1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
|
/* Copyright (c) 2011, 2025, Oracle and/or its affiliates.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is designed to work with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have either included with
the program or referenced in the documentation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
#ifndef RPL_RLI_PDB_H
#define RPL_RLI_PDB_H
#include <stdarg.h>
#include <sys/types.h>
#include <time.h>
#include <atomic>
#include <tuple>
#include "libbinlogevents/include/binlog_event.h"
#include "my_bitmap.h"
#include "my_compiler.h"
#include "my_dbug.h"
#include "my_inttypes.h"
#include "my_io.h"
#include "my_loglevel.h"
#include "my_psi_config.h"
#include "mysql/components/services/bits/mysql_cond_bits.h"
#include "mysql/components/services/bits/mysql_mutex_bits.h"
#include "mysql/components/services/bits/psi_bits.h"
#include "mysql/components/services/bits/psi_mutex_bits.h"
#include "mysql/service_mysql_alloc.h"
#include "prealloced_array.h" // Prealloced_array
#include "sql/log_event.h" // Format_description_log_event
#include "sql/rpl_gtid.h"
#include "sql/rpl_mta_submode.h" // enum_mts_parallel_type
#include "sql/rpl_replica.h" // MTS_WORKER_UNDEF
#include "sql/rpl_rli.h" // Relay_log_info
#include "sql/sql_class.h"
#include "sql/system_variables.h"
class Rpl_info_handler;
class Slave_worker;
struct TABLE;
#ifndef NDEBUG
extern ulong w_rr;
#endif
/**
Legends running throughout the module:
C - Coordinator
CP - checkpoint
W - Worker
B-event event that Begins a group (a transaction)
T-event event that Terminates a group (a transaction)
*/
/* Assigned Partition Hash (APH) entry */
struct db_worker_hash_entry {
uint db_len;
const char *db;
Slave_worker *worker;
/*
The number of transaction pending on this database.
This should only be modified under the lock slave_worker_hash_lock.
*/
long usage;
/*
The list of temp tables belonging to @ db database is
attached to an assigned @c worker to become its thd->temporary_tables.
The list is updated with every ddl incl CREATE, DROP.
It is removed from the entry and merged to the coordinator's
thd->temporary_tables in case of events: slave stops, APH oversize.
*/
TABLE *volatile temporary_tables;
/* todo: relax concurrency to mimic record-level locking.
That is to augmenting the entry with mutex/cond pair
pthread_mutex_t
pthread_cond_t
timestamp updated_at; */
};
bool init_hash_workers(Relay_log_info *rli);
void destroy_hash_workers(Relay_log_info *);
Slave_worker *map_db_to_worker(const char *dbname, Relay_log_info *rli,
db_worker_hash_entry **ptr_entry,
bool need_temp_tables, Slave_worker *w);
Slave_worker *get_least_occupied_worker(Relay_log_info *rli,
Slave_worker_array *workers,
Log_event *ev);
#define SLAVE_INIT_DBS_IN_GROUP 4 // initial allocation for CGEP dynarray
struct Slave_job_group {
Slave_job_group() = default;
/*
We need a custom copy constructor and assign operator because std::atomic<T>
is not copy-constructible.
