1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
|
/* Copyright (c) 2018, 2025, Oracle and/or its affiliates.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is designed to work with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have either included with
the program or referenced in the documentation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
/**
@file
@brief Fold constant query expressions. Currently, this is only done at
optimize time, but should eventually be done as much as possible at prepare
time. For dynamic parameters, we'd still need to do it at optimize time.
@defgroup Constant_Folding Query Optimizer
@{
*/
#include "sql/sql_const_folding.h"
#include <assert.h>
#include <float.h> // DBL_MAX, FLT_MAX
#include <stdint.h> // UINT64_MAX
#include <sys/types.h> // uint
#include <utility> // swap
#include "decimal.h" // E_DEC_FATAL_ERROR
#include "field_types.h" // MYSQL_TYPE_DATE
// assert
#include "my_decimal.h" // my_decimal, my_decimal_cmp
#include "my_inttypes.h" // longlong, ulonglong
#include "my_time.h" // TIME_to_longlong_datetime_packed
#include "mysql/udf_registration_types.h" // INT_RESULT, STRING_RESULT
#include "mysql_time.h" // MYSQL_TIME
#include "sql/field.h" // Field_real, Field
#include "sql/item.h" // Item, Item_field, Item_int
#include "sql/item_cmpfunc.h" // Item_bool_func2, Item_cond
#include "sql/item_func.h" // Item_func, Item_func::LE_FUNC
#include "sql/item_timefunc.h" // Item_date_literal
#include "sql/sql_class.h" // THD
#include "sql/sql_list.h" // List_iterator
#include "sql/sql_time.h" // my_time_set, actual_decimals
#include "sql/tztime.h" // Time_zone, my_tz_UTC
#include "sql_string.h" // String
#include "template_utils.h" // down_cast
/**
fold_condition uses analyze_field_constant to analyze constants in
comparisons expressions with a view to fold the expression. The analysis
will determine the range characteristic of the constant, as represented by
one value of this set. In the simple case, if the constant is within the range
of the field to which it is being compared, the value used is RP_INSIDE.
*/
enum Range_placement {
/**
The constant is larger than the highest value in the range
*/
RP_OUTSIDE_HIGH,
/**
The constant is lower than the lowest value in the range
*/
RP_OUTSIDE_LOW,
/**
The constant has the value of the lowest value in the range. Only used
for integer types and the YEAR type.
*/
RP_ON_MIN,
/**
The constant has the value of the highest value in the range. Only used
for integer types and the YEAR type.
*/
RP_ON_MAX,
/**
The constant has a value within the range, but that is *not* on one of the
borders if applicable for the type, cf. RP_ON_MIN and RP_ON_MAX.
*/
RP_INSIDE,
/**
The constant has a value within the range, but was truncated. Used
for DECIMAL if the constant has more precision in the fraction than the
field and for floating point underflow.
*/
RP_INSIDE_TRUNCATED,
/**
The YEAR type has a discontinuous range {0} U [1901, 2155]. If the constant
is larger than 0, but less than 1901, we represent that with this value.
*/
RP_INSIDE_YEAR_HOLE,
/**
The constant has been rounded down, i.e.\ to the left on the number line,
due to restriction on field length (FLOAT or DOUBLE) or because we have a
FLOAT type and the constant given has a mantissa with more significant
digits than allowed for FLOAT.
*/
RP_ROUNDED_DOWN,
/**
The constant has been rounded up, i.e.\ to the right on the number line, due
to restriction on field length (FLOAT or DOUBLE) or because we have a FLOAT
type and the constant given has a mantissa with more significant digits
than allowed for FLOAT.
*/
RP_ROUNDED_UP
};
/**
Minion of analyze_int_field_constant.
Round up or down decimal d, then convert constant to int if possible.
If d has a fraction part, set discount_equal. If it can't be converted to
int, it is out of range, and we fold by setting place accordingly.
@param[in] thd the session context
@param[in, out] const_val the constant we are folding
@param[in, out] place the range placement of the constant as analyzed
@param[in] f the field the constant is being compared to
@param[in] d the decimal value of the constant
@param[in] up true if we are to round up, else we round down
@param[out] discount_equal
set to true of d has a non-zero fraction part
@return true on error
*/
static bool round_fold_or_convert_dec(THD *thd, Item **const_val,
Range_placement *place, Item_field *f,
my_decimal *d, bool up,
bool *discount_equal) {
/*
Round the decimal to next integral value, then try to convert
that to a longlong
*/
my_decimal a, b;
if (my_decimal_floor(E_DEC_FATAL_ERROR, d, &a)) return true;
if (my_decimal_ceiling(E_DEC_FATAL_ERROR, d, &b)) return true;
*discount_equal = my_decimal_cmp(&a, &b) != 0;
longlong ni;
if (!my_decimal2int(0, /* mask: do not generate error in diagnostic area */
up ? &b : &a, f->unsigned_flag, &ni)) {
Item *ni_item = (f->unsigned_flag ? new (thd->mem_root) Item_uint(ni)
: new (thd->mem_root) Item_int(ni));
if (ni_item == nullptr) return true;
thd->change_item_tree(const_val, ni_item);
} else {
*place = d->sign() ? RP_OUTSIDE_LOW : RP_OUTSIDE_HIGH;
}
return false;
}
/**
Minion of analyze_int_field_constant.
Analyze decimal d. Convert decimal constant d to int if d has a zero fraction
part and is within integer range. If it can't be converted to
int, it is out of range, and we set place accordingly. If it has a non-zero
fraction part, we fold. Used for = and <>.
@param[in] thd the session context
@param[in, out] const_val the constant we are folding
@param[in, out] place the range placement of the constant as analyzed
@param[in] f the field the constant is being compared to
@param[in] d the decimal value of the constant
@return true on error
*/
static bool fold_or_convert_dec(THD *thd, Item **const_val,
Range_placement *place, Item_field *f,
my_decimal *d) {
my_decimal a, b;
if (my_decimal_ceiling(E_DEC_FATAL_ERROR, d, &a)) return true;
if (my_decimal_floor(E_DEC_FATAL_ERROR, d, &b)) return true;
if (my_decimal_cmp(&a, &b) == 0) {
// no fraction part, so try to convert to int
longlong ni;
if (!my_decimal2int(0 /* mask: want no diagnostics generated */, &a,
f->unsigned_flag, &ni)) {
const auto ni_item =
(f->unsigned_flag ? new (thd->mem_root) Item_uint(ni)
: new (thd->mem_root) Item_int(ni));
if (ni_item == nullptr) return true;
thd->change_item_tree(const_val, ni_item);
return false;
}
}
/*
Either decimal constant has a fraction, or it's out of all integer
range, so cannot be true
*/
*place = RP_OUTSIDE_HIGH; // well, or low, it doesn't matter for =, <>
return false;
}
/**
Minion of analyze_field_constant for integer type fields.
