1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803
|
/* Copyright (c) 2000, 2025, Oracle and/or its affiliates.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is designed to work with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have either included with
the program or referenced in the documentation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
/**
@file
@brief
Query execution
@defgroup Query_Executor Query Executor
@{
*/
#include "sql/sql_executor.h"
#include <algorithm>
#include <atomic>
#include <cassert>
#include <cmath>
#include <cstddef>
#include <iterator>
#include <memory>
#include <string>
#include <type_traits>
#include <utility>
#include <vector>
#include "field_types.h"
#include "lex_string.h"
#include "m_ctype.h"
#include "mem_root_deque.h"
#include "my_alloc.h"
#include "my_base.h"
#include "my_bitmap.h"
#include "my_byteorder.h"
#include "my_checksum.h"
#include "my_dbug.h"
#include "my_hash_combine.h"
#include "my_loglevel.h"
#include "my_sqlcommand.h"
#include "my_sys.h"
#include "my_table_map.h"
#include "mysql/components/services/bits/psi_bits.h"
#include "mysql/components/services/log_builtins.h"
#include "mysqld_error.h"
#include "prealloced_array.h"
#include "sql-common/json_dom.h" // Json_wrapper
#include "sql/current_thd.h"
#include "sql/field.h"
#include "sql/filesort.h" // Filesort
#include "sql/handler.h"
#include "sql/item.h"
#include "sql/item_cmpfunc.h"
#include "sql/item_func.h"
#include "sql/item_sum.h" // Item_sum
#include "sql/iterators/sorting_iterator.h"
#include "sql/iterators/timing_iterator.h"
#include "sql/join_optimizer/access_path.h"
#include "sql/join_optimizer/bit_utils.h"
#include "sql/join_optimizer/cost_model.h"
#include "sql/join_optimizer/join_optimizer.h"
#include "sql/join_optimizer/materialize_path_parameters.h"
#include "sql/join_optimizer/relational_expression.h"
#include "sql/join_optimizer/walk_access_paths.h"
#include "sql/join_type.h"
#include "sql/key.h" // key_cmp
#include "sql/mem_root_array.h"
#include "sql/mysqld.h" // stage_executing
#include "sql/nested_join.h"
#include "sql/opt_costmodel.h"
#include "sql/opt_explain_format.h"
#include "sql/opt_trace.h" // Opt_trace_object
#include "sql/query_options.h"
#include "sql/record_buffer.h" // Record_buffer
#include "sql/sort_param.h"
#include "sql/sql_array.h" // Bounds_checked_array
#include "sql/sql_base.h" // fill_record
#include "sql/sql_bitmap.h"
#include "sql/sql_class.h"
#include "sql/sql_const.h"
#include "sql/sql_delete.h"
#include "sql/sql_executor.h"
#include "sql/sql_list.h"
#include "sql/sql_optimizer.h" // JOIN
#include "sql/sql_resolver.h"
#include "sql/sql_select.h"
#include "sql/sql_tmp_table.h" // create_tmp_table
#include "sql/sql_update.h"
#include "sql/table.h"
#include "sql/temp_table_param.h"
#include "sql/visible_fields.h"
#include "sql/window.h"
#include "tables_contained_in.h"
#include "template_utils.h"
#include "thr_lock.h"
using std::make_pair;
using std::max;
using std::min;
using std::pair;
using std::string;
using std::unique_ptr;
using std::vector;
static int read_system(TABLE *table);
static bool alloc_group_fields(JOIN *join, ORDER *group);
/// The minimum size of the record buffer allocated by set_record_buffer().
/// If all the rows (estimated) can be accomodated with a smaller
/// buffer than the minimum size, we allocate only the required size.
/// Else, set_record_buffer() adjusts the size to the minimum size for
/// smaller ranges. This value shouldn't be too high, as benchmarks
/// have shown that a too big buffer can hurt performance in some
/// high-concurrency scenarios.
static constexpr size_t MIN_RECORD_BUFFER_SIZE = 4 * 1024; // 4KB
/// The maximum size of the record buffer allocated by set_record_buffer().
/// Having a bigger buffer than this does not seem to give noticeably better
/// performance, and having a too big buffer has been seen to hurt performance
/// in high-concurrency scenarios.
static constexpr size_t MAX_RECORD_BUFFER_SIZE = 128 * 1024; // 128KB
/// How big a fraction of the estimated number of returned rows to make room
/// for in the record buffer allocated by set_record_buffer(). The actual
/// size of the buffer will be adjusted to a value between
/// MIN_RECORD_BUFFER_SIZE and MAX_RECORD_BUFFER_SIZE if it falls outside of
/// this range. If all rows can be accomodated with a much smaller buffer
/// size than MIN_RECORD_BUFFER_SIZE, we only allocate the required size.
///
/// The idea behind using a fraction of the estimated number of rows, and not
/// just allocate a buffer big enough to hold all returned rows if they fit
/// within the maximum size, is that using big record buffers for small ranges
/// have been seen to hurt performance in high-concurrency scenarios. So we want
/// to pull the buffer size towards the minimum buffer size if the range is not
/// that large, while still pulling the buffer size towards the maximum buffer
/// size for large ranges and table scans.
///
/// The actual number is the result of an attempt to find the balance between
/// the advantages of big buffers in scenarios with low concurrency and/or large
/// ranges, and the disadvantages of big buffers in scenarios with high
/// concurrency. Increasing it could improve the performance of some queries
/// when the concurrency is low and hurt the performance if the concurrency is
/// high, and reducing it could have the opposite effect.
static constexpr double RECORD_BUFFER_FRACTION = 0.1f;
string RefToString(const Index_lookup &ref, const KEY *key,
bool include_nulls) {
string ret;
if (ref.keypart_hash != nullptr) {
assert(!include_nulls);
ret = key->key_part[0].field->field_name;
ret += "=hash(";
for (unsigned key_part_idx = 0; key_part_idx < ref.key_parts;
++key_part_idx) {
if (key_part_idx != 0) {
ret += ", ";
}
ret += ItemToString(ref.items[key_part_idx]);
}
ret += ")";
return ret;
}
const uchar *key_buff = ref.key_buff;
for (unsigned key_part_idx = 0; key_part_idx < ref.key_parts;
++key_part_idx) {
if (key_part_idx != 0) {
ret += ", ";
}
const Field *field = key->key_part[key_part_idx].field;
if (field->is_field_for_functional_index()) {
// Do not print out the column name if the column represents a functional
// index. Instead, print out the indexed expression.
ret += ItemToString(field->gcol_info->expr_item);
} else {
assert(!field->is_hidden_by_system());
ret += field->field_name;
}
ret += "=";
ret += ItemToString(ref.items[key_part_idx]);
// If we have ref_or_null access, find out if this keypart is the one that
// is -or-NULL (there's always only a single one).
if (include_nulls && key_buff == ref.null_ref_key) {
ret += " or NULL";
}
key_buff += key->key_part[key_part_idx].store_length;
}
return ret;
}
bool JOIN::create_intermediate_table(
QEP_TAB *const tab, const mem_root_deque<Item *> &tmp_table_fields,
ORDER_with_src &tmp_table_group, bool save_sum_fields) {
DBUG_TRACE;
THD_STAGE_INFO(thd, stage_creating_tmp_table);
const bool windowing = m_windows.elements > 0;
/*
Pushing LIMIT to the temporary table creation is not applicable
when there is ORDER BY or GROUP BY or aggregate/window functions, because
in all these cases we need all result rows.
*/
ha_rows tmp_rows_limit =
((order.empty() || skip_sort_order) && tmp_table_group.empty() &&
!windowing && !query_block->with_sum_func)
? m_select_limit
: HA_POS_ERROR;
tab->tmp_table_param =
new (thd->mem_root) Temp_table_param(thd->mem_root, tmp_table_param);
tab->tmp_table_param->skip_create_table = true;
bool distinct_arg =
select_distinct &&
// GROUP BY is absent or has been done in a previous step
group_list.empty() &&
// We can only do DISTINCT in last window's tmp table step
(!windowing || (tab->tmp_table_param->m_window &&
tab->tmp_table_param->m_window->is_last()));
TABLE *table =
create_tmp_table(thd, tab->tmp_table_param, tmp_table_fields,
tmp_table_group.order, distinct_arg, save_sum_fields,
query_block->active_options(), tmp_rows_limit, "");
if (!table) return true;
tmp_table_param.using_outer_summary_function =
tab->tmp_table_param->using_outer_summary_function;
assert(tab->idx() > 0);
tab->set_table(table);
/**
If this is a window's OUT table, any final DISTINCT, ORDER BY will lead to
windows showing use of tmp table in the final windowing step, so no
need to signal use of tmp table unless we are here for another tmp table.
*/
if (!tab->tmp_table_param->m_window) {
if (table->group)
explain_flags.set(tmp_table_group.src, ESP_USING_TMPTABLE);
else if (table->s->is_distinct || select_distinct)
explain_flags.set(ESC_DISTINCT, ESP_USING_TMPTABLE);
else {
/*
Try to find a reason for this table, to show in EXPLAIN.
If there's no GROUP BY, no ORDER BY, no DISTINCT, it must be just a
result buffer. If there's ORDER BY but there is also windowing
then ORDER BY happens after windowing, and here we are before
windowing, so the table is not for ORDER BY either.
*/
if ((group_list.empty() && (order.empty() || windowing) &&
!select_distinct) ||
(query_block->active_options() &
(SELECT_BIG_RESULT | OPTION_BUFFER_RESULT)))
explain_flags.set(ESC_BUFFER_RESULT, ESP_USING_TMPTABLE);
}
}
/* if group or order on first table, sort first */
if (!group_list.empty() && simple_group) {
DBUG_PRINT("info", ("Sorting for group"));
if (m_ordered_index_usage != ORDERED_INDEX_GROUP_BY &&
add_sorting_to_table(const_tables, &group_list,
/*sort_before_group=*/true))
goto err;
if (alloc_group_fields(this, group_list.order)) goto err;
if (make_sum_func_list(*fields, true)) goto err;
const bool need_distinct =
!(tab->range_scan() &&
tab->range_scan()->type == AccessPath::GROUP_INDEX_SKIP_SCAN);
if (prepare_sum_aggregators(sum_funcs, need_distinct)) goto err;
if (setup_sum_funcs(thd, sum_funcs)) goto err;
group_list.clean();
} else {
if (make_sum_func_list(*fields, false)) goto err;
const bool need_distinct =
!(tab->range_scan() &&
tab->range_scan()->type == AccessPath::GROUP_INDEX_SKIP_SCAN);
if (prepare_sum_aggregators(sum_funcs, need_distinct)) goto err;
if (setup_sum_funcs(thd, sum_funcs)) goto err;
// In many cases, we can resolve ORDER BY for a query, if requested, by
// sorting this temporary table. However, we cannot do so if the sort is
// disturbed by additional rows from rollup or different sorting from
// window functions. Also, if this temporary table is doing deduplication,
// sorting is not added here, but once the correct ref_slice is set up in
// make_tmp_tables_info().
if (group_list.empty() && !table->s->is_distinct && !order.empty() &&
simple_order && rollup_state == RollupState::NONE && !m_windows_sort) {
DBUG_PRINT("info", ("Sorting for order"));
if (m_ordered_index_usage != ORDERED_INDEX_ORDER_BY &&
add_sorting_to_table(const_tables, &order,
/*sort_before_group=*/false))
goto err;
order.clean();
}
}
return false;
err:
if (table != nullptr) {
close_tmp_table(table);
free_tmp_table(table);
tab->set_table(nullptr);
}
return true;
}
/**
Checks if an item has a ROLLUP NULL which needs to be written to
temp table.
@param item Item for which we need to detect if ROLLUP
NULL has to be written.
@returns false if ROLLUP NULL need not be written for this item.
true if it has to be written.
*/
bool has_rollup_result(Item *item) {
item = item->real_item();
if (is_rollup_group_wrapper(item) &&
down_cast<Item_rollup_group_item *>(item)->rollup_null()) {
return true;
}
if (item->type() == Item::CACHE_ITEM) {
return has_rollup_result(down_cast<Item_cache *>(item)->example);
} else if (item->type() == Item::FUNC_ITEM) {
Item_func *item_func = down_cast<Item_func *>(item);
for (uint i = 0; i < item_func->arg_count; i++) {
if (has_rollup_result(item_func->arguments()[i])) return true;
}
} else if (item->type() == Item::COND_ITEM) {
for (Item &arg : *down_cast<Item_cond *>(item)->argument_list()) {
if (has_rollup_result(&arg)) return true;
}
}
return false;
}
bool is_rollup_group_wrapper(const Item *item) {
return item->type() == Item::FUNC_ITEM &&
down_cast<const Item_func *>(item)->functype() ==
Item_func::ROLLUP_GROUP_ITEM_FUNC;
}
Item *unwrap_rollup_group(Item *item) {
if (is_rollup_group_wrapper(item)) {
return down_cast<Item_rollup_group_item *>(item)->inner_item();
} else {
return item;
}
}
void JOIN::optimize_distinct() {
for (int i = primary_tables - 1; i >= 0; --i) {
QEP_TAB *last_tab = qep_tab + i;
if (query_block->select_list_tables & last_tab->table_ref->map()) break;
last_tab->not_used_in_distinct = true;
}
/* Optimize "select distinct b from t1 order by key_part_1 limit #" */
if (!order.empty() && skip_sort_order) {
/* Should already have been optimized away */
assert(m_ordered_index_usage == ORDERED_INDEX_ORDER_BY);
if (m_ordered_index_usage == ORDERED_INDEX_ORDER_BY) {
order.clean();
}
}
}
bool prepare_sum_aggregators(Item_sum **sum_funcs, bool need_distinct) {
for (Item_sum **item = sum_funcs; *item != nullptr; ++item) {
if ((*item)->set_aggregator(need_distinct && (*item)->has_with_distinct()
? Aggregator::DISTINCT_AGGREGATOR
: Aggregator::SIMPLE_AGGREGATOR))
return true;
}
return false;
}
/******************************************************************************
Code for calculating functions
******************************************************************************/
/**
Call @c setup() for all sum functions.
@param thd thread handler
@param func_ptr sum function list
@retval
false ok
@retval
true error
*/
bool setup_sum_funcs(THD *thd, Item_sum **func_ptr) {
Item_sum *func;
DBUG_TRACE;
while ((func = *(func_ptr++))) {
if (func->aggregator_setup(thd)) return true;
}
return false;
}
void init_tmptable_sum_functions(Item_sum **func_ptr) {
DBUG_TRACE;
Item_sum *func;
while ((func = *(func_ptr++))) func->reset_field();
}
/** Update record 0 in tmp_table from record 1. */
void update_tmptable_sum_func(Item_sum **func_ptr,
TABLE *tmp_table [[maybe_unused]]) {
DBUG_TRACE;
Item_sum *func;
while ((func = *(func_ptr++))) func->update_field();
}
/**
Copy result of functions to record in tmp_table.
Uses the thread pointer to check for errors in
some of the val_xxx() methods called by the
save_in_result_field() function.
TODO: make the Item::val_xxx() return error code
@param param Copy functions of tmp table specified by param
@param thd pointer to the current thread for error checking
@param type type of function Items that need to be copied (used
w.r.t windowing functions).
@retval
false if OK
@retval
true on error
*/
bool copy_funcs(Temp_table_param *param, const THD *thd, Copy_func_type type) {
DBUG_TRACE;
if (param->items_to_copy == nullptr) {
return false;
}
for (const Func_ptr &func : *param->items_to_copy) {
if (func.should_copy(type)) {
func.func()->save_in_field_no_error_check(func.result_field(),
/*no_conversions=*/true);
/*
Need to check the THD error state because Item::val_xxx() don't
return error code, but can generate errors
TODO: change it for a real status check when Item::val_xxx()
are extended to return status code.
*/
if (thd->is_error()) return true;
}
}
return false;
}
/**
Check appearance of new constant items in multiple equalities
of a condition after reading a constant table.
The function retrieves the cond condition and for each encountered
multiple equality checks whether new constants have appeared after
reading the constant (single row) table tab. If so it adjusts
the multiple equality appropriately.
@param thd thread handler
@param cond condition whose multiple equalities are to be checked
@param tab constant table that has been read
*/
static bool update_const_equal_items(THD *thd, Item *cond, JOIN_TAB *tab) {
if (!(cond->used_tables() & tab->table_ref->map())) return false;
if (cond->type() == Item::COND_ITEM) {
for (Item &item : *(down_cast<Item_cond *>(cond))->argument_list()) {
if (update_const_equal_items(thd, &item, tab)) return true;
}
} else if (cond->type() == Item::FUNC_ITEM &&
down_cast<Item_func *>(cond)->functype() ==
Item_func::MULT_EQUAL_FUNC) {
Item_equal *item_equal = (Item_equal *)cond;
bool contained_const = item_equal->const_arg() != nullptr;
if (item_equal->update_const(thd)) return true;
if (!contained_const && item_equal->const_arg()) {
/* Update keys for range analysis */
for (Item_field &item_field : item_equal->get_fields()) {
const Field *field = item_field.field;
JOIN_TAB *stat = field->table->reginfo.join_tab;
Key_map possible_keys = field->key_start;
possible_keys.intersect(field->table->keys_in_use_for_query);
stat[0].const_keys.merge(possible_keys);
stat[0].keys().merge(possible_keys);
/*
For each field in the multiple equality (for which we know that it
is a constant) we have to find its corresponding key part, and set
that key part in const_key_parts.
*/
if (!possible_keys.is_clear_all()) {
TABLE *const table = field->table;
for (Key_use *use = stat->keyuse();
use && use->table_ref == item_field.table_ref; use++) {
if (possible_keys.is_set(use->key) &&
table->key_info[use->key].key_part[use->keypart].field == field)
table->const_key_parts[use->key] |= use->keypart_map;
}
}
}
}
}
return false;
}
/**
@brief Setup write_func of QEP_tmp_table object
@param tab QEP_TAB of a tmp table
@param trace Opt_trace_object to add to
@details
Function sets up write_func according to how QEP_tmp_table object that
is attached to the given join_tab will be used in the query.
