {
continue;
}
RelationalExpression *expr = graph->edges[edge_idx / 2].expr;
expr->join_predicate_first = graph->predicates.size();
for (Item *condition : expr->equijoin_conditions) {
AddPredicate(thd, condition, /*was_join_condition=*/true,
FindSourceMultipleEquality(condition, multiple_equalities),
root, graph, trace);
}
for (Item *condition : expr->join_conditions) {
AddPredicate(thd, condition, /*was_join_condition=*/true,
FindSourceMultipleEquality(condition, multiple_equalities),
root, graph, trace);
}
expr->join_predicate_last = graph->predicates.size();
SortPredicates(graph->predicates.begin() + expr->join_predicate_first,
graph->predicates.begin() + expr->join_predicate_last);
}
}
} // namespace
/**
Convert a join rooted at “expr” into a join hypergraph that encapsulates
the constraints given by the relational expressions (e.g. inner joins are
more freely reorderable than outer joins).
The function in itself only does some bookkeeping around node bitmaps,
and then defers the actual conflict detection logic to
FindHyperedgeAndJoinConflicts().
*/
void MakeJoinGraphFromRelationalExpression(THD *thd, RelationalExpression *expr,
string *trace,
JoinHypergraph *graph) {
if (expr->type == RelationalExpression::TABLE) {
graph->graph.AddNode();
graph->nodes.push_back(JoinHypergraph::Node{
expr->table->table,
Mem_root_array<Item *>{thd->mem_root,
expr->join_conditions_pushable_to_this},
Mem_root_array<SargablePredicate>{thd->mem_root}});
assert(expr->table->tableno() < MAX_TABLES);
graph->table_num_to_node_num[expr->table->tableno()] =
graph->graph.nodes.size() - 1;
expr->nodes_in_subtree = NodeMap{1} << (graph->graph.nodes.size() - 1);
return;
}
MakeJoinGraphFromRelationalExpression(thd, expr->left, trace, graph);
MakeJoinGraphFromRelationalExpression(thd, expr->right, trace, graph);
expr->nodes_in_subtree =
expr->left->nodes_in_subtree | expr->right->nodes_in_subtree;
table_map used_tables = 0;
for (Item *condition : expr->join_conditions) {
used_tables |= condition->used_tables();
}
for (Item *condition : expr->equijoin_conditions) {
used_tables |= condition->used_tables();
}
const NodeMap used_nodes = GetNodeMapFromTableMap(
used_tables & ~PSEUDO_TABLE_BITS, graph->table_num_to_node_num);
const Hyperedge edge =
FindHyperedgeAndJoinConflicts(thd, used_nodes, expr, graph);
graph->graph.AddEdge(edge.left, edge.right);
// Figure out whether we have two left joins that are associatively
// reorderable, which can trigger a bug in our row count estimation. See the
// definition of has_reordered_left_joins for more information.
if (!graph->has_reordered_left_joins &&
expr->type == RelationalExpression::LEFT_JOIN) {
ForEachJoinOperator(expr->left, [expr, graph](RelationalExpression *child) {
if (child->type == RelationalExpression::LEFT_JOIN &&
OperatorsAreAssociative(*child, *expr)) {
graph->has_reordered_left_joins = true;
}
});
ForEachJoinOperator(expr->right,
[expr, graph](RelationalExpression *child) {
if (child->type == RelationalExpression::LEFT_JOIN &&
OperatorsAreAssociative(*expr, *child)) {
graph->has_reordered_left_joins = true;
}
});
}
if (trace != nullptr) {
*trace += StringPrintf("Selectivity of join %s:\n",
GenerateExpressionLabel(expr).c_str());
}
double selectivity = 1.0;
for (Item *item : expr->equijoin_conditions) {
selectivity *= EstimateSelectivity(current_thd, item, trace);
}
for (Item *item : expr->join_conditions) {
selectivity *= EstimateSelectivity(current_thd, item, trace);
}
if (trace != nullptr &&
expr->equijoin_conditions.size() + expr->join_conditions.size() > 1) {
*trace += StringPrintf(" - total: %.3f\n", selectivity);
}
const size_t estimated_bytes_per_row = EstimateRowWidthForJoin(*graph, expr);
graph->edges.push_back(JoinPredicate{
expr, selectivity, estimated_bytes_per_row,
/*functional_dependencies=*/0, /*functional_dependencies_idx=*/{}});
}
NodeMap GetNodeMapFromTableMap(
table_map map, const array<int, MAX_TABLES> &table_num_to_node_num) {
NodeMap ret = 0;
if (Overlaps(map, RAND_TABLE_BIT)) { // Special case.