Analyze a constant's placement within (or without) the type range of the
field f. Also normalize the given constant to the type of the field if
applicable.
@param thd the session context
@param f the integer typed field
@param[out] const_val a pointer to an item tree pointer containing the
constant (at execution time). May be modified if
we replace or fold the constant.
@param ft the function type of the comparison
@param left_has_field
the field is the left operand
@param[out] place the placement of the const_val relative to
the range of f
@param[out] discount_equal
set to true: caller should replace GE with GT or LE
with LT.
@returns true on error
*/
static bool analyze_int_field_constant(THD *thd, Item_field *f,
Item **const_val, Item_func::Functype ft,
bool left_has_field,
Range_placement *place,
bool *discount_equal) {
const bool field_unsigned = f->unsigned_flag;
my_decimal *d = nullptr;
my_decimal dec;
switch ((*const_val)->result_type()) {
case INT_RESULT:
break;
case STRING_RESULT: {
if ((*const_val)->type() == Item::VARBIN_ITEM) {
/*
0x digits have STRING_RESULT but are ints in int
context.
*/
break;
}
}
[[fallthrough]];
case REAL_RESULT: {
/*
Try to convert to decimal. If that fails, we know the constant is out of
range for integer too. If it can be converted, continue with the decimal
logic.
*/
const double v = (*const_val)->val_real();
int err = double2decimal(v, &dec);
if (err & E_DEC_OVERFLOW) {
if (v < 0)
*place = RP_OUTSIDE_LOW;
else
*place = RP_OUTSIDE_HIGH;
return false;
}
if (err & E_DEC_TRUNCATED) {
/*
Check for underflow, e.g. 1.7976931348623157E-308 would end up
as decimal 0.0, which means that the floating point values was
marginally greater than 0.0, so we "simulate" this by adding 0.1.
Correspondingly for negative underflow, we subtract 0.1. This is
OK, because we round later.
*/
my_decimal n;
err = int2my_decimal(E_DEC_FATAL_ERROR, 0, false, &n);
assert(err == 0);
assert(my_decimal_cmp(&n, &dec) == 0);
if (v > 0) {
// underflow on the positive side
String s("0.1", thd->charset());
err = str2my_decimal(E_DEC_FATAL_ERROR, s.ptr(), s.length(),
s.charset(), &dec);
assert(err == 0);
} else {
String s("-0.1", thd->charset());
err = str2my_decimal(E_DEC_FATAL_ERROR, s.ptr(), s.length(),
s.charset(), &dec);
assert(err == 0);
}
}
d = &dec;
}
[[fallthrough]];
case DECIMAL_RESULT: {
/*
If out of bounds of longlong, return RP_OUTSIDE_LOW or RP_OUTSIDE_HIGH
as the case may be. If not, if the decimal has a non-zero fraction,
equality cannot be true, so just return an RP_OUTSIDE_*.
For >, >=, < and <=, if we have a non-zero fraction, round up or down
to closest integer, then proceed with the integer constant logic.
For equality and a zero fraction convert to integer and proceed with
the integer constant logic.
*/
my_decimal d_buff;
if (d == nullptr) d = (*const_val)->val_decimal(&d_buff);
if (ft == Item_func::LT_FUNC || ft == Item_func::LE_FUNC) {
/*
Round up (or down if field is the right operand) the decimal to next
integral value, then try to convert that to a longlong, or short
circuit
*/
if (round_fold_or_convert_dec(thd, const_val, place, f, d,
left_has_field, discount_equal))
return true;
if (*place != RP_INSIDE) return false;
} else if (ft == Item_func::GT_FUNC || ft == Item_func::GE_FUNC) {
/*
Round down (or up) the decimal to next integral value, then try to
convert that to a longlong
*/
if (round_fold_or_convert_dec(thd, const_val, place, f, d,
!left_has_field, discount_equal))
return true;
if (*place != RP_INSIDE) return false;
} else { // for =, <>
if (fold_or_convert_dec(thd, const_val, place, f, d)) return true;
if (*place != RP_INSIDE) return false;
}
} break;
default:
return false;
}
longlong s_max = 0;
longlong s_min = 0;
longlong u_max = 0;
switch (f->field->type()) {
case MYSQL_TYPE_TINY:
s_max = INT_MAX8;
s_min = INT_MIN8;
u_max = UINT_MAX8;
break;
case MYSQL_TYPE_SHORT:
s_max = INT_MAX16;
s_min = INT_MIN16;
u_max = UINT_MAX16;
break;
case MYSQL_TYPE_INT24:
s_max = INT_MAX24;
s_min = INT_MIN24;
u_max = UINT_MAX24;
break;
case MYSQL_TYPE_LONG:
s_max = INT_MAX32;
s_min = INT_MIN32;
u_max = UINT_MAX32;
break;
case MYSQL_TYPE_LONGLONG:
// special treatment below
break;
default:
assert(false); /* purecov: inspected */
}
switch (f->field->type()) {
case MYSQL_TYPE_TINY:
case MYSQL_TYPE_SHORT:
case MYSQL_TYPE_INT24:
case MYSQL_TYPE_LONG: {
const longlong v = (*const_val)->val_int();
const bool value_unsigned = (*const_val)->unsigned_flag;
if (field_unsigned) {
/* unsigned field: e.g. for TINYINT, accept [0, 255] */
if (v < 0 && !value_unsigned) {
*place = RP_OUTSIDE_LOW;
} else if (static_cast<ulonglong>(v) > static_cast<ulonglong>(u_max)) {
*place = RP_OUTSIDE_HIGH;
} else if (v == u_max) {
*place = RP_ON_MAX;
} else if (v == 0) {
*place = RP_ON_MIN;
}
} else {
/* signed field: e.g. for TINYINT, accept [-128, 127] */
if (value_unsigned &&
(static_cast<ulonglong>(v) > static_cast<ulonglong>(s_max))) {
*place = RP_OUTSIDE_HIGH;
} else if (v < s_min) {
*place = RP_OUTSIDE_LOW;
} else if (v > s_max) {
*place = RP_OUTSIDE_HIGH;
} else if (v == s_min) {
*place = RP_ON_MIN;
} else if (v == s_max) {
*place = RP_ON_MAX;
}
}
} break;
case MYSQL_TYPE_LONGLONG: {
/*
Since for 64 bits int we don't have the "luxury" of doing the analysis
math in a wider int type, the structure is slightly different than the
checks above.
