File: opt_sum.cc

package info (click to toggle)
mysql-8.0 8.0.43-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,273,924 kB
  • sloc: cpp: 4,684,605; ansic: 412,450; pascal: 108,398; java: 83,641; perl: 30,221; cs: 27,067; sql: 26,594; sh: 24,181; python: 21,816; yacc: 17,169; php: 11,522; xml: 7,388; javascript: 7,076; makefile: 2,194; lex: 1,075; awk: 670; asm: 520; objc: 183; ruby: 97; lisp: 86
file content (1138 lines) | stat: -rw-r--r-- 44,971 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
/* Copyright (c) 2000, 2025, Oracle and/or its affiliates.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License, version 2.0,
   as published by the Free Software Foundation.

   This program is designed to work with certain software (including
   but not limited to OpenSSL) that is licensed under separate terms,
   as designated in a particular file or component or in included license
   documentation.  The authors of MySQL hereby grant you an additional
   permission to link the program and your derivative works with the
   separately licensed software that they have either included with
   the program or referenced in the documentation.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License, version 2.0, for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301  USA */

/**
  @file

  Optimising of MIN(), MAX() and COUNT(*) queries without 'group by' clause
  by replacing the aggregate expression with a constant.

  Given a table with a compound key on columns (a,b,c), the following
  types of queries are optimised (assuming the table handler supports
  the required methods)

  @verbatim
  SELECT COUNT(*) FROM t1[,t2,t3,...]
  SELECT MIN(b) FROM t1 WHERE a=const
  SELECT MAX(c) FROM t1 WHERE a=const AND b=const
  SELECT MAX(b) FROM t1 WHERE a=const AND b<const
  SELECT MIN(b) FROM t1 WHERE a=const AND b>const
  SELECT MIN(b) FROM t1 WHERE a=const AND b BETWEEN const AND const
  SELECT MAX(b) FROM t1 WHERE a=const AND b BETWEEN const AND const
  @endverbatim

  Instead of '<' one can use '<=', '>', '>=' and '=' as well.
  Instead of 'a=const' the condition 'a IS NULL' can be used.

  If all selected fields are replaced then we will also remove all
  involved tables and return the answer without any join. Thus, the
  following query will be replaced with a row of two constants:
  @verbatim
  SELECT MAX(b), MIN(d) FROM t1,t2
    WHERE a=const AND b<const AND d>const
  @endverbatim
  (assuming a index for column d of table t2 is defined)
*/

#include <limits.h>
#include <stddef.h>
#include <sys/types.h>

#include "ft_global.h"
#include "my_base.h"
#include "my_bitmap.h"
#include "my_dbug.h"
#include "my_inttypes.h"
#include "my_sys.h"
#include "my_table_map.h"
#include "mysql_com.h"
#include "sql/field.h"
#include "sql/handler.h"
#include "sql/item.h"
#include "sql/item_cmpfunc.h"
#include "sql/item_func.h"
#include "sql/item_sum.h"  // Item_sum
#include "sql/key.h"       // key_cmp_if_same
#include "sql/sql_bitmap.h"
#include "sql/sql_class.h"
#include "sql/sql_const.h"
#include "sql/sql_error.h"
#include "sql/sql_lex.h"
#include "sql/sql_list.h"
#include "sql/sql_opt_exec_shared.h"
#include "sql/sql_select.h"
#include "sql/table.h"

static bool find_key_for_maxmin(bool max_fl, Index_lookup *ref,
                                Item_field *item_field, Item *cond,
                                uint *range_fl, uint *key_prefix_length);
static bool reckey_in_range(bool max_fl, Index_lookup *ref,
                            Item_field *item_field, Item *cond, uint range_fl,
                            uint prefix_len);
static bool maxmin_in_range(bool max_fl, Item_field *item_field, Item *cond);

/**
  Get exact count of rows in all tables. This is called, when at least one of
  the table handlers support HA_COUNT_ROWS_INSTANT, but not
  HA_STATS_RECORDS_IS_EXACT (NDB is one such storage engine).

    @param tables  List of tables

    @retval Product of number of rows in all tables. ULLONG_MAX for error.
*/
static ulonglong get_exact_record_count(Table_ref *tables) {
  ulonglong count = 1;
  for (Table_ref *tl = tables; tl; tl = tl->next_leaf) {
    ha_rows tmp = 0;
    int error = tl->table->file->ha_records(&tmp);
    if (error != 0) return ULLONG_MAX;
    count *= tmp;
  }
  return count;
}

/**
  Use index to read MIN(field) value.