*/
Slave_job_group(const Slave_job_group &other)
: group_master_log_name(other.group_master_log_name),
group_master_log_pos(other.group_master_log_pos),
group_relay_log_name(other.group_relay_log_name),
group_relay_log_pos(other.group_relay_log_pos),
worker_id(other.worker_id),
worker(other.worker),
total_seqno(other.total_seqno),
master_log_pos(other.master_log_pos),
checkpoint_seqno(other.checkpoint_seqno),
checkpoint_log_pos(other.checkpoint_log_pos),
checkpoint_log_name(other.checkpoint_log_name),
checkpoint_relay_log_pos(other.checkpoint_relay_log_pos),
checkpoint_relay_log_name(other.checkpoint_relay_log_name),
done(other.done.load()),
shifted(other.shifted),
ts(other.ts),
#ifndef NDEBUG
notified(other.notified),
#endif
last_committed(other.last_committed),
sequence_number(other.sequence_number),
new_fd_event(other.new_fd_event) {
}
Slave_job_group &operator=(const Slave_job_group &other) {
group_master_log_name = other.group_master_log_name;
group_master_log_pos = other.group_master_log_pos;
group_relay_log_name = other.group_relay_log_name;
group_relay_log_pos = other.group_relay_log_pos;
worker_id = other.worker_id;
worker = other.worker;
total_seqno = other.total_seqno;
master_log_pos = other.master_log_pos;
checkpoint_seqno = other.checkpoint_seqno;
checkpoint_log_pos = other.checkpoint_log_pos;
checkpoint_log_name = other.checkpoint_log_name;
checkpoint_relay_log_pos = other.checkpoint_relay_log_pos;
checkpoint_relay_log_name = other.checkpoint_relay_log_name;
done.store(other.done.load());
shifted = other.shifted;
ts = other.ts;
#ifndef NDEBUG
notified = other.notified;
#endif
last_committed = other.last_committed;
sequence_number = other.sequence_number;
new_fd_event = other.new_fd_event;
return *this;
}
char *group_master_log_name; // (actually redundant)
/*
T-event lop_pos filled by Worker for CheckPoint (CP)
*/
my_off_t group_master_log_pos;
/*
When relay-log name changes allocates and fill in a new name of relay-log,
otherwise it fills in NULL.
Coordinator keeps track of each Worker has been notified on the updating
to make sure the routine runs once per change.
W checks the value at commit and memorizes a not-NULL.
Freeing unless NULL is left to Coordinator at CP.
*/
char *group_relay_log_name; // The value is last seen relay-log
my_off_t group_relay_log_pos; // filled by W
ulong worker_id;
Slave_worker *worker;
ulonglong total_seqno;
my_off_t master_log_pos; // B-event log_pos
/* checkpoint coord are reset by periodical and special (Rotate event) CP:s */
uint checkpoint_seqno;
my_off_t checkpoint_log_pos; // T-event lop_pos filled by W for CheckPoint
char *checkpoint_log_name;
my_off_t
checkpoint_relay_log_pos; // T-event lop_pos filled by W for CheckPoint
char *checkpoint_relay_log_name;
std::atomic<int32> done; // Flag raised by W, read and reset by Coordinator
ulong shifted; // shift the last CP bitmap at receiving a new CP
time_t ts; // Group's timestamp to update Seconds_behind_master
#ifndef NDEBUG
bool notified{false}; // to debug group_master_log_name change notification
#endif
/* Clock-based scheduler requirement: */
longlong last_committed; // commit parent timestamp
longlong sequence_number; // transaction's logical timestamp
/*
After Coordinator has seen a new FD event, it sets this member to
point to the new event, once per worker. Coordinator does so
when it schedules a first group following the FD event to a worker.
It checks Slave_worker::fd_change_notified flag to decide whether
to do this or not.
When the worker executes the group, it replaces its currently
active FD by the new FD once it takes on the group first event. It
checks this member and resets it after the FD replacement is done.
The member is kind of lock-free. It's updated by Coordinator and
read by Worker without holding any mutex. That's still safe thanks
to Slave_worker::jobs_lock that works as synchronizer, Worker
can't read any stale info.
The member is updated by Coordinator when it decides which Worker
an event following a new FD is to be scheduled.
After Coordinator has chosen a Worker, it queues the event to it
with necessarily taking Slave_worker::jobs_lock. The Worker grabs
the mutex lock later at pulling the event from the queue and
releases the lock before to read from this member.
This sequence of actions shows the write operation always precedes
the read one, and ensures no stale FD info is passed to the
Worker.
*/
Format_description_log_event *new_fd_event;
/*
Coordinator fills the struct with defaults and options at starting of
a group distribution.