*/
const longlong v = (*const_val)->val_int();
const bool value_unsigned = (*const_val)->unsigned_flag;
if (field_unsigned) {
/* unsigned field: accept [0, 18446744073709551615] */
if (v < 0 && !value_unsigned) {
*place = RP_OUTSIDE_LOW;
// No need to check (ulonglong)v > (ulonglong)UINT64_MAX): impossible
} else if (static_cast<ulonglong>(v) == UINT64_MAX) {
*place = RP_ON_MAX;
} else if (v == 0) {
*place = RP_ON_MIN;
}
} else {
/* signed field: accept [-9223372036854775808 9223372036854775807] */
if (value_unsigned &&
(static_cast<ulonglong>(v) > static_cast<ulonglong>(INT_MAX64))) {
*place = RP_OUTSIDE_HIGH;
// No need to check v < static_cast<ulonglong>(INT_MIN64): impossible
} else if (!value_unsigned && v == INT_MIN64) {
*place = RP_ON_MIN;
} else if (!value_unsigned && v == INT_MAX64) {
*place = RP_ON_MAX;
}
}
} break;
default:
assert(false); /* purecov: inspected */
}
return false;
}
/**
Minion of analyze_field_constant for decimal type fields
Analyze a constant's placement within (or without) the type range of the
field f. Also normalize the given constant to the type of the field if
applicable.
@param thd the session context
@param f the decimal typed field
@param[out] const_val a pointer to an item tree pointer containing the
constant (at execution time). May be modified if
we replace or fold the constant.
@param ft the function type of the comparison
@param[out] place the placement of the const_val relative to
the range of f
@param[out] negative true if the constant is has a (minus) sign
@returns true on error
*/
static bool analyze_decimal_field_constant(THD *thd, const Item_field *f,
Item **const_val,
Item_func::Functype ft,
Range_placement *place,
bool *negative) {
const auto fd = down_cast<const Field_new_decimal *>(f->field);
const int f_frac = fd->dec;
const int f_intg = fd->precision - f_frac;
bool was_string_or_real = false;
int err;
Item_result ir = (*const_val)->result_type();
/*
If we have a string, it may be anything inside, so assume decimal,
which also recognizes real constants, btw. The exception is the
0xnnn numbers, which also have STRING result type, but should be treated
the same as ints.
*/
if (ir == STRING_RESULT && (*const_val)->type() != Item::VARBIN_ITEM) {
was_string_or_real = true;
ir = DECIMAL_RESULT;
}
switch (ir) {
case STRING_RESULT:
case INT_RESULT: {
my_decimal tmp;
const auto *const d = (*const_val)->val_decimal(&tmp);
if (thd->is_error()) return true;
assert(d != nullptr);
assert(decimal_actual_fraction(d) == 0);
const int actual_intg = decimal_intg(d);
if (actual_intg > f_intg) { // overflow
*place = d->sign() ? RP_OUTSIDE_LOW : RP_OUTSIDE_HIGH;
break;
}
// inside, but convert const to decimal, similar precision as field
my_decimal tmp_ext;
if (decimal_round(d, &tmp_ext, f_frac, FLOOR)) return true;
const auto new_dec = new (thd->mem_root) Item_decimal(&tmp_ext);
if (new_dec == nullptr) return true;
thd->change_item_tree(const_val, new_dec);
} break;
case REAL_RESULT: {
my_decimal val_dec;
double v = (*const_val)->val_real();
err = double2decimal(v, &val_dec);
if (err & E_DEC_OVERFLOW) {
if (v < 0)
*place = RP_OUTSIDE_LOW;
else
*place = RP_OUTSIDE_HIGH;
return false;
}
if (err & E_DEC_TRUNCATED) {
/*
Check for underflow, e.g. 1.7976931348623157E-308 would end up
as decimal 0.0, which means that the floating point values was
marginally greater that 0.0. So, we convert to 0 and compensate
in logic for RP_INSIDE_TRUNCATED in fold_condition.
Similar logic for negative underflow.
*/
*place = RP_INSIDE_TRUNCATED;
*negative = v < 0;
my_decimal tmp;
err = longlong2decimal(0, &tmp);
assert(err == 0);
widen_fraction(f_frac, &tmp);
const auto new_dec = new (thd->mem_root) Item_decimal(&tmp);
if (new_dec == nullptr) return true;
thd->change_item_tree(const_val, new_dec);
return false;
}
was_string_or_real = true;
}
[[fallthrough]];
case DECIMAL_RESULT: {
/*
Decimal constant can have different range and precision
*/
// Dictionary info about decimal field:
// Compute actual (minimal) decimal type of the constant
my_decimal buff, *d;
d = (*const_val)->val_decimal(&buff);
if ((*const_val)->null_value) return false;
assert(d != nullptr);
const int actual_frac = decimal_actual_fraction(d);
const int actual_intg = decimal_intg(d);
const bool overflow = actual_intg > f_intg;
const bool truncation = actual_frac > f_frac;
if (overflow) {
*place = d->sign() ? RP_OUTSIDE_LOW : RP_OUTSIDE_HIGH;
} else if (truncation) {
my_decimal cpy;
my_decimal2decimal(d, &cpy);
if (ft == Item_func::GT_FUNC || ft == Item_func::GE_FUNC ||
ft == Item_func::LT_FUNC || ft == Item_func::LE_FUNC) {
// adjust precision to same as field
if (decimal_round(&cpy, &cpy, f_frac, cpy.sign() ? CEILING : FLOOR))
return true;
*negative = cpy.sign();
const auto new_dec = new (thd->mem_root) Item_decimal(&cpy);
if (new_dec == nullptr) return true;
thd->change_item_tree(const_val, new_dec);
*place = RP_INSIDE_TRUNCATED;
} else {
*place = RP_OUTSIDE_HIGH; // =, <>, so outside: convention use high
}
} else if (d->frac > f_frac) {
// truncate zeros
my_decimal cpy;
my_decimal2decimal(d, &cpy);
if (decimal_round(&cpy, &cpy, f_frac, TRUNCATE)) return true;
const auto new_dec = new (thd->mem_root) Item_decimal(&cpy);
if (new_dec == nullptr) return true;
thd->change_item_tree(const_val, new_dec);
} else if (actual_frac < f_frac) {
my_decimal cpy;
my_decimal2decimal(d, &cpy);
widen_fraction(f_frac, &cpy);
const auto new_dec = new (thd->mem_root) Item_decimal(&cpy);
if (new_dec == nullptr) return true;
thd->change_item_tree(const_val, new_dec);
} else if (was_string_or_real) {
// Make a decimal constant instead
const auto new_dec = new (thd->mem_root) Item_decimal(d);
if (new_dec == nullptr) return true;
thd->change_item_tree(const_val, new_dec);
}
} break;
default:
break;
}
return false;
}
/**
Minion of analyze_field_constant for real type fields
Analyze a constant's placement within (or without) the type range of the
field f. Also normalize the given constant to the type of the field if
applicable.