  @param table      Table object
  @param ref        Reference to the structure where we store the key value
  @param item_field Field used in MIN()
  @param range_fl   Whether range endpoint is strict less than
  @param prefix_len Length of common key part for the range

  @retval
    0               No errors
    HA_ERR_...      Otherwise
*/

static int get_index_min_value(TABLE *table, Index_lookup *ref,
                               Item_field *item_field, uint range_fl,
                               uint prefix_len) {
  int error;

  if (!ref->key_length)
    error = table->file->ha_index_first(table->record[0]);
  else {
    /*
      Use index to replace MIN/MAX functions with their values
      according to the following rules:

      1) Insert the minimum non-null values where the WHERE clause still
         matches, or
      2) a NULL value if there are only NULL values for key_part_k.
      3) Fail, producing a row of nulls

      Implementation: Read the smallest value using the search key. If
      the interval is open, read the next value after the search
      key. If read fails, and we're looking for a MIN() value for a
      nullable column, test if there is an exact match for the key.
    */
    if (!(range_fl & NEAR_MIN))
      /*
         Closed interval: Either The MIN argument is non-nullable, or
         we have a >= predicate for the MIN argument.
      */
      error = table->file->ha_index_read_map(
          table->record[0], ref->key_buff,
          make_prev_keypart_map(ref->key_parts), HA_READ_KEY_OR_NEXT);
    else {
      /*
        Open interval: There are two cases:
        1) We have only MIN() and the argument column is nullable, or
        2) there is a > predicate on it, nullability is irrelevant.
        We need to scan the next bigger record first.
        Open interval is not used if the search key involves the last keypart,
        and it would not work.
      */
      assert(prefix_len < ref->key_length);
      error = table->file->ha_index_read_map(
          table->record[0], ref->key_buff,
          make_prev_keypart_map(ref->key_parts), HA_READ_AFTER_KEY);
      /*
         If the found record is outside the group formed by the search
         prefix, or there is no such record at all, check if all
         records in that group have NULL in the MIN argument
         column. If that is the case return that NULL.

         Check if case 1 from above holds. If it does, we should read
         the skipped tuple.
      */
      if (item_field->field->is_nullable() && ref->key_buff[prefix_len] == 1 &&
          /*
            Last keypart (i.e. the argument to MIN) is set to NULL by
            find_key_for_maxmin only if all other keyparts are bound
            to constants in a conjunction of equalities. Hence, we
            can detect this by checking only if the last keypart is
            NULL.
          */
          (error == HA_ERR_KEY_NOT_FOUND ||
           key_cmp_if_same(table, ref->key_buff, ref->key, prefix_len))) {
        assert(item_field->field->is_nullable());
        error = table->file->ha_index_read_map(
            table->record[0], ref->key_buff,
            make_prev_keypart_map(ref->key_parts), HA_READ_KEY_EXACT);
      }
    }
  }
  return error;
}

/**
  Use index to read MAX(field) value.

  @param table      Table object
  @param ref        Reference to the structure where we store the key value
  @param range_fl   Whether range endpoint is strict greater than

  @retval
    0               No errors
    HA_ERR_...      Otherwise
*/

static int get_index_max_value(TABLE *table, Index_lookup *ref, uint range_fl) {
  return (ref->key_length
              ? table->file->ha_index_read_map(
                    table->record[0], ref->key_buff,
                    make_prev_keypart_map(ref->key_parts),
                    range_fl & NEAR_MAX ? HA_READ_BEFORE_KEY
                                        : HA_READ_PREFIX_LAST_OR_PREV)
              : table->file->ha_index_last(table->record[0]));
}

/**
  Substitute constants for some COUNT(), MIN() and MAX() functions
  in an aggregated (implicitly grouped) query

  @param[in]  thd               thread handler
  @param[in]  select            query block
  @param[in]  fields            All fields to be returned
  @param[in]  conds             WHERE clause
  @param[out] decision          outcome for successful execution
               = AGGR_REGULAR   regular execution required
               = AGGR_COMPLETE  values available
               = AGGR_DELAYED   execution with ha_records() required
               = AGGR_EMPTY     source tables empty,
                                aggregates are NULL or zero (for COUNT)

  @returns false if success, true if error

  This function is called for queries with aggregate functions and no
  GROUP BY, thus the result set will contain a single row only.

  First, the function will analyze the source tables and WHERE clause to see
  whether the query qualifies for optimization. If not, the decision
  AGGR_REGULAR is returned.

  Second, the function walks over all expressions in the SELECT list.
  If the expression can be optimized with a storage engine operation that
  is O(1) (MIN or MAX) or O(0) (instant COUNT), the value is looked up
  and inserted in the value buffer, and the corresponding Item is marked
  as being const.
  If the expression is a COUNT operation that can be evaluated
  efficiently by the storage manager (but still O(N)), indicated with
  HA_COUNT_ROWS_INSTANT, it will be marked as such.

  When all SELECT list expressions have been processed, there are four
  possible outcomes:

  - An empty result from the source tables is indicated, and the
    output state is AGGR_EMPTY. Notice that the result of aggregation
    is still one row, filled with zero for COUNT operations and NULL
    values for all other expressions.

  - All expressions have been given values, indicated with output state
    AGGR_COMPLETE.

  - All expressions have been given values, except for one or more COUNT
    operations that will be evaluated in execution. This is indicated
    with AGGR_DELAYED.