*/
void reset(my_off_t master_pos, ulonglong seqno) {
master_log_pos = master_pos;
group_master_log_pos = group_relay_log_pos = 0;
group_master_log_name = nullptr; // todo: remove
group_relay_log_name = nullptr;
worker_id = MTS_WORKER_UNDEF;
total_seqno = seqno;
checkpoint_log_name = nullptr;
checkpoint_log_pos = 0;
checkpoint_relay_log_name = nullptr;
checkpoint_relay_log_pos = 0;
checkpoint_seqno = (uint)-1;
done = 0;
ts = 0;
#ifndef NDEBUG
notified = false;
#endif
last_committed = SEQ_UNINIT;
sequence_number = SEQ_UNINIT;
new_fd_event = nullptr;
}
};
/**
The class defines a type of queue with a predefined max capacity that is
implemented using the circular memory buffer.
That is items of the queue are accessed as indexed elements of
the array buffer in a way that when the index value reaches
a max value it wraps around to point to the first buffer element.
*/
template <typename Element_type>
class circular_buffer_queue {
public:
Prealloced_array<Element_type, 1> m_Q;
/**
The capacity and maximum length of the queue in terms of element.
*/
size_t capacity;
/**
Its value modulo `capacity` is index of the element where the next element
will be enqueued. It's entry+length. It may be bigger than capacity, but
will be smaller than 2*capacity.
*/
size_t avail;
/**
The head index of the queue. It is an index of next element that will be
dequeued. It is less than capacity, so it is an actual index (in contrast
to `avail`), don't need to be calculated modulo `capacity`.
*/
size_t entry;
/**
Actual length. It can be read while not protected by any mutex.
*/
std::atomic<size_t> len;
bool inited_queue;
circular_buffer_queue(size_t max)
: m_Q(PSI_INSTRUMENT_ME),
capacity(max),
avail(0),
entry(0),
len(0),
inited_queue(false) {
if (!m_Q.reserve(capacity)) inited_queue = true;
m_Q.resize(capacity);
}
circular_buffer_queue() : m_Q(PSI_INSTRUMENT_ME), inited_queue(false) {}
~circular_buffer_queue() = default;
/**
Content of the being dequeued item is copied to the arg-pointer
location.
@param [out] item A pointer to the being dequeued item.
@return true if an element was returned, false if the queue was empty.
*/
bool de_queue(Element_type *item);
/**
Similar to de_queue but extracting happens from the tail side.
@param [out] item A pointer to the being dequeued item.
@return true if an element was returned, false if the queue was empty.
*/
bool de_tail(Element_type *item);
/**
return the index where the arg item locates
or an error encoded as a value `circular_buffer_queue::error_result`.
*/
size_t en_queue(Element_type *item);
/**
return the value of @c data member of the head of the queue.
*/
Element_type *head_queue() {
if (empty()) return nullptr;
return &m_Q[entry];
}
/* index is within the valid range */
bool in(size_t i) {
return (avail >= capacity) ? (entry <= i || i < avail - capacity)
: (entry <= i && i < avail);
}
size_t get_length() const { return len.load(std::memory_order_relaxed); }
bool empty() const { return get_length() == 0; }
bool full() const { return get_length() == capacity; }
static constexpr size_t error_result = std::numeric_limits<size_t>::max();
};
/**
Group Assigned Queue whose first element identifies first gap
in committed sequence. The head of the queue is therefore next to
the low-water-mark.