@param thd the session context
@param f the real (FLOAT, DOUBLE) typed field
@param[out] const_val a pointer to an item tree pointer containing the
constant (at execution time). May be modified if
we replace or fold the constant.
@param[out] place the placement of the const_val relative to
@returns true on error
*/
static bool analyze_real_field_constant(THD *thd, Item_field *f,
Item **const_val,
Range_placement *place) {
switch ((*const_val)->result_type()) {
case REAL_RESULT:
case STRING_RESULT:
case INT_RESULT:
case DECIMAL_RESULT:
/*
Can all be safely converted to a double value. Although we may lose
precision, we won't overflow. Any constants too large for double will
have been caught at parsing time.
*/
break;
default:
assert(false); /* purecov: inspected */
break;
}
double v = (*const_val)->val_real();
const double orig = v;
const bool is_float = f->field->type() == MYSQL_TYPE_FLOAT;
/*
This check/truncation also handles fixed # decimals digits real types, a
MySQL extension, e.g. FLOAT(5,2).
*/
const auto fd = down_cast<Field_real *>(f->field);
Field_real::Truncate_result err =
fd->truncate(&v, (is_float ? FLT_MAX : DBL_MAX));
if (err != Field_real::TR_OK) {
*place = (err == Field_real::TR_NEGATIVE_OVERFLOW ? RP_OUTSIDE_LOW
: RP_OUTSIDE_HIGH);
return false;
}
if (!fd->not_fixed) {
if (is_float) {
v = (float)v;
/*
The number can now have been rounded up or down due to restriction on
field length or a float orig_v in presence of longer mantissa than
allowed for float.
*/
if (v > (float)orig || v < (float)orig) {
*place = v > orig ? RP_ROUNDED_UP : RP_ROUNDED_DOWN;
}
} else {
if (v > orig || v < orig) {
*place = v > orig ? RP_ROUNDED_UP : RP_ROUNDED_DOWN;
}
}
}
/*
Lastly, convert to double representation.
*/
if (v != orig || (*const_val)->type() != Item::REAL_ITEM) {
const auto new_const =
new (thd->mem_root) Item_float(v, DECIMAL_NOT_SPECIFIED);
if (new_const == nullptr) return true;
thd->change_item_tree(const_val, new_const);
}
return false;
}
/**
Minion of analyze_field_constant for YEAR type fields
Analyze a constant's placement within (or without) the type range of the
field f. Also normalize the given constant to the type of the field if
applicable.
@param thd the session context
@param[out] const_val a pointer to an item tree pointer containing the
constant (at execution time). May be modified if
we replace or fold the constant.
@param[out] place the placement of the const_val relative to
@returns true on error
*/
static bool analyze_year_field_constant(THD *thd, Item **const_val,
Range_placement *place) {
if ((*const_val)->data_type() == MYSQL_TYPE_YEAR) {
/*
Decimal, real and string constants have already been converted to int if
they allowed year values, and these as well as integer constants that are
allowed year values have been typed as MYSQL_TYPE_YEAR, cf.
convert_constant_item called during type resolution.
*/
assert((*const_val)->result_type() == INT_RESULT);
const longlong year = (*const_val)->val_int();
if (year == 0)
*place = RP_ON_MIN;
else if (year == Field_year::MAX_YEAR)
*place = RP_ON_MAX;
else
*place = RP_INSIDE;
return false;
}
// The constant is outside allowed year values, so fold.
const Item_result ir = (*const_val)->result_type();
switch (ir) {
case STRING_RESULT:
case DECIMAL_RESULT:
case REAL_RESULT:
case INT_RESULT: {
const double year = (*const_val)->val_real();
if (year > Field_year::MAX_YEAR) {
*place = RP_OUTSIDE_HIGH;
} else if (year < 0.0) {
*place = RP_OUTSIDE_LOW;
} else if (year > 0.0 && year < Field_year::MIN_YEAR) {
/*
These values can be given as constants, but are not allowed to be
stored in the field, so an = or <> comparison can be folded. For
other operations, we treat the constants as if it is inside range,
since a year field may contain 0.
*/
*place = RP_INSIDE_YEAR_HOLE;
// Make sure we have an int constant
if (ir != INT_RESULT) {
const auto i = new (thd->mem_root) Item_int(static_cast<int>(year));
if (i == nullptr) return true;
thd->change_item_tree(const_val, i);
}
} else {
if (ir != INT_RESULT) {
const auto i = new (thd->mem_root) Item_int(static_cast<int>(year));
if (i == nullptr) return true;
thd->change_item_tree(const_val, i);
}
}
} break;
default:
assert(false); /* purecov: inspected */
break;
}
return false;
}
/**
Minion of analyze_field_constant for TIMESTAMP, DATETIME, DATE fields
Analyze a constant's placement within (or without) the type range of the
field f. Also normalize the given constant to the type of the field if
applicable.
@param thd the session context
@param f the field
@param[out] const_val a pointer to an item tree pointer containing the
constant (at execution time). May be modified if
we replace or fold the constant.
@param[out] place the placement of the const_val relative to
@returns true on error
*/
static bool analyze_timestamp_field_constant(THD *thd, const Item_field *f,
Item **const_val,
Range_placement *place) {
const auto rtype = (*const_val)->result_type();
switch (rtype) {
case STRING_RESULT: // This covers both string and TIMESTAMP literals
case INT_RESULT: {
MYSQL_TIME ltime =
my_time_set(0, 0, 0, 0, 0, 0, 0, false, MYSQL_TIMESTAMP_DATETIME);
MYSQL_TIME_STATUS status;
if (rtype == STRING_RESULT) {
String buf;
String *res = (*const_val)->val_str(&buf);
if (res == nullptr) {
assert((*const_val)->null_value);
return false;
}
/*
Some wrong values are still compared as DATETIME, e.g. '2018-02-31
06:14:07' (illegal day in February), while worse values lead to
comparison as strings (e.g. '2018'). Cf. comment on Bug#27692509. Any
warnings have already been given earlier, so ignore.
*/
if (get_mysql_time_from_str_no_warn(thd, res, <ime, &status)) {
// Could not fold, so leave untouched.
return false;
}
/*
A date constant being compared to a timestamp or datetime field is ok,
convert it to a datetime literal, using 00:00:00 as the time.
