1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
|
/* Copyright (c) 2005, 2025, Oracle and/or its affiliates.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is designed to work with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have either included with
the program or referenced in the documentation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
#ifndef MY_DECIMAL_INCLUDED
#define MY_DECIMAL_INCLUDED
/**
@file
It is interface module to fixed precision decimals library.
Most functions use 'uint mask' as parameter, if during operation error
which fit in this mask is detected then it will be processed automatically
here. (errors are E_DEC_* constants, see include/decimal.h)
Most function are just inline wrappers around library calls
*/
#include <assert.h>
#include <stdlib.h>
#include <sys/types.h>
#include <algorithm>
#include "decimal.h"
#include "m_ctype.h"
#include "my_inttypes.h"
#include "my_macros.h"
#include "my_time_t.h"
class String;
struct MYSQL_TIME;
static constexpr int DECIMAL_LONGLONG_DIGITS{22};
/** maximum length of buffer in our big digits (uint32). */
static constexpr int DECIMAL_BUFF_LENGTH{9};
/** the number of digits that my_decimal can possibly contain */
static constexpr int DECIMAL_MAX_POSSIBLE_PRECISION{DECIMAL_BUFF_LENGTH * 9};
/**
maximum guaranteed precision of number in decimal digits (number of our
digits * number of decimal digits in one our big digit - number of decimal
digits in one our big digit decreased by 1 (because we always put decimal
point on the border of our big digits))
*/
static constexpr int DECIMAL_MAX_PRECISION{DECIMAL_MAX_POSSIBLE_PRECISION -
8 * 2};
/**
maximum length of string representation (number of maximum decimal
digits + 1 position for sign + 1 position for decimal point, no terminator)
*/
static constexpr int DECIMAL_MAX_STR_LENGTH{DECIMAL_MAX_POSSIBLE_PRECISION + 2};
/**
maximum size of packet length.
*/
static constexpr int DECIMAL_MAX_FIELD_SIZE{DECIMAL_MAX_PRECISION};
inline int my_decimal_int_part(uint precision, uint decimals) {
return precision - ((decimals == DECIMAL_NOT_SPECIFIED) ? 0 : decimals);
}
/**
my_decimal class limits 'decimal_t' type to what we need in MySQL.
It contains internally all necessary space needed by the instance so
no extra memory is needed. Objects should be moved using copy CTOR
or assignment operator, rather than memcpy/memmove.
*/
class my_decimal : public decimal_t {
/*
Several of the routines in strings/decimal.c have had buffer
overrun/underrun problems. These are *not* caught by valgrind.
To catch them, we allocate dummy fields around the buffer,
and test that their values do not change.
*/
#if !defined(NDEBUG)
int foo1;
#endif
decimal_digit_t buffer[DECIMAL_BUFF_LENGTH];
#if !defined(NDEBUG)
int foo2;
static const int test_value = 123;
#endif
public:
my_decimal(const my_decimal &rhs) : decimal_t(rhs) {
rhs.sanity_check();
#if !defined(NDEBUG)
foo1 = test_value;
foo2 = test_value;
#endif
for (uint i = 0; i < DECIMAL_BUFF_LENGTH; i++) buffer[i] = rhs.buffer[i];
buf = buffer;
}
my_decimal &operator=(const my_decimal &rhs) {
sanity_check();
rhs.sanity_check();
if (this == &rhs) return *this;
decimal_t::operator=(rhs);
for (uint i = 0; i < DECIMAL_BUFF_LENGTH; i++) buffer[i] = rhs.buffer[i];
buf = buffer;
return *this;
}
void init() {
#if !defined(NDEBUG)
foo1 = test_value;
foo2 = test_value;
#endif
/*
Do not initialize more of the base class,
we want to catch uninitialized use.
*/
len = DECIMAL_BUFF_LENGTH;
buf = buffer;
}
my_decimal() { init(); }
#ifndef NDEBUG
~my_decimal() { sanity_check(); }
#endif // NDEBUG
void sanity_check() const {
assert(foo1 == test_value);
assert(foo2 == test_value);
assert(buf == buffer);
}
bool sign() const { return decimal_t::sign; }
void sign(bool s) { decimal_t::sign = s; }
uint precision() const { return intg + frac; }
/** Swap two my_decimal values */
void swap(my_decimal &rhs) { std::swap(*this, rhs); }
#ifndef MYSQL_SERVER
// Error reporting in server code only.
