1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
|
/* Copyright (c) 2020, 2025, Oracle and/or its affiliates.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is designed to work with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have either included with
the program or referenced in the documentation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
#ifndef SQL_JOIN_OPTIMIZER_WALK_ACCESS_PATHS_H
#define SQL_JOIN_OPTIMIZER_WALK_ACCESS_PATHS_H
#include <type_traits>
#include "sql/join_optimizer/access_path.h"
#include "sql/range_optimizer/range_optimizer.h"
enum class WalkAccessPathPolicy {
// Stop on _any_ MATERIALIZE or STREAM path, even if they do not cross query
// blocks.
// Also stops on APPEND paths, which always cross query blocks.
STOP_AT_MATERIALIZATION,
// Stop on MATERIALIZE, STREAM or APPEND paths that cross query blocks.
ENTIRE_QUERY_BLOCK,
// Do not stop at any kind of access path, unless func() returns true.
ENTIRE_TREE
};
/**
Traverse every access path below `path` (possibly limited to the current query
block with the `cross_query_blocks` parameter), calling func() for each one
with pre- or post-order traversal. If func() returns true, the traversal does
not descend into the children of the current path. For post-order traversal,
the children have already been traversed when func() is called, so it is too
late to skip them, and the return value of func() is effectively ignored.
The `join` parameter signifies what query block `path` is part of, since that
is not implicit from the path itself. The function will track this as it
changes throughout the tree (in MATERIALIZE or STREAM access paths), and
will give the correct value to the func() callback. It is only used by
WalkAccessPaths() itself if the policy is ENTIRE_QUERY_BLOCK; if not, it is
only used for the func() callback, and you can set it to nullptr if you wish.
func() must have signature func(AccessPath *, const JOIN *), or it could be
JOIN * if a non-const JOIN is given in.
*/
template <class AccessPathPtr, class Func, class JoinPtr>
void WalkAccessPaths(AccessPathPtr path, JoinPtr join,
WalkAccessPathPolicy cross_query_blocks, Func &&func,
bool post_order_traversal = false) {
static_assert(
std::is_convertible<AccessPathPtr, const AccessPath *>::value,
"The “path” argument must be AccessPath * or const AccessPath *.");
static_assert(
std::is_convertible<JoinPtr, const JOIN *>::value,
"The “join” argument must be JOIN * or const JOIN * (or nullptr).");
if (cross_query_blocks == WalkAccessPathPolicy::ENTIRE_QUERY_BLOCK) {
assert(join != nullptr);
}
if (!post_order_traversal) {
if (func(path, join)) {
// Stop recursing in this branch.
return;
}
}
switch (path->type) {
case AccessPath::TABLE_SCAN:
case AccessPath::INDEX_SCAN:
case AccessPath::REF:
case AccessPath::REF_OR_NULL:
case AccessPath::EQ_REF:
case AccessPath::PUSHED_JOIN_REF:
case AccessPath::FULL_TEXT_SEARCH:
case AccessPath::CONST_TABLE:
case AccessPath::MRR:
case AccessPath::FOLLOW_TAIL:
case AccessPath::INDEX_RANGE_SCAN:
case AccessPath::INDEX_SKIP_SCAN:
case AccessPath::GROUP_INDEX_SKIP_SCAN:
case AccessPath::DYNAMIC_INDEX_RANGE_SCAN:
case AccessPath::TABLE_VALUE_CONSTRUCTOR:
case AccessPath::FAKE_SINGLE_ROW:
case AccessPath::ZERO_ROWS:
case AccessPath::ZERO_ROWS_AGGREGATED:
case AccessPath::MATERIALIZED_TABLE_FUNCTION:
case AccessPath::UNQUALIFIED_COUNT:
// No children.