If the field type is DATE, we also use a MYSQL_TIMESTAMP_DATETIME
constant with zero time part.
*/
if (ltime.time_type == MYSQL_TIMESTAMP_DATE)
ltime.time_type = MYSQL_TIMESTAMP_DATETIME;
} else if (rtype == INT_RESULT) {
if ((*const_val)->data_type() == MYSQL_TYPE_TIMESTAMP ||
(*const_val)->data_type() == MYSQL_TYPE_DATETIME ||
(*const_val)->data_type() == MYSQL_TYPE_DATE) {
TIME_from_longlong_datetime_packed(<ime, (*const_val)->val_int());
} else {
/*
The integral constant could not be interpreted as a datetime value,
the operands will be compared using double.
*/
return false;
}
}
MYSQL_TIME ltime_utc = ltime;
const enum_field_types ft = f->field->type();
if (ft == MYSQL_TYPE_TIMESTAMP) {
/*
Convert constant to timeval, if it fits. If not, we are out of
range for a TIMESTAMP. The timeval is UTC since epoch, using 32
bits range.
*/
int warnings = 0;
my_timeval tm = {0, 0};
int zeros = 0;
zeros += ltime.year == 0;
zeros += ltime.month == 0;
zeros += ltime.day == 0;
if (zeros == 0 || zeros == 3) { // Cf. NO_ZERO_DATE, NO_ZERO_IN_DATE
datetime_with_no_zero_in_date_to_timeval(<ime, *thd->time_zone(),
&tm, &warnings);
if ((warnings & MYSQL_TIME_WARN_OUT_OF_RANGE) != 0) {
/*
For RP_OUTSIDE_HIGH, this check may not catch case where field
type has no/fewer fraction digits than the constant. This will
be caught below.
*/
*place = ltime.year < 1971 ? RP_OUTSIDE_LOW : RP_OUTSIDE_HIGH;
return false;
}
} // else zero in date => 0 timeval too
/*
Convert timestamp's timeval to UTC ltime and pack it so we can
compare with min/max, unless it is 0 or has a zero date part (year,
month or day)
*/
if (tm.m_tv_sec != 0) {
/* '2038-01-19 03:14:07.[999999]' */
MYSQL_TIME max_timestamp = my_time_set(
TIMESTAMP_MAX_YEAR, 1, 19, 3, 14, 7,
max_fraction(
down_cast<const Field_temporal *>(f->field)->decimals()),
false, MYSQL_TIMESTAMP_DATETIME);
/* '1970-01-01 00:00:01.[000000]' */
MYSQL_TIME min_timestamp = my_time_set(1970, 1, 1, 0, 0, 1, 0, false,
MYSQL_TIMESTAMP_DATETIME);
// We store in UTC, so use as is
const longlong max_t =
TIME_to_longlong_datetime_packed(max_timestamp);
const longlong min_t =
TIME_to_longlong_datetime_packed(min_timestamp);
my_tz_UTC->gmt_sec_to_TIME(<ime_utc, tm);
const longlong cnst = TIME_to_longlong_datetime_packed(ltime_utc);
if (cnst > max_t) {
*place = RP_OUTSIDE_HIGH;
return false;
}
if (cnst < min_t) {
/*
A zero ltime (if error in str_to_datetime) before GMT conversion
ends up as 1970-01-01 00:00:00 which get us here.
*/
*place = RP_OUTSIDE_LOW;
return false;
}
} // else: 0 timevalue
} // else: not TIMESTAMP field
/*
We do not try to truncate the number of decimal digits in the
constant if it exceeds the number of allowed decimals in the
type of the field. This could be improved. If we want to try that,
we could use RP_INSIDE_TRUNCATED. This could lead to folding away of
=, <>.
*/
if ((*const_val)->type() == Item::FUNC_ITEM &&
down_cast<Item_func *>(*const_val)->functype() ==
Item_func::DATETIME_LITERAL) {
/* User supplied an ok literal */
} else {
Item *i = nullptr;
/*
Make a DATETIME literal, unless the field is a DATE and the constant
has zero time, in which case we make a DATE literal
*/
if (ft == MYSQL_TYPE_DATE) {
ltime.time_type = MYSQL_TIMESTAMP_DATE;
if (ltime.hour == 0 && ltime.minute == 0 && ltime.second == 0 &&
ltime.second_part == 0) {
/* OK, time part is zero, so trivial type change */
} else {
/* truncate time part: must adjust operators */
ltime.hour = 0;
ltime.minute = 0;
ltime.second = 0;
ltime.second_part = 0;
*place = RP_INSIDE_TRUNCATED;
}
i = new (thd->mem_root) Item_date_literal(<ime);
} else if (!check_time_zone_convertibility(ltime)) {
i = new (thd->mem_root) Item_datetime_literal(
<ime, actual_decimals(<ime), thd->time_zone());
}
if (i == nullptr) return true;
thd->change_item_tree(const_val, i);
}
} break;
case REAL_RESULT:
case DECIMAL_RESULT:
/*
The number could not be interpreted as datetime, so
compares as double.
*/
break;
default:
break;
}
return false;
}
/*
Minion of analyze_field_constant for TIME fields. Creates a TIME literal
of a valid TIME constant.
*/
static bool analyze_time_field_constant(THD *thd, Item **const_val) {
if (!((*const_val)->result_type() == INT_RESULT &&
(*const_val)->data_type() == MYSQL_TYPE_TIME)) {
// Not a TIME constant. Compare as string or double.
return false;
}
/*
An OK TIME constant, represented as Item_time_with_ref.
Note that excessive decimals have already been rounded, so there is no
opportunity for folding. This is in contrast to DATETIME/TIMESTAMP
btw, which retains any excessive decimals digits when comparing.
Cf. Bug#28320529
*/
MYSQL_TIME ltime;
TIME_from_longlong_time_packed(<ime, (*const_val)->val_time_temporal());
auto i =
new (thd->mem_root) Item_time_literal(<ime, actual_decimals(<ime));
if (i == nullptr) return true;
thd->change_item_tree(const_val, i);
return false;
}
/**
Analyze a constant's placement within (or without) the type range of the
field f. Also normalize the given constant to the type of the field if
applicable.
@param thd the session context
@param f the field
@param[out] const_val a pointer to an item tree pointer containing the
constant (at execution time). May be modified if
we replace or fold the constant.
@param func the function of the comparison
@param left_has_field
the field is the left operand
@param[out] place the placement of the const_val relative to
the range of f
@param[out] discount_equal
set to true: caller should replace GE with GT or LE
with LT.