*/
class Slave_committed_queue : public circular_buffer_queue<Slave_job_group> {
public:
bool inited;
/* master's Rot-ev exec */
void update_current_binlog(const char *post_rotate);
/*
The last checkpoint time Low-Water-Mark
*/
Slave_job_group lwm;
/* last time processed indexes for each worker */
Prealloced_array<ulonglong, 1> last_done;
/* the being assigned group index in GAQ */
ulong assigned_group_index;
Slave_committed_queue(size_t max, uint n);
~Slave_committed_queue() {
if (inited) {
my_free(lwm.group_relay_log_name);
free_dynamic_items(); // free possibly left allocated strings in GAQ list
}
}
#ifndef NDEBUG
bool count_done(Relay_log_info *rli);
#endif
/* Checkpoint routine refreshes the queue */
size_t move_queue_head(Slave_worker_array *ws);
/* Method is for slave shutdown time cleanup */
void free_dynamic_items();
/*
returns a pointer to Slave_job_group struct instance as indexed by arg
in the circular buffer dyn-array
*/
Slave_job_group *get_job_group(size_t ind) {
assert(ind < capacity);
return &m_Q[ind];
}
/**
Assigns @c assigned_group_index to an index of enqueued item
and returns it.
*/
size_t en_queue(Slave_job_group *item) {
return assigned_group_index =
circular_buffer_queue<Slave_job_group>::en_queue(item);
}
/**
Dequeue from head.
@param [out] item A pointer to the being dequeued item.
@return true if an element was returned, false if the queue was empty.
*/
bool de_queue(Slave_job_group *item) {
return circular_buffer_queue<Slave_job_group>::de_queue(item);
}
/**
Similar to de_queue() but removing an item from the tail side.
@param [out] item A pointer to the being dequeued item.
@return true if an element was returned, false if the queue was empty.
*/
bool de_tail(Slave_job_group *item) {
return circular_buffer_queue<Slave_job_group>::de_tail(item);
}
size_t find_lwm(Slave_job_group **, size_t);
};
/**
@return the index where the arg item has been located
or an error encoded as a value
`circular_buffer_queue::error_result`.
*/
template <typename Element_type>
size_t circular_buffer_queue<Element_type>::en_queue(Element_type *item) {
if (full()) {
return error_result;
}
const auto ret = (avail++) % capacity;
m_Q[ret] = *item;
len++;
assert(len == avail - entry);
assert(entry < avail);
return ret;
}
/**
Dequeue from head.
@param [out] item A pointer to the being dequeued item.
@return true if an element was returned, false if the queue was empty.
*/
template <typename Element_type>
bool circular_buffer_queue<Element_type>::de_queue(Element_type *item) {
if (empty()) {
return false;
}
*item = m_Q[entry++];
len--;
assert(len == avail - entry);
assert(entry <= avail);
// The start of the queue just have returned to the first index. Normalize
// indexes so they are small again.
if (entry == capacity) {
entry = 0;
avail -= capacity;
assert(avail < capacity);
assert(avail == len);
}
return true;
}
template <typename Element_type>
bool circular_buffer_queue<Element_type>::de_tail(Element_type *item) {
if (empty()) {
return false;
}
assert(avail > entry);
*item = m_Q[(--avail) % capacity];
len--;
assert(len == avail - entry);
return true;
}
class Slave_jobs_queue : public circular_buffer_queue<Slave_job_item> {
public:
Slave_jobs_queue() : circular_buffer_queue<Slave_job_item>() {}
/*
Coordinator marks with true, Worker signals back at queue back to
available
*/
bool overfill;
ulonglong waited_overfill;
};
class Slave_worker : public Relay_log_info {
public:
Slave_worker(Relay_log_info *rli,
#ifdef HAVE_PSI_INTERFACE
PSI_mutex_key *param_key_info_run_lock,
PSI_mutex_key *param_key_info_data_lock,
PSI_mutex_key *param_key_info_sleep_lock,
PSI_mutex_key *param_key_info_thd_lock,
PSI_mutex_key *param_key_info_data_cond,
PSI_mutex_key *param_key_info_start_cond,
PSI_mutex_key *param_key_info_stop_cond,
PSI_mutex_key *param_key_info_sleep_cond,
#endif
uint param_id, const char *param_channel);
~Slave_worker() override;
Slave_jobs_queue jobs; // assignment queue containing events to execute
mysql_mutex_t jobs_lock; // mutex for the jobs queue
mysql_cond_t jobs_cond; // condition variable for the jobs queue
Relay_log_info *c_rli; // pointer to Coordinator's rli