*/
void setup_tmptable_write_func(QEP_TAB *tab, Opt_trace_object *trace) {
DBUG_TRACE;
JOIN *join = tab->join();
TABLE *table = tab->table();
Temp_table_param *const tmp_tbl = tab->tmp_table_param;
uint phase = tab->ref_item_slice;
const char *description = nullptr;
assert(table);
if (table->group && tmp_tbl->sum_func_count &&
!tmp_tbl->precomputed_group_by) {
/*
Note for MyISAM tmp tables: if uniques is true keys won't be
created.
*/
assert(phase < REF_SLICE_WIN_1);
if (table->s->keys) {
description = "continuously_update_group_row";
tab->op_type = QEP_TAB::OT_AGGREGATE_INTO_TMP_TABLE;
}
} else if (join->streaming_aggregation && !tmp_tbl->precomputed_group_by) {
assert(phase < REF_SLICE_WIN_1);
description = "write_group_row_when_complete";
DBUG_PRINT("info", ("Using end_write_group"));
tab->op_type = QEP_TAB::OT_AGGREGATE_THEN_MATERIALIZE;
for (Item_sum **func_ptr = join->sum_funcs; *func_ptr != nullptr;
++func_ptr) {
tmp_tbl->items_to_copy->push_back(
Func_ptr(*func_ptr, (*func_ptr)->get_result_field()));
}
} else {
description = "write_all_rows";
tab->op_type = (phase >= REF_SLICE_WIN_1 ? QEP_TAB::OT_WINDOWING_FUNCTION
: QEP_TAB::OT_MATERIALIZE);
if (tmp_tbl->precomputed_group_by) {
for (Item_sum **func_ptr = join->sum_funcs; *func_ptr != nullptr;
++func_ptr) {
tmp_tbl->items_to_copy->push_back(
Func_ptr(*func_ptr, (*func_ptr)->get_result_field()));
}
}
}
if (description) trace->add_alnum("write_method", description);
}
/**
@details
Rows produced by a join sweep may end up in a temporary table or be sent
to a client. Setup the function of the nested loop join algorithm which
handles final fully constructed and matched records.
@return
end_query_block function to use. This function can't fail.
*/
QEP_TAB::enum_op_type JOIN::get_end_select_func() {
DBUG_TRACE;
/*
Choose method for presenting result to user. Use end_send_group
if the query requires grouping (has a GROUP BY clause and/or one or
more aggregate functions). Use end_send if the query should not
be grouped.
*/
if (streaming_aggregation && !tmp_table_param.precomputed_group_by) {
DBUG_PRINT("info", ("Using end_send_group"));
return QEP_TAB::OT_AGGREGATE;
}
DBUG_PRINT("info", ("Using end_send"));
return QEP_TAB::OT_NONE;
}
/**
Find out how many bytes it takes to store the smallest prefix which
covers all the columns that will be read from a table.
@param table the table to read
@return the size of the smallest prefix that covers all records to be
read from the table
*/
static size_t record_prefix_size(const TABLE *table) {
/*
Find the end of the last column that is read, or the beginning of
the record if no column is read.
We want the column that is physically last in table->record[0],
which is not necessarily the column that is last in table->field.
For example, virtual columns come at the end of the record, even
if they are not at the end of table->field. This means we need to
inspect all the columns in the read set and take the one with the
highest end pointer.
*/
const uchar *prefix_end = table->record[0]; // beginning of record
for (auto f = table->field, end = table->field + table->s->fields; f < end;
++f) {
if (bitmap_is_set(table->read_set, (*f)->field_index()))
prefix_end = std::max<const uchar *>(
prefix_end, (*f)->field_ptr() + (*f)->pack_length());
}
/*
If this is an index merge, the primary key columns may be required
for positioning in a later stage, even though they are not in the
read_set here. Allocate space for them in case they are needed.
*/
if (!table->s->is_missing_primary_key() &&
(table->file->ha_table_flags() & HA_PRIMARY_KEY_REQUIRED_FOR_POSITION)) {
const KEY &key = table->key_info[table->s->primary_key];
for (auto kp = key.key_part, end = kp + key.user_defined_key_parts;
kp < end; ++kp) {
const Field *f = table->field[kp->fieldnr - 1];
/*
If a key column comes after all the columns in the read set,
extend the prefix to include the key column.
*/
prefix_end = std::max(prefix_end, f->field_ptr() + f->pack_length());
}
}
return prefix_end - table->record[0];
}
/**
Allocate a data buffer that the storage engine can use for fetching
batches of records.
A buffer is only allocated if ha_is_record_buffer_wanted() returns true
for the handler, and the scan in question is of a kind that could be
expected to benefit from fetching records in batches.
@param table the table to read
@param expected_rows_to_fetch number of rows the optimizer thinks
we will be reading out of the table
@retval true if an error occurred when allocating the buffer
@retval false if a buffer was successfully allocated, or if a buffer
was not attempted allocated
*/
bool set_record_buffer(TABLE *table, double expected_rows_to_fetch) {
assert(table->file->inited);
assert(table->file->ha_get_record_buffer() == nullptr);
// Skip temporary tables, those with no estimates, or if we don't
// expect multiple rows.
if (expected_rows_to_fetch <= 1.0) return false;
// Only create a buffer if the storage engine wants it.
ha_rows max_rows = 0;
if (!table->file->ha_is_record_buffer_wanted(&max_rows) || max_rows == 0)
return false;
// If we already have a buffer, reuse it.
if (table->m_record_buffer.max_records() > 0) {
/*
Assume that the existing buffer has the shape we want. That is, the
record size shouldn't change for a table during execution.
*/
assert(table->m_record_buffer.record_size() == record_prefix_size(table));
table->m_record_buffer.reset();
table->file->ha_set_record_buffer(&table->m_record_buffer);
return false;
}
ha_rows expected_rows =
static_cast<ha_rows>(std::ceil(expected_rows_to_fetch));
ha_rows rows_in_buffer = expected_rows;
/*
How much space do we need to allocate for each record? Enough to
hold all columns from the beginning and up to the last one in the
read set. We don't need to allocate space for unread columns at
the end of the record.
*/
const size_t record_size = record_prefix_size(table);
if (record_size > 0) {
const ha_rows min_rows =
std::ceil(double{MIN_RECORD_BUFFER_SIZE} / record_size);
// If the expected rows to fetch can be accomodated with a
// lesser buffer size than MIN_RECORD_BUFFER_SIZE, we allocate
// only the required size.
if (expected_rows < min_rows) {
rows_in_buffer = expected_rows;
} else {
rows_in_buffer = std::ceil(rows_in_buffer * RECORD_BUFFER_FRACTION);
// Adjust the number of rows, if necessary, to fit within the
// minimum and maximum buffer size range.
const ha_rows local_max_rows = (MAX_RECORD_BUFFER_SIZE / record_size);
rows_in_buffer = std::clamp(rows_in_buffer, min_rows, local_max_rows);
}
}
// After adjustments made above, we still need a minimum of 2 rows to
// use a record buffer.
if (rows_in_buffer <= 1) {
return false;
}
const auto bufsize = Record_buffer::buffer_size(rows_in_buffer, record_size);
const auto ptr = pointer_cast<uchar *>(current_thd->alloc(bufsize));
if (ptr == nullptr) return true; /* purecov: inspected */
table->m_record_buffer = Record_buffer{rows_in_buffer, record_size, ptr};
table->file->ha_set_record_buffer(&table->m_record_buffer);
return false;
}
bool ExtractConditions(Item *condition,
Mem_root_array<Item *> *condition_parts) {
return WalkConjunction(condition, [condition_parts](Item *item) {
return condition_parts->push_back(item);
});
}
/**
See if “path” has any MRR nodes; if so, we cannot optimize them away
in PossiblyAttachFilter(), as the BKA iterator expects there to be a
corresponding MRR iterator. (This is a very rare case, so all we care about
is that it should not crash.)
*/
static bool ContainsAnyMRRPaths(AccessPath *path) {
bool any_mrr_paths = false;
WalkAccessPaths(path, /*join=*/nullptr,
WalkAccessPathPolicy::STOP_AT_MATERIALIZATION,
[&any_mrr_paths](const AccessPath *sub_path, const JOIN *) {
if (sub_path->type == AccessPath::MRR) {
any_mrr_paths = true;
return true;
} else {
return false;
}
});
return any_mrr_paths;
}
Item *CreateConjunction(List<Item> *items) {
if (items->size() == 0) {
return nullptr;
}
if (items->size() == 1) {
return items->head();
}
Item_cond_and *condition = new Item_cond_and(*items);
condition->quick_fix_field();
condition->update_used_tables();
condition->apply_is_true();
return condition;
}
/**
Return a new iterator that wraps "iterator" and that tests all of the given
conditions (if any), ANDed together. If there are no conditions, just return
the given iterator back.
*/
AccessPath *PossiblyAttachFilter(AccessPath *path,
const vector<Item *> &conditions, THD *thd,
table_map *conditions_depend_on_outer_tables) {
// See if any of the sub-conditions are known to be always false,
// and filter out any conditions that are known to be always true.
List<Item> items;
for (Item *cond : conditions) {
if (cond->const_item()) {
if (cond->val_int() == 0) {
if (ContainsAnyMRRPaths(path)) {
// Keep the condition. See comment on ContainsAnyMRRPaths().
items.push_back(cond);
} else {
return NewZeroRowsAccessPath(thd, path, "Impossible filter");
}
} else {
// Known to be always true, so skip it.
}
} else {
items.push_back(cond);
}
}
Item *condition = CreateConjunction(&items);
if (condition == nullptr) {
return path;
}
*conditions_depend_on_outer_tables |= condition->used_tables();
AccessPath *filter_path = NewFilterAccessPath(thd, path, condition);
// NOTE: We don't care about filter_effect here, even though we should.
CopyBasicProperties(*path, filter_path);
return filter_path;
}
AccessPath *CreateNestedLoopAccessPath(THD *thd, AccessPath *outer,
AccessPath *inner, JoinType join_type,
bool pfs_batch_mode) {
AccessPath *path = new (thd->mem_root) AccessPath;
path->type = AccessPath::NESTED_LOOP_JOIN;
path->nested_loop_join().outer = outer;
path->nested_loop_join().inner = inner;
path->nested_loop_join().join_type = join_type;
if (join_type == JoinType::ANTI || join_type == JoinType::SEMI) {
// This does not make sense as an optimization for anti- or semijoins.
path->nested_loop_join().pfs_batch_mode = false;
} else {
path->nested_loop_join().pfs_batch_mode = pfs_batch_mode;
}
return path;
}
static AccessPath *NewInvalidatorAccessPathForTable(
THD *thd, AccessPath *path, QEP_TAB *qep_tab,
plan_idx table_index_to_invalidate) {
AccessPath *invalidator =
NewInvalidatorAccessPath(thd, path, qep_tab->table()->alias);
// Copy costs.
invalidator->set_num_output_rows(path->num_output_rows());
invalidator->cost = path->cost;
QEP_TAB *tab2 = &qep_tab->join()->qep_tab[table_index_to_invalidate];
if (tab2->invalidators == nullptr) {
tab2->invalidators =
new (thd->mem_root) Mem_root_array<const AccessPath *>(thd->mem_root);
}
tab2->invalidators->push_back(invalidator);
return invalidator;
}
static table_map ConvertQepTabMapToTableMap(JOIN *join, qep_tab_map tables) {
table_map map = 0;
for (QEP_TAB *tab : TablesContainedIn(join, tables)) {
map |= tab->table_ref->map();
}
return map;
}
AccessPath *CreateBKAAccessPath(THD *thd, JOIN *join, AccessPath *outer_path,
qep_tab_map left_tables, AccessPath *inner_path,
qep_tab_map right_tables, TABLE *table,
Table_ref *table_list, Index_lookup *ref,
JoinType join_type) {
table_map left_table_map = ConvertQepTabMapToTableMap(join, left_tables);
table_map right_table_map = ConvertQepTabMapToTableMap(join, right_tables);
// If the BKA join condition (the “ref”) references fields that are outside
// what we have available for this join, it is because they were
// substituted by multi-equalities earlier (which assumes the
// pre-iterator executor, which goes outside-in and not inside-out),
// so find those multi-equalities and rewrite the fields back.
for (uint part_no = 0; part_no < ref->key_parts; ++part_no) {
Item *item = ref->items[part_no];
if (item->type() == Item::FUNC_ITEM || item->type() == Item::COND_ITEM) {
Item_func *func_item = down_cast<Item_func *>(item);
if (func_item->functype() == Item_func::EQ_FUNC) {
bool found = false;
down_cast<Item_func_eq *>(func_item)
->ensure_multi_equality_fields_are_available(
left_table_map, right_table_map, /*replace=*/true, &found);
}
} else if (item->type() == Item::FIELD_ITEM) {
bool dummy;
Item_equal *item_eq = find_item_equal(
table_list->cond_equal, down_cast<Item_field *>(item), &dummy);
if (item_eq == nullptr) {
// Didn't come from a multi-equality.
continue;
}
bool found = false;
find_and_adjust_equal_fields(item, left_table_map, /*replace=*/true,
&found);
}
}
AccessPath *path = new (thd->mem_root) AccessPath;
path->type = AccessPath::BKA_JOIN;
path->bka_join().outer = outer_path;
path->bka_join().inner = inner_path;
path->bka_join().join_type = join_type;
path->bka_join().mrr_length_per_rec = table->file->stats.mrr_length_per_rec;
path->bka_join().rec_per_key =
table->key_info[ref->key].records_per_key(ref->key_parts - 1);
// Will be set later if we get a weedout access path as parent.
path->bka_join().store_rowids = false;
path->bka_join().tables_to_get_rowid_for = 0;
return path;
}
static AccessPath *PossiblyAttachFilter(
AccessPath *path, const vector<PendingCondition> &conditions, THD *thd,
table_map *conditions_depend_on_outer_tables) {
vector<Item *> stripped_conditions;
for (const PendingCondition &cond : conditions) {
stripped_conditions.push_back(cond.cond);
}
return PossiblyAttachFilter(path, stripped_conditions, thd,
conditions_depend_on_outer_tables);
}
static Item_func_trig_cond *GetTriggerCondOrNull(Item *item) {
if (item->type() == Item::FUNC_ITEM &&
down_cast<Item_func *>(item)->functype() ==
Item_bool_func2::TRIG_COND_FUNC) {
return down_cast<Item_func_trig_cond *>(item);
} else {
return nullptr;
}
}
/**
For historical reasons, derived table materialization and temporary
table materialization didn't specify the fields to materialize in the
same way. Temporary table materialization used copy_funcs() to get the data
into the Field pointers of the temporary table to be written, storing the
lists in items_to_copy. (Originally, there was also copy_fields(), but it is
no longer used for this purpose.)
However, derived table materialization used JOIN::fields (which is a
set of Item, not Field!) for the same purpose, calling fill_record()
(which originally was meant for INSERT and UPDATE) instead. Thus, we
have to rewrite one to the other, so that we can have only one
MaterializeIterator. We choose to rewrite JOIN::fields to
items_to_copy.
TODO: The optimizer should output just one kind of structure directly.
*/
void ConvertItemsToCopy(const mem_root_deque<Item *> &items, Field **fields,
Temp_table_param *param) {
assert(param->items_to_copy == nullptr);
// All fields are to be copied.
Func_ptr_array *copy_func =
new (current_thd->mem_root) Func_ptr_array(current_thd->mem_root);
Field **field_ptr = fields;
for (Item *item : VisibleFields(items)) {
copy_func->push_back(Func_ptr(item, *field_ptr++));
}
param->items_to_copy = copy_func;
}
/// @param item The item we want to see if is a join condition.
/// @param qep_tab The table we are joining in.
/// @returns true if 'item' is a join condition for a join involving the given
/// table (both equi-join and non-equi-join condition).
static bool IsJoinCondition(const Item *item, const QEP_TAB *qep_tab) {
table_map used_tables = item->used_tables();
if ((~qep_tab->table_ref->map() & used_tables) != 0) {
// This is a join condition (either equi-join or non-equi-join).
return true;
}
return false;
}
/// @returns the innermost condition of a nested trigger condition. If the item
/// is not a trigger condition, the item itself is returned.
static Item *GetInnermostCondition(Item *item) {
Item_func_trig_cond *trig_cond = GetTriggerCondOrNull(item);
while (trig_cond != nullptr) {
item = trig_cond->arguments()[0];
trig_cond = GetTriggerCondOrNull(item);
}
return item;
}
// Check if fields for a condition are available when joining the
// the given set of tables.
// Calls ensure_multi_equality_fields_are_available() to help.
static bool CheckIfFieldsAvailableForCond(Item *item, table_map build_tables,
table_map probe_tables) {
if (is_function_of_type(item, Item_func::EQ_FUNC)) {
Item_func_eq *eq_func = down_cast<Item_func_eq *>(item);
bool found = false;
// Tries to find a suitable equal field for fields in the condition within
// the available tables.
eq_func->ensure_multi_equality_fields_are_available(
build_tables, probe_tables, /*replace=*/false, &found);
return found;
} else if (item->type() == Item::COND_ITEM) {
Item_cond *cond = down_cast<Item_cond *>(item);
for (Item &cond_item : *cond->argument_list()) {
if (!CheckIfFieldsAvailableForCond(&cond_item, build_tables,
probe_tables))
return false;
}
return true;
} else {
table_map used_tables = item->used_tables();
return (Overlaps(used_tables, build_tables) &&
Overlaps(used_tables, probe_tables) &&
IsSubset(used_tables, build_tables | probe_tables));
}
}
// Determine if a join condition attached to a table needs to be handled by the
// hash join iterator created for that table, or if it needs to be moved up to
// where the semijoin iterator is created (if there is more than one table on
// the inner side of a semijoin).
// If the fields in the condition are available within the join between the
// inner tables, we attach the condition to the current table. Otherwise, we
// attach it to the table where the semijoin iterator will be created.
static void AttachSemiJoinCondition(Item *join_cond,
vector<PendingCondition> *join_conditions,
QEP_TAB *current_table,
qep_tab_map left_tables,
plan_idx semi_join_table_idx) {
table_map build_table_map = ConvertQepTabMapToTableMap(
current_table->join(), current_table->idx_map());
table_map probe_table_map =
ConvertQepTabMapToTableMap(current_table->join(), left_tables);
if (CheckIfFieldsAvailableForCond(join_cond, build_table_map,
probe_table_map)) {
join_conditions->push_back(
PendingCondition{join_cond, current_table->idx()});
} else {
join_conditions->push_back(
PendingCondition{join_cond, semi_join_table_idx});
}
}
/*
There are three kinds of conditions stored into a table's QEP_TAB object:
1. Join conditions (where not optimized into EQ_REF accesses or similar).
These are attached as a condition on the rightmost table of the join;
if it's an outer join, they are wrapped in a “not_null_compl”
condition, to mark that they should not be applied to the NULL values
synthesized when no row is found. These can be kept on the table, and
we don't really need the not_null_compl wrapper as long as we don't
move the condition up above the join (which we don't).