@param[out] negative true if the constant (decimal) is has a (minus) sign
@returns true on error
*/
static bool analyze_field_constant(THD *thd, Item_field *f, Item **const_val,
Item_func *func, bool left_has_field,
Range_placement *place, bool *discount_equal,
bool *negative) {
*place = RP_INSIDE; // a priori
if ((*const_val)->is_null()) return false;
if (thd->is_error()) return true;
const auto ft = func->functype();
switch (f->data_type()) {
case MYSQL_TYPE_TINY:
case MYSQL_TYPE_SHORT:
case MYSQL_TYPE_INT24:
case MYSQL_TYPE_LONG:
case MYSQL_TYPE_LONGLONG:
return analyze_int_field_constant(thd, f, const_val, ft, left_has_field,
place, discount_equal);
case MYSQL_TYPE_NEWDECIMAL:
return analyze_decimal_field_constant(thd, f, const_val, ft, place,
negative);
case MYSQL_TYPE_FLOAT:
case MYSQL_TYPE_DOUBLE:
return analyze_real_field_constant(thd, f, const_val, place);
case MYSQL_TYPE_YEAR:
return analyze_year_field_constant(thd, const_val, place);
case MYSQL_TYPE_TIMESTAMP:
case MYSQL_TYPE_DATETIME:
case MYSQL_TYPE_DATE:
return analyze_timestamp_field_constant(thd, f, const_val, place);
case MYSQL_TYPE_TIME:
return analyze_time_field_constant(thd, const_val);
default:
break;
}
return false;
}
/**
We have found that the constant's value makes the predicate always true or
false (modulo field nullability), so simplify or remove the condition
according to this table:
<pre>
always_true == true
!top_level_item top_level_item
------------------------------------------
nullable | IF(NULL, NULL, 1) | IS NOT NULL |
!nullable | TRUE (1) | COND_TRUE |
------------------------------------------
always_true == false
!top_level_item top_level_item
------------------------------------------
nullable | field <> field [*] | COND_FALSE |
!nullable | FALSE (0) | COND_FALSE |
------------------------------------------
[*] for the "<=>" operator, we fold to FALSE (0) in this case.
</pre>
@param thd current session context
@param ref_or_field
a field (that is being being compared to a constant)
or a ref to such a field.
@param ft function type
@param always_true true if the predicate is found to be always true
@param manifest_result
true if we should create an item to represent the
truth value (and replace the condition with it)
instead of returning nullptr in *cond_value and
{Item::COND_TRUE, Item::COND_FALSE} in *cond_value
@param[out] retcond a pointer to the condition altered by this method
@param[out] cond_value the resulting condition value
@returns true on error
*/
static bool fold_or_simplify(THD *thd, Item *ref_or_field,
Item_func::Functype ft, bool always_true,
bool manifest_result, Item **retcond,
Item::cond_result *cond_value) {
Item *i = nullptr;
const int is_top_level =
ft == Item_func::MULT_EQUAL_FUNC ||
down_cast<Item_bool_func2 *>(*retcond)->ignore_unknown();
if (always_true) {
if (ref_or_field->is_nullable()) {
if (is_top_level) {
i = new (thd->mem_root) Item_func_isnotnull(ref_or_field);
} else {
Item *arg0 = new (thd->mem_root) Item_func_isnull(ref_or_field);
if (arg0 == nullptr) return true;
Item *arg1 = new (thd->mem_root) Item_null();
if (arg1 == nullptr) return true;
Item *arg2 = new (thd->mem_root) Item_int(1, 1);
if (arg2 == nullptr) return true;
i = new (thd->mem_root) Item_func_if(arg0, arg1, arg2);
}
} else {
if (is_top_level && !manifest_result) {
*cond_value = Item::COND_TRUE;
*retcond = nullptr;
return false;
}
i = new (thd->mem_root) Item_func_true();
}
} else {
if (is_top_level && !manifest_result) {
*cond_value = Item::COND_FALSE;
*retcond = nullptr;
return false;
}
if (ref_or_field->is_nullable() && ft != Item_func::EQUAL_FUNC) {
i = new (thd->mem_root) Item_func_ne(ref_or_field, ref_or_field);
} else {
i = new (thd->mem_root) Item_func_false();
}
}
if (i == nullptr || i->fix_fields(thd, retcond)) return true;
thd->change_item_tree(retcond, i);
*cond_value = Item::COND_OK;
return false;
}
/*
Call fold_condition on all the function's arguments.
@param thd the session state
@param cond the function
@returns true on error
*/
static bool fold_arguments(THD *thd, Item_func *func) {
for (uint i = 0; i < func->argument_count(); i++) {
Item::cond_result cv;
Item **args = func->arguments();
if (fold_condition(thd, args[i], args + i, &cv, true)) return true;
}
func->update_used_tables();
return false;
}
/**
Call fold_condition on all the conditions's arguments.
@param thd the session state
@param cond the condition
@returns true on error
*/
static bool fold_arguments(THD *thd, Item_cond *cond) {
List_iterator<Item> li(*cond->argument_list());
Item *item;
while ((item = li++)) {
Item::cond_result cv;
if (fold_condition(thd, item, li.ref(), &cv, true)) return true;
}
cond->update_used_tables();
return false;
}
/**
Switch places of low, high, max and min
*/
static Range_placement map_less_to_greater(Range_placement place) {
switch (place) {
case RP_OUTSIDE_HIGH:
place = RP_OUTSIDE_LOW;
break;
case RP_OUTSIDE_LOW:
place = RP_OUTSIDE_HIGH;
break;
case RP_ON_MIN:
place = RP_ON_MAX;
break;
case RP_ON_MAX:
place = RP_ON_MIN;
break;
case RP_INSIDE:
case RP_INSIDE_YEAR_HOLE:
case RP_INSIDE_TRUNCATED:
case RP_ROUNDED_DOWN:
case RP_ROUNDED_UP:
break;
}
return place;
}
/**
Possibly change comparison operator because we have rounded the constant in
some direction. Depending on the case, we change:
<pre>
< to <=
> to >=
<= to <
>= to >
</pre>
@param[in] thd session thread
@param[in] func the comparison operator
@param[in] left_has_field true if <field> <cmp> <const>,
false if inverse
@param[in] inverse invert the logic
@param[in] ref_or_field the field or a ref to it
@param[in] c the constant
@param[in,out] retcond the resulting condition
@returns true on error
*/
static bool adjust_cmp_op(THD *thd, Item_func *func, bool left_has_field,
bool inverse, Item *ref_or_field, Item *c,
Item **retcond) {
if (inverse) {
left_has_field = !left_has_field;
std::swap(ref_or_field, c);
}
Item *new_cmp = nullptr;
if (func->functype() == Item_func::LT_FUNC && left_has_field)
new_cmp = new (thd->mem_root) Item_func_le(ref_or_field, c);
else if (func->functype() == Item_func::GT_FUNC && !left_has_field)
new_cmp = new (thd->mem_root) Item_func_ge(c, ref_or_field);
else if (func->functype() == Item_func::LE_FUNC && !left_has_field)
new_cmp = new (thd->mem_root) Item_func_lt(c, ref_or_field);
else if (func->functype() == Item_func::GE_FUNC && left_has_field)
new_cmp = new (thd->mem_root) Item_func_gt(ref_or_field, c);
else
return false;
if (new_cmp == nullptr || new_cmp->fix_fields(thd, &new_cmp)) return true;
thd->change_item_tree(retcond, new_cmp);
return false;
}
/**
Replace condition in retcond with "=" (i.e.\ Item_func_eq)
and set cond_value to Item::COND_OK.