  - Some expressions must be evaluated as part of a regular execution,
    indicated with AGGR_REGULAR. Notice that some of the expressions
    may have been given values and are marked as const, but no expressions
    will be candidates for delayed execution.
*/

bool optimize_aggregated_query(THD *thd, Query_block *select,
                               const mem_root_deque<Item *> &fields,
                               Item *conds, aggregate_evaluated *decision) {
  DBUG_TRACE;

  // True means at least one aggregate must be calculated by regular execution
  bool aggr_impossible = false;
  // True means COUNT expressions will be calculated by ha_records()
  // storage engine operations during execution phase
  bool aggr_delayed = false;
  bool recalc_const_item = false;
  // Calculated row count, valid only if have_exact_count is true.
  ulonglong row_count = 1;
  // True when all tables have an exact count
  bool have_exact_count = true;
  // True if all tables have contents and can be read
  bool tables_filled = true;
  // The set of tables optimized for MIN or MAX
  table_map removed_tables = 0;
  // The set of inner tables of outer join(s)
  table_map inner_tables = 0;
  // The set of tables in the join, excluding the inner tables of outer join
  table_map used_tables = 0;

  Table_ref *tables = select->leaf_tables;

  int error;

  *decision = AGGR_REGULAR;  // Default return value
  // Local flag that indicates that ha_records() can be called in the
  // execution phase only.
  bool delay_ha_records_to_exec_phase = false;

  const table_map where_tables = conds ? conds->used_tables() : 0;
  /*
    A subquery is optimized once but executed possibly multiple times.
    If the value of the set function depends on the join's emptiness (like
    MIN() does), and the join's emptiness depends on the outer row or
    something nondeterministic, we cannot mark the set function as constant:
   */
  if (where_tables & (OUTER_REF_TABLE_BIT | RAND_TABLE_BIT)) return false;

  if (!select->sj_nests.empty())
    // Cannot optimize when there is a semijoin or antijoin
    return false;

  /*
    Analyze outer join dependencies, and, if possible, compute the number
    of returned rows.
  */
  for (Table_ref *tl = tables; tl; tl = tl->next_leaf) {
    // Don't replace expression on a table that is part of an outer join
    if (tl->is_inner_table_of_outer_join()) {
      inner_tables |= tl->map();

      /*
        We can't optimise LEFT JOIN in cases where the WHERE condition
        restricts the table that is used, like in:
          SELECT MAX(t1.a) FROM t1 LEFT JOIN t2 join-condition
          WHERE t2.field IS NULL;
      */
      if (tl->map() & where_tables) return false;
    } else
      used_tables |= tl->map();

    /*
      If the storage manager of 'tl' gives exact row count as part of
      statistics (cheap), compute the total number of rows. If there are
      no outer table dependencies, this count may be used as the real count.
      Schema tables are filled after this function is invoked, so we can't
      get row count.
      Derived tables aren't filled yet, their number of rows are estimates.
      FORCE INDEX implies that user wants a specific index to be used. So skip
      using stats.records.
    */
    tables_filled &= !(tl->schema_table || tl->uses_materialization());
    ulonglong table_flags = tl->table->file->ha_table_flags();
    if ((table_flags & HA_STATS_RECORDS_IS_EXACT) && tables_filled &&
        !tl->table->force_index) {
      error = tl->fetch_number_of_rows();
      if (error) {
        tl->table->file->print_error(error, MYF(ME_FATALERROR));
        return true;
      }
      row_count *= tl->table->file->stats.records;
    } else {
      /*
        Note: If at least one of the tables can't be optimized,
              then all tables will be read in the execution phase
              (i.e. end_send_count).

        Example: SELECT COUNT(*) FROM t_myisam, t_innodb;
      */
      delay_ha_records_to_exec_phase |=
          !(table_flags & HA_COUNT_ROWS_INSTANT) || tl->table->force_index;

      have_exact_count = false;
    }
  }

  /*
    Iterate through all items in the SELECT clause and replace
    COUNT(), MIN() and MAX() with constants (if possible).
  */

  for (Item *item : fields) {
    if (item->type() == Item::SUM_FUNC_ITEM && !item->m_is_window_function) {
      if (item->is_outer_reference()) {
        aggr_impossible = true;
        continue;
      }
      Item_sum *item_sum = down_cast<Item_sum *>(item);
      enum Item_func::Functype func_type =
          conds != nullptr && conds->type() == Item::FUNC_ITEM
              ? down_cast<Item_func *>(conds)->functype()
              : Item_func::UNKNOWN_FUNC;
      switch (item_sum->sum_func()) {
        case Item_sum::COUNT_FUNC: {
          Item_sum_count *item_count = down_cast<Item_sum_count *>(item_sum);
          /*
            If the expr in COUNT(expr) can never be null we can change this
            to the number of rows in the tables if this number is exact and
            there are no outer joins.
          */
          if (conds == nullptr && !item_count->get_arg(0)->is_nullable() &&
              !inner_tables && tables_filled) {
            if (delay_ha_records_to_exec_phase) {
              aggr_delayed = true;
            } else {
              if (!have_exact_count) {
                row_count = get_exact_record_count(tables);
                if (row_count == ULLONG_MAX) {
                  /*
                    Error from handler in counting rows. Don't optimize count()
                  */
                  aggr_impossible = true;
                  continue;
                }
                have_exact_count = true;  // count is now exact
              }
            }
          }
          /*
            For result count of full-text search: If
            1. it is a single table query,
            2. the WHERE condition is a single MATCH expression,
            3. the table engine can provide the row count from FTS result, and
            4. the expr in COUNT(expr) can not be NULL,
            we do the full-text search now, and replace with the actual count.