Prealloced_array<db_worker_hash_entry *, SLAVE_INIT_DBS_IN_GROUP>
curr_group_exec_parts; // Current Group Executed Partitions
#ifndef NDEBUG
bool curr_group_seen_sequence_number; // is set to true about starts_group()
#endif
ulong id; // numeric identifier of the Worker
/*
Worker runtime statistics
*/
// the index in GAQ of the last processed group by this Worker
volatile ulong last_group_done_index;
ulonglong
last_groups_assigned_index; // index of previous group assigned to worker
ulong wq_empty_waits; // how many times got idle
ulong events_done; // how many events (statements) processed
ulong groups_done; // how many groups (transactions) processed
volatile int curr_jobs; // number of active assignments
// number of partitions allocated to the worker at point in time
long usage_partition;
// symmetric to rli->mts_end_group_sets_max_dbs
bool end_group_sets_max_dbs;
volatile bool relay_log_change_notified; // Coord sets and resets, W can read
volatile bool checkpoint_notified; // Coord sets and resets, W can read
volatile bool
master_log_change_notified; // Coord sets and resets, W can read
/*
The variable serves to Coordinator as a memo to itself
to notify a Worker about the fact that a new FD has been read.
Normally, the value is true, to mean the Worker is notified.
When Coordinator reads a new FD it changes the value to false.
When Coordinator schedules to a Worker the first event following the new FD,
it propagates the new FD to the Worker through
Slave_job_group::new_fd_event. Afterwards Coordinator returns the value back
to the regular true, to denote things done. Worker will adapt to the new FD
once it takes on a first event of the marked group.
*/
bool fd_change_notified;
ulong bitmap_shifted; // shift the last bitmap at receiving new CP
// WQ current excess above the overrun level
long wq_overrun_cnt;
/*
number of events starting from which Worker queue is regarded as
close to full. The number of the excessive events yields a weight factor
to compute Coordinator's nap.
*/
ulong overrun_level;
/*
reverse to overrun: the number of events below which Worker is
considered under-running
*/
ulong underrun_level;
/*
Total of increments done to rli->mts_wq_excess_cnt on behalf of this worker.
When WQ length is dropped below overrun the counter is reset.
*/
ulong excess_cnt;
/*
Coordinates of the last CheckPoint (CP) this Worker has
acknowledged; part of is persistent data
*/
char checkpoint_relay_log_name[FN_REFLEN];
ulonglong checkpoint_relay_log_pos;
char checkpoint_master_log_name[FN_REFLEN];
ulonglong checkpoint_master_log_pos;
MY_BITMAP group_executed; // bitmap describes groups executed after last CP
MY_BITMAP group_shifted; // temporary bitmap to compute group_executed
ulong
worker_checkpoint_seqno; // the most significant ON bit in group_executed
/* Initial value of FD-for-execution version until it's gets known. */
ulong server_version;
enum en_running_state {
NOT_RUNNING = 0,
RUNNING = 1,
ERROR_LEAVING = 2, // is set by Worker
STOP = 3, // is set by Coordinator upon receiving STOP
STOP_ACCEPTED =
4 // is set by worker upon completing job when STOP SLAVE is issued
};
/*
This function is used to make a copy of the worker object before we
destroy it on STOP SLAVE. This new object is then used to report the
worker status until next START SLAVE following which the new worker objects
will be used.
*/
void copy_values_for_PFS(ulong worker_id, en_running_state running_status,
THD *worker_thd, const Error &last_error,
Gtid_monitoring_info *monitoring_info_arg);
/*
The running status is guarded by jobs_lock mutex that a writer
Coordinator or Worker itself needs to hold when write a new value.
*/
en_running_state volatile running_status;
/*
exit_incremented indicates whether worker has contributed to max updated
index. By default it is set to false. When the worker contributes for the
first time this variable is set to true.
*/
bool exit_incremented;
int init_worker(Relay_log_info *, ulong);
int rli_init_info(bool);
int flush_info(bool force = false);
static size_t get_number_worker_fields();
/**
Sets bits for columns that are allowed to be `NULL`.