2. WHERE predicates referring to the table, and possibly also one or more
earlier tables in the join. These should normally be kept on the table,
so we can discard rows as early as possible (but see next point).
We should test these after the join conditions, though, as they may
have side effects. Also note that these may be pushed below sort
operations for efficiency -- in fact, they already have, so we should
not try to re-apply them.
3. Predicates like in #2 that are on the inner (right) side of a
left join. These conditions must be moved _above_ the join, as they
should also be tested for NULL-complemented rows the join may generate.
E.g., for t1 LEFT JOIN t2 WHERE t1.x + t2.x > 3, the condition will be
attached to t2's QEP_TAB, but needs to be attached above the join, or
it would erroneously keep rows wherever t2 did not produce a
(real) row. Such conditions are marked with a “found” trigger (in the
old execution engine, which tested qep_tab->condition() both before and
after the join, it would need to be exempt from the first test).
4. Predicates that are #1 _and_ #3. These can happen with more complicated
outer joins; e.g., with t1 LEFT JOIN ( t2 LEFT JOIN t3 ON <x> ) ON <y>,
the <x> join condition (posted on t3) should be above one join but
below the other.
Special case:
If we are on the inner side of a semijoin with only one table, any
condition attached to this table is lifted up to where the semijoin
iterator would be created. If we have more than one table on the inner
side of a semijoin, and if conditions attached to these tables are
lifted up to the semijoin iterator, we do not create good plans.
Therefore, for such a case, we take special care to try and attach
the condition to the correct hash join iterator. To do the same, we
find if the fields in a join condition are available within the join
created for the current table. If the fields are available, we attach the
condition to the hash join iterator created for the current table.
We make use of "semi_join_table_idx" to know where the semijoin iterator
would be created and "left_tables" to know the tables that are available
for the join that will be created for the current table.
Note that, as of now, for mysql, we do not enable join buffering thereby
not enabling hash joins when a semijoin has more than one table on
its inner side. However, we enable it for secondary engines.
TODO: The optimizer should distinguish between before-join and
after-join conditions to begin with, instead of us having to untangle
it here.
*/
void SplitConditions(Item *condition, QEP_TAB *current_table,
vector<Item *> *predicates_below_join,
vector<PendingCondition> *predicates_above_join,
vector<PendingCondition> *join_conditions,
plan_idx semi_join_table_idx, qep_tab_map left_tables) {
Mem_root_array<Item *> condition_parts(*THR_MALLOC);
ExtractConditions(condition, &condition_parts);
for (Item *item : condition_parts) {
Item_func_trig_cond *trig_cond = GetTriggerCondOrNull(item);
if (trig_cond != nullptr) {
Item *inner_cond = trig_cond->arguments()[0];
if (trig_cond->get_trig_type() == Item_func_trig_cond::FOUND_MATCH) {
// A WHERE predicate on the table that needs to be pushed up above the
// join (case #3 above).
predicates_above_join->push_back(
PendingCondition{inner_cond, trig_cond->idx()});
} else if (trig_cond->get_trig_type() ==
Item_func_trig_cond::IS_NOT_NULL_COMPL) {
// It's a join condition, so it should nominally go directly onto the
// table. If it _also_ has a FOUND_MATCH predicate, we are dealing
// with case #4 above, and need to push it up to exactly the right
// spot.
//
// There is a special exception here for antijoins; see the code under
// qep_tab->table()->reginfo.not_exists_optimize in ConnectJoins().
Item_func_trig_cond *inner_trig_cond = GetTriggerCondOrNull(inner_cond);
if (inner_trig_cond != nullptr) {
// Note that we can have a condition inside multiple levels of a
// trigger condition. We want the innermost condition, as we really do
// not care about trigger conditions after this point.
Item *inner_inner_cond = GetInnermostCondition(inner_trig_cond);
if (join_conditions != nullptr) {
// If join_conditions is set, it indicates that we are on the right
// side of an outer join that will be executed using hash join. The
// condition must be moved to the point where the hash join iterator
// is created, so the condition can be attached to the iterator.
join_conditions->push_back(
PendingCondition{inner_inner_cond, trig_cond->idx()});
} else {
predicates_above_join->push_back(
PendingCondition{inner_inner_cond, inner_trig_cond->idx()});
}
} else {
if (join_conditions != nullptr) {
// Similar to the left join above: If join_conditions is set,
// it indicates that we are on the inner side of an antijoin (we are
// dealing with the NOT IN side in the below example), and the
// antijoin will be executed using hash join:
//
// SELECT * FROM t1 WHERE t1.col1 NOT IN (SELECT t2.col1 FROM t2);
//
// In this case, the condition must be moved up to the outer side
// where the hash join iterator is created, so it can be attached
// to the iterator.
if (semi_join_table_idx == NO_PLAN_IDX) {
join_conditions->push_back(
PendingCondition{inner_cond, trig_cond->idx()});
}
// Or, we might be on the inner side of a semijoin. In this case,
// we move the condition to where the semijoin hash iterator is
// created. However if we have more than one table on the inner
// side of the semijoin, then we first check if it can be attached
// to the hash join iterator of the inner join (provided the fields
// in the condition are available within the join). If not, move it
// upto where semijoin hash iterator is created.
else if (current_table->idx() == semi_join_table_idx) {
join_conditions->push_back(
PendingCondition{inner_cond, semi_join_table_idx});
} else {
AttachSemiJoinCondition(inner_cond, join_conditions,
current_table, left_tables,
semi_join_table_idx);
}
} else {
predicates_below_join->push_back(inner_cond);
}
}
} else {
predicates_below_join->push_back(item);
}
} else {
if (join_conditions != nullptr && IsJoinCondition(item, current_table) &&
semi_join_table_idx != NO_PLAN_IDX) {
// We are on the inner side of a semijoin, and the item we are
// looking at is a join condition. In addition, the join will be
// executed using hash join. Move the condition up where the hash join
// iterator is created.
// If we have only one table on the inner side of a semijoin,
// we attach the condition to the semijoin iterator.
if (current_table->idx() == semi_join_table_idx) {
join_conditions->push_back(
PendingCondition{item, semi_join_table_idx});
} else {
// In case we have more than one table on the inner side of a
// semijoin, conditions will be attached to the inner hash join
// iterator only if the fields present in the condition are
// available within the join. Else, condition is moved up to where
// the semijoin hash iterator is created.
AttachSemiJoinCondition(item, join_conditions, current_table,
left_tables, semi_join_table_idx);
}
} else {
// All other conditions (both join condition and filters) will be looked
// at while creating the iterator for this table.
predicates_below_join->push_back(item);
}
}
}
}
/**
For a given duplicate weedout operation, figure out which tables are supposed
to be deduplicated by it, and add those to unhandled_duplicates. (SJ_TMP_TABLE
contains the deduplication key, which is exactly the complement of the tables
to be deduplicated.)
*/
static void MarkUnhandledDuplicates(SJ_TMP_TABLE *weedout,
plan_idx weedout_start,
plan_idx weedout_end,
qep_tab_map *unhandled_duplicates) {
assert(weedout_start >= 0);
assert(weedout_end >= 0);
qep_tab_map weedout_range = TablesBetween(weedout_start, weedout_end);
if (weedout->is_confluent) {
// Confluent weedout doesn't have tabs or tabs_end set; it just implicitly
// says none of the tables are allowed to produce duplicates.
} else {
// Remove all tables that are part of the key.
for (SJ_TMP_TABLE_TAB *tab = weedout->tabs; tab != weedout->tabs_end;
++tab) {
weedout_range &= ~tab->qep_tab->idx_map();
}
}
*unhandled_duplicates |= weedout_range;
}
static AccessPath *CreateWeedoutOrLimitAccessPath(THD *thd, AccessPath *path,
SJ_TMP_TABLE *weedout_table) {
if (weedout_table->is_confluent) {
// A “confluent” weedout is one that deduplicates on all the
// fields. If so, we can drop the complexity of the WeedoutIterator
// and simply insert a LIMIT 1.
return NewLimitOffsetAccessPath(thd, path,
/*limit=*/1, /*offset=*/0,
/*count_all_rows=*/false,
/*reject_multiple_rows=*/false,
/*send_records_override=*/nullptr);
} else {
AccessPath *weedout_path = NewWeedoutAccessPath(thd, path, weedout_table);
FindTablesToGetRowidFor(weedout_path);
return weedout_path;
}
}
static AccessPath *NewWeedoutAccessPathForTables(
THD *thd, const qep_tab_map tables_to_deduplicate, QEP_TAB *qep_tabs,
uint primary_tables, AccessPath *path) {
Prealloced_array<SJ_TMP_TABLE_TAB, MAX_TABLES> sj_tabs(PSI_NOT_INSTRUMENTED);
for (uint i = 0; i < primary_tables; ++i) {
if (!ContainsTable(tables_to_deduplicate, i)) {
SJ_TMP_TABLE_TAB sj_tab;
sj_tab.qep_tab = &qep_tabs[i];
sj_tabs.push_back(sj_tab);
// See JOIN::add_sorting_to_table() for rationale.
Filesort *filesort = qep_tabs[i].filesort;
if (filesort != nullptr) {
if (filesort->m_sort_param.m_addon_fields_status !=
Addon_fields_status::unknown_status) {
// This can happen in the exceptional case that there's an extra
// weedout added after-the-fact due to nonhierarchical weedouts
// (see FindSubstructure for details). Note that our caller will
// call FindTablesToGetRowidFor() if needed, which should overwrite
// the previous (now wrong) decision there.
filesort->clear_addon_fields();
}
filesort->m_force_sort_rowids = true;
// Since we changed our mind about whether the SORT path below us should
// use row IDs, update it to make EXPLAIN display correct information.
WalkAccessPaths(path, /*join=*/nullptr,
WalkAccessPathPolicy::STOP_AT_MATERIALIZATION,
[filesort](AccessPath *subpath, const JOIN *) {
if (subpath->type == AccessPath::SORT &&
subpath->sort().filesort == filesort) {
subpath->sort().force_sort_rowids = true;
return true;
}
return false;
});
}
}
}
JOIN *join = qep_tabs[0].join();
SJ_TMP_TABLE *sjtbl =
create_sj_tmp_table(thd, join, &sj_tabs[0], &sj_tabs[0] + sj_tabs.size());
return CreateWeedoutOrLimitAccessPath(thd, path, sjtbl);
}
enum class Substructure { NONE, OUTER_JOIN, SEMIJOIN, WEEDOUT };
/**
Given a range of tables (where we assume that we've already handled
first_idx..(this_idx-1) as inner joins), figure out whether this is a
semijoin, an outer join or a weedout. In general, the outermost structure
wins; if we are in one of the rare cases where there are e.g. coincident
(first match) semijoins and weedouts, we do various forms of conflict
resolution:
- Unhandled weedouts will add elements to unhandled_duplicates
(to be handled at the top level of the query).
- Unhandled semijoins will either:
* Set add_limit_1 to true, which means a LIMIT 1 iterator should
be added, or
* Add elements to unhandled_duplicates in situations that cannot
be solved by a simple one-table, one-row LIMIT.
If not returning NONE, substructure_end will also be filled with where this
sub-join ends (exclusive).
*/
static Substructure FindSubstructure(
QEP_TAB *qep_tabs, const plan_idx first_idx, const plan_idx this_idx,
const plan_idx last_idx, CallingContext calling_context, bool *add_limit_1,
plan_idx *substructure_end, qep_tab_map *unhandled_duplicates) {
QEP_TAB *qep_tab = &qep_tabs[this_idx];
bool is_outer_join =
qep_tab->last_inner() != NO_PLAN_IDX && qep_tab->last_inner() < last_idx;
plan_idx outer_join_end =
qep_tab->last_inner() + 1; // Only valid if is_outer_join.
// See if this table marks the end of the left side of a semijoin.
bool is_semijoin = false;
plan_idx semijoin_end = NO_PLAN_IDX;
for (plan_idx j = this_idx; j < last_idx; ++j) {
if (qep_tabs[j].firstmatch_return == this_idx - 1) {
is_semijoin = true;
semijoin_end = j + 1;
break;
}
}
// Outer joins (or semijoins) wrapping a weedout is tricky,
// especially in edge cases. If we have an outer join wrapping
// a weedout, the outer join needs to be processed first.
// But the weedout wins if it's strictly larger than the outer join.
// However, a problem occurs if the weedout wraps two consecutive
// outer joins (which can happen if the join optimizer interleaves
// tables from different weedouts and needs to combine them into
// one larger weedout). E.g., consider a join order such as
//
// a LEFT JOIN (b,c) LEFT JOIN (d,e)
//
// where there is _also_ a weedout wrapping all four tables [b,e].
// (Presumably, there were originally two weedouts b+e and c+d,
// but due to reordering, they were combined into one.)
// In this case, we have a non-hierarchical situation since the
// (a,(b,c)) join only partially overlaps with the [b,e] weedout.
//
// We solve these non-hierarchical cases by punting them upwards;
// we signal that they are simply not done by adding them to
// unhandled_duplicates, and then drop the weedout. The top level
// will then add a final weedout after all joins. In some cases,
// it is possible to push the weedout further down than this,
// but these cases are so marginal that it's not worth it.
// See if this table starts a weedout operation.
bool is_weedout = false;
plan_idx weedout_end = NO_PLAN_IDX;
if (qep_tab->starts_weedout() &&
!(calling_context == DIRECTLY_UNDER_WEEDOUT && this_idx == first_idx)) {
for (plan_idx j = this_idx; j < last_idx; ++j) {
if (qep_tabs[j].check_weed_out_table == qep_tab->flush_weedout_table) {
weedout_end = j + 1;
break;
}
}
if (weedout_end != NO_PLAN_IDX) {
is_weedout = true;
}
}
if (weedout_end > last_idx) {
// See comment above.
MarkUnhandledDuplicates(qep_tab->flush_weedout_table, this_idx, weedout_end,
unhandled_duplicates);
is_weedout = false;
}
*add_limit_1 = false;
if (is_outer_join && is_weedout) {
if (outer_join_end > weedout_end) {
// Weedout will be handled at a lower recursion level.
is_weedout = false;
} else {
if (qep_tab->flush_weedout_table->is_confluent) {
// We have the case where the right side of an outer join is a confluent
// weedout. The weedout will return at most one row, so replace the
// weedout with LIMIT 1.
*add_limit_1 = true;
} else {
// See comment above.
MarkUnhandledDuplicates(qep_tab->flush_weedout_table, this_idx,
weedout_end, unhandled_duplicates);
}
is_weedout = false;
}
}
if (is_semijoin && is_weedout) {
if (semijoin_end > weedout_end) {
// Weedout will be handled at a lower recursion level.
is_weedout = false;
} else {
// See comment above.
MarkUnhandledDuplicates(qep_tab->flush_weedout_table, this_idx,
weedout_end, unhandled_duplicates);
is_weedout = false;
}
}
// Occasionally, a subslice may be designated as the right side of both a
// semijoin _and_ an outer join. This is a fairly odd construction,
// as it means exactly one row is generated no matter what (negating the
// point of a semijoin in the first place), and typically happens as the
// result of the join optimizer reordering tables that have no real bearing
// on the query, such as ... WHERE t1 IN ( t2.i FROM t2 LEFT JOIN t3 )
// with the ordering t2, t1, t3 (t3 will now be in such a situation).
//
// Nominally, these tables should be optimized away, but this is not the
// right place for that, so we solve it by adding a LIMIT 1 and then
// treating the slice as a normal outer join.
if (is_semijoin && is_outer_join) {
if (semijoin_end == outer_join_end) {
*add_limit_1 = true;
is_semijoin = false;
} else if (semijoin_end > outer_join_end) {
// A special case of the special case; there might be more than one
// outer join contained in this semijoin, e.g. A LEFT JOIN B LEFT JOIN C
// where the combination B-C is _also_ the right side of a semijoin.
// The join optimizer should not produce this.
assert(false);
}
}
// Yet another special case like the above; this is when we have a semijoin
// and then a partially overlapping outer join that ends outside the semijoin.
// E.g., A JOIN B JOIN C LEFT JOIN D, where A..C denotes a semijoin
// (C has first match back to A). Verify that it cannot happen.
if (is_semijoin) {
for (plan_idx i = this_idx; i < semijoin_end; ++i) {
assert(qep_tabs[i].last_inner() < semijoin_end);
}
}
// We may have detected both a semijoin and an outer join starting at
// this table. Decide which one is the outermost that is not already
// processed, so that we recurse in the right order.
if (calling_context == DIRECTLY_UNDER_SEMIJOIN && this_idx == first_idx &&
semijoin_end == last_idx) {
is_semijoin = false;
} else if (calling_context == DIRECTLY_UNDER_OUTER_JOIN &&
this_idx == first_idx && outer_join_end == last_idx) {
is_outer_join = false;
}
if (is_semijoin && is_outer_join) {
assert(outer_join_end > semijoin_end);
is_semijoin = false;
}
assert(is_semijoin + is_outer_join + is_weedout <= 1);
if (is_semijoin) {
*substructure_end = semijoin_end;
return Substructure::SEMIJOIN;
}
if (is_outer_join) {
*substructure_end = outer_join_end;
return Substructure::OUTER_JOIN;
}
if (is_weedout) {
*substructure_end = weedout_end;
return Substructure::WEEDOUT;
}
*substructure_end = NO_PLAN_IDX; // Not used.
return Substructure::NONE;
}
static bool IsTableScan(AccessPath *path) {
if (path->type == AccessPath::FILTER) {
return IsTableScan(path->filter().child);
}
return path->type == AccessPath::TABLE_SCAN;
}
AccessPath *GetAccessPathForDerivedTable(THD *thd, QEP_TAB *qep_tab,
AccessPath *table_path) {
return GetAccessPathForDerivedTable(
thd, qep_tab->table_ref, qep_tab->table(), qep_tab->rematerialize,
qep_tab->invalidators, /*need_rowid=*/false, table_path);
}
/**
Recalculate the cost of 'path'.