@param thd session context
@param ref_or_field
the field being compared to a constant in the retcond
@param c the constant being compared to a field in the retcond
@param[in,out] retcond
the comparison condition
@param[out] cond_value
the resulting condition value
@returns true on error
*/
static bool simplify_to_equal(THD *thd, Item *ref_or_field, Item *c,
Item **retcond, Item::cond_result *cond_value) {
Item *eq = new (thd->mem_root) Item_func_eq(ref_or_field, c);
if (eq == nullptr) return true;
if (eq->fix_fields(thd, &eq)) return true;
thd->change_item_tree(retcond, eq);
*cond_value = Item::COND_OK;
return false;
}
// Main entrypoint for this module. See Doxygen comments in sql_const_folding.h
bool fold_condition(THD *thd, Item *cond, Item **retcond,
Item::cond_result *cond_value, bool manifest_result) {
uchar buff[STACK_BUFF_ALLOC]; // Max argument in function
if (check_stack_overrun(thd, STACK_MIN_SIZE * 2, buff))
return true; // Fatal error if flag is set
// A priori result, unless we find otherwise below
*cond_value = Item::COND_OK;
*retcond = cond;
const Item::Type cond_type = cond->type();
if (!(cond_type == Item::FUNC_ITEM || cond_type == Item::COND_ITEM))
return false;
if (cond_type == Item::COND_ITEM) {
const auto and_or = down_cast<Item_cond *>(cond);
return fold_arguments(thd, and_or);
}
Item_func *const func = down_cast<Item_func *>(cond);
Item_func::Functype func_type = func->functype();
switch (func_type) {
case Item_func::ISNOTNULL_FUNC:
if (func->arguments()[0]->is_nullable()) {
return fold_arguments(thd, func);
}
/* The test can be elided. If top level, drop the condition */
if (manifest_result) {
const auto i = new (thd->mem_root) Item_func_true();
if (i == nullptr) return true;
thd->change_item_tree(retcond, i);
} else {
*cond_value = Item::COND_TRUE;
*retcond = nullptr;
}
return false;
case Item_func::EQ_FUNC:
case Item_func::NE_FUNC:
case Item_func::LT_FUNC:
case Item_func::LE_FUNC:
case Item_func::GE_FUNC:
case Item_func::GT_FUNC:
case Item_func::EQUAL_FUNC:
case Item_func::MULT_EQUAL_FUNC:
break;
default:
/* Not a comparison function, so fold its args instead */
return fold_arguments(thd, func);
}
Item **args = nullptr;
if (func_type != Item_func::MULT_EQUAL_FUNC) {
args = func->arguments();
} else {
/*
Impedance mispatch between how field, constant is represented for the
normal comparison functions and multi-equal: we use a scratch two args
array and update the multi-equal's normal constant later.
*/
const auto equal = down_cast<Item_equal *>(func);
// Use first field: any one will do: they have the same type
equal->m_const_folding[0] = equal->get_first();
equal->m_const_folding[1] = equal->const_arg();
args = equal->m_const_folding;
}
bool seen_field = false;
bool seen_constant = false;
for (int i = 0; i < 2; ++i) {
if (args[i] == nullptr) continue; // multi-equal with no constant
const auto real_type = args[i]->real_item()->type();
const auto type = args[i]->type();
if (real_type == Item::FIELD_ITEM) {
/*
Using real_item lets us cover fields pointed to by Item_refs for HAVING
conditions. For conditions on fields from subqueries (also refs),
temporary file field items are widened to longlong for integer
types[1], so typically less folding can then happen based on out of
range constants.
[1] See `create_tmp_field_from_item' case INT_RESULT.
*/
seen_field = true;
} else if (args[i]->const_for_execution() && type != Item::SUBSELECT_ITEM) {
/*
Re test on Item::SUBSELECT_ITEM above: we exclude optimize time
evaluation of constant subqueries for now; since it could still be
expensive to evaluate and we have no cost model to decide whether
folding it would save total time spent. It may turn out not to be
executed at all.
*/
if (type != Item::FUNC_ITEM) {
seen_constant = true;
} else {
/*
This "else"-block covers constants that have the shape of
function calls. We only try to fold two kinds of functions here:
1) Monadic minus, 2) Item_datetime_literal.