break;
case AccessPath::NESTED_LOOP_JOIN:
WalkAccessPaths(path->nested_loop_join().outer, join, cross_query_blocks,
std::forward<Func &&>(func), post_order_traversal);
WalkAccessPaths(path->nested_loop_join().inner, join, cross_query_blocks,
std::forward<Func &&>(func), post_order_traversal);
break;
case AccessPath::NESTED_LOOP_SEMIJOIN_WITH_DUPLICATE_REMOVAL:
WalkAccessPaths(path->nested_loop_semijoin_with_duplicate_removal().outer,
join, cross_query_blocks, std::forward<Func &&>(func),
post_order_traversal);
WalkAccessPaths(path->nested_loop_semijoin_with_duplicate_removal().inner,
join, cross_query_blocks, std::forward<Func &&>(func),
post_order_traversal);
break;
case AccessPath::BKA_JOIN:
WalkAccessPaths(path->bka_join().outer, join, cross_query_blocks,
std::forward<Func &&>(func), post_order_traversal);
WalkAccessPaths(path->bka_join().inner, join, cross_query_blocks,
std::forward<Func &&>(func), post_order_traversal);
break;
case AccessPath::HASH_JOIN:
WalkAccessPaths(path->hash_join().outer, join, cross_query_blocks,
std::forward<Func &&>(func), post_order_traversal);
WalkAccessPaths(path->hash_join().inner, join, cross_query_blocks,
std::forward<Func &&>(func), post_order_traversal);
break;
case AccessPath::FILTER:
WalkAccessPaths(path->filter().child, join, cross_query_blocks,
std::forward<Func &&>(func), post_order_traversal);
break;
case AccessPath::SORT:
WalkAccessPaths(path->sort().child, join, cross_query_blocks,
std::forward<Func &&>(func), post_order_traversal);
break;
case AccessPath::AGGREGATE:
WalkAccessPaths(path->aggregate().child, join, cross_query_blocks,
std::forward<Func &&>(func), post_order_traversal);
break;
case AccessPath::TEMPTABLE_AGGREGATE:
WalkAccessPaths(path->temptable_aggregate().subquery_path, join,
cross_query_blocks, std::forward<Func &&>(func),
post_order_traversal);
WalkAccessPaths(path->temptable_aggregate().table_path, join,
cross_query_blocks, std::forward<Func &&>(func),
post_order_traversal);
break;
case AccessPath::LIMIT_OFFSET:
WalkAccessPaths(path->limit_offset().child, join, cross_query_blocks,
std::forward<Func &&>(func), post_order_traversal);
break;
case AccessPath::STREAM:
if (cross_query_blocks == WalkAccessPathPolicy::ENTIRE_TREE ||
(cross_query_blocks == WalkAccessPathPolicy::ENTIRE_QUERY_BLOCK &&
path->stream().join == join)) {
WalkAccessPaths(path->stream().child, path->stream().join,
cross_query_blocks, std::forward<Func &&>(func),
post_order_traversal);
}
break;
case AccessPath::MATERIALIZE:
WalkAccessPaths(path->materialize().table_path, join, cross_query_blocks,
std::forward<Func &&>(func), post_order_traversal);
for (const MaterializePathParameters::QueryBlock &query_block :
path->materialize().param->query_blocks) {
if (cross_query_blocks == WalkAccessPathPolicy::ENTIRE_TREE ||
(cross_query_blocks == WalkAccessPathPolicy::ENTIRE_QUERY_BLOCK &&
query_block.join == join)) {
WalkAccessPaths(query_block.subquery_path, query_block.join,
cross_query_blocks, std::forward<Func &&>(func),
post_order_traversal);
}
}
break;
case AccessPath::MATERIALIZE_INFORMATION_SCHEMA_TABLE:
WalkAccessPaths(path->materialize_information_schema_table().table_path,
join, cross_query_blocks, std::forward<Func &&>(func),
post_order_traversal);
break;
case AccessPath::APPEND:
if (cross_query_blocks == WalkAccessPathPolicy::ENTIRE_TREE) {
for (const AppendPathParameters &child : *path->append().children) {
WalkAccessPaths(child.path, child.join, cross_query_blocks,
std::forward<Func &&>(func), post_order_traversal);
}
}
break;
case AccessPath::WINDOW:
WalkAccessPaths(path->window().child, join, cross_query_blocks,
std::forward<Func &&>(func), post_order_traversal);
break;
case AccessPath::WEEDOUT:
WalkAccessPaths(path->weedout().child, join, cross_query_blocks,
std::forward<Func &&>(func), post_order_traversal);
break;
case AccessPath::REMOVE_DUPLICATES:
WalkAccessPaths(path->remove_duplicates().child, join, cross_query_blocks,
std::forward<Func &&>(func), post_order_traversal);
break;
case AccessPath::REMOVE_DUPLICATES_ON_INDEX:
WalkAccessPaths(path->remove_duplicates_on_index().child, join,
cross_query_blocks, std::forward<Func &&>(func),
post_order_traversal);
break;
case AccessPath::ALTERNATIVE:
WalkAccessPaths(path->alternative().child, join, cross_query_blocks,
std::forward<Func &&>(func), post_order_traversal);
break;
case AccessPath::CACHE_INVALIDATOR:
WalkAccessPaths(path->cache_invalidator().child, join, cross_query_blocks,
std::forward<Func &&>(func), post_order_traversal);
break;
case AccessPath::INDEX_MERGE:
for (AccessPath *child : *path->index_merge().children) {
WalkAccessPaths(child, join, cross_query_blocks,
std::forward<Func &&>(func), post_order_traversal);
}
break;
case AccessPath::ROWID_INTERSECTION:
for (AccessPath *child : *path->rowid_intersection().children) {
WalkAccessPaths(child, join, cross_query_blocks,
std::forward<Func &&>(func), post_order_traversal);
}
break;
case AccessPath::ROWID_UNION:
for (AccessPath *child : *path->rowid_union().children) {
WalkAccessPaths(child, join, cross_query_blocks,
std::forward<Func &&>(func), post_order_traversal);
}
break;
case AccessPath::DELETE_ROWS:
WalkAccessPaths(path->delete_rows().child, join, cross_query_blocks,
std::forward<Func &&>(func), post_order_traversal);
break;
case AccessPath::UPDATE_ROWS:
WalkAccessPaths(path->update_rows().child, join, cross_query_blocks,
std::forward<Func &&>(func), post_order_traversal);
break;
}
if (post_order_traversal) {
if (func(path, join)) {
// Stop recursing in this branch. In practice a no-op, since we are
// already done with this branch.