ret |= RAND_TABLE_BIT;
map &= ~RAND_TABLE_BIT;
}
for (int table_num : BitsSetIn(map)) {
assert(table_num < int(MAX_TABLES));
assert(table_num_to_node_num[table_num] != -1);
ret |= TableBitmap(table_num_to_node_num[table_num]);
}
return ret;
}
namespace {
void AddMultipleEqualityPredicate(THD *thd, Item_equal *item_equal,
Item_field *left_field, int left_table_idx,
Item_field *right_field, int right_table_idx,
double selectivity, JoinHypergraph *graph) {
const int left_node_idx = graph->table_num_to_node_num[left_table_idx];
const int right_node_idx = graph->table_num_to_node_num[right_table_idx];
// See if there is already an edge between these two tables. Since the tables
// are in the same companion set, they are not outerjoined to each other, so
// it's enough to check the simple neighborhood. They could already be
// connected through complex edges due to hyperpredicates, but in this case we
// still want to add a simple edge, as it could in some cases be advantageous
// to join along the simple edge before applying the hyperpredicate.
RelationalExpression *expr = nullptr;
if (IsSubset(TableBitmap(right_node_idx),
graph->graph.nodes[left_node_idx].simple_neighborhood)) {
for (int edge_idx : graph->graph.nodes[left_node_idx].simple_edges) {
if (graph->graph.edges[edge_idx].right == TableBitmap(right_node_idx)) {
expr = graph->edges[edge_idx / 2].expr;
if (MultipleEqualityAlreadyExistsOnJoin(item_equal, *expr)) {
return;
}
graph->edges[edge_idx / 2].selectivity *= selectivity;
break;
}
}
assert(expr != nullptr);
} else {
// There was none, so create a new one.
graph->graph.AddEdge(TableBitmap(left_node_idx),
TableBitmap(right_node_idx));
expr = new (thd->mem_root) RelationalExpression(thd);
expr->type = RelationalExpression::INNER_JOIN;
// TODO(sgunders): This does not really make much sense, but
// estimated_bytes_per_row doesn't make that much sense to begin with;
// it will depend on the join order. See if we can replace it with a
// per-table width calculation that we can sum up in the join
// optimizer.
expr->tables_in_subtree =
TableBitmap(left_table_idx) | TableBitmap(right_table_idx);
expr->nodes_in_subtree =
TableBitmap(left_node_idx) | TableBitmap(right_node_idx);
const size_t estimated_bytes_per_row =
EstimateRowWidthForJoin(*graph, expr);
graph->edges.push_back(JoinPredicate{expr, selectivity,
estimated_bytes_per_row,
/*functional_dependencies=*/0,
/*functional_dependencies_idx=*/{}});
}
Item_func_eq *eq_item = MakeEqItem(left_field, right_field, item_equal);
expr->equijoin_conditions.push_back(
eq_item); // NOTE: We run after MakeHashJoinConditions().
// Make this predicate potentially sargable.
graph->nodes[left_node_idx].join_conditions_pushable_to_this.push_back(
eq_item);
graph->nodes[right_node_idx].join_conditions_pushable_to_this.push_back(
eq_item);
}
/**
For each relevant multiple equality, add edges so that there are direct
connections between all the involved tables (full mesh). The tables must
all be in the same companion set (ie., no outer joins in the way).
Must run after equijoin conditions are extracted. _Should_ be run after
trivial conditions have been removed.