int check_result(uint, int result) const { return result; }
#else
int check_result(uint, int result) const;
#endif
};
#ifndef NDEBUG
void print_decimal(const my_decimal *dec);
void print_decimal_buff(const my_decimal *dec, const uchar *ptr, int length);
const char *dbug_decimal_as_string(char *buff, const my_decimal *val);
#else
#define dbug_decimal_as_string(A) NULL
#endif
bool str_set_decimal(uint mask, const my_decimal *val, String *str,
const CHARSET_INFO *cs, uint decimals);
extern my_decimal decimal_zero;
inline void max_my_decimal(my_decimal *to, int precision, int frac) {
assert((precision <= DECIMAL_MAX_PRECISION) && (frac <= DECIMAL_MAX_SCALE));
max_decimal(precision, frac, to);
}
inline void max_internal_decimal(my_decimal *to) {
max_my_decimal(to, DECIMAL_MAX_PRECISION, 0);
}
inline int check_result_and_overflow(uint mask, int result, my_decimal *val) {
if (val->check_result(mask, result) & E_DEC_OVERFLOW) {
bool sign = val->sign();
val->sanity_check();
max_internal_decimal(val);
val->sign(sign);
}
/*
Avoid returning negative zero, cfr. decimal_cmp()
For result == E_DEC_DIV_ZERO *val has not been assigned.
*/
if (result != E_DEC_DIV_ZERO && val->sign() && decimal_is_zero(val))
val->sign(false);
return result;
}
inline uint my_decimal_length_to_precision(uint length, uint scale,
bool unsigned_flag) {
/* Precision can't be negative thus ignore unsigned_flag when length is 0. */
assert(length || !scale);
uint retval =
(uint)(length - (scale > 0 ? 1 : 0) - (unsigned_flag || !length ? 0 : 1));
return retval;
}
inline uint32 my_decimal_precision_to_length_no_truncation(uint precision,
uint8 scale,
bool unsigned_flag) {
/*
When precision is 0 it means that original length was also 0. Thus
unsigned_flag is ignored in this case.
*/
assert(precision || !scale);
uint32 retval = (uint32)(precision + (scale > 0 ? 1 : 0) +
(unsigned_flag || !precision ? 0 : 1));
if (retval == 0) return 1;
return retval;
}
inline uint32 my_decimal_precision_to_length(uint precision, uint8 scale,
bool unsigned_flag) {
/*
When precision is 0 it means that original length was also 0. Thus
unsigned_flag is ignored in this case.
*/
assert(precision || !scale);
precision = std::min(precision, uint(DECIMAL_MAX_PRECISION));
return my_decimal_precision_to_length_no_truncation(precision, scale,
unsigned_flag);
}
inline int my_decimal_string_length(const my_decimal *d) {
/* length of string representation including terminating '\0' */
return decimal_string_size(d);
}
inline int my_decimal_get_binary_size(uint precision, uint scale) {
return decimal_bin_size((int)precision, (int)scale);
}
inline void my_decimal2decimal(const my_decimal *from, my_decimal *to) {
*to = *from;
}
int my_decimal2binary(uint mask, const my_decimal *d, uchar *bin, int prec,
int scale);
inline int binary2my_decimal(uint mask, const uchar *bin, my_decimal *d,
int prec, int scale) {
return d->check_result(mask, bin2decimal(bin, d, prec, scale, false));
}
/**
Decode DECIMAL from binary form
@param mask Error mask
@param bin Binary string to decode
@param d [out] DECIMAL buffer
@param prec Precision of stored value
@param scale Scale of stored value
@param keep_prec Whether to keep stored value's precision
@returns
conversion error
*/
inline int binary2my_decimal(uint mask, const uchar *bin, my_decimal *d,
int prec, int scale, bool keep_prec) {
return d->check_result(mask, bin2decimal(bin, d, prec, scale, keep_prec));
}
inline int my_decimal_set_zero(my_decimal *d) {
/*
We need the up-cast here, since my_decimal has sign() member functions,
which conflicts with decimal_t::size
(and decimal_make_zero is a macro, rather than a function).