@param path the access path for which we update the cost numbers.
@param outer_query_block the query block to which 'path belongs.
*/
static void RecalculateTablePathCost(AccessPath *path,
const Query_block &outer_query_block) {
switch (path->type) {
case AccessPath::FILTER: {
const AccessPath &child = *path->filter().child;
path->set_num_output_rows(child.num_output_rows());
path->init_cost = child.init_cost;
const FilterCost filterCost =
EstimateFilterCost(current_thd, path->num_output_rows(),
path->filter().condition, &outer_query_block);
path->cost = child.cost + (path->filter().materialize_subqueries
? filterCost.cost_if_materialized
: filterCost.cost_if_not_materialized);
} break;
case AccessPath::SORT:
EstimateSortCost(path);
break;
case AccessPath::LIMIT_OFFSET:
EstimateLimitOffsetCost(path);
break;
case AccessPath::DELETE_ROWS:
EstimateDeleteRowsCost(path);
break;
case AccessPath::UPDATE_ROWS:
EstimateUpdateRowsCost(path);
break;
case AccessPath::STREAM:
EstimateStreamCost(path);
break;
case AccessPath::MATERIALIZE:
EstimateMaterializeCost(current_thd, path);
break;
case AccessPath::WINDOW:
EstimateWindowCost(path);
break;
default:
assert(false);
}
}
AccessPath *MoveCompositeIteratorsFromTablePath(
AccessPath *path, const Query_block &outer_query_block) {
assert(path->cost >= 0.0);
AccessPath *table_path = path->materialize().table_path;
AccessPath *bottom_of_table_path = nullptr;
// For EXPLAIN, we recalculate the cost to reflect the new order of
// AccessPath objects.
const bool explain = current_thd->lex->is_explain();
Prealloced_array<AccessPath *, 4> ancestor_paths{PSI_NOT_INSTRUMENTED};
const auto scan_functor = [&bottom_of_table_path, &ancestor_paths, path,
explain](AccessPath *sub_path, const JOIN *) {
switch (sub_path->type) {
case AccessPath::TABLE_SCAN:
case AccessPath::REF:
case AccessPath::REF_OR_NULL:
case AccessPath::EQ_REF:
case AccessPath::ALTERNATIVE:
case AccessPath::CONST_TABLE:
case AccessPath::INDEX_SCAN:
case AccessPath::INDEX_RANGE_SCAN:
case AccessPath::DYNAMIC_INDEX_RANGE_SCAN:
// We found our real bottom.
path->materialize().table_path = sub_path;
if (explain) {
EstimateMaterializeCost(current_thd, path);
}
return true;
default:
// New possible bottom, so keep going.
bottom_of_table_path = sub_path;
ancestor_paths.push_back(sub_path);
return false;
}
};
WalkAccessPaths(table_path, /*join=*/nullptr,
WalkAccessPathPolicy::ENTIRE_TREE, scan_functor);
if (bottom_of_table_path != nullptr) {
if (bottom_of_table_path->type == AccessPath::ZERO_ROWS) {
// There's nothing to materialize for ZERO_ROWS, so we can drop the
// entire MATERIALIZE node.
return bottom_of_table_path;
}
if (explain) {
EstimateMaterializeCost(current_thd, path);
}
// This isn't strictly accurate, but helps propagate information
// better throughout the tree nevertheless.
CopyBasicProperties(*path, table_path);
switch (bottom_of_table_path->type) {
case AccessPath::FILTER:
bottom_of_table_path->filter().child = path;
break;
case AccessPath::SORT:
bottom_of_table_path->sort().child = path;
break;
case AccessPath::LIMIT_OFFSET:
bottom_of_table_path->limit_offset().child = path;
break;
case AccessPath::DELETE_ROWS:
bottom_of_table_path->delete_rows().child = path;
break;
case AccessPath::UPDATE_ROWS:
bottom_of_table_path->update_rows().child = path;
break;
// It's a bit odd to have STREAM and MATERIALIZE nodes
// inside table_path, but it happens when we have UNION with
// with ORDER BY on nondeterministic predicates, or INSERT
// which requires buffering. It should be safe move it
// out of table_path nevertheless.
case AccessPath::STREAM:
bottom_of_table_path->stream().child = path;
break;
case AccessPath::MATERIALIZE:
assert(bottom_of_table_path->materialize().param->query_blocks.size() ==
1);
bottom_of_table_path->materialize()
.param->query_blocks[0]
.subquery_path = path;
break;
case AccessPath::WINDOW:
bottom_of_table_path->window().child = path;
break;
default:
assert(false);
}
path = table_path;
}
if (explain) {
// Update cost from the bottom an up, so that the cost of each path
// includes the cost of its descendants.
for (auto ancestor = ancestor_paths.end() - 1;
ancestor >= ancestor_paths.begin(); ancestor--) {
RecalculateTablePathCost(*ancestor, outer_query_block);
}
}
return path;
}
AccessPath *GetAccessPathForDerivedTable(
THD *thd, Table_ref *table_ref, TABLE *table, bool rematerialize,
Mem_root_array<const AccessPath *> *invalidators, bool need_rowid,
AccessPath *table_path) {
if (table_ref->access_path_for_derived != nullptr) {
return table_ref->access_path_for_derived;
}
Query_expression *query_expression = table_ref->derived_query_expression();
JOIN *subjoin = nullptr;
Temp_table_param *tmp_table_param;
int select_number;
// If we have a single query block at the end of the QEP_TAB array,
// it may contain aggregation that have already set up fields and items
// to copy, and we need to pass those to MaterializeIterator, so reuse its
// tmp_table_param. If not, make a new object, so that we don't
// disturb the materialization going on inside our own query block.
if (query_expression->is_simple()) {
subjoin = query_expression->first_query_block()->join;
select_number = query_expression->first_query_block()->select_number;
tmp_table_param = &subjoin->tmp_table_param;
} else if (query_expression->set_operation()->m_is_materialized) {
// NOTE: subjoin here is never used, as ConvertItemsToCopy only uses it
// for ROLLUP, and simple table can't have ROLLUP.
Query_block *const qb = query_expression->set_operation()->query_block();
subjoin = qb->join;
tmp_table_param = &subjoin->tmp_table_param;
select_number = qb->select_number;
} else {
tmp_table_param = new (thd->mem_root) Temp_table_param;
select_number = query_expression->first_query_block()->select_number;
}
ConvertItemsToCopy(*query_expression->get_field_list(),
table->visible_field_ptr(), tmp_table_param);
AccessPath *path;
if (query_expression->unfinished_materialization()) {
// The query expression is a UNION capable of materializing directly into
// our result table. This saves us from doing double materialization (first
// into a UNION result table, then from there into our own).
//
// We will already have set up a unique index on the table if
// required; see Table_ref::setup_materialized_derived_tmp_table().
path = NewMaterializeAccessPath(
thd, query_expression->release_query_blocks_to_materialize(),
invalidators, table, table_path, table_ref->common_table_expr(),
query_expression,
/*ref_slice=*/-1, rematerialize, query_expression->select_limit_cnt,
query_expression->offset_limit_cnt == 0
? query_expression->m_reject_multiple_rows
: false);
EstimateMaterializeCost(thd, path);
path = MoveCompositeIteratorsFromTablePath(
path, *query_expression->outer_query_block());
if (query_expression->offset_limit_cnt != 0) {
// LIMIT is handled inside MaterializeIterator, but OFFSET is not.
// SQL_CALC_FOUND_ROWS cannot occur in a derived table's definition.
path = NewLimitOffsetAccessPath(
thd, path, query_expression->select_limit_cnt,
query_expression->offset_limit_cnt,
/*count_all_rows=*/false, query_expression->m_reject_multiple_rows,
/*send_records_override=*/nullptr);
}
} else if (table_ref->common_table_expr() == nullptr && rematerialize &&
IsTableScan(table_path) && !need_rowid) {
// We don't actually need the materialization for anything (we would
// just be reading the rows straight out from the table, never to be used
// again), so we can just stream records directly over to the next
// iterator. This saves both CPU time and memory (for the temporary
// table).
//
// NOTE: Currently, rematerialize is true only for JSON_TABLE. (In the
// hypergraph optimizer, it is also true for lateral derived tables.)
// We could extend this to other situations, such as the leftmost
// table of the join (assuming nested loop only). The test for CTEs is
// also conservative; if the CTE is defined within this join and used
// only once, we could still stream without losing performance.
path = NewStreamingAccessPath(thd, query_expression->root_access_path(),
subjoin, &subjoin->tmp_table_param, table,
/*ref_slice=*/-1);
CopyBasicProperties(*query_expression->root_access_path(), path);
path->ordering_state = 0; // Different query block, so ordering is reset.
} else {
JOIN *join = query_expression->is_set_operation()
? nullptr
: query_expression->first_query_block()->join;
path = NewMaterializeAccessPath(
thd,
SingleMaterializeQueryBlock(thd, query_expression->root_access_path(),
select_number, join,
/*copy_items=*/true, tmp_table_param),
invalidators, table, table_path, table_ref->common_table_expr(),
query_expression,
/*ref_slice=*/-1, rematerialize, tmp_table_param->end_write_records,
query_expression->m_reject_multiple_rows);
EstimateMaterializeCost(thd, path);
path = MoveCompositeIteratorsFromTablePath(
path, *query_expression->outer_query_block());
}
path->cost_before_filter = path->cost;
path->num_output_rows_before_filter = path->num_output_rows();
table_ref->access_path_for_derived = path;
return path;
}
/**
Get the RowIterator used for scanning the given table, with any required
materialization operations done first.
*/
AccessPath *GetTableAccessPath(THD *thd, QEP_TAB *qep_tab, QEP_TAB *qep_tabs) {
AccessPath *table_path;
if (qep_tab->materialize_table == QEP_TAB::MATERIALIZE_DERIVED) {
table_path =
GetAccessPathForDerivedTable(thd, qep_tab, qep_tab->access_path());
} else if (qep_tab->materialize_table ==
QEP_TAB::MATERIALIZE_TABLE_FUNCTION) {
table_path = NewMaterializedTableFunctionAccessPath(
thd, qep_tab->table(), qep_tab->table_ref->table_function,
qep_tab->access_path());
} else if (qep_tab->materialize_table == QEP_TAB::MATERIALIZE_SEMIJOIN) {
Semijoin_mat_exec *sjm = qep_tab->sj_mat_exec();
// create_tmp_table() has already filled sjm->table_param.items_to_copy.
// However, the structures there are not used by
// join_materialize_semijoin, and don't have e.g. result fields set up
// correctly, so we just clear it and create our own.
sjm->table_param.items_to_copy = nullptr;
ConvertItemsToCopy(sjm->sj_nest->nested_join->sj_inner_exprs,
qep_tab->table()->visible_field_ptr(),
&sjm->table_param);
int join_start = sjm->inner_table_index;
int join_end = join_start + sjm->table_count;
// Handle this subquery as a we would a completely separate join,
// even though the tables are part of the same JOIN object
// (so in effect, a “virtual join”).
qep_tab_map unhandled_duplicates = 0;
table_map conditions_depend_on_outer_tables = 0;
vector<PendingInvalidator> pending_invalidators;
AccessPath *subtree_path = ConnectJoins(
/*upper_first_idx=*/NO_PLAN_IDX, join_start, join_end, qep_tabs, thd,
TOP_LEVEL,
/*pending_conditions=*/nullptr, &pending_invalidators,
/*pending_join_conditions=*/nullptr, &unhandled_duplicates,
&conditions_depend_on_outer_tables);
// If there were any weedouts that we had to drop during ConnectJoins()
// (ie., the join left some tables that were supposed to be deduplicated
// but were not), handle them now at the end of the virtual join.
if (unhandled_duplicates != 0) {
subtree_path = NewWeedoutAccessPathForTables(
thd, unhandled_duplicates, qep_tab, qep_tab->join()->primary_tables,
subtree_path);
}
// Since materialized semijoins are based on ref access against the table,
// and ref access has NULL = NULL (while IN expressions should not),
// remove rows with NULLs in them here. This is only an optimization for IN
// (since equality propagation will filter away NULLs on the other side),
// but is required for NOT IN correctness.
//
// TODO: It could be possible to join this with an existing condition,
// and possibly also in some cases when scanning each table.
vector<Item *> not_null_conditions;
for (Item *item : sjm->sj_nest->nested_join->sj_inner_exprs) {
if (item->is_nullable()) {
Item *condition = new Item_func_isnotnull(item);
condition->quick_fix_field();
condition->update_used_tables();
condition->apply_is_true();
not_null_conditions.push_back(condition);
}
}
subtree_path = PossiblyAttachFilter(subtree_path, not_null_conditions, thd,
&conditions_depend_on_outer_tables);
bool copy_items_in_materialize =
true; // We never have windowing functions within semijoins.
table_path = NewMaterializeAccessPath(
thd,
SingleMaterializeQueryBlock(
thd, subtree_path, qep_tab->join()->query_block->select_number,
qep_tab->join(), copy_items_in_materialize, &sjm->table_param),
qep_tab->invalidators, qep_tab->table(), qep_tab->access_path(),
/*cte=*/nullptr,
/*query_expression=*/nullptr,
/*ref_slice=*/-1, qep_tab->rematerialize,
sjm->table_param.end_write_records,
/*reject_multiple_rows=*/false);
EstimateMaterializeCost(thd, table_path);
#ifndef NDEBUG
// Make sure we clear this table out when the join is reset,
// since its contents may depend on outer expressions.
bool found = false;
for (TABLE &sj_tmp_tab : qep_tab->join()->sj_tmp_tables) {
if (&sj_tmp_tab == qep_tab->table()) {
found = true;
break;
}
}
assert(found);
#endif
} else {
table_path = qep_tab->access_path();
// See if this is an information schema table that must be filled in before
// we scan.
if (qep_tab->table_ref->schema_table &&
qep_tab->table_ref->schema_table->fill_table) {
table_path = NewMaterializeInformationSchemaTableAccessPath(
thd, table_path, qep_tab->table_ref, qep_tab->condition());
}
}
return table_path;
}
void SetCostOnTableAccessPath(const Cost_model_server &cost_model,
const POSITION *pos, bool is_after_filter,
AccessPath *path) {
double num_rows_after_filtering = pos->rows_fetched * pos->filter_effect;
if (is_after_filter) {
path->set_num_output_rows(num_rows_after_filtering);
} else {
path->set_num_output_rows(pos->rows_fetched);
}
// Note that we don't try to adjust for the filtering here;
// we estimate the same cost as the table itself.
double cost =
pos->read_cost + cost_model.row_evaluate_cost(num_rows_after_filtering);
if (pos->prefix_rowcount <= 0.0) {
path->cost = cost;
} else {
// Scale the estimated cost to being for one loop only, to match the
// measured costs.
path->cost = cost * num_rows_after_filtering / pos->prefix_rowcount;
}
}
void SetCostOnNestedLoopAccessPath(const Cost_model_server &cost_model,
const POSITION *pos_inner,
AccessPath *path) {
if (pos_inner == nullptr) {
// No cost information.
return;
}
AccessPath *outer, *inner;
if (path->type == AccessPath::NESTED_LOOP_SEMIJOIN_WITH_DUPLICATE_REMOVAL) {
outer = path->nested_loop_semijoin_with_duplicate_removal().outer;
inner = path->nested_loop_semijoin_with_duplicate_removal().inner;
} else {
assert(path->type == AccessPath::NESTED_LOOP_JOIN);
outer = path->nested_loop_join().outer;
inner = path->nested_loop_join().inner;
}
if (outer->num_output_rows() == -1.0 || inner->num_output_rows() == -1.0) {
// Missing cost information on at least one child.
return;
}
// Mirrors set_prefix_join_cost(), even though the cost calculation doesn't
// make a lot of sense.
double inner_expected_rows_before_filter =
pos_inner->filter_effect > 0.0
? (inner->num_output_rows() / pos_inner->filter_effect)
: 0.0;
double joined_rows =
outer->num_output_rows() * inner_expected_rows_before_filter;
path->set_num_output_rows(joined_rows * pos_inner->filter_effect);
path->cost = outer->cost + pos_inner->read_cost +
cost_model.row_evaluate_cost(joined_rows);
}
void SetCostOnHashJoinAccessPath(const Cost_model_server &cost_model,
const POSITION *pos_outer, AccessPath *path) {
if (pos_outer == nullptr) {
// No cost information.
return;
}
AccessPath *outer = path->hash_join().outer;
AccessPath *inner = path->hash_join().inner;
if (outer->num_output_rows() == -1.0 || inner->num_output_rows() == -1.0) {
// Missing cost information on at least one child.
return;
}
// Mirrors set_prefix_join_cost(), even though the cost calculation doesn't
// make a lot of sense.
double joined_rows = outer->num_output_rows() * inner->num_output_rows();
path->set_num_output_rows(joined_rows * pos_outer->filter_effect);
path->cost = inner->cost + pos_outer->read_cost +
cost_model.row_evaluate_cost(joined_rows);
}
static bool ConditionIsAlwaysTrue(Item *item) {
return item->const_item() && item->val_bool();
}
// Create a hash join iterator with the given build and probe input. We will
// move conditions from the argument "join_conditions" into two separate lists;
// one list for equi-join conditions that will be used as normal join conditions
// in hash join, and one list for non-equi-join conditions that will be attached
// as "extra" conditions in hash join. The "extra" conditions are conditions
// that must be evaluated after the hash table lookup, but _before_ returning a
// row. Conditions that are not moved will be attached as filters after the
// join. Note that we only attach conditions as "extra" conditions if the join
// type is not inner join. This gives us more fine-grained output from EXPLAIN
// ANALYZE, where we can see whether the condition was expensive.
// This information is lost when we attach conditions as extra conditions inside
// hash join.