return;
}
}
}
/**
A wrapper around WalkAccessPaths() that collects all tables under
“root_path” and calls the given functor, stopping at materializations.
This is typically used to know which tables to sort or the like.
func() must have signature func(TABLE *), and return true upon error.
*/
template <class Func>
void WalkTablesUnderAccessPath(AccessPath *root_path, Func &&func,
bool include_pruned_tables) {
WalkAccessPaths(
root_path, /*join=*/nullptr,
WalkAccessPathPolicy::STOP_AT_MATERIALIZATION,
[&](AccessPath *path, const JOIN *) {
switch (path->type) {
case AccessPath::TABLE_SCAN:
return func(path->table_scan().table);
case AccessPath::INDEX_SCAN:
return func(path->index_scan().table);
case AccessPath::REF:
return func(path->ref().table);
case AccessPath::REF_OR_NULL:
return func(path->ref_or_null().table);
case AccessPath::EQ_REF:
return func(path->eq_ref().table);
case AccessPath::PUSHED_JOIN_REF:
return func(path->pushed_join_ref().table);
case AccessPath::FULL_TEXT_SEARCH:
return func(path->full_text_search().table);
case AccessPath::CONST_TABLE:
return func(path->const_table().table);
case AccessPath::MRR:
return func(path->mrr().table);
case AccessPath::FOLLOW_TAIL:
return func(path->follow_tail().table);
case AccessPath::INDEX_RANGE_SCAN:
return func(path->index_range_scan().used_key_part[0].field->table);
case AccessPath::INDEX_SKIP_SCAN:
return func(path->index_skip_scan().table);
case AccessPath::GROUP_INDEX_SKIP_SCAN:
return func(path->group_index_skip_scan().table);
case AccessPath::DYNAMIC_INDEX_RANGE_SCAN:
return func(path->dynamic_index_range_scan().table);
case AccessPath::STREAM:
return func(path->stream().table);
case AccessPath::MATERIALIZE:
return func(path->materialize().param->table);
case AccessPath::MATERIALIZED_TABLE_FUNCTION:
return func(path->materialized_table_function().table);
case AccessPath::ALTERNATIVE:
return func(
path->alternative().table_scan_path->table_scan().table);
case AccessPath::UNQUALIFIED_COUNT:
// Should never be below anything that needs
// WalkTablesUnderAccessPath().
assert(false);
return true;
case AccessPath::ZERO_ROWS:
if (include_pruned_tables && path->zero_rows().child != nullptr) {
WalkTablesUnderAccessPath(path->zero_rows().child, func,
include_pruned_tables);
}
return false;
case AccessPath::WINDOW:
return func(path->window().temp_table);
case AccessPath::AGGREGATE:
case AccessPath::APPEND:
case AccessPath::BKA_JOIN:
case AccessPath::CACHE_INVALIDATOR:
case AccessPath::FAKE_SINGLE_ROW:
case AccessPath::FILTER:
case AccessPath::HASH_JOIN:
case AccessPath::LIMIT_OFFSET:
case AccessPath::MATERIALIZE_INFORMATION_SCHEMA_TABLE:
case AccessPath::NESTED_LOOP_JOIN:
case AccessPath::NESTED_LOOP_SEMIJOIN_WITH_DUPLICATE_REMOVAL:
case AccessPath::REMOVE_DUPLICATES:
case AccessPath::REMOVE_DUPLICATES_ON_INDEX:
case AccessPath::SORT:
case AccessPath::TABLE_VALUE_CONSTRUCTOR:
case AccessPath::TEMPTABLE_AGGREGATE:
case AccessPath::WEEDOUT:
case AccessPath::ZERO_ROWS_AGGREGATED:
case AccessPath::INDEX_MERGE:
case AccessPath::ROWID_INTERSECTION:
case AccessPath::ROWID_UNION:
case AccessPath::DELETE_ROWS:
case AccessPath::UPDATE_ROWS:
return false;
}
assert(false);
return true;
});
}
#endif // SQL_JOIN_OPTIMIZER_WALK_ACCESS_PATHS_H
|