            Note: Item_func_match::init_search() will be called again later in
                  the optimization phase by init_fts_funcs(), but search will
                  still only be done once.
          */
          else if (tables->next_leaf == nullptr &&  // 1
                   (func_type == Item_func::FT_FUNC ||
                    func_type == Item_func::MATCH_FUNC) &&  // 2
                   (tables->table->file->ha_table_flags() &
                    HA_CAN_FULLTEXT_EXT) &&                 // 3
                   !item_count->get_arg(0)->is_nullable())  // 4
          {
            Item_func_match *fts_item =
                func_type == Item_func::FT_FUNC
                    ? down_cast<Item_func_match *>(conds)
                    : down_cast<Item_func_match *>(
                          down_cast<Item_func_match_predicate *>(conds)
                              ->arguments()[0]);
            fts_item->get_master()->set_hints(nullptr, FT_NO_RANKING,
                                              HA_POS_ERROR, false);
            if (fts_item->init_search(thd)) break;
            row_count = fts_item->get_count();
            have_exact_count = true;
          } else
            aggr_impossible = true;

          // See comment above for get_exact_record_count()
          if (!thd->lex->is_explain() && !aggr_impossible && !aggr_delayed) {
            item_count->make_const((longlong)row_count);
            recalc_const_item = true;
          }
          break;
        }
        case Item_sum::MIN_FUNC:
        case Item_sum::MAX_FUNC: {
          int is_max = (item_sum->sum_func() == Item_sum::MAX_FUNC);
          /*
            If MIN/MAX(expr) is the first part of a key or if all previous
            parts of the key is found in the COND, then we can use
            indexes to find the key.
          */
          Item *expr = item_sum->get_arg(0)->real_item();
          if (expr->type() == Item::FIELD_ITEM) {
            uchar key_buff[MAX_KEY_LENGTH];
            Index_lookup ref;
            uint range_fl, prefix_len;

            ref.key_buff = key_buff;
            Item_field *item_field = down_cast<Item_field *>(expr);
            Table_ref *tr = item_field->table_ref;
            TABLE *table = tr->table;
            /*
              If table already has been read, we may use the values already
              in record buffer. However, the logic around this is a bit unclear,
              thus we skip this possible optimization for now.
            */
            if (table->const_table) {
              aggr_impossible = true;
              break;
            }
            /*
              We must not have accessed this table instance yet, because
              it must be private to this query block, as we already ensured
              that OUTER_REF_TABLE_BIT is not set.
              Or: if this field references an outer table in the form of an
              in-memory table with one row, it will have been read and closed
              again. In such a case, the OUTER_REF_TABLE_BIT is no longer set.
            */
            assert(!table->file->inited);

            /*
              Look for a partial key that can be used for optimization.
              If we succeed, ref.key_length will contain the length of
              this key, while prefix_len will contain the length of
              the beginning of this key without field used in MIN/MAX().
              Type of range for the key part for this field will be
              returned in range_fl.
            */
            if ((inner_tables & tr->map()) ||
                !find_key_for_maxmin(is_max, &ref, item_field, conds, &range_fl,
                                     &prefix_len)) {
              aggr_impossible = true;
              break;
            }
            if ((error = table->file->ha_index_init((uint)ref.key, true))) {
              table->file->print_error(error, MYF(0));
              table->set_keyread(false);
              return true;
            }

            /*
              Necessary columns to read from the index have been determined by
              find_key_for_maxmin(); they are the columns involved in
              'WHERE col=const' and the aggregated one.
              We may not need all columns of read_set, neither all columns of
              the index.
            */
            assert(table->read_set == &table->def_read_set);
            assert(bitmap_is_clear_all(&table->tmp_set));
            table->read_set = &table->tmp_set;
            table->mark_columns_used_by_index_no_reset(ref.key, table->read_set,
                                                       ref.key_parts);
            // The aggregated column may or not be included in ref.key_parts.
            bitmap_set_bit(table->read_set, item_field->field->field_index());
            error = is_max ? get_index_max_value(table, &ref, range_fl)
                           : get_index_min_value(table, &ref, item_field,
                                                 range_fl, prefix_len);

            /*
              Set table row status to "not started" unconditionally.  This will
              prepare the table for regular access in the join execution
              machinery if this optimization is aborted and cannot be used.
              The row status does not affect column values read into record[0].
            */
            table->set_not_started();

            table->read_set = &table->def_read_set;
            bitmap_clear_all(&table->tmp_set);
            /* Verify that the read tuple indeed matches the search key */
            if (!error && reckey_in_range(is_max, &ref, item_field, conds,
                                          range_fl, prefix_len))
              error = HA_ERR_KEY_NOT_FOUND;
            table->set_keyread(false);
            table->file->ha_index_end();
            if (error) {
              if (error == HA_ERR_KEY_NOT_FOUND ||
                  error == HA_ERR_END_OF_FILE) {
                *decision = AGGR_EMPTY;
                return false;  // No rows matching WHERE
              }
              /* HA_ERR_LOCK_DEADLOCK or some other error */
              table->file->print_error(error, MYF(0));
              return true;
            }
            removed_tables |= tr->map();
          } else if (!expr->const_for_execution() || conds != nullptr ||
                     !have_exact_count) {
            /*
              We get here if the aggregate function is not based on a field.
              Example: "SELECT MAX(1) FROM table ..."