@param nullable_fields the bitmap to hold the nullable fields.
*/
static void set_nullable_fields(MY_BITMAP *nullable_fields);
void slave_worker_ends_group(Log_event *, int);
const char *get_master_log_name();
ulonglong get_master_log_pos() { return master_log_pos; }
ulonglong set_master_log_pos(ulong val) { return master_log_pos = val; }
bool commit_positions(Log_event *evt, Slave_job_group *ptr_g, bool force);
/**
The method is a wrapper to provide uniform interface with STS and is
to be called from Relay_log_info and Slave_worker pre_commit() methods.
*/
bool commit_positions() override {
assert(current_event);
return commit_positions(
current_event, c_rli->gaq->get_job_group(current_event->mts_group_idx),
is_transactional());
}
/**
See the comments for STS version of this method.
*/
void post_commit(bool on_rollback) override {
if (on_rollback) {
if (is_transactional())
rollback_positions(
c_rli->gaq->get_job_group(current_event->mts_group_idx));
} else if (!is_transactional())
commit_positions(current_event,
c_rli->gaq->get_job_group(current_event->mts_group_idx),
true);
}
/*
When commit fails clear bitmap for executed worker group. Revert back the
positions to the old positions that existed before commit using the
checkpoint.
@param Slave_job_group a pointer to Slave_job_group struct instance which
holds group master log pos, group relay log pos and checkpoint positions.
*/
void rollback_positions(Slave_job_group *ptr_g);
bool reset_recovery_info();
/**
The method runs at Worker initialization, at runtime when
Coordinator supplied a new FD event for execution context, and at
the Worker pool shutdown.
Similarly to the Coordinator's
Relay_log_info::set_rli_description_event() the possibly existing
old FD is destroyed, carefully; each worker decrements
Format_description_log_event::atomic_usage_counter and when it is made
zero the destructor runs.
Unlike to Coordinator's role, the usage counter of the new FD is *not*
incremented, see @c Log_event::get_slave_worker() where and why it's done
there.
Notice, the method is run as well by Coordinator per each Worker at MTS
shutdown time.
Todo: consider to merge logics of the method with that of
Relay_log_info class.
@param fdle pointer to a new Format_description_log_event
@return 1 if an error was encountered, 0 otherwise.
*/
int set_rli_description_event(Format_description_log_event *fdle) override {
DBUG_TRACE;
if (fdle) {
/*
When the master rotates its binary log, set gtid_next to
NOT_YET_DETERMINED. This tells the slave thread that:
- If a Gtid_log_event is read subsequently, gtid_next will be set to the
given GTID (this is done in gtid_pre_statement_checks()).
- If a statement is executed before any Gtid_log_event, then gtid_next
is set to anonymous (this is done in Gtid_log_event::do_apply_event().
It is important to not set GTID_NEXT=NOT_YET_DETERMINED in the middle of
a transaction. If that would happen when GTID_MODE=ON, the next
statement would fail because it implicitly sets GTID_NEXT=ANONYMOUS,
which is disallowed when GTID_MODE=ON. So then there would be no way to
end the transaction; any attempt to do so would result in this error.
There are three possible states when reaching this execution flow point
(see further below for a more detailed explanation on each):
- **No active transaction, and not in a group**: set `gtid_next` to
`NOT_YET_DETERMINED`.
- **No active transaction, and in a group**: do nothing regarding
`gtid_next`.
- **An active transaction exists**: impossible to set `gtid_next` and no
reason to process the `Format_description` event so, trigger an error.
For the sake of correctness, let's defined the meaning of having a
transaction "active" or "in a group".
A transaction is "active" if either BEGIN was executed or autocommit=0
and a DML statement was executed (@see
THD::in_active_multi_stmt_transaction).
A transaction is "in a group" if it is applied by the replication
applier, and the relay log position is between Gtid_log_event and the
committing event (@see Relay_log_info::is_in_group).