//
// The function will also determine whether hash join is allowed to spill to
// disk. In general, we reject spill to disk if the query has a LIMIT and no
// aggregation or grouping. See comments inside the function for justification.
static AccessPath *CreateHashJoinAccessPath(
THD *thd, QEP_TAB *qep_tab, AccessPath *build_path,
qep_tab_map build_tables, AccessPath *probe_path, qep_tab_map probe_tables,
JoinType join_type, vector<Item *> *join_conditions,
table_map *conditions_depend_on_outer_tables) {
table_map left_table_map =
ConvertQepTabMapToTableMap(qep_tab->join(), probe_tables);
table_map right_table_map =
ConvertQepTabMapToTableMap(qep_tab->join(), build_tables);
// Move out equi-join conditions and non-equi-join conditions, so we can
// attach them as join condition and extra conditions in hash join.
vector<HashJoinCondition> hash_join_conditions;
vector<Item *> hash_join_extra_conditions;
for (Item *outer_item : *join_conditions) {
// We can encounter conditions that are AND'ed together (i.e. a condition
// that originally was Item_cond_and inside a Item_trig_cond).
Mem_root_array<Item *> condition_parts(thd->mem_root);
ExtractConditions(outer_item, &condition_parts);
for (Item *inner_item : condition_parts) {
if (ConditionIsAlwaysTrue(inner_item)) {
// The optimizer may leave conditions that are always 'true'. These have
// no effect on the query, so we ignore them. Ideally, the optimizer
// should not attach these conditions in the first place.
continue;
}
// See if this is an equi-join condition.
if (inner_item->type() == Item::FUNC_ITEM ||
inner_item->type() == Item::COND_ITEM) {
Item_func *func_item = down_cast<Item_func *>(inner_item);
if (func_item->functype() == Item_func::EQ_FUNC) {
bool found = false;
down_cast<Item_func_eq *>(func_item)
->ensure_multi_equality_fields_are_available(
left_table_map, right_table_map, /*replace=*/true, &found);
}
if (func_item->contains_only_equi_join_condition()) {
Item_eq_base *join_condition = down_cast<Item_eq_base *>(func_item);
if (IsHashEquijoinCondition(join_condition, left_table_map,
right_table_map)) {
// Make a hash join condition for this equality comparison.
// This may entail allocating type cast nodes; see the comments
// on HashJoinCondition for more details.
hash_join_conditions.emplace_back(join_condition, thd->mem_root);
continue;
}
}
}
// It was not.
hash_join_extra_conditions.push_back(inner_item);
}
}
// For any conditions for which HashJoinCondition decided only to store the
// hash in the key, we need to re-check.
for (const HashJoinCondition &cond : hash_join_conditions) {
if (!cond.store_full_sort_key()) {
hash_join_extra_conditions.push_back(cond.join_condition());
}
}
if (join_type == JoinType::INNER) {
// For inner join, attach the extra conditions as filters after the join.
// This gives us more detailed output in EXPLAIN ANALYZE since we get an
// instrumented FilterIterator on top of the join.
*join_conditions = std::move(hash_join_extra_conditions);
} else {
join_conditions->clear();
// The join condition could contain conditions that can be pushed down into
// the right side, e.g. “t1 LEFT JOIN t2 ON t2.x > 3” (or simply
// “ON FALSE”). For inner joins, the optimizer will have pushed these down
// to the right tables, but it is not capable of doing so for outer joins.
// As a band-aid, we identify these and push them down onto the build
// iterator. This isn't ideal (they will not e.g. give rise to index
// lookups, and if there are multiple tables, we don't push the condition
// as far down as we should), but it should give reasonable speedups for
// many common cases.
vector<Item *> build_conditions;
for (auto cond_it = hash_join_extra_conditions.begin();
cond_it != hash_join_extra_conditions.end();) {
Item *cond = *cond_it;
if ((cond->used_tables() & (left_table_map | RAND_TABLE_BIT)) == 0) {
build_conditions.push_back(cond);
cond_it = hash_join_extra_conditions.erase(cond_it);
} else {
*conditions_depend_on_outer_tables |= cond->used_tables();
++cond_it;
}
}
build_path = PossiblyAttachFilter(build_path, build_conditions, thd,
conditions_depend_on_outer_tables);
}
// If we have a degenerate semijoin or antijoin (ie., no join conditions),
// we only need a single row from the inner side.
if ((join_type == JoinType::SEMI || join_type == JoinType::ANTI) &&
hash_join_conditions.empty() && hash_join_extra_conditions.empty()) {
build_path = NewLimitOffsetAccessPath(thd, build_path,
/*limit=*/1, /*offset=*/0,
/*count_all_rows=*/false,
/*reject_multiple_rows=*/false,
/*send_records_override=*/nullptr);
}
const JOIN *join = qep_tab->join();
const bool has_grouping = join->implicit_grouping || join->grouped;
const bool has_limit = join->m_select_limit != HA_POS_ERROR;
const bool has_order_by = join->order.order != nullptr;
// If we have a limit in the query, do not allow hash join to spill to
// disk. The effect of this is that hash join will start producing
// result rows a lot earlier, and thus hit the LIMIT a lot sooner.
// Ideally, this should be decided during optimization.
// There are however two situations where we always allow spill to disk,
// and that is if we either have grouping or sorting in the query. In
// those cases, the iterator above us will most likely consume the
// entire result set anyways.
const bool allow_spill_to_disk = !has_limit || has_grouping || has_order_by;
RelationalExpression *expr = new (thd->mem_root) RelationalExpression(thd);
expr->left = expr->right =
nullptr; // Only used in the hypergraph join optimizer.
switch (join_type) {
case JoinType::ANTI:
expr->type = RelationalExpression::ANTIJOIN;
break;
case JoinType::INNER:
expr->type = RelationalExpression::INNER_JOIN;
break;
case JoinType::OUTER:
expr->type = RelationalExpression::LEFT_JOIN;
break;
case JoinType::SEMI:
expr->type = RelationalExpression::SEMIJOIN;
break;
case JoinType::FULL_OUTER:
expr->type = RelationalExpression::FULL_OUTER_JOIN;
break;
}
for (Item *item : hash_join_extra_conditions) {
expr->join_conditions.push_back(item);
}
for (const HashJoinCondition &condition : hash_join_conditions) {
expr->equijoin_conditions.push_back(condition.join_condition());
}
// Go through the equijoin conditions and check that all of them still
// refer to tables that exist. If some table was pruned away due to
// being replaced by ZeroRowsAccessPath, but the equijoin condition still
// refers to it, it could become degenerate: The only rows it could ever
// see would be NULL-complemented rows, which would never match.
// In this case, we can remove the entire build path (ie., propagate the
// zero-row property to our own join).
//
// We also remove the join conditions, to avoid using time on extracting their
// hash values. (Also, Item_eq_base::append_join_key_for_hash_join has an
// assert that this case should never happen, so it would trigger.)
const table_map probe_used_tables =
GetUsedTableMap(probe_path, /*include_pruned_tables=*/false);
const table_map build_used_tables =
GetUsedTableMap(build_path, /*include_pruned_tables=*/false);
for (const HashJoinCondition &condition : hash_join_conditions) {
if ((!condition.left_uses_any_table(probe_used_tables) &&
!condition.right_uses_any_table(probe_used_tables)) ||
(!condition.left_uses_any_table(build_used_tables) &&
!condition.right_uses_any_table(build_used_tables))) {
if (build_path->type != AccessPath::ZERO_ROWS) {
string cause = "Join condition " +
ItemToString(condition.join_condition()) +
" requires pruned table";
build_path = NewZeroRowsAccessPath(
thd, build_path, strdup_root(thd->mem_root, cause.c_str()));
}
expr->equijoin_conditions.clear();
break;
}
}
JoinPredicate *pred = new (thd->mem_root) JoinPredicate;
pred->expr = expr;
AccessPath *path = new (thd->mem_root) AccessPath;
path->type = AccessPath::HASH_JOIN;
path->hash_join().outer = probe_path;
path->hash_join().inner = build_path;
path->hash_join().join_predicate = pred;
path->hash_join().allow_spill_to_disk = allow_spill_to_disk;
// Will be set later if we get a weedout access path as parent.
path->hash_join().store_rowids = false;
path->hash_join().rewrite_semi_to_inner = false;
path->hash_join().tables_to_get_rowid_for = 0;
SetCostOnHashJoinAccessPath(*thd->cost_model(), qep_tab->position(), path);
return path;
}
// Move all the join conditions from the vector "predicates" over to the
// vector "join_conditions", while filters are untouched. This is done so that
// we can attach the join conditions directly to the hash join iterator. Further
// separation into equi-join and non-equi-join conditions will be done inside
// CreateHashJoinAccessPath().
static void ExtractJoinConditions(const QEP_TAB *current_table,
vector<Item *> *predicates,
vector<Item *> *join_conditions) {
vector<Item *> real_predicates;
for (Item *item : *predicates) {
if (IsJoinCondition(item, current_table)) {
join_conditions->emplace_back(item);
} else {
real_predicates.emplace_back(item);
}
}
*predicates = std::move(real_predicates);
}
static bool UseHashJoin(QEP_TAB *qep_tab) {
return qep_tab->op_type == QEP_TAB::OT_BNL;
}
static bool UseBKA(QEP_TAB *qep_tab) {
if (qep_tab->op_type != QEP_TAB::OT_BKA) {
// Not BKA.
return false;
}
// Similar to QueryMixesOuterBKAAndBNL(), if we have an outer join BKA
// that contains multiple tables on the right side, we will not have a
// left-deep tree, which we cannot handle at this point.
if (qep_tab->last_inner() != NO_PLAN_IDX &&
qep_tab->last_inner() != qep_tab->idx()) {
// More than one table on the right side of an outer join, so not
// left-deep.
return false;
}
return true;
}
// Having a non-BKA join on the right side of an outer BKA join causes problems
// for the matched-row signaling from MultiRangeRowIterator to BKAIterator;
// rows could be found just fine, but not go through the join filter (and thus
// not be marked as matched in BKAIterator), creating extra NULLs.
//
// The only way this can happen is when we get a hash join on the inside of an
// outer BKA join (otherwise, the join tree will be left-deep). If this
// happens, we simply turn off both BKA and hash join handling for the query;
// it is a very rare situation, and the slowdown should be acceptable.
// (Only turning off BKA helps somewhat, but MultiRangeRowIterator also cannot
// be on the inside of a hash join, so we need to turn off BNL as well.)
static bool QueryMixesOuterBKAAndBNL(JOIN *join) {
bool has_outer_bka = false;
bool has_bnl = false;
for (uint i = join->const_tables; i < join->primary_tables; ++i) {
QEP_TAB *qep_tab = &join->qep_tab[i];
if (UseHashJoin(qep_tab)) {
has_bnl = true;
} else if (qep_tab->op_type == QEP_TAB::OT_BKA &&
qep_tab->last_inner() != NO_PLAN_IDX) {
has_outer_bka = true;
}
}
return has_bnl && has_outer_bka;
}
static bool InsideOuterOrAntiJoin(QEP_TAB *qep_tab) {
return qep_tab->last_inner() != NO_PLAN_IDX;
}
void PickOutConditionsForTableIndex(int table_idx,
vector<PendingCondition> *from,
vector<PendingCondition> *to) {
for (auto it = from->begin(); it != from->end();) {
if (it->table_index_to_attach_to == table_idx) {
to->push_back(*it);
it = from->erase(it);
} else {
++it;
}
}
}
void PickOutConditionsForTableIndex(int table_idx,
vector<PendingCondition> *from,
vector<Item *> *to) {
for (auto it = from->begin(); it != from->end();) {
if (it->table_index_to_attach_to == table_idx) {
to->push_back(it->cond);
it = from->erase(it);
} else {
++it;
}
}
}
AccessPath *FinishPendingOperations(
THD *thd, AccessPath *path, QEP_TAB *remove_duplicates_loose_scan_qep_tab,
const vector<PendingCondition> &pending_conditions,
table_map *conditions_depend_on_outer_tables) {
path = PossiblyAttachFilter(path, pending_conditions, thd,
conditions_depend_on_outer_tables);
if (remove_duplicates_loose_scan_qep_tab != nullptr) {
QEP_TAB *const qep_tab =
remove_duplicates_loose_scan_qep_tab; // For short.
KEY *key = qep_tab->table()->key_info + qep_tab->index();
AccessPath *old_path = path;
path = NewRemoveDuplicatesOnIndexAccessPath(
thd, path, qep_tab->table(), key, qep_tab->loosescan_key_len);
CopyBasicProperties(*old_path, path); // We have nothing better.
}
return path;
}
/**
For a given slice of the table list, build up the iterator tree corresponding
to the tables in that slice. It handles inner and outer joins, as well as
semijoins (“first match”).
The join tree in MySQL is generally a left-deep tree of inner joins,
so we can start at the left, make an inner join against the next table,
join the result of that against the next table, etc.. However, a given
sub-slice of the table list can be designated as an outer join, by setting
first_inner() and last_inner() on the first table of said slice. (It is also
set in some, but not all, of the other tables in the slice.) If so, we call
ourselves recursively with that slice, put it as the right (inner) arm of
an outer join, and then continue with our inner join.
Similarly, if a table N has set “first match” to table M (ie., jump back to
table M whenever we see a non-filtered record in table N), then there is a
subslice from [M+1,N] that we need to process recursively before putting it
as the right side of a semijoin. Every semijoin can be implemented with a
LIMIT 1, but for clarity and performance, we prefer to use a NestedLoopJoin
with a special SEMI join type whenever possible. Sometimes, we have no choice,
though (see the comments below). Note that we cannot use first_sj_inner() for
detecting semijoins, as it is not updated when tables are reordered by the
join optimizer. Outer joins and semijoins can nest, so we need to take some
care to make sure that we pick the outermost structure to recurse on.
Conditions are a bit tricky. Conceptually, SQL evaluates conditions only
after all tables have been joined; however, for efficiency reasons, we want
to evaluate them as early as possible. As long as we are only dealing with
inner joins, this is as soon as we've read all tables participating in the
condition, but for outer joins, we need to wait until the join has happened.
See pending_conditions below.
@param upper_first_idx gives us the first table index of the other side of the
join. Only valid if we are inside a substructure (outer join, semijoin or
antijoin). I.e., if we are processing the right side of the query
't1 LEFT JOIN t2', upper_first_idx gives us the table index of 't1'. Used by
hash join to determine the table map for each side of the join.
@param first_idx index of the first table in the slice we are creating a
tree for (inclusive)
@param last_idx index of the last table in the slice we are creating a
tree for (exclusive)
@param qep_tabs the full list of tables we are joining
@param thd the THD to allocate the iterators on
@param calling_context what situation we have immediately around is in the
tree (ie., whether we are called to resolve the inner part of an outer
join, a semijoin, etc.); mostly used to avoid infinite recursion where we
would process e.g. the same semijoin over and over again
@param pending_conditions if nullptr, we are not at the right (inner) side of
any outer join and can evaluate conditions immediately. If not, we need to
push any WHERE predicates to that vector and evaluate them only after joins.
@param pending_invalidators a global list of CacheInvalidatorIterators we
need to emit, but cannot yet due to pending outer joins. Note that unlike
pending_conditions and pending_join_conditions, this is never nullptr,
and is always the same pointer when recursing within the same JOIN.
@param pending_join_conditions if not nullptr, we are at the inner side of
semijoin/antijoin. The join iterator is created at the outer side, so any
join conditions at the inner side needs to be pushed to this vector so that
they can be attached to the join iterator. Note that this is currently only
used by hash join.
@param[out] unhandled_duplicates list of tables we should have deduplicated
using duplicate weedout, but could not; append-only.
@param[out] conditions_depend_on_outer_tables For each condition we have
applied on the inside of these iterators, their dependent tables are
appended to this set. Thus, if conditions_depend_on_outer_tables contain
something from outside the tables covered by [first_idx,last_idx)
(ie., after translation from QEP_TAB indexes to table indexes), we cannot
use a hash join, since the returned iterator depends on seeing outer rows
when evaluating its conditions.
*/
AccessPath *ConnectJoins(plan_idx upper_first_idx, plan_idx first_idx,
plan_idx last_idx, QEP_TAB *qep_tabs, THD *thd,
CallingContext calling_context,
vector<PendingCondition> *pending_conditions,
vector<PendingInvalidator> *pending_invalidators,
vector<PendingCondition> *pending_join_conditions,
qep_tab_map *unhandled_duplicates,
table_map *conditions_depend_on_outer_tables) {
assert(last_idx > first_idx);
AccessPath *path = nullptr;
// A special case: If we are at the top but the first table is an outer
// join, we implicitly have one or more const tables to the left side
// of said join.
bool is_top_level_outer_join =
calling_context == TOP_LEVEL &&
qep_tabs[first_idx].last_inner() != NO_PLAN_IDX;
vector<PendingCondition> top_level_pending_conditions;
vector<PendingCondition> top_level_pending_join_conditions;
if (is_top_level_outer_join) {
path = NewFakeSingleRowAccessPath(thd, /*count_examined_rows=*/false);
pending_conditions = &top_level_pending_conditions;
pending_join_conditions = &top_level_pending_join_conditions;
}
// NOTE: i is advanced in one of two ways:
//
// - If we have an inner join, it will be incremented near the bottom of the
// loop, as we can process inner join tables one by one.
// - If not (ie., we have an outer join or semijoin), we will process
// the sub-join recursively, and thus move it past the end of said
// sub-join.
for (plan_idx i = first_idx; i < last_idx;) {
// See if there are any invalidators we couldn't output before
// (typically on a lower recursion level), but that are in-scope now.
// It's highly unlikely that we have more than one pending table here
// (the most common case will be zero), so don't bother combining them
// into one invalidator.
for (auto it = pending_invalidators->begin();
it != pending_invalidators->end();) {
if (it->table_index_to_invalidate < last_idx) {
assert(path != nullptr);
path = NewInvalidatorAccessPathForTable(thd, path, it->qep_tab,
it->table_index_to_invalidate);
it = pending_invalidators->erase(it);
} else {
++it;
}
}
if (is_top_level_outer_join && i == qep_tabs[first_idx].last_inner() + 1) {
// Finished the top level outer join.
path = FinishPendingOperations(
thd, path, /*remove_duplicates_loose_scan_qep_tab=*/nullptr,
top_level_pending_conditions, conditions_depend_on_outer_tables);
is_top_level_outer_join = false;
pending_conditions = nullptr;
pending_join_conditions = nullptr;
}
bool add_limit_1;
plan_idx substructure_end;
Substructure substructure =
FindSubstructure(qep_tabs, first_idx, i, last_idx, calling_context,
&add_limit_1, &substructure_end, unhandled_duplicates);
// Get the index of the table where semijoin hash iterator would be created.