              This constant optimization is not applicable if
              1. the expression is not constant, or
              2. it is unknown if the query returns any rows. MIN/MAX must
              return NULL if the query doesn't return any rows. We can't
              determine this if:
                 - the query has a condition, because, in contrast to the
                   "MAX(field)" case above, the condition will not be evaluated
                   against an index for this case, or
                 - the storage engine does not provide exact count, which means
                   that it doesn't know whether there are any rows.
            */
            aggr_impossible = true;
            break;
          }
          item_sum->set_aggregator(item_sum->has_with_distinct()
                                       ? Aggregator::DISTINCT_AGGREGATOR
                                       : Aggregator::SIMPLE_AGGREGATOR);
          /*
            If row_count == 0 and there are no outer joins, set to NULL,
            otherwise set to the constant value.
          */
          if (have_exact_count && row_count == 0 && !inner_tables) {
            item_sum->aggregator_clear();
            // Mark the aggregated value as based on no rows
            item->no_rows_in_result();
          } else
            item_sum->reset_and_add();
          item_sum->make_const();
          recalc_const_item = true;
          break;
        }
        default:
          aggr_impossible = true;
          break;
      }
    } else if (!aggr_impossible) {
      if (recalc_const_item) item->update_used_tables();
      if (!item->const_for_execution()) aggr_impossible = true;
    }
  }

  if (thd->is_error()) return true;

  /*
    With a where clause, only ignore searching in the tables if MIN/MAX
    optimisation replaced all used tables.
    We do not use replaced values in case of:
    SELECT MIN(key) FROM table_1, empty_table
    removed_tables is != 0 if we have used MIN() or MAX().
  */
  if (removed_tables && used_tables != removed_tables)
    aggr_impossible = true;  // We didn't remove all tables

  *decision = aggr_impossible ? AGGR_REGULAR
              : aggr_delayed  ? AGGR_DELAYED
                              : AGGR_COMPLETE;
  return false;
}

/**
  Test if the predicate compares a field with constants.

  @param func_item        Predicate item
  @param[out] args        Here we store the field followed by constants
  @param[out] inv_order   Is set to true if the predicate is of the form
                          'const op field'

  @returns true if function is a simple predicate, false otherwise.
*/

bool is_simple_predicate(Item_func *func_item, Item **args, bool *inv_order) {
  Item *item;
  *inv_order = false;
  switch (func_item->argument_count()) {
    case 0:
      /* MULT_EQUAL_FUNC */
      {
        Item_equal *item_equal = down_cast<Item_equal *>(func_item);
        args[0] = item_equal->get_first();
        if (item_equal->members() > 1) return false;
        if (!(args[1] = item_equal->const_arg())) return false;
      }
      break;
    case 1:
      /* field IS NULL */
      item = func_item->arguments()[0];
      if (item->type() != Item::FIELD_ITEM) return false;
      args[0] = item;
      break;
    case 2:
      /* 'field op const' or 'const op field' */
      item = func_item->arguments()[0];
      if (item->type() == Item::FIELD_ITEM) {
        args[0] = item;
        item = func_item->arguments()[1];
        if (!item->const_for_execution()) return false;
        args[1] = item;
      } else if (item->const_for_execution()) {
        args[1] = item;
        item = func_item->arguments()[1];
        if (item->type() != Item::FIELD_ITEM) return false;
        args[0] = item;
        *inv_order = true;
      } else
        return false;
      break;
    case 3:
      /* field BETWEEN const AND const */
      item = func_item->arguments()[0];
      if (item->type() != Item::FIELD_ITEM) return false;
      args[0] = item;
      for (int i = 1; i <= 2; i++) {
        item = func_item->arguments()[i];
        if (!item->const_for_execution()) return false;
        args[i] = item;
      }
  }
  return true;
}

/**
  Check whether a condition matches a key to get {MAX|MIN}(field):.

   For the index specified by the keyinfo parameter and an index that
   contains the field as its component (field_part), the function
   checks whether

   - the condition cond is a conjunction,
   - all of its conjuncts refer to columns of the same table, and
   - each conjunct is on one of the following forms:
     - f_i = const_i or const_i = f_i or f_i IS NULL,
       where f_i is part of the index
     - field {<|<=|>=|>|=} const
     - const {<|<=|>=|>|=} field
     - field BETWEEN const_1 AND const_2

   As a side-effect, the key value to be used for looking up the MIN/MAX value
   is actually stored inside the Field object. An interesting feature is that
   the function will find the most restrictive endpoint by over-eager
   evaluation of the @c WHERE condition. It continually stores the current
   endpoint inside the Field object. For a query such as

   @code
   SELECT MIN(a) FROM t1 WHERE a > 3 AND a > 5;
   @endcode

   the algorithm will recurse over the conjunction, storing first a 3 in the
   field. In the next recursive invocation the expression a > 5 is evaluated
   as 3 > 5 (Due to the dual nature of Field objects as value carriers and
   field identifiers), which will obviously fail, leading to 5 being stored in
   the Field object.