The three different states explained further:
**No active transaction, and not in a group**: It is normal to have
gtid_next=automatic/undefined and have a Format_description_log_event in
this condition. We are outside transaction context and should set
gtid_next to not_yet_determined.
**No active transaction, and in a group**: Having
gtid_next=automatic/undefined in a group is impossible if master is 5.7
or later, because the group always starts with a Gtid_log_event or an
Anonymous_gtid_log_event, which will set gtid_next to anonymous or
gtid. But it is possible to have gtid_next=undefined when replicating
from a 5.6 master with gtid_mode=off, because it does not generate any
such event. And then, it is possible to have no active transaction in a
group if the master has logged a DDL as a User_var_log_event followed by
a Query_log_event. The User_var_log_event will start a group, but not
start an active transaction or change gtid_next. In this case, it is
possible that a Format_description_log_event occurs, if the group
(transaction) is broken on two relay logs, so that User_var_log_event
appears at the end of one relay log and Query_log_event at the beginning
of the next one. In such cases, we should not set gtid_next.
**An active transaction exists**: It is possible to have
gtid_next=automatic/undefined in an active transaction, only if
gtid_next=automatic, which is only possible in a client connection using
gtid_next=automatic. In this scenario, there is no reason to execute a
Format_description_log_event. So we generate an error.
*/
if (info_thd->variables.gtid_next.type == AUTOMATIC_GTID ||
info_thd->variables.gtid_next.type == UNDEFINED_GTID) {
bool in_active_multi_stmt =
info_thd->in_active_multi_stmt_transaction();
if (!is_in_group() && !in_active_multi_stmt) {
DBUG_PRINT("info",
("Setting gtid_next.type to NOT_YET_DETERMINED_GTID"));
info_thd->variables.gtid_next.set_not_yet_determined();
} else if (in_active_multi_stmt) {
my_error(ER_VARIABLE_NOT_SETTABLE_IN_TRANSACTION, MYF(0),
"gtid_next");
return 1;
}
}
adapt_to_master_version_updown(fdle->get_product_version(),
get_master_server_version());
}
if (rli_description_event) {
assert(rli_description_event->atomic_usage_counter > 0);
if (--rli_description_event->atomic_usage_counter == 0) {
/* The being deleted by Worker FD can't be the latest one */
assert(rli_description_event != c_rli->get_rli_description_event());
delete rli_description_event;
}
}
rli_description_event = fdle;
return 0;
}
inline void reset_gaq_index() { gaq_index = c_rli->gaq->capacity; }
inline void set_gaq_index(ulong val) {
if (gaq_index == c_rli->gaq->capacity) gaq_index = val;
}
int slave_worker_exec_event(Log_event *ev);
/**
Make the necessary changes to both the `Slave_worker` and current
`Log_event` objects, before retrying to apply the transaction.
Since the event is going to be re-read from the relay-log file, there
may be actions needed to be taken to reset the state both of `this`
instance, as well as of the current `Log_event` being processed.
@param event The `Log_event` object currently being processed.
*/
void prepare_for_retry(Log_event &event);
/**
Checks if the transaction can be retried, and if not, reports an error.
@param[in] thd The THD object of current thread.
@returns std::tuple<bool, bool, uint> where each element has
following meaning:
first element of tuple is function return value and determines:
false if the transaction should be retried
true if the transaction should not be retried
second element of tuple determines:
the function will set the value to true, in case the retry
should be "silent". Silent means that the caller should not
report it in performance_schema tables, write to the error log,
or sleep. Currently, silent is used by NDB only.
third element of tuple determines:
If the caller should report any other error than that stored in
thd->get_stmt_da()->mysql_errno(), then this function will store
that error in this third element of the tuple.
*/
std::tuple<bool, bool, uint> check_and_report_end_of_retries(THD *thd);
/**
It is called after an error happens. It checks if that is an temporary
error and if the transaction should be retried. Then it will retry the
transaction if it is allowed. Retry policy and logic is similar to
single-threaded slave.