// Used in placing the join conditions attached to the tables that are on
// the inner side of a semijoin correctly.
plan_idx semi_join_table_idx = NO_PLAN_IDX;
if (calling_context == DIRECTLY_UNDER_SEMIJOIN &&
qep_tabs[last_idx - 1].firstmatch_return != NO_PLAN_IDX) {
semi_join_table_idx = qep_tabs[last_idx - 1].firstmatch_return + 1;
}
QEP_TAB *qep_tab = &qep_tabs[i];
if (substructure == Substructure::OUTER_JOIN ||
substructure == Substructure::SEMIJOIN) {
qep_tab_map left_tables = TablesBetween(first_idx, i);
qep_tab_map right_tables = TablesBetween(i, substructure_end);
// Outer or semijoin, consisting of a subtree (possibly of only one
// table), so we send the entire subtree down to a recursive invocation
// and then join the returned root into our existing tree.
AccessPath *subtree_path;
vector<PendingCondition> subtree_pending_conditions;
vector<PendingCondition> subtree_pending_join_conditions;
table_map conditions_depend_on_outer_tables_subtree = 0;
if (substructure == Substructure::SEMIJOIN) {
// Semijoins don't have special handling of WHERE, so simply recurse.
if (UseHashJoin(qep_tab) &&
!QueryMixesOuterBKAAndBNL(qep_tab->join())) {
// We must move any join conditions inside the subtructure up to this
// level so that they can be attached to the hash join iterator.
subtree_path = ConnectJoins(
first_idx, i, substructure_end, qep_tabs, thd,
DIRECTLY_UNDER_SEMIJOIN, &subtree_pending_conditions,
pending_invalidators, &subtree_pending_join_conditions,
unhandled_duplicates, &conditions_depend_on_outer_tables_subtree);
} else {
// Send in "subtree_pending_join_conditions", so that any semijoin
// conditions are moved up to this level, where they will be attached
// as conditions to the hash join iterator.
subtree_path = ConnectJoins(
first_idx, i, substructure_end, qep_tabs, thd,
DIRECTLY_UNDER_SEMIJOIN, pending_conditions, pending_invalidators,
&subtree_pending_join_conditions, unhandled_duplicates,
&conditions_depend_on_outer_tables_subtree);
}
} else if (pending_conditions != nullptr) {
// We are already on the right (inner) side of an outer join,
// so we need to keep deferring WHERE predicates.
subtree_path = ConnectJoins(
first_idx, i, substructure_end, qep_tabs, thd,
DIRECTLY_UNDER_OUTER_JOIN, pending_conditions, pending_invalidators,
pending_join_conditions, unhandled_duplicates,
&conditions_depend_on_outer_tables_subtree);
// Pick out any conditions that should be directly above this join
// (ie., the ON conditions for this specific join).
PickOutConditionsForTableIndex(i, pending_conditions,
&subtree_pending_conditions);
// Similarly, for join conditions.
if (pending_join_conditions != nullptr) {
PickOutConditionsForTableIndex(i, pending_join_conditions,
&subtree_pending_join_conditions);
}
} else {
// We can check the WHERE predicates on this table right away
// after the join (and similarly, set up invalidators).
subtree_path = ConnectJoins(
first_idx, i, substructure_end, qep_tabs, thd,
DIRECTLY_UNDER_OUTER_JOIN, &subtree_pending_conditions,
pending_invalidators, &subtree_pending_join_conditions,
unhandled_duplicates, &conditions_depend_on_outer_tables_subtree);
}
*conditions_depend_on_outer_tables |=
conditions_depend_on_outer_tables_subtree;
JoinType join_type;
if (qep_tab->table()->reginfo.not_exists_optimize) {
// Similar to the comment on SplitConditions (see case #3), we can only
// enable antijoin optimizations if we are not already on the right
// (inner) side of another outer join. Otherwise, we would cause the
// higher-up outer join to create NULL rows where there should be none.
assert(substructure != Substructure::SEMIJOIN);
join_type =
(pending_conditions == nullptr) ? JoinType::ANTI : JoinType::OUTER;
// Normally, a ”found” trigger means that the condition should be moved
// up above some outer join (ie., it's a WHERE, not an ON condition).
// However, there is one specific case where the optimizer sets up such
// a trigger with the condition being _the same table as it's posted
// on_, namely antijoins used for NOT IN; here, a FALSE condition is
// being used to specify that inner rows should pass by the join, but
// they should inhibit the null-complemented row. (So in this case,
// the antijoin is no longer just an optimization that can be ignored
// as we rewrite into an outer join.) In this case, there's a condition
// wrapped in “not_null_compl” and ”found”, with the trigger for both
// being the same table as the condition is posted on.
//
// So, as a special exception, detect this case, removing these
// conditions (as they would otherwise kill all of our output rows) and
// use them to mark the join as _really_ antijoin, even when it's
// within an outer join.
for (auto it = subtree_pending_conditions.begin();
it != subtree_pending_conditions.end();) {
if (it->table_index_to_attach_to == int(i) &&
it->cond->item_name.ptr() == antijoin_null_cond) {
assert(nullptr != dynamic_cast<Item_func_false *>(it->cond));
join_type = JoinType::ANTI;
it = subtree_pending_conditions.erase(it);
} else {
++it;
}
}
// Do the same for antijoin-marking conditions.
for (auto it = subtree_pending_join_conditions.begin();
it != subtree_pending_join_conditions.end();) {
if (it->table_index_to_attach_to == int(i) &&
it->cond->item_name.ptr() == antijoin_null_cond) {
assert(nullptr != dynamic_cast<Item_func_false *>(it->cond));
join_type = JoinType::ANTI;
it = subtree_pending_join_conditions.erase(it);
} else {
++it;
}
}
} else {
join_type = substructure == Substructure::SEMIJOIN ? JoinType::SEMI
: JoinType::OUTER;
}
// If the entire slice is a semijoin (e.g. because we are semijoined
// against all the const tables, or because we're a semijoin within an
// outer join), solve it by using LIMIT 1.
//
// If the entire slice is an outer join, we've solved that in a more
// roundabout way; see is_top_level_outer_join above.
if (path == nullptr) {
assert(substructure == Substructure::SEMIJOIN);
add_limit_1 = true;
}
if (add_limit_1) {
subtree_path = NewLimitOffsetAccessPath(
thd, subtree_path,
/*limit=*/1, /*offset=*/0,
/*count_all_rows=*/false, /*reject_multiple_rows=*/false,
/*send_records_override=*/nullptr);
}
const bool pfs_batch_mode = qep_tab->pfs_batch_update(qep_tab->join()) &&
join_type != JoinType::ANTI &&
join_type != JoinType::SEMI;
// See documentation for conditions_depend_on_outer_tables in
// the function comment. Note that this cannot happen for inner joins
// (join conditions can always be pulled up for them), so we do not
// replicate this check for inner joins below.
const bool right_side_depends_on_outer =
Overlaps(conditions_depend_on_outer_tables_subtree,
ConvertQepTabMapToTableMap(qep_tab->join(), left_tables));
bool remove_duplicates_loose_scan = false;
if (i != first_idx && qep_tabs[i - 1].do_loosescan() &&
qep_tabs[i - 1].match_tab != i - 1) {
QEP_TAB *prev_qep_tab = &qep_tabs[i - 1];
assert(path != nullptr);
KEY *key = prev_qep_tab->table()->key_info + prev_qep_tab->index();
if (substructure == Substructure::SEMIJOIN) {
path = NewNestedLoopSemiJoinWithDuplicateRemovalAccessPath(
thd, path, subtree_path, prev_qep_tab->table(), key,
prev_qep_tab->loosescan_key_len);
SetCostOnNestedLoopAccessPath(*thd->cost_model(), qep_tab->position(),
path);
} else {
// We were originally in a semijoin, even if it didn't win in
// FindSubstructure (LooseScan against multiple tables always puts
// the non-first tables in FirstMatch), it was just overridden by
// the outer join. In this case, we put duplicate removal after the
// join (and any associated filtering), which is the safe option --
// and in this case, it's no slower, since we'll be having a LIMIT 1
// inserted anyway.
assert(substructure == Substructure::OUTER_JOIN);
remove_duplicates_loose_scan = true;
path = CreateNestedLoopAccessPath(thd, path, subtree_path, join_type,
pfs_batch_mode);
SetCostOnNestedLoopAccessPath(*thd->cost_model(), qep_tab->position(),
path);
}
} else if (path == nullptr) {
assert(substructure == Substructure::SEMIJOIN);
path = subtree_path;
} else if (((UseHashJoin(qep_tab) && !right_side_depends_on_outer) ||
UseBKA(qep_tab)) &&
!QueryMixesOuterBKAAndBNL(qep_tab->join())) {
// Join conditions that were inside the substructure are placed in the
// vector 'subtree_pending_join_conditions'. Find out which of these
// conditions that should be attached to this table, and attach them
// to the hash join iterator.
vector<Item *> join_conditions;
PickOutConditionsForTableIndex(i, &subtree_pending_join_conditions,
&join_conditions);
if (UseBKA(qep_tab)) {
path = CreateBKAAccessPath(thd, qep_tab->join(), path, left_tables,
subtree_path, right_tables,
qep_tab->table(), qep_tab->table_ref,
&qep_tab->ref(), join_type);
} else {
path = CreateHashJoinAccessPath(
thd, qep_tab, subtree_path, right_tables, path, left_tables,
join_type, &join_conditions, conditions_depend_on_outer_tables);
}
path = PossiblyAttachFilter(path, join_conditions, thd,
conditions_depend_on_outer_tables);
} else {
// Normally, subtree_pending_join_conditions should be empty when we
// create a nested loop iterator. However, in the case where we thought
// we would be making a hash join but changed our minds (due to
// right_side_depends_on_outer), there may be conditions there.
// Similar to hash join above, pick out those conditions and add them
// here.
vector<Item *> join_conditions;
PickOutConditionsForTableIndex(i, &subtree_pending_join_conditions,
&join_conditions);
subtree_path = PossiblyAttachFilter(subtree_path, join_conditions, thd,
conditions_depend_on_outer_tables);
path = CreateNestedLoopAccessPath(thd, path, subtree_path, join_type,
pfs_batch_mode);
SetCostOnNestedLoopAccessPath(*thd->cost_model(), qep_tab->position(),
path);
}
QEP_TAB *remove_duplicates_loose_scan_qep_tab =
remove_duplicates_loose_scan ? &qep_tabs[i - 1] : nullptr;
path = FinishPendingOperations(
thd, path, remove_duplicates_loose_scan_qep_tab,
subtree_pending_conditions, conditions_depend_on_outer_tables);
i = substructure_end;
continue;
} else if (substructure == Substructure::WEEDOUT) {
AccessPath *subtree_path = ConnectJoins(
first_idx, i, substructure_end, qep_tabs, thd, DIRECTLY_UNDER_WEEDOUT,
pending_conditions, pending_invalidators, pending_join_conditions,
unhandled_duplicates, conditions_depend_on_outer_tables);
AccessPath *child_path = subtree_path;
subtree_path = CreateWeedoutOrLimitAccessPath(
thd, subtree_path, qep_tab->flush_weedout_table);
// Copy costs (even though it makes no sense for the LIMIT 1 case).
CopyBasicProperties(*child_path, subtree_path);
if (path == nullptr) {
path = subtree_path;
} else {
path =
CreateNestedLoopAccessPath(thd, path, subtree_path, JoinType::INNER,
/*pfs_batch_mode=*/false);
SetCostOnNestedLoopAccessPath(*thd->cost_model(), qep_tab->position(),
path);
}
i = substructure_end;
continue;
} else if (qep_tab->do_loosescan() && qep_tab->match_tab != i &&
path != nullptr) {
// Multi-table loose scan is generally handled by other parts of the code
// (FindSubstructure() returns SEMIJOIN on the next table, since they will
// have first match set), but we need to make sure there is only one table
// on NestedLoopSemiJoinWithDuplicateRemovalIterator's left (outer) side.
// Since we're not at the first table, we would be collecting a join
// in “iterator” if we just kept on going, so we need to create a separate
// tree by recursing here.
AccessPath *subtree_path = ConnectJoins(
first_idx, i, qep_tab->match_tab + 1, qep_tabs, thd, TOP_LEVEL,
pending_conditions, pending_invalidators, pending_join_conditions,
unhandled_duplicates, conditions_depend_on_outer_tables);
path =
CreateNestedLoopAccessPath(thd, path, subtree_path, JoinType::INNER,
/*pfs_batch_mode=*/false);
SetCostOnNestedLoopAccessPath(*thd->cost_model(), qep_tab->position(),
path);
i = qep_tab->match_tab + 1;
continue;
}
AccessPath *table_path = GetTableAccessPath(thd, qep_tab, qep_tabs);
qep_tab_map right_tables = qep_tab->idx_map();
qep_tab_map left_tables = 0;
// Get the left side tables of this join.
if (InsideOuterOrAntiJoin(qep_tab)) {
left_tables |= TablesBetween(upper_first_idx, first_idx);
} else {
left_tables |= TablesBetween(first_idx, i);
}
// If this is a BNL, we should replace it with hash join. We did decide
// during create_access_paths that we actually can replace the BNL with a
// hash join, so we don't bother checking any further that we actually can
// replace the BNL with a hash join.
const bool replace_with_hash_join =
UseHashJoin(qep_tab) && !QueryMixesOuterBKAAndBNL(qep_tab->join());
vector<Item *> predicates_below_join;
vector<Item *> join_conditions;
vector<PendingCondition> predicates_above_join;
// If we are on the inner side of a semi-/antijoin, pending_join_conditions
// will be set. If the join should be executed using hash join,
// SplitConditions() will put all join conditions in
// pending_join_conditions. These conditions will later be attached to the
// hash join iterator when we are done handling the inner side.
SplitConditions(qep_tab->condition(), qep_tab, &predicates_below_join,
&predicates_above_join,
replace_with_hash_join ? pending_join_conditions : nullptr,
semi_join_table_idx, left_tables);
// We can always do BKA. The setup is very similar to hash join.
const bool is_bka =
UseBKA(qep_tab) && !QueryMixesOuterBKAAndBNL(qep_tab->join());
if (is_bka) {
Index_lookup &ref = qep_tab->ref();
table_path =
NewMRRAccessPath(thd, qep_tab->table(), &ref,
qep_tab->position()->table->join_cache_flags);
SetCostOnTableAccessPath(*thd->cost_model(), qep_tab->position(),
/*is_after_filter=*/false, table_path);
for (unsigned key_part_idx = 0; key_part_idx < ref.key_parts;
++key_part_idx) {
*conditions_depend_on_outer_tables |=
ref.items[key_part_idx]->used_tables();
}
} else if (replace_with_hash_join) {
// We will now take all the join conditions (both equi- and
// non-equi-join conditions) and move them to a separate vector so we
// can attach them to the hash join iterator later. Conditions that
// should be attached after the join remain in "predicates_below_join"
// (i.e. filters).
ExtractJoinConditions(qep_tab, &predicates_below_join, &join_conditions);
}
if (!qep_tab->condition_is_pushed_to_sort()) { // See the comment on #2.
double expected_rows = table_path->num_output_rows();
table_path = PossiblyAttachFilter(table_path, predicates_below_join, thd,
conditions_depend_on_outer_tables);
POSITION *pos = qep_tab->position();
if (expected_rows >= 0.0 && !predicates_below_join.empty() &&
pos != nullptr) {
SetCostOnTableAccessPath(*thd->cost_model(), pos,
/*is_after_filter=*/true, table_path);
}
} else {
*conditions_depend_on_outer_tables |= qep_tab->condition()->used_tables();
}
// Handle LooseScan that hits this specific table only.
// Multi-table LooseScans will be handled by
// NestedLoopSemiJoinWithDuplicateRemovalIterator
// (which is essentially a semijoin NestedLoopIterator and
// RemoveDuplicatesOnIndexIterator in one).
if (qep_tab->do_loosescan() && qep_tab->match_tab == i) {
KEY *key = qep_tab->table()->key_info + qep_tab->index();
AccessPath *old_path = table_path;
table_path = NewRemoveDuplicatesOnIndexAccessPath(
thd, table_path, qep_tab->table(), key, qep_tab->loosescan_key_len);
CopyBasicProperties(*old_path, table_path); // We have nothing better.
}
// If there are lateral derived tables that depend on this table,
// output invalidators to clear them when we output a new row.
for (plan_idx table_idx :
BitsSetIn(qep_tab->lateral_derived_tables_depend_on_me)) {
if (table_idx < last_idx) {
table_path = NewInvalidatorAccessPathForTable(thd, table_path, qep_tab,
table_idx);
} else {
// The table to invalidate belongs to a higher outer join nest,
// which means that we cannot emit the invalidator right away --
// the outer join we are a part of could be emitting NULL-complemented
// rows that also need to invalidate the cache in question.
// We'll deal with them in as soon as we get into the same join nest.
// (But if we deal with them later than that, it might be too late!)
pending_invalidators->push_back(PendingInvalidator{
qep_tab, /*table_index_to_attach_to=*/table_idx});
}
}
if (path == nullptr) {
// We are the first table in this join.
path = table_path;
} else {
// We can only enable DISTINCT optimizations if we are not in the right
// (inner) side of an outer join; since the filter is deferred, the limit
// would have to be, too. Similarly, we the old executor can do these
// optimizations for multiple tables, but it requires poking into global
// state to see if later tables produced rows or not; we restrict
// ourselves to the rightmost table, instead of trying to make iterators
// look at nonlocal state.
//
// We don't lose correctness by not applying the limit, only performance
// on some fairly rare queries (for for former: DISTINCT queries where we
// outer-join in a table that we don't use in the select list, but filter
// on one of the columns; for the latter: queries with multiple unused
// tables).
//
// Note that if we are to attach a hash join iterator, we cannot add this
// optimization, as it would limit the probe input to only one row before
// the join condition is even applied. Same with BKA; we need to buffer
// the entire input, since we don't know if there's a match until the join
// has actually happened.
//
// TODO: Consider pushing this limit up the tree together with the filter.