   @param[in]     max_fl         Set to true if we are optimizing MAX(),
                                 false means we are optimizing %MIN()
   @param[in, out] ref           Reference to the structure where the function
                                 stores the key value
   @param[in]     keyinfo        Reference to the key info
   @param[in]     field_part     Pointer to the key part for the field
   @param[in]     cond           WHERE condition
   @param[in]     map            Table map for the key
   @param[in,out] key_part_used  Map of matchings parts. The function will
  output the set of key parts actually being matched in this set, yet it relies
  on the caller to initialize the value to zero. This is due to the fact that
  this value is passed recursively.
   @param[in,out] range_fl       Says whether endpoints use strict greater/less
                                 than.
   @param[out]    prefix_len     Length of common key part for the range
                                 where MAX/MIN is searched for

  @retval
    false    Index can't be used.
  @retval
    true     We can use the index to get MIN/MAX value
*/

static bool matching_cond(bool max_fl, Index_lookup *ref, KEY *keyinfo,
                          KEY_PART_INFO *field_part, Item *cond, table_map map,
                          key_part_map *key_part_used, uint *range_fl,
                          uint *prefix_len) {
  DBUG_TRACE;
  if (!cond) return true;

  if (!(cond->used_tables() & map)) {
    /* Condition doesn't restrict the used table */
    return true;
  }
  if (cond->type() == Item::COND_ITEM) {
    if (((Item_cond *)cond)->functype() == Item_func::COND_OR_FUNC)
      return false;

    /* AND */
    List_iterator_fast<Item> li(*((Item_cond *)cond)->argument_list());
    Item *item;
    while ((item = li++)) {
      if (!matching_cond(max_fl, ref, keyinfo, field_part, item, map,
                         key_part_used, range_fl, prefix_len))
        return false;
    }
    return true;
  }

  if (cond->type() != Item::FUNC_ITEM)
    return false;  // Not operator, can't optimize

  bool eq_type = false;          // =, <=> or IS NULL
  bool is_null_safe_eq = false;  // The operator is NULL safe, e.g. <=>
  bool noeq_type = false;        // < or >
  bool less_fl = false;          // < or <=
  bool is_null = false;          // IS NULL
  bool between = false;          // BETWEEN ... AND ...

  switch (((Item_func *)cond)->functype()) {
    case Item_func::ISNULL_FUNC:
      is_null = true;
      [[fallthrough]];
    case Item_func::EQ_FUNC:
      eq_type = true;
      break;
    case Item_func::EQUAL_FUNC:
      eq_type = is_null_safe_eq = true;
      break;
    case Item_func::LT_FUNC:
      noeq_type = true;
      [[fallthrough]];
    case Item_func::LE_FUNC:
      less_fl = true;
      break;
    case Item_func::GT_FUNC:
      noeq_type = true;
      [[fallthrough]];
    case Item_func::GE_FUNC:
      break;
    case Item_func::BETWEEN:
      between = true;

      // NOT BETWEEN is equivalent to OR and is therefore not a conjunction
      if (((Item_func_between *)cond)->negated) return false;

      break;
    case Item_func::MULT_EQUAL_FUNC:
      eq_type = true;
      break;
    default:
      return false;  // Can't optimize function
  }

  Item *args[3];
  bool inv;

  /* Test if this is a comparison of a field and constant */
  if (!is_simple_predicate(down_cast<Item_func *>(cond), args, &inv))
    return false;

  if (!is_null_safe_eq && !is_null &&
      (args[1]->is_null() || (between && args[2]->is_null())))
    return false;

  if (inv && !eq_type) less_fl = !less_fl;  // Convert '<' -> '>' (etc)

  /* Check if field is part of the tested partial key */
  uchar *key_ptr = ref->key_buff;
  KEY_PART_INFO *part;
  for (part = keyinfo->key_part;; key_ptr += part++->store_length)

  {
    if (part > field_part) return false;  // Field is beyond the tested parts
    if (part->field->eq(((Item_field *)args[0])->field))
      break;  // Found a part of the key for the field
  }

  bool is_field_part = part == field_part;
  if (!(is_field_part || eq_type)) return false;

  key_part_map org_key_part_used = *key_part_used;
  if (eq_type || between || max_fl == less_fl) {
    size_t length = (key_ptr - ref->key_buff) + part->store_length;
    if (ref->key_length < length) {
      /* Ultimately ref->key_length will contain the length of the search key */
      ref->key_length = length;
      ref->key_parts = (part - keyinfo->key_part) + 1;
    }
    if (!*prefix_len && part + 1 == field_part) *prefix_len = length;
    if (is_field_part && eq_type) *prefix_len = ref->key_length;

    *key_part_used |= (key_part_map)1 << (part - keyinfo->key_part);
  }

  if (org_key_part_used == *key_part_used &&
      /*
        The current search key is not being extended with a new key part.  This
        means that the a condition is added a key part for which there was a
        previous condition. We can only overwrite such key parts in some special
        cases, e.g. a > 2 AND a > 1 (here range_fl must be set to something). In
        all other cases the WHERE condition is always false anyway.
      */
      (eq_type || *range_fl == 0))
    return false;

  if (org_key_part_used != *key_part_used ||
      (is_field_part && (between || eq_type || max_fl == less_fl) &&
       !cond->val_int())) {
    /*
      It's the first predicate for this part or a predicate of the
      following form  that moves upper/lower bounds for max/min values:
      - field BETWEEN const AND const
      - field = const
      - field {<|<=} const, when searching for MAX
      - field {>|>=} const, when searching for MIN
    */

    if (is_null || (is_null_safe_eq && args[1]->is_null())) {
      /*
        If we have a non-nullable index, we cannot use it,
        since set_null will be ignored, and we will compare uninitialized data.
      */
      if (!part->field->is_nullable()) return false;
      part->field->set_null();
      *key_ptr = (uchar)1;
    } else {
      /* Update endpoints for MAX/MIN, see function comment. */
      Item *value = args[between && max_fl ? 2 : 1];