@param[in] start_relay_pos The offset of the transaction's first event.
@param[in] start_event_relay_log_name The name of the relay log which
includes the first event of the transaction.
@param[in] end_relay_pos The offset of the last event it should retry.
@param[in] end_event_relay_log_name The name of the relay log which
includes the last event it should retry.
@retval false if transaction succeeds (possibly after a number of retries)
@retval true if transaction fails
*/
bool retry_transaction(my_off_t start_relay_pos,
const char *start_event_relay_log_name,
my_off_t end_relay_pos,
const char *end_event_relay_log_name);
bool set_info_search_keys(Rpl_info_handler *to) override;
/**
Get coordinator's RLI. Especially used get the rli from
a slave thread, like this: thd->rli_slave->get_c_rli();
thd could be a SQL thread or a worker thread.
*/
Relay_log_info *get_c_rli() override { return c_rli; }
/**
return an extension "for channel channel_name"
for error messages per channel
*/
const char *get_for_channel_str(bool upper_case = false) const override;
longlong sequence_number() {
Slave_job_group *ptr_g = c_rli->gaq->get_job_group(gaq_index);
return ptr_g->sequence_number;
}
/**
Return true if replica-preserve-commit-order is enabled and an
earlier transaction is waiting for a row-level lock held by this
transaction.
*/
bool found_commit_order_deadlock();
/**
Called when replica-preserve-commit-order is enabled, by the worker
processing an earlier transaction that waits on a row-level lock
held by this worker's transaction.
*/
void report_commit_order_deadlock();
/**
@return either the master server version as extracted from the last
installed Format_description_log_event, or when it was not
installed then the slave own server version.
*/
ulong get_master_server_version() {
return !get_rli_description_event()
? server_version
: get_rli_description_event()->get_product_version();
}
protected:
void do_report(loglevel level, int err_code, const char *msg,
va_list v_args) const override
MY_ATTRIBUTE((format(printf, 4, 0)));
private:
ulong gaq_index; // GAQ index of the current assignment
ulonglong master_log_pos; // event's cached log_pos for possible error report
void end_info();
bool read_info(Rpl_info_handler *from) override;
bool write_info(Rpl_info_handler *to) override;
std::atomic<bool> m_commit_order_deadlock;
/// This flag indicates whether positions were already modified during the
/// event processing, if yes, positions are not updated in the
/// slave_worker_ends_group function
bool m_flag_positions_committed = false;
Slave_worker &operator=(const Slave_worker &info);
Slave_worker(const Slave_worker &info);
bool worker_sleep(ulong seconds);
bool read_and_apply_events(my_off_t start_relay_pos,
const char *start_event_relay_log_name,
my_off_t end_relay_pos,
const char *end_event_relay_log_name);
void assign_partition_db(Log_event *ev);
void reset_commit_order_deadlock();
public:
/**
Returns an array with the expected column numbers of the primary key
fields of the table repository.
*/
static const uint *get_table_pk_field_indexes();
/**
Returns the index of the Channel_name field of the table repository.
*/
static uint get_channel_field_index();
};
bool handle_slave_worker_stop(Slave_worker *worker, Slave_job_item *job_item);
bool set_max_updated_index_on_stop(Slave_worker *worker,
Slave_job_item *job_item);
TABLE *mts_move_temp_table_to_entry(TABLE *, THD *, db_worker_hash_entry *);
TABLE *mts_move_temp_tables_to_thd(THD *, TABLE *);
// Auxiliary function
TABLE *mts_move_temp_tables_to_thd(THD *, TABLE *, enum_mts_parallel_type);
bool append_item_to_jobs(slave_job_item *job_item, Slave_worker *w,
Relay_log_info *rli);
inline Slave_worker *get_thd_worker(const THD *thd) {
return static_cast<Slave_worker *>(thd->rli_slave);
}
int slave_worker_exec_job_group(Slave_worker *w, Relay_log_info *rli);
#endif
|