// Note that this would require some trickery to reset the filter for
// each new row on the left side of the join, so it's probably not worth
// it.
if (qep_tab->not_used_in_distinct && pending_conditions == nullptr &&
i == static_cast<plan_idx>(qep_tab->join()->primary_tables - 1) &&
!add_limit_1 && !replace_with_hash_join && !is_bka) {
table_path = NewLimitOffsetAccessPath(
thd, table_path, /*limit=*/1,
/*offset=*/0,
/*count_all_rows=*/false, /*reject_multiple_rows=*/false,
/*send_records_override=*/nullptr);
}
// Inner join this table to the existing tree.
// Inner joins are always left-deep, so we can just attach the tables as
// we find them.
assert(qep_tab->last_inner() == NO_PLAN_IDX);
if (is_bka) {
path = CreateBKAAccessPath(thd, qep_tab->join(), path, left_tables,
table_path, right_tables, qep_tab->table(),
qep_tab->table_ref, &qep_tab->ref(),
JoinType::INNER);
} else if (replace_with_hash_join) {
// The numerically lower QEP_TAB is often (if not always) the smaller
// input, so use that as the build input.
if (pending_join_conditions != nullptr)
PickOutConditionsForTableIndex(i, pending_join_conditions,
&join_conditions);
path = CreateHashJoinAccessPath(thd, qep_tab, path, left_tables,
table_path, right_tables,
JoinType::INNER, &join_conditions,
conditions_depend_on_outer_tables);
// Attach any remaining non-equi-join conditions as a filter after the
// join.
path = PossiblyAttachFilter(path, join_conditions, thd,
conditions_depend_on_outer_tables);
} else {
path = CreateNestedLoopAccessPath(
thd, path, table_path, JoinType::INNER,
qep_tab->pfs_batch_update(qep_tab->join()));
SetCostOnNestedLoopAccessPath(*thd->cost_model(), qep_tab->position(),
path);
}
}
++i;
// If we have any predicates that should be above an outer join,
// send them upwards.
for (PendingCondition &cond : predicates_above_join) {
assert(pending_conditions != nullptr);
pending_conditions->push_back(cond);
}
}
if (is_top_level_outer_join) {
assert(last_idx == qep_tabs[first_idx].last_inner() + 1);
path = FinishPendingOperations(
thd, path, /*remove_duplicates_loose_scan_qep_tab=*/nullptr,
top_level_pending_conditions, conditions_depend_on_outer_tables);
}
return path;
}
static table_map get_update_or_delete_target_tables(const JOIN *join) {
table_map target_tables = 0;
for (const Table_ref *tr = join->query_block->leaf_tables; tr != nullptr;
tr = tr->next_leaf) {
if (tr->updating) {
target_tables |= tr->map();
}
}
return target_tables;
}
// If this is the top-level query block of a multi-table UPDATE or multi-table
// DELETE statement, wrap the path in an UPDATE_ROWS or DELETE_ROWS path.
AccessPath *JOIN::attach_access_path_for_update_or_delete(AccessPath *path) {
if (thd->lex->m_sql_cmd == nullptr) {
// It is not an UPDATE or DELETE statement.
return path;
}
if (query_block->outer_query_block() != nullptr) {
// It is not the top-level query block.
return path;
}
const enum_sql_command command = thd->lex->m_sql_cmd->sql_command_code();
// Single-table update or delete does not use access paths and iterators in
// the old optimizer. (The hypergraph optimizer uses a unified code path for
// single-table and multi-table, and always identifies itself as MULTI, so
// these asserts hold for both optimizers.)
assert(command != SQLCOM_UPDATE);
assert(command != SQLCOM_DELETE);
if (command == SQLCOM_UPDATE_MULTI) {
const table_map target_tables = get_update_or_delete_target_tables(this);
path = NewUpdateRowsAccessPath(
thd, path, target_tables,
GetImmediateUpdateTable(this, IsSingleBitSet(target_tables)));
} else if (command == SQLCOM_DELETE_MULTI) {
const table_map target_tables = get_update_or_delete_target_tables(this);
path =
NewDeleteRowsAccessPath(thd, path, target_tables,
GetImmediateDeleteTables(this, target_tables));
EstimateDeleteRowsCost(path);
}
return path;
}
void JOIN::create_access_paths() {
assert(m_root_access_path == nullptr);
AccessPath *path = create_root_access_path_for_join();
path = attach_access_paths_for_having_and_limit(path);
path = attach_access_path_for_update_or_delete(path);
m_root_access_path = path;
}
AccessPath *JOIN::create_root_access_path_for_join() {
if (select_count) {
return NewUnqualifiedCountAccessPath(thd);
}
// OK, so we're good. Go through the tables and make the join access paths.
AccessPath *path = nullptr;
if (query_block->is_table_value_constructor) {
best_rowcount = query_block->row_value_list->size();
path = NewTableValueConstructorAccessPath(thd);
path->set_num_output_rows(query_block->row_value_list->size());
path->cost = 0.0;
path->init_cost = 0.0;
} else if (const_tables == primary_tables) {
// Only const tables, so add a fake single row to join in all
// the const tables (only inner-joined tables are promoted to
// const tables in the optimizer).
path = NewFakeSingleRowAccessPath(thd, /*count_examined_rows=*/true);
qep_tab_map conditions_depend_on_outer_tables = 0;
if (where_cond != nullptr) {
path = PossiblyAttachFilter(path, vector<Item *>{where_cond}, thd,
&conditions_depend_on_outer_tables);
}
// Surprisingly enough, we can specify that the const tables are
// to be dumped immediately to a temporary table. If we don't do this,
// we risk that there are fields that are not copied correctly
// (tmp_table_param contains copy_funcs we'd otherwise miss).
if (const_tables > 0) {
QEP_TAB *qep_tab = &this->qep_tab[const_tables];
if (qep_tab->op_type == QEP_TAB::OT_MATERIALIZE) {
qep_tab->table()->alias = "<temporary>";
AccessPath *table_path = create_table_access_path(
thd, qep_tab->table(), qep_tab->range_scan(), qep_tab->table_ref,
qep_tab->position(),
/*count_examined_rows=*/false);
path = NewMaterializeAccessPath(
thd,
SingleMaterializeQueryBlock(
thd, path, query_block->select_number, this,
/*copy_items=*/true, qep_tab->tmp_table_param),
qep_tab->invalidators, qep_tab->table(), table_path,
/*cte=*/nullptr, query_expression(), qep_tab->ref_item_slice,
/*rematerialize=*/true, qep_tab->tmp_table_param->end_write_records,
/*reject_multiple_rows=*/false);
EstimateMaterializeCost(thd, path);
}
}
} else {
qep_tab_map unhandled_duplicates = 0;
qep_tab_map conditions_depend_on_outer_tables = 0;
vector<PendingInvalidator> pending_invalidators;
path = ConnectJoins(
/*upper_first_idx=*/NO_PLAN_IDX, const_tables, primary_tables, qep_tab,
thd, TOP_LEVEL, nullptr, &pending_invalidators,
/*pending_join_conditions=*/nullptr, &unhandled_duplicates,
&conditions_depend_on_outer_tables);
// If there were any weedouts that we had to drop during ConnectJoins()
// (ie., the join left some tables that were supposed to be deduplicated
// but were not), handle them now at the very end.
if (unhandled_duplicates != 0) {
AccessPath *const child = path;
path = NewWeedoutAccessPathForTables(thd, unhandled_duplicates, qep_tab,
primary_tables, child);
CopyBasicProperties(*child, path);
}
}
// Deal with any materialization happening at the end (typically for
// sorting, grouping or distinct).
for (unsigned table_idx = const_tables + 1; table_idx <= tables;
++table_idx) {
QEP_TAB *qep_tab = &this->qep_tab[table_idx];
if (qep_tab->op_type != QEP_TAB::OT_MATERIALIZE &&
qep_tab->op_type != QEP_TAB::OT_AGGREGATE_THEN_MATERIALIZE &&
qep_tab->op_type != QEP_TAB::OT_AGGREGATE_INTO_TMP_TABLE &&
qep_tab->op_type != QEP_TAB::OT_WINDOWING_FUNCTION) {
continue;
}
if (qep_tab->op_type == QEP_TAB::OT_AGGREGATE_THEN_MATERIALIZE) {
// Aggregate as we go, with output into a temporary table.
// (We can also aggregate as we go after the materialization step;
// see below. We won't be aggregating twice, though.)
if (!qep_tab->tmp_table_param->precomputed_group_by) {
path = NewAggregateAccessPath(thd, path,
rollup_state != RollupState::NONE);
EstimateAggregateCost(path, query_block);
}
}
// Attach HAVING if needed (it's put on the QEP_TAB and not on the JOIN if
// we have a temporary table) and we've done all aggregation.
//
// FIXME: If the HAVING condition is an alias (a MySQL-specific extension),
// it could be evaluated twice; once for the condition, and again for the
// copying into the table. This was originally partially fixed by moving
// the HAVING into qep_tab->condition() instead, although this makes the
// temporary table larger than it needs to be, and is not a legal case in
// the presence of SELECT DISTINCT. (The main.having test has a few tests
// for this.) Later, it was completely fixed for the old executor,
// by evaluating the filter against the temporary table row (switching
// slices), although the conditional move into qep_tab->condition(),
// which was obsolete for the old executor after said fix, was never
// removed. See if we can get this fixed in the new executor as well,
// and then remove the code that moves HAVING onto qep_tab->condition().
if (qep_tab->having != nullptr &&
qep_tab->op_type != QEP_TAB::OT_AGGREGATE_INTO_TMP_TABLE) {
path = NewFilterAccessPath(thd, path, qep_tab->having);
}
// Sorting comes after the materialization (which we're about to add),
// and should be shown as such.
Filesort *filesort = qep_tab->filesort;
ORDER *filesort_order = qep_tab->filesort_pushed_order;
Filesort *dup_filesort = nullptr;
ORDER *dup_filesort_order = nullptr;
bool limit_1_for_dup_filesort = false;
// The pre-iterator executor did duplicate removal by going into the
// temporary table and actually deleting records, using a hash table for
// smaller tables and an O(n²) algorithm for large tables. This kind of
// deletion is not cleanly representable in the iterator model, so we do it
// using a duplicate-removing filesort instead, which has a straight-up
// O(n log n) cost.
if (qep_tab->needs_duplicate_removal) {
bool all_order_fields_used;
// If there's an ORDER BY on the query, it needs to be heeded in the
// re-sort for DISTINCT. Note that the global ORDER BY could be pushed
// to the first table, so we need to check there, too.
ORDER *desired_order = this->order.order;
if (desired_order == nullptr &&
this->qep_tab[0].filesort_pushed_order != nullptr) {
desired_order = this->qep_tab[0].filesort_pushed_order;
}
// If we don't have ROLLUP, we prefer to use query_block->fields,
// so that we can see if fields belong to const tables or not
// (which, in rare cases, can remove the requirement for a sort).
//
// But if we have ROLLUP, the rollup group wrappers will have been
// removed from the base list (in change_to_use_tmp_fields_except_sums()),
// since that is to be used for materialization, and we need to use the
// actual field list instead.
mem_root_deque<Item *> *select_list =
(rollup_state == RollupState::NONE) ? &query_block->fields : fields;
ORDER *order = create_order_from_distinct(
thd, ref_items[qep_tab->ref_item_slice], desired_order, select_list,
/*skip_aggregates=*/false, /*convert_bit_fields_to_long=*/false,
&all_order_fields_used);
if (order == nullptr) {
// Only const fields.
limit_1_for_dup_filesort = true;
} else {
bool force_sort_rowids = false;
if (all_order_fields_used) {
// The ordering for DISTINCT already gave us the right sort order,
// so no need to sort again.
//
// TODO(sgunders): If there are elements in desired_order that are not
// in fields_list, consider whether it would be cheaper to add them on
// the end to avoid the second lsort, even though it would make the
// first one more expensive. See e.g. main.distinct for a case.
desired_order = nullptr;
filesort = nullptr;
} else if (filesort != nullptr && !filesort->using_addon_fields()) {
// We have the rather unusual situation here that we have two sorts
// directly after each other, with no temporary table in-between,
// and filesort expects to be able to refer to rows by their row ID.
// Usually, the sort for DISTINCT would be a superset of the sort for
// ORDER BY, but not always (e.g. when sorting by some expression),
// so we could end up in a situation where the first sort is by addon
// fields and the second one is by positions.
//
// Thus, in this case, we force the first sort to use row IDs,
// so that the result comes from SortFileIndirectIterator or
// SortBufferIndirectIterator. These will both position the cursor
// on the underlying temporary table correctly before returning it,
// so that the successive filesort will save the right row ID
// for the row.
force_sort_rowids = true;
}
// Switch to the right slice if applicable, so that we fetch out the
// correct items from order_arg.
Switch_ref_item_slice slice_switch(this, qep_tab->ref_item_slice);
dup_filesort = new (thd->mem_root) Filesort(
thd, {qep_tab->table()}, /*keep_buffers=*/false, order,
HA_POS_ERROR, /*remove_duplicates=*/true, force_sort_rowids,
/*unwrap_rollup=*/false);
dup_filesort_order = order;
if (desired_order != nullptr && filesort == nullptr) {
// We picked up the desired order from the first table, but we cannot
// reuse its Filesort object, as it would get the wrong slice and
// potentially addon fields. Create a new one.
filesort = new (thd->mem_root) Filesort(
thd, {qep_tab->table()}, /*keep_buffers=*/false, desired_order,
HA_POS_ERROR, /*remove_duplicates=*/false, force_sort_rowids,
/*unwrap_rollup=*/false);
filesort_order = desired_order;
}
}
}
AccessPath *table_path =
create_table_access_path(thd, qep_tab->table(), qep_tab->range_scan(),
qep_tab->table_ref, qep_tab->position(),
/*count_examined_rows=*/false);
qep_tab->table()->alias = "<temporary>";
if (qep_tab->op_type == QEP_TAB::OT_WINDOWING_FUNCTION) {
path = NewWindowAccessPath(
thd, path, qep_tab->tmp_table_param->m_window,
qep_tab->tmp_table_param, qep_tab->ref_item_slice,
qep_tab->tmp_table_param->m_window->needs_buffering());
if (!qep_tab->tmp_table_param->m_window->short_circuit()) {
path = NewMaterializeAccessPath(
thd,
SingleMaterializeQueryBlock(
thd, path, query_block->select_number, this,
/*copy_items=*/false, qep_tab->tmp_table_param),
qep_tab->invalidators, qep_tab->table(), table_path,
/*cte=*/nullptr, query_expression(),
/*ref_slice=*/-1,
/*rematerialize=*/true, tmp_table_param.end_write_records,
/*reject_multiple_rows=*/false);
EstimateMaterializeCost(thd, path);
}
} else if (qep_tab->op_type == QEP_TAB::OT_AGGREGATE_INTO_TMP_TABLE) {
path = NewTemptableAggregateAccessPath(
thd, path, qep_tab->tmp_table_param, qep_tab->table(), table_path,
qep_tab->ref_item_slice);
if (qep_tab->having != nullptr) {
path = NewFilterAccessPath(thd, path, qep_tab->having);
}
} else {
assert(qep_tab->op_type == QEP_TAB::OT_MATERIALIZE ||
qep_tab->op_type == QEP_TAB::OT_AGGREGATE_THEN_MATERIALIZE);
// If we don't need the row IDs, and don't have some sort of deduplication
// (e.g. for GROUP BY) on the table, filesort can take in the data
// directly, without going through a temporary table.
//
// If there are two sorts, we need row IDs if either one of them needs it.
// Above, we've set up so that the innermost sort (for DISTINCT) always
// needs row IDs if the outermost (for ORDER BY) does. The other way is
// fine, though; if the innermost needs row IDs but the outermost doesn't,
// then we can use row IDs here (ie., no streaming) but drop them in the
// outer sort. Thus, we check the using_addon_fields() flag on the
// innermost.
//
// TODO: If the sort order is suitable (or extendable), we could take over
// the deduplicating responsibilities of the temporary table and activate
// this mode even if MaterializeIsDoingDeduplication() is set.
Filesort *first_sort = dup_filesort != nullptr ? dup_filesort : filesort;
AccessPath *old_path = path;
if (first_sort != nullptr && first_sort->using_addon_fields() &&
!MaterializeIsDoingDeduplication(qep_tab->table())) {
path = NewStreamingAccessPath(
thd, path, /*join=*/this, qep_tab->tmp_table_param,
qep_tab->table(), qep_tab->ref_item_slice);
CopyBasicProperties(*old_path, path);
} else {
path = NewMaterializeAccessPath(
thd,
SingleMaterializeQueryBlock(thd, path, query_block->select_number,
this, /*copy_items=*/true,
qep_tab->tmp_table_param),
qep_tab->invalidators, qep_tab->table(), table_path,
/*cte=*/nullptr, query_expression(), qep_tab->ref_item_slice,
/*rematerialize=*/true, qep_tab->tmp_table_param->end_write_records,
/*reject_multiple_rows=*/false);
EstimateMaterializeCost(thd, path);
}
}
if (qep_tab->condition() != nullptr) {
path = NewFilterAccessPath(thd, path, qep_tab->condition());
qep_tab->mark_condition_as_pushed_to_sort();
}
if (limit_1_for_dup_filesort) {
path = NewLimitOffsetAccessPath(thd, path, /*limit=*/1,
/*offset=*/0,
/*count_all_rows=*/false,
/*reject_multiple_rows=*/false,
/*send_records_override=*/nullptr);
} else if (dup_filesort != nullptr) {
path = NewSortAccessPath(thd, path, dup_filesort, dup_filesort_order,
/*count_examined_rows=*/true);
}
if (filesort != nullptr) {
path = NewSortAccessPath(thd, path, filesort, filesort_order,
/*count_examined_rows=*/true);
}
}
// See if we need to aggregate data in the final step. Note that we can
// _not_ rely on streaming_aggregation, as it can be changed from false
// to true during optimization, and depending on when it was set, it could
// either mean to aggregate into a temporary table or aggregate on final
// send.
bool do_aggregate;
if (primary_tables == 0 && tmp_tables == 0) {
// We can't check qep_tab since there's no table, but in this specific case,
// it is safe to call get_end_select_func() at this point.
do_aggregate = (get_end_select_func() == QEP_TAB::OT_AGGREGATE);
} else {
// Note that tmp_table_param.precomputed_group_by can be set even if we
// don't actually have any grouping (e.g., make_tmp_tables_info() does this
// even if there are no temporary tables made).
do_aggregate = (qep_tab[primary_tables + tmp_tables].op_type ==
QEP_TAB::OT_AGGREGATE) ||
((grouped || group_optimized_away) &&
tmp_table_param.precomputed_group_by);
}
if (do_aggregate) {
// Aggregate as we go, with output into a special slice of the same table.
assert(streaming_aggregation || tmp_table_param.precomputed_group_by);
#ifndef NDEBUG
for (unsigned table_idx = const_tables; table_idx < tables; ++table_idx) {
assert(qep_tab[table_idx].op_type !=
QEP_TAB::OT_AGGREGATE_THEN_MATERIALIZE);
}
#endif
if (!tmp_table_param.precomputed_group_by) {
path =
NewAggregateAccessPath(thd, path, rollup_state != RollupState::NONE);
EstimateAggregateCost(path, query_block);
}
}
return path;
}
AccessPath *JOIN::attach_access_paths_for_having_and_limit(AccessPath *path) {
// Attach HAVING and LIMIT if needed.