*/
void CompleteFullMeshForMultipleEqualities(
THD *thd, const Mem_root_array<Item_equal *> &multiple_equalities,
JoinHypergraph *graph, string *trace) {
for (Item_equal *item_equal : multiple_equalities) {
double selectivity = EstimateSelectivity(thd, item_equal, trace);
for (Item_field &left_field : item_equal->get_fields()) {
const int left_table_idx =
left_field.field->table->pos_in_table_list->tableno();
for (Item_field &right_field : item_equal->get_fields()) {
const int right_table_idx =
right_field.field->table->pos_in_table_list->tableno();
if (right_table_idx <= left_table_idx) {
continue;
}
AddMultipleEqualityPredicate(thd, item_equal, &left_field,
left_table_idx, &right_field,
right_table_idx, selectivity, graph);
}
}
}
}
/**
Returns a map of all tables that are on the inner side of some outer join or
antijoin.
*/
table_map GetTablesInnerToOuterJoinOrAntiJoin(
const RelationalExpression *expr) {
switch (expr->type) {
case RelationalExpression::INNER_JOIN:
case RelationalExpression::SEMIJOIN:
case RelationalExpression::STRAIGHT_INNER_JOIN:
return GetTablesInnerToOuterJoinOrAntiJoin(expr->left) |
GetTablesInnerToOuterJoinOrAntiJoin(expr->right);
case RelationalExpression::LEFT_JOIN:
case RelationalExpression::ANTIJOIN:
return GetTablesInnerToOuterJoinOrAntiJoin(expr->left) |
expr->right->tables_in_subtree;
case RelationalExpression::FULL_OUTER_JOIN:
return expr->tables_in_subtree;
case RelationalExpression::MULTI_INNER_JOIN:
assert(false); // Should have been unflattened by now.
return 0;
case RelationalExpression::TABLE:
return 0;
}
assert(false);
return 0;
}
/**
Fully expand a multiple equality for a single table as simple equalities and
append each equality to the array of conditions. Only expected to be called on
multiple equalities that do not have an already known value, as such
equalities should be eliminated by constant folding instead of being expanded.
*/
bool ExpandMultipleEqualsForSingleTable(Item_equal *equal,
Mem_root_array<Item *> *conditions) {
assert(!equal->const_item());
assert(IsSingleBitSet(equal->used_tables() & ~PSEUDO_TABLE_BITS));
Item *const_arg = equal->const_arg();
if (const_arg != nullptr) {
for (Item_field &field : equal->get_fields()) {
if (conditions->push_back(MakeEqItem(&field, const_arg, equal))) {
return true;
}
}
} else {
Item_field *prev = nullptr;
for (Item_field &field : equal->get_fields()) {
if (prev != nullptr) {
if (conditions->push_back(MakeEqItem(prev, &field, equal))) {
return true;
}
}
prev = &field;
}
}
return false;
}
/**
Extract all WHERE conditions in a single-table query. Multiple equalities are
fully expanded unconditionally, since there is only one way to expand them
when there is only a single table (no need to consider that they should be
pushable to joins). Normalization will also be performed if necessary.
*/
bool ExtractWhereConditionsForSingleTable(THD *thd, Item *condition,
Mem_root_array<Item *> *conditions,
bool *where_is_always_false) {
bool need_normalization = false;
if (WalkConjunction(condition, [conditions, &need_normalization](Item *cond) {
if (IsMultipleEquals(cond)) {
Item_equal *equal = down_cast<Item_equal *>(cond);
if (equal->const_item()) {
// This equality is known to evaluate to a constant value. Don't
// expand it, but rather let constant folding remove it. Flag that
// normalization is needed, so that constant folding kicks in.
need_normalization = true;
return conditions->push_back(equal);
} else {
// Expand the multiple equality. Normalization does not do anything
// useful if all conditions are multiple equalities.
return ExpandMultipleEqualsForSingleTable(equal, conditions);
}
} else {
// Some other kind of condition. We might be able to simplify it in
// normalization, so flag that we need normalization.
need_normalization = true;
return ExtractConditions(
EarlyExpandMultipleEquals(cond, TablesBetween(0, MAX_TABLES)),
conditions);
}
})) {
return true;
}
if (need_normalization) {
if (EarlyNormalizeConditions(thd, /*join=*/nullptr, conditions,
where_is_always_false)) {
return true;
}
}
return false;
}
/// Fast path for MakeJoinHypergraph() when the query accesses a single table.