      /*
        A perfect save is necessary. Truncated / incorrect value can result
        in an incorrect index lookup. Truncation of trailing space is ignored
        for strings with a PAD SPACE collation. (When trailing space has been
        removed, TYPE_NOTE_TRUNCATED is returned. Not to be confused with
        TYPE_WARN_TRUNCATED, which is returned when non-space has been removed.)

        TODO(khatlen): It might be better if string literals that need
        truncation are handled during constant folding, so that we only need to
        check for TYPE_OK here. analyze_field_constant() does not yet handle
        string constants.
      */
      type_conversion_status retval =
          value->save_in_field_no_warnings(part->field, true);
      if (!(retval == TYPE_OK ||
            (retval == TYPE_NOTE_TRUNCATED && part->field->is_text_key_type() &&
             part->field->charset()->pad_attribute == PAD_SPACE))) {
        return false;
      }

      if (part->null_bit) *key_ptr++ = (uchar)(part->field->is_null());
      part->field->get_key_image(key_ptr, part->length, Field::itRAW);
    }
    if (is_field_part) {
      if (between || eq_type)
        *range_fl &= ~(NO_MAX_RANGE | NO_MIN_RANGE);
      else {
        *range_fl &= ~(max_fl ? NO_MAX_RANGE : NO_MIN_RANGE);
        if (noeq_type)
          *range_fl |= (max_fl ? NEAR_MAX : NEAR_MIN);
        else
          *range_fl &= ~(max_fl ? NEAR_MAX : NEAR_MIN);
      }
    }
  } else if (eq_type) {
    if ((!is_null && !cond->val_int()) || (is_null && !part->field->is_null()))
      return false;  // Impossible test
  } else if (is_field_part)
    *range_fl &= ~(max_fl ? NO_MIN_RANGE : NO_MAX_RANGE);
  return true;
}

/**
  Check whether we can get value for {max|min}(field) by using a key.

     If where-condition is not a conjunction of 0 or more conjuct the
     function returns false, otherwise it checks whether there is an
     index including field as its k-th component/part such that:

     -# for each previous component f_i there is one and only one conjunct
        of the form: f_i= const_i or const_i= f_i or f_i is null
     -# references to field occur only in conjucts of the form:
        field {<|<=|>=|>|=} const or const {<|<=|>=|>|=} field or
        field BETWEEN const1 AND const2
     -# all references to the columns from the same table as column field
        occur only in conjucts mentioned above.
     -# each of k first components the index is not partial, i.e. is not
        defined on a fixed length proper prefix of the field.

     If such an index exists the function through the ref parameter
     returns the key value to find max/min for the field using the index,
     the length of first (k-1) components of the key and flags saying
     how to apply the key for the search max/min value.
     (if we have a condition field = const, prefix_len contains the length
     of the whole search key)

  @param[in]     max_fl      0 for MIN(field) / 1 for MAX(field)
  @param[in,out] ref         Reference to the structure we store the key value
  @param[in]     item_field  Field used inside MIN() / MAX()
  @param[in]     cond        WHERE condition
  @param[out]    range_fl    Bit flags for how to search if key is ok
  @param[out]    prefix_len  Length of prefix for the search range

  @note
    This function may set field->table->key_read to true,
    which must be reset after index is used!
    (This can only happen when function returns 1)

  @returns true if index can be used to optimize MIN()/MAX(), false otherwise.
           If true, ref, range_fl and prefix_len are updated
*/

static bool find_key_for_maxmin(bool max_fl, Index_lookup *ref,
                                Item_field *item_field, Item *cond,
                                uint *range_fl, uint *prefix_len) {
  Field *const field = item_field->field;

  if (!field->is_flag_set(PART_KEY_FLAG)) return false;  // Not key field

  DBUG_TRACE;

  TABLE *const table = field->table;
  uint idx = 0;

  KEY *keyinfo, *keyinfo_end;
  for (keyinfo = table->key_info, keyinfo_end = keyinfo + table->s->keys;
       keyinfo != keyinfo_end; keyinfo++, idx++) {
    KEY_PART_INFO *part, *part_end;
    key_part_map key_part_to_use = 0;
    /*
      Perform a check if index is not disabled by ALTER TABLE
      or IGNORE INDEX.
    */
    if (!table->keys_in_use_for_query.is_set(idx)) continue;
    uint jdx = 0;
    *prefix_len = 0;
    for (part = keyinfo->key_part, part_end = part + actual_key_parts(keyinfo);
         part != part_end;
         part++, jdx++, key_part_to_use = (key_part_to_use << 1) | 1) {
      if (!(table->file->index_flags(idx, jdx, false) & HA_READ_ORDER))
        return false;
      // Due to lack of time, currently only ASC keyparts are supported.
      if (part->key_part_flag & HA_REVERSE_SORT) break;