*/
decimal_make_zero(static_cast<decimal_t *>(d));
return 0;
}
inline bool my_decimal_is_zero(const my_decimal *decimal_value) {
return decimal_is_zero(decimal_value);
}
inline int my_decimal_round(uint mask, const my_decimal *from, int scale,
bool truncate, my_decimal *to) {
return from->check_result(
mask, decimal_round(from, to, scale, (truncate ? TRUNCATE : HALF_UP)));
}
inline int my_decimal_floor(uint mask, const my_decimal *from, my_decimal *to) {
return from->check_result(mask, decimal_round(from, to, 0, FLOOR));
}
inline int my_decimal_ceiling(uint mask, const my_decimal *from,
my_decimal *to) {
return from->check_result(mask, decimal_round(from, to, 0, CEILING));
}
int my_decimal2string(uint mask, const my_decimal *d, uint fixed_prec,
uint fixed_dec, String *str);
inline int my_decimal2string(uint mask, const my_decimal *d, String *str) {
return my_decimal2string(mask, d, 0, 0, str);
}
inline int my_decimal2int(uint mask, const my_decimal *d, bool unsigned_flag,
longlong *l) {
my_decimal rounded;
/* decimal_round can return only E_DEC_TRUNCATED */
decimal_round(d, &rounded, 0, HALF_UP);
return d->check_result(
mask, (unsigned_flag ? decimal2ulonglong(&rounded, (ulonglong *)l)
: decimal2longlong(&rounded, l)));
}
inline int my_decimal2double(uint, const my_decimal *d, double *result) {
/* No need to call check_result as this will always succeed */
return decimal2double(d, result);
}
inline int my_decimal2lldiv_t(uint mask, const my_decimal *d, lldiv_t *to) {
return d->check_result(mask, decimal2lldiv_t(d, to));
}
inline int str2my_decimal(uint mask, const char *str, my_decimal *d,
const char **end) {
return check_result_and_overflow(mask, string2decimal(str, d, end), d);
}
int str2my_decimal(uint mask, const char *from, size_t length,
const CHARSET_INFO *charset, my_decimal *decimal_value);
my_decimal *date2my_decimal(const MYSQL_TIME *ltime, my_decimal *dec);
my_decimal *time2my_decimal(const MYSQL_TIME *ltime, my_decimal *dec);
my_decimal *timeval2my_decimal(const my_timeval *tm, my_decimal *dec);
inline int double2my_decimal(uint mask, double val, my_decimal *d) {
return check_result_and_overflow(mask, double2decimal(val, d), d);
}
inline int int2my_decimal(uint mask, longlong i, bool unsigned_flag,
my_decimal *d) {
return d->check_result(mask,
(unsigned_flag ? ulonglong2decimal((ulonglong)i, d)
: longlong2decimal(i, d)));
}
inline void my_decimal_neg(decimal_t *arg) {
// Avoid returning negative zero, cfr. decimal_cmp()
if (decimal_is_zero(arg)) {
arg->sign = false;
return;
}
arg->sign ^= 1;
}
inline int my_decimal_add(uint mask, my_decimal *res, const my_decimal *a,
const my_decimal *b) {
return check_result_and_overflow(mask, decimal_add(a, b, res), res);
}
inline int my_decimal_sub(uint mask, my_decimal *res, const my_decimal *a,
const my_decimal *b) {
return check_result_and_overflow(mask, decimal_sub(a, b, res), res);
}
inline int my_decimal_mul(uint mask, my_decimal *res, const my_decimal *a,
const my_decimal *b) {
return check_result_and_overflow(mask, decimal_mul(a, b, res), res);
}
inline int my_decimal_div(uint mask, my_decimal *res, const my_decimal *a,
const my_decimal *b, int div_scale_inc) {
return check_result_and_overflow(mask, decimal_div(a, b, res, div_scale_inc),
res);
}
inline int my_decimal_mod(uint mask, my_decimal *res, const my_decimal *a,
const my_decimal *b) {
return check_result_and_overflow(mask, decimal_mod(a, b, res), res);
}
/**
@retval -1 if a @< b
@retval 1 if a @> b
@retval 0 if a == b
*/
inline int my_decimal_cmp(const my_decimal *a, const my_decimal *b) {
return decimal_cmp(a, b);
}
inline bool operator<(const my_decimal &lhs, const my_decimal &rhs) {
return my_decimal_cmp(&lhs, &rhs) < 0;
}
inline bool operator!=(const my_decimal &lhs, const my_decimal &rhs) {
return my_decimal_cmp(&lhs, &rhs) != 0;
}
inline int my_decimal_intg(const my_decimal *a) { return decimal_intg(a); }
void my_decimal_trim(ulong *precision, uint *scale);
#endif // MY_DECIMAL_INCLUDED
|