bool MakeSingleTableHypergraph(THD *thd, const Query_block *query_block,
string *trace, JoinHypergraph *graph,
bool *where_is_always_false) {
Table_ref *const table_ref = query_block->leaf_tables;
if (const int error = table_ref->fetch_number_of_rows(kRowEstimateFallback);
error) {
table_ref->table->file->print_error(error, MYF(0));
return true;
}
RelationalExpression *root = MakeRelationalExpression(thd, table_ref);
MakeJoinGraphFromRelationalExpression(thd, root, trace, graph);
if (Item *const where_cond = query_block->join->where_cond;
where_cond != nullptr) {
Mem_root_array<Item *> where_conditions(thd->mem_root);
if (ExtractWhereConditionsForSingleTable(thd, where_cond, &where_conditions,
where_is_always_false)) {
return true;
}
for (Item *item : where_conditions) {
AddPredicate(thd, item, /*was_join_condition=*/false,
/*source_multiple_equality_idx=*/-1, root, graph, trace);
}
graph->num_where_predicates = graph->predicates.size();
SortPredicates(graph->predicates.begin(), graph->predicates.end());
}
if (trace != nullptr) {
*trace += "\nConstructed hypergraph:\n";
*trace += PrintDottyHypergraph(*graph);
}
return false;
}
} // namespace
const JOIN *JoinHypergraph::join() const { return m_query_block->join; }
bool MakeJoinHypergraph(THD *thd, string *trace, JoinHypergraph *graph,
bool *where_is_always_false) {
const Query_block *query_block = graph->query_block();
if (trace != nullptr) {
// TODO(sgunders): Do we want to keep this in the trace indefinitely?
// It's only useful for debugging, not as much for understanding what's
// going on.
*trace += "Join list after simplification:\n";
*trace += PrintJoinList(query_block->m_table_nest, /*level=*/0);
*trace += "\n";
}
const size_t num_tables = query_block->leaf_table_count;
if (graph->nodes.reserve(num_tables) ||
graph->graph.nodes.reserve(num_tables)) {
return true;
}
// Fast path for single-table queries. We can skip all the logic that analyzes
// join conditions, as there is no join.
if (num_tables == 1) {
return MakeSingleTableHypergraph(thd, query_block, trace, graph,
where_is_always_false);
}
RelationalExpression *root =
MakeRelationalExpressionFromJoinList(thd, query_block->m_table_nest);
int num_companion_sets = 0;
int table_num_to_companion_set[MAX_TABLES];
ComputeCompanionSets(root, /*current_set=*/-1, &num_companion_sets,
table_num_to_companion_set);
FlattenInnerJoins(root);
const JOIN *join = query_block->join;
if (trace != nullptr) {
// TODO(sgunders): Same question as above; perhaps the version after
// pushdown is sufficient.
*trace +=
StringPrintf("Made this relational tree; WHERE condition is %s:\n",
ItemToString(join->where_cond).c_str());
*trace += PrintRelationalExpression(root, 0);
*trace += "\n";
}
if (trace != nullptr) {
*trace += StringPrintf("Pushing conditions down.\n");
}
Mem_root_array<Item *> table_filters(thd->mem_root);
Mem_root_array<Item *> cycle_inducing_edges(thd->mem_root);
PushDownJoinConditions(thd, root, table_num_to_companion_set, &table_filters,
&cycle_inducing_edges, trace);
// Split up WHERE conditions, and push them down into the tree as much as
// we can. (They have earlier been hoisted up as far as possible; see
// comments on PushDownAsMuchAsPossible() and PushDownJoinConditions().)
// Note that we do this after pushing down join conditions, so that we
// don't push down WHERE conditions to join conditions and then re-process
// them later.