      /* Check whether the index component is partial */
      Field *part_field = table->field[part->fieldnr - 1];
      if (part_field->is_flag_set(BLOB_FLAG) ||
          part->length < part_field->key_length())
        break;

      if (field->eq(part->field)) {
        ref->key = idx;
        ref->key_length = 0;
        ref->key_parts = 0;
        key_part_map key_part_used = 0;
        *range_fl = NO_MIN_RANGE | NO_MAX_RANGE;
        if (matching_cond(max_fl, ref, keyinfo, part, cond,
                          item_field->table_ref->map(), &key_part_used,
                          range_fl, prefix_len) &&
            !(key_part_to_use & ~key_part_used)) {
          if (!max_fl && key_part_used == key_part_to_use && part->null_bit) {
            /*
              The query is on this form:

              SELECT MIN(key_part_k)
              FROM t1
              WHERE key_part_1 = const and ... and key_part_k-1 = const

              If key_part_k is nullable, we want to find the first matching row
              where key_part_k is not null. The key buffer is now {const, ...,
              NULL}. This will be passed to the handler along with a flag
              indicating open interval. If a tuple is read that does not match
              these search criteria, an attempt will be made to read an exact
              match for the key buffer.
            */
            /* Set the first byte of key_part_k to 1, that means NULL */
            ref->key_buff[ref->key_length] = 1;
            ref->key_length += part->store_length;
            ref->key_parts++;
            assert(ref->key_parts == jdx + 1);
            *range_fl &= ~NO_MIN_RANGE;
            *range_fl |= NEAR_MIN;  // Open interval
          }
          /*
            The following test is false when the key in the key tree is
            converted (for example to upper case)
          */
          if (field->part_of_key.is_set(idx)) table->set_keyread(true);
          return true;
        }
      }
    }
  }
  return false;
}

/**
  Check whether found key is in range specified by conditions.

  @param[in] max_fl         false for MIN(field) / true for MAX(field)
  @param[in] ref            Reference to the key value and info
  @param[in] item_field     Item representing field used in MIN/MAX expression
  @param[in] cond           Condition to check
                            nullptr means that all keys are within the range.
  @param[in] range_fl       Says whether there is a condition to to be checked
  @param[in] prefix_len     Length of the constant part of the key

  @returns true if the condition is not true for the found row, false otherwise.
*/

static bool reckey_in_range(bool max_fl, Index_lookup *ref,
                            Item_field *item_field, Item *cond, uint range_fl,
                            uint prefix_len) {
  if (key_cmp_if_same(item_field->field->table, ref->key_buff, ref->key,
                      prefix_len))
    return true;
  if (cond == nullptr) return false;
  // Constant conditions which were not evaluated earlier (in optimize_cond())
  // should be evaluated now.
  if (cond->const_for_execution()) return (cond->val_int() == 0);
  if (range_fl & (max_fl ? NO_MIN_RANGE : NO_MAX_RANGE)) return false;
  return maxmin_in_range(max_fl, item_field, cond);
}

/**
  Check whether {MAX|MIN}(field) is in range specified by conditions.

  @param[in] max_fl      false for MIN(field) / true for MAX(field)
  @param[in] item_field  Item representing field used in MIN/MAX expression
  @param[in] cond        Condition to check

  @returns true if condition is not true for the found row, otherwise false.
*/

static bool maxmin_in_range(bool max_fl, Item_field *item_field, Item *cond) {
  /* If AND/OR condition */
  if (cond->type() == Item::COND_ITEM) {
    List_iterator_fast<Item> li(*down_cast<Item_cond *>(cond)->argument_list());
    Item *item;
    while ((item = li++)) {
      if (maxmin_in_range(max_fl, item_field, item)) return true;
    }
    return false;
  }

  // Check that condition actually references the specific table
  if ((cond->used_tables() & item_field->table_ref->map()) == 0) return false;
  bool less_fl = false;
  switch (down_cast<Item_func *>(cond)->functype()) {
    case Item_func::BETWEEN:
      return cond->val_int() == 0;
    case Item_func::LT_FUNC:
    case Item_func::LE_FUNC:
      less_fl = true;
      [[fallthrough]];
    case Item_func::GT_FUNC:
    case Item_func::GE_FUNC: {
      Item *item = down_cast<Item_func *>(cond)->arguments()[1];
      /* In case of 'const op item' we have to swap the operator */
      if (!item->const_for_execution()) less_fl = !less_fl;
      /*
        We only have to check the expression if we are using an expression like
        SELECT MAX(b) FROM t1 WHERE a=const AND b>const
        not for
        SELECT MAX(b) FROM t1 WHERE a=const AND b<const
      */
      if (max_fl != less_fl)
        return cond->val_int() == 0;  // Return true if condition is false
      return false;
    }
    case Item_func::EQ_FUNC:
    case Item_func::EQUAL_FUNC:
    case Item_func::MULT_EQUAL_FUNC:
    case Item_func::ISNULL_FUNC:
      break;
    default:          // Keep compiler happy
      assert(false);  // Impossible
      break;
  }
  return false;
}