*/
const auto f = down_cast<Item_func *>(args[i]);
const auto ft = f->functype();
if ((ft == Item_func::NEG_FUNC &&
f->arguments()[0]->basic_const_item()) ||
ft == Item_func::DATETIME_LITERAL) {
seen_constant = true;
}
}
}
}
if (!(seen_field && seen_constant)) {
/*
This comparison function doesn't have the simple form required, so
instead, try to fold inside its arguments
*/
return fold_arguments(thd, func);
}
const auto arg0_orig = args[0];
const auto arg1_orig = args[1];
const bool left_has_field = args[0]->real_item()->type() == Item::FIELD_ITEM;
const auto ref_or_field = args[!left_has_field];
Item **c = &args[left_has_field];
Range_placement place;
bool discount_eq = false;
bool negative = false; // used for decimal constants only
if (analyze_field_constant(
thd, down_cast<Item_field *>(args[!left_has_field]->real_item()), c,
func, left_has_field, &place, &discount_eq, &negative))
return true; /* purecov: inspected */
if (discount_eq &&
(func_type == Item_func::LE_FUNC || func_type == Item_func::GE_FUNC)) {
bool ignore_unknown = down_cast<Item_bool_func2 *>(cond)->ignore_unknown();
if (func_type == Item_func::LE_FUNC) {
if (!(cond = new (thd->mem_root) Item_func_lt(args[0], args[1])))
return true; /* purecov: inspected */
} else {
if (!(cond = new (thd->mem_root) Item_func_gt(args[0], args[1])))
return true; /* purecov: inspected */
}
auto cond_alias = down_cast<Item_bool_func2 *>(cond);
if (ignore_unknown) cond_alias->apply_is_true();
if (cond->fix_fields(thd, &cond)) return true;
func_type = cond_alias->functype();
thd->change_item_tree(retcond, cond);
args = cond_alias->arguments();
c = &args[left_has_field];
}
// Fold >, >= handling with <, <=
if (func_type == Item_func::GT_FUNC || func_type == Item_func::GE_FUNC) {
place = map_less_to_greater(place);
func_type = func_type == Item_func::GT_FUNC ? Item_func::LT_FUNC
: Item_func::LE_FUNC;
}
switch (func_type) {
case Item_func::EQ_FUNC:
case Item_func::EQUAL_FUNC:
case Item_func::NE_FUNC:
case Item_func::MULT_EQUAL_FUNC:
switch (place) {
case RP_OUTSIDE_HIGH:
case RP_OUTSIDE_LOW:
case RP_INSIDE_TRUNCATED:
case RP_INSIDE_YEAR_HOLE:
case RP_ROUNDED_DOWN:
case RP_ROUNDED_UP:
if (fold_or_simplify(thd, ref_or_field, func_type,
func_type == Item_func::NE_FUNC, manifest_result,
retcond, cond_value))
return true; /* purecov: inspected */
break;
case RP_INSIDE:
case RP_ON_MAX:
case RP_ON_MIN:
break;
}
if (func_type == Item_func::MULT_EQUAL_FUNC && (*retcond != nullptr)) {
// The constant may have been modified, update the multi-equal
const auto equal = down_cast<Item_equal *>(func);
assert(equal->m_const_folding[1] != nullptr); // the constant
equal->set_const_arg(equal->m_const_folding[1]);
}
break;
case Item_func::LT_FUNC:
case Item_func::LE_FUNC:
switch (place) {
case RP_ROUNDED_DOWN: { // real fields only
/*
Example:
If we had a float(5,2) and the predicate
field < 123.123
after truncation of the constant we have:
field < 123.12
but what if the field has the value 123.12, i.e. 123.120?
This is indeed smaller than 123.123, so we need to transform the
predicate to
field <= 123.12
This guarantees the semantics of MySQL that states we evaluate in
double precision.
*/
if (adjust_cmp_op(thd, func, left_has_field, false, ref_or_field, *c,
retcond))
return true; /* purecov: inspected */
} break;
case RP_ROUNDED_UP: { // real fields only
if (adjust_cmp_op(thd, func, left_has_field, true, ref_or_field, *c,
retcond))
return true; /* purecov: inspected */
} break;
case RP_OUTSIDE_HIGH:
if (fold_or_simplify(thd, ref_or_field, func_type, left_has_field,
manifest_result, retcond, cond_value))
return true; /* purecov: inspected */
break;
case RP_OUTSIDE_LOW:
if (fold_or_simplify(thd, ref_or_field, func_type, !left_has_field,
manifest_result, retcond, cond_value))
return true; /* purecov: inspected */
break;
case RP_ON_MIN:
if (func_type == Item_func::LT_FUNC && left_has_field) {
if (fold_or_simplify(thd, ref_or_field, func_type, false,
manifest_result, retcond, cond_value))
return true; /* purecov: inspected */
} else if (func_type == Item_func::LE_FUNC) {
if (!left_has_field) {
if (fold_or_simplify(thd, ref_or_field, func_type, true,
manifest_result, retcond, cond_value))
return true; /* purecov: inspected */
} else {
/*
E.g. tinyint: f <= -128 (signed), or f <= 0 (unsigned):
convert to f = <min>
*/
if (simplify_to_equal(thd, ref_or_field, *c, retcond, cond_value))
return true; /* purecov: inspected */
}
} // else no folding
break;
case RP_INSIDE:
case RP_INSIDE_YEAR_HOLE:
break;
case RP_ON_MAX:
if (func_type == Item_func::LT_FUNC && !left_has_field) {
if (fold_or_simplify(thd, ref_or_field, func_type, false,
manifest_result, retcond, cond_value))
return true; /* purecov: inspected */
} else if (func_type == Item_func::LE_FUNC) {
if (left_has_field) {
if (fold_or_simplify(thd, ref_or_field, func_type, true,
manifest_result, retcond, cond_value))
return true; /* purecov: inspected */
} else {
/*
E.g. tinyint: 127 <= f (signed), or 255 <= f (unsigned):
convert to <max>=f
*/
if (simplify_to_equal(thd, *c, ref_or_field, retcond, cond_value))
return true; /* purecov: inspected */
}
} // else don't fold
break;
case RP_INSIDE_TRUNCATED:
/*
The constant now has a smaller absolute value.
Adjust comparison functions to compensate for this. For example,
if we have a decimal field f of type DECIMAL(3,1) and compare:
f >= 10.13
we adjust the predicate to
f > 10.1
since we know the value of f has to be either 10.1 or 10.2
in this "vicinity". If it is 10.1, we need to remove the equal part
of the comparison to preserve semantics. If the value is 10.2,
well, this is greater or equal to 10.13 anyway, substituting >
is also correct. Any other value of f will not be affected by the
change, so the substitution is correct.
*/
if (adjust_cmp_op(thd, func, left_has_field, negative, ref_or_field,
*c, retcond))
return true; /* purecov: inspected */
break;
}
break;
default:
break;
}
/*
Redo setting of comparison func and caching of constant since we have
potentially modified it. Note: we can't use our initial determination of
item type/function type any more - it may be changed - so check again.
*/
if (*retcond == nullptr || (*retcond)->type() != Item::FUNC_ITEM)
return false;
switch (down_cast<Item_func *>(*retcond)->functype()) {
case Item_func::GE_FUNC:
case Item_func::GT_FUNC:
case Item_func::LT_FUNC:
case Item_func::LE_FUNC:
case Item_func::EQ_FUNC:
case Item_func::NE_FUNC:
case Item_func::EQUAL_FUNC: {
const auto new_args = down_cast<Item_bool_func2 *>(*retcond)->arguments();
if (func != *retcond || new_args[0] != arg0_orig ||
new_args[1] != arg1_orig)
down_cast<Item_bool_func2 *>(*retcond)->set_cmp_func();
} break;
default:
break;
}
return false;
}
/**
@} (end of group Constant_Folding)
*/
|