Mem_root_array<Item *> where_conditions(thd->mem_root);
if (join->where_cond != nullptr) {
Item *where_cond = EarlyExpandMultipleEquals(join->where_cond,
/*tables_in_subtree=*/~0);
if (ExtractConditions(where_cond, &where_conditions)) {
return true;
}
if (EarlyNormalizeConditions(thd, /*join=*/nullptr, &where_conditions,
where_is_always_false)) {
return true;
}
ReorderConditions(&where_conditions);
where_conditions = PushDownAsMuchAsPossible(
thd, std::move(where_conditions), root,
/*is_join_condition_for_expr=*/false, table_num_to_companion_set,
&table_filters, &cycle_inducing_edges, trace);
// We're done pushing, so unflatten so that the rest of the algorithms
// don't need to worry about it.
UnflattenInnerJoins(root);
if (CanonicalizeConditions(thd, GetVisibleTables(root),
TablesBetween(0, MAX_TABLES),
&where_conditions)) {
return true;
}
// NOTE: Any remaining WHERE conditions, whether single-table or multi-table
// (join conditions), are left up here for a reason (i.e., they are
// nondeterministic and/or blocked by outer joins), so they should not be
// attempted pushed as sargable predicates.
} else {
// We're done pushing, so unflatten so that the rest of the algorithms
// don't need to worry about it.
UnflattenInnerJoins(root);
}
// Now that everything is pushed, we can concretize any multiple equalities
// that are left on antijoins and semijoins.
LateConcretizeMultipleEqualities(thd, root);
// Now see if we can push down join conditions to sargable predicates.
// We do this after we're done pushing, since pushing can change predicates
// (in particular, it can concretize multiple equalities).
PushDownJoinConditionsForSargable(thd, root);
if (CanonicalizeJoinConditions(thd, root)) {
return true;
}
FindConditionsUsedTables(thd, root);
MakeHashJoinConditions(thd, root);
if (trace != nullptr) {
*trace += StringPrintf(
"\nAfter pushdown; remaining WHERE conditions are %s, "
"table filters are %s:\n",
ItemsToString(where_conditions).c_str(),
ItemsToString(table_filters).c_str());
*trace += PrintRelationalExpression(root, 0);
*trace += '\n';
}
// Ask the storage engine to update stats.records, if needed.
// We need to do this before MakeJoinGraphFromRelationalExpression(),
// which determines selectivities that are in part based on it.
// NOTE: ha_archive breaks without this call! (That is probably a bug in
// ha_archive, though.)
for (Table_ref *tl = graph->query_block()->leaf_tables; tl != nullptr;
tl = tl->next_leaf) {
if (const int error = tl->fetch_number_of_rows(kRowEstimateFallback);
error) {
tl->table->file->print_error(error, MYF(0));
return true;
}
}
// Construct the hypergraph from the relational expression.
#ifndef NDEBUG
std::fill(begin(graph->table_num_to_node_num),
end(graph->table_num_to_node_num), -1);
#endif
MakeJoinGraphFromRelationalExpression(thd, root, trace, graph);
// Now that we have the hypergraph construction done, it no longer hurts
// to remove impossible conditions.
ClearImpossibleJoinConditions(root);
graph->tables_inner_to_outer_or_anti =
GetTablesInnerToOuterJoinOrAntiJoin(root);
// Add cycles.
size_t old_graph_edges = graph->graph.edges.size();
if (!cycle_inducing_edges.empty()) {
AddCycleEdges(thd, cycle_inducing_edges, graph, trace);
}
// Now that all trivial conditions have been removed and all equijoin
// conditions extracted, go ahead and extract all the multiple
// equalities that are in actual use, and present as part of the base
// conjunctions (ie., not OR-ed with anything).
Mem_root_array<Item_equal *> multiple_equalities(thd->mem_root);
ExtractCycleMultipleEqualitiesFromJoinConditions(
root, table_num_to_companion_set, &multiple_equalities);
ExtractCycleMultipleEqualities(where_conditions, table_num_to_companion_set,
&multiple_equalities);
if (multiple_equalities.size() > 64) {
multiple_equalities.resize(64);
}
std::sort(multiple_equalities.begin(), multiple_equalities.end());
multiple_equalities.erase(
std::unique(multiple_equalities.begin(), multiple_equalities.end()),
multiple_equalities.end());
CompleteFullMeshForMultipleEqualities(thd, multiple_equalities, graph, trace);
if (graph->graph.edges.size() != old_graph_edges) {
// We added at least one cycle-inducing edge.
PromoteCycleJoinPredicates(thd, root, multiple_equalities, graph, trace);
}
if (trace != nullptr) {
*trace += "\nConstructed hypergraph:\n";
*trace += PrintDottyHypergraph(*graph);
if (DEBUGGING_DPHYP) {
// DPhyp printouts talk mainly about R1, R2, etc., so if debugging
// the algorithm, it is useful to have a link to the table names.
*trace += "Node mappings, for reference:\n";
for (size_t i = 0; i < graph->nodes.size(); ++i) {
*trace +=
StringPrintf(" R%zu = %s\n", i + 1, graph->nodes[i].table->alias);
}
}
*trace += "\n";
}
#ifndef NDEBUG
{
// Verify we have no duplicate edges.
const Mem_root_array<Hyperedge> &edges = graph->graph.edges;
for (size_t edge1_idx = 0; edge1_idx < edges.size(); ++edge1_idx) {
for (size_t edge2_idx = edge1_idx + 1; edge2_idx < edges.size();
++edge2_idx) {
const Hyperedge &e1 = edges[edge1_idx];
const Hyperedge &e2 = edges[edge2_idx];
assert(e1.left != e2.left || e1.right != e2.right);
}
}
}
#endif
// The predicates added so far are join conditions that have been promoted to
// WHERE predicates by PromoteCycleJoinPredicates().
const size_t num_cycle_predicates = graph->predicates.size();
// Find TES and selectivity for each WHERE predicate that was not pushed
// down earlier.
for (Item *condition : where_conditions) {
AddPredicate(thd, condition, /*was_join_condition=*/false,
/*source_multiple_equality_idx=*/-1, root, graph, trace);
}
// Table filters should be applied at the bottom, without extending the TES.
for (Item *condition : table_filters) {
Predicate pred;
pred.condition = condition;
pred.used_nodes = pred.total_eligibility_set = GetNodeMapFromTableMap(
condition->used_tables() & ~(INNER_TABLE_BIT | OUTER_REF_TABLE_BIT),
graph->table_num_to_node_num);
assert(IsSingleBitSet(pred.total_eligibility_set));
pred.selectivity = EstimateSelectivity(thd, condition, trace);
pred.functional_dependencies_idx.init(thd->mem_root);
graph->predicates.push_back(std::move(pred));
}
// Sort the predicates so that filters created from them later automatically
// evaluate the most selective and least expensive predicates first. Don't
// touch the join (cycle) predicates at the beginning, as they are already
// sorted, and reordering them would make the join_predicate_first and
// join_predicate_last pointers in the corresponding RelationalExpression
// incorrect.
SortPredicates(graph->predicates.begin() + num_cycle_predicates,
graph->predicates.end());
graph->num_where_predicates = graph->predicates.size();
return false;
}
// Returns the tables in this subtree that are visible higher up in
// the join tree. This includes all tables in this subtree, except
// those that are on the inner side of a semijoin or an antijoin.
table_map GetVisibleTables(const RelationalExpression *expr) {
switch (expr->type) {
case RelationalExpression::TABLE:
return expr->tables_in_subtree;
case RelationalExpression::SEMIJOIN:
case RelationalExpression::ANTIJOIN:
// Inner side of a semijoin or an antijoin should not
// be visible outside of the join.
return GetVisibleTables(expr->left);
case RelationalExpression::INNER_JOIN:
case RelationalExpression::STRAIGHT_INNER_JOIN:
case RelationalExpression::LEFT_JOIN:
case RelationalExpression::FULL_OUTER_JOIN:
return GetVisibleTables(expr->left) | GetVisibleTables(expr->right);
case RelationalExpression::MULTI_INNER_JOIN:
return std::accumulate(
expr->multi_children.begin(), expr->multi_children.end(),
table_map{0},
[](table_map tables, const RelationalExpression *child) {
return tables | GetVisibleTables(child);
});
}
assert(false);
return 0;
}
|