// NOTE: We can have HAVING even without GROUP BY, although it's not very
// useful.
// We don't currently bother with materializing subqueries
// in HAVING, as they should be rare.
if (having_cond != nullptr) {
AccessPath *old_path = path;
path = NewFilterAccessPath(thd, path, having_cond);
CopyBasicProperties(*old_path, path);
if (thd->lex->using_hypergraph_optimizer()) {
// We cannot call EstimateFilterCost() in the pre-hypergraph optimizer,
// as on repeated execution of a prepared query, the condition may contain
// references to subqueries that are destroyed and not re-optimized yet.
const FilterCost filter_cost = EstimateFilterCost(
thd, path->num_output_rows(), having_cond, query_block);
path->cost += filter_cost.cost_if_not_materialized;
path->init_cost += filter_cost.init_cost_if_not_materialized;
}
}
// Note: For select_count, LIMIT 0 is handled in JOIN::optimize() for the
// common case, but not for CALC_FOUND_ROWS. OFFSET also isn't handled there.
if (query_expression()->select_limit_cnt != HA_POS_ERROR ||
query_expression()->offset_limit_cnt != 0) {
path = NewLimitOffsetAccessPath(
thd, path, query_expression()->select_limit_cnt,
query_expression()->offset_limit_cnt, calc_found_rows, false,
/*send_records_override=*/nullptr);
}
return path;
}
void JOIN::create_access_paths_for_index_subquery() {
QEP_TAB *first_qep_tab = &qep_tab[0];
AccessPath *path = first_qep_tab->access_path();
if (first_qep_tab->condition() != nullptr) {
path = NewFilterAccessPath(thd, path, first_qep_tab->condition());
}
Table_ref *const tl = qep_tab->table_ref;
if (tl && tl->uses_materialization()) {
if (tl->is_table_function()) {
path = NewMaterializedTableFunctionAccessPath(thd, first_qep_tab->table(),
tl->table_function, path);
} else {
path = GetAccessPathForDerivedTable(thd, first_qep_tab, path);
}
}
path = attach_access_paths_for_having_and_limit(path);
m_root_access_path = path;
}
/**
SemiJoinDuplicateElimination: Weed out duplicate row combinations
SYNPOSIS
do_sj_dups_weedout()
thd Thread handle
sjtbl Duplicate weedout table
DESCRIPTION
Try storing current record combination of outer tables (i.e. their
rowids) in the temporary table. This records the fact that we've seen
this record combination and also tells us if we've seen it before.
RETURN
-1 Error
1 The row combination is a duplicate (discard it)
0 The row combination is not a duplicate (continue)
*/
int do_sj_dups_weedout(THD *thd, SJ_TMP_TABLE *sjtbl) {
int error;
SJ_TMP_TABLE_TAB *tab = sjtbl->tabs;
SJ_TMP_TABLE_TAB *tab_end = sjtbl->tabs_end;
DBUG_TRACE;
if (sjtbl->is_confluent) {
if (sjtbl->have_confluent_row) return 1;
sjtbl->have_confluent_row = true;
return 0;
}
uchar *ptr = sjtbl->tmp_table->visible_field_ptr()[0]->field_ptr();
// Put the rowids tuple into table->record[0]:
// 1. Store the length
if (sjtbl->tmp_table->visible_field_ptr()[0]->get_length_bytes() == 1) {
*ptr = (uchar)(sjtbl->rowid_len + sjtbl->null_bytes);
ptr++;
} else {
int2store(ptr, sjtbl->rowid_len + sjtbl->null_bytes);
ptr += 2;
}
// 2. Zero the null bytes
uchar *const nulls_ptr = ptr;
if (sjtbl->null_bytes) {
memset(ptr, 0, sjtbl->null_bytes);
ptr += sjtbl->null_bytes;
}
// 3. Put the rowids
for (uint i = 0; tab != tab_end; tab++, i++) {
handler *h = tab->qep_tab->table()->file;
if (tab->qep_tab->table()->is_nullable() &&
tab->qep_tab->table()->has_null_row()) {
/* It's a NULL-complemented row */
*(nulls_ptr + tab->null_byte) |= tab->null_bit;
memset(ptr + tab->rowid_offset, 0, h->ref_length);
} else {
/* Copy the rowid value */
memcpy(ptr + tab->rowid_offset, h->ref, h->ref_length);
}
}
if (!check_unique_constraint(sjtbl->tmp_table)) return 1;
error = sjtbl->tmp_table->file->ha_write_row(sjtbl->tmp_table->record[0]);
if (error) {
/* If this is a duplicate error, return immediately */
if (sjtbl->tmp_table->file->is_ignorable_error(error)) return 1;
/*
Other error than duplicate error: Attempt to create a temporary table.
*/
bool is_duplicate;
if (create_ondisk_from_heap(thd, sjtbl->tmp_table, error,
/*insert_last_record=*/true,
/*ignore_last_dup=*/true, &is_duplicate))
return -1;
return is_duplicate ? 1 : 0;
}
return 0;
}
/*****************************************************************************
The different ways to read a record
Returns -1 if row was not found, 0 if row was found and 1 on errors
*****************************************************************************/
/** Help function when we get some an error from the table handler. */
int report_handler_error(TABLE *table, int error) {
if (error == HA_ERR_END_OF_FILE || error == HA_ERR_KEY_NOT_FOUND) {
table->set_no_row();
return -1; // key not found; ok
}
/*
Do not spam the error log with these temporary errors:
LOCK_DEADLOCK LOCK_WAIT_TIMEOUT TABLE_DEF_CHANGED LOCK_NOWAIT
Also skip printing to error log if the current thread has been killed.
*/
if (error != HA_ERR_LOCK_DEADLOCK && error != HA_ERR_LOCK_WAIT_TIMEOUT &&
error != HA_ERR_TABLE_DEF_CHANGED && error != HA_ERR_NO_WAIT_LOCK &&
!current_thd->killed)
LogErr(ERROR_LEVEL, ER_READING_TABLE_FAILED, error, table->s->path.str);
table->file->print_error(error, MYF(0));
return 1;
}
/**
Reads content of constant table
@param tab table
@param pos position of table in query plan
@retval 0 ok, one row was found or one NULL-complemented row was created
@retval -1 ok, no row was found and no NULL-complemented row was created
@retval 1 error
*/
int join_read_const_table(JOIN_TAB *tab, POSITION *pos) {
int error;
DBUG_TRACE;
TABLE *table = tab->table();
THD *const thd = tab->join()->thd;
table->const_table = true;
assert(!thd->is_error());
if (table->reginfo.lock_type >= TL_WRITE_ALLOW_WRITE) {
const enum_sql_command sql_command = tab->join()->thd->lex->sql_command;
if (sql_command == SQLCOM_UPDATE_MULTI || sql_command == SQLCOM_UPDATE ||
sql_command == SQLCOM_DELETE_MULTI || sql_command == SQLCOM_DELETE) {
/*
In a multi-UPDATE, if we represent "depends on" with "->", we have:
"what columns to read (read_set)" ->
"whether table will be updated on-the-fly or with tmp table" ->
"whether to-be-updated columns are used by access path"
"access path to table (range, ref, scan...)" ->
"query execution plan" ->
"what tables are const" ->
"reading const tables" ->
"what columns to read (read_set)".
To break this loop, we always read all columns of a constant table if
it is going to be updated.
Another case is in multi-UPDATE and multi-DELETE, when the table has a
trigger: bits of columns needed by the trigger are turned on in
result->optimize(), which has not yet been called when we do
the reading now, so we must read all columns.
*/
bitmap_set_all(table->read_set);
/* Virtual generated columns must be writable */
for (Field **vfield_ptr = table->vfield; vfield_ptr && *vfield_ptr;
vfield_ptr++)
bitmap_set_bit(table->write_set, (*vfield_ptr)->field_index());
table->file->column_bitmaps_signal();
}
}
if (tab->type() == JT_SYSTEM)
error = read_system(table);
else {
if (!table->key_read && table->covering_keys.is_set(tab->ref().key) &&
!table->no_keyread &&
(int)table->reginfo.lock_type <= (int)TL_READ_HIGH_PRIORITY) {
table->set_keyread(true);
tab->set_index(tab->ref().key);
}
error = read_const(table, &tab->ref());
table->set_keyread(false);
}
if (error) {
// Promote error to fatal if an actual error was reported
if (thd->is_error()) error = 1;
/* Mark for EXPLAIN that the row was not found */
pos->filter_effect = 1.0;
pos->rows_fetched = 0.0;
pos->prefix_rowcount = 0.0;
pos->ref_depend_map = 0;
if (!tab->table_ref->outer_join || error > 0) return error;
}
if (tab->join_cond() && !table->has_null_row()) {
// We cannot handle outer-joined tables with expensive join conditions here:
assert(!tab->join_cond()->is_expensive());
if (tab->join_cond()->val_int() == 0) table->set_null_row();
if (thd->is_error()) return 1;
}
/* Check appearance of new constant items in Item_equal objects */
JOIN *const join = tab->join();
if (join->where_cond && update_const_equal_items(thd, join->where_cond, tab))
return 1;
Table_ref *tbl;
for (tbl = join->query_block->leaf_tables; tbl; tbl = tbl->next_leaf) {
Table_ref *embedded;
Table_ref *embedding = tbl;
do {
embedded = embedding;
if (embedded->join_cond_optim() &&
update_const_equal_items(thd, embedded->join_cond_optim(), tab))
return 1;
embedding = embedded->embedding;
} while (embedding && embedding->nested_join->m_tables.front() == embedded);
}
return 0;
}
/**
Read a constant table when there is at most one matching row, using a table
scan.
@param table Table to read
@retval 0 Row was found
@retval -1 Row was not found
@retval 1 Got an error (other than row not found) during read
*/
static int read_system(TABLE *table) {
int error;
if (!table->is_started()) // If first read
{
if (!(error = table->file->ha_rnd_init(true))) {
while ((error = table->file->ha_rnd_next(table->record[0])) ==
HA_ERR_RECORD_DELETED) {
} // skip deleted row
// We leave the cursor open, see why in read_const()
}
if (error) {
if (error != HA_ERR_END_OF_FILE)
return report_handler_error(table, error);
table->set_null_row();
empty_record(table); // Make empty record
return -1;
}
store_record(table, record[1]);
} else if (table->has_row() && table->is_nullable()) {
/*
Row buffer contains a row, but it may have been partially overwritten
by a null-extended row. Restore the row from the saved copy.
@note this branch is currently unused.
*/
assert(false);
table->set_found_row();
restore_record(table, record[1]);
}
return table->has_row() ? 0 : -1;
}
int read_const(TABLE *table, Index_lookup *ref) {
int error;
DBUG_TRACE;
if (!table->is_started()) // If first read
{
/* Perform "Late NULLs Filtering" (see internals manual for explanations) */
if (ref->impossible_null_ref() || construct_lookup(current_thd, table, ref))
error = HA_ERR_KEY_NOT_FOUND;
else {
error = table->file->ha_index_init(ref->key, false);
if (!error) {
error = table->file->ha_index_read_map(
table->record[0], ref->key_buff,
make_prev_keypart_map(ref->key_parts), HA_READ_KEY_EXACT);
}
/*
We leave the cursor open (no ha_index_end()).
Indeed, this may be a statement which wants to modify the constant table
(e.g. multi-table UPDATE/DELETE); then it will later call
update_row() and/or position()&rnd_pos() (the latter case would be
to get the row's id, store it in a temporary table and, in a second
pass, find the row again to update it).
For update_row() or position() to work, the cursor must still be
positioned on the row; it is logical and some engines
enforce it (see assert(m_table) in ha_perfschema::position()).
So we do not close it. It will be closed by JOIN::cleanup().
*/
}
if (error) {
if (error != HA_ERR_KEY_NOT_FOUND && error != HA_ERR_END_OF_FILE) {
const int ret = report_handler_error(table, error);
return ret;
}
table->set_no_row();
table->set_null_row();
empty_record(table);
return -1;
}
/*
read_const() may be called several times inside a nested loop join.
Save record in case it is needed when table is in "started" state.
*/
store_record(table, record[1]);
} else if (table->has_row() && table->is_nullable()) {
/*
Row buffer contains a row, but it may have been partially overwritten
by a null-extended row. Restore the row from the saved copy.
*/
table->set_found_row();
restore_record(table, record[1]);
}
return table->has_row() ? 0 : -1;
}
/**
Check if access to this JOIN_TAB has to retrieve rows
in sorted order as defined by the ordered index
used to access this table.
*/
bool QEP_TAB::use_order() const {
/*
No need to require sorted access for single row reads
being performed by const- or EQ_REF-accessed tables.
*/
if (type() == JT_EQ_REF || type() == JT_CONST || type() == JT_SYSTEM)
return false;
/*
First non-const table requires sorted results
if ORDER or GROUP BY use ordered index.
*/
if ((uint)idx() == join()->const_tables &&
join()->m_ordered_index_usage != JOIN::ORDERED_INDEX_VOID)
return true;
/*
LooseScan strategy for semijoin requires sorted
results even if final result is not to be sorted.
*/
if (position()->sj_strategy == SJ_OPT_LOOSE_SCAN) return true;
/* Fall through: Results don't have to be sorted */
return false;
}
AccessPath *QEP_TAB::access_path() {
assert(table());
// Only some access methods support reversed access:
assert(!m_reversed_access || type() == JT_REF || type() == JT_INDEX_SCAN);
Index_lookup *used_ref = nullptr;
AccessPath *path = nullptr;
switch (type()) {
case JT_REF:
// May later change to a PushedJoinRefAccessPath if 'pushed'
path = NewRefAccessPath(join()->thd, table(), &ref(), use_order(),
m_reversed_access,
/*count_examined_rows=*/true);
used_ref = &ref();
break;
case JT_REF_OR_NULL:
path = NewRefOrNullAccessPath(join()->thd, table(), &ref(), use_order(),
/*count_examined_rows=*/true);
used_ref = &ref();
break;
case JT_CONST:
path = NewConstTableAccessPath(join()->thd, table(), &ref(),
/*count_examined_rows=*/true);
break;
case JT_EQ_REF:
// May later change to a PushedJoinRefAccessPath if 'pushed'
path = NewEQRefAccessPath(join()->thd, table(), &ref(),
/*count_examined_rows=*/true);
used_ref = &ref();
break;
case JT_FT:
path = NewFullTextSearchAccessPath(
join()->thd, table(), &ref(), ft_func(), use_order(),
ft_func()->get_hints()->get_limit() != HA_POS_ERROR,
/*count_examined_rows=*/true);
used_ref = &ref();
break;
case JT_INDEX_SCAN:
path = NewIndexScanAccessPath(join()->thd, table(), index(), use_order(),
m_reversed_access,
/*count_examined_rows=*/true);
break;
case JT_ALL:
case JT_RANGE:
case JT_INDEX_MERGE:
if (using_dynamic_range) {
path = NewDynamicIndexRangeScanAccessPath(join()->thd, table(), this,
/*count_examined_rows=*/true);
} else {
path = create_table_access_path(join()->thd, table(), range_scan(),
table_ref, position(),
/*count_examined_rows=*/true);
}
break;
default:
assert(false);
break;
}
if (position() != nullptr) {
SetCostOnTableAccessPath(*join()->thd->cost_model(), position(),
/*is_after_filter=*/false, path);
}
/*
If we have an item like <expr> IN ( SELECT f2 FROM t2 ), and we were not
able to rewrite it into a semijoin, the optimizer may rewrite it into
EXISTS ( SELECT 1 FROM t2 WHERE f2=<expr> LIMIT 1 ) (ie., pushing down the
value into the subquery), using a REF or REF_OR_NULL scan on t2 if possible.
This happens in Item_in_subselect::select_in_like_transformer() and the
functions it calls.
However, if <expr> evaluates to NULL, this transformation is incorrect,
and the transformation used should instead be to
EXISTS ( SELECT 1 FROM t2 LIMIT 1 ) ? NULL : FALSE.
Thus, in the case of nullable <expr>, the rewriter inserts so-called
“condition guards” (pointers to bool saying whether <expr> was NULL or not,
for each part of <expr> if it contains multiple columns). These condition
guards do two things:
1. They disable the pushed-down WHERE clauses.
2. They change the REF/REF_OR_NULL accesses to table scans.
We don't need to worry about #1 here, but #2 needs to be dealt with,
as it changes the plan. We solve it by inserting an AlternativeIterator
that chooses between two sub-iterators at execution time, based on the
condition guard in question.
Note that ideally, we'd plan a completely separate plan for the NULL case,
as there might be e.g. a different index we could scan on, or even a
different optimal join order. (Note, however, that for the case of multiple
columns in the expression, we could get 2^N different plans.) However, given
that most cases are now handled by semijoins and not in2exists at all,
we don't need to jump through every possible hoop to optimize these cases.
*/
if (used_ref != nullptr) {
for (unsigned key_part_idx = 0; key_part_idx < used_ref->key_parts;
++key_part_idx) {
if (used_ref->cond_guards[key_part_idx] != nullptr) {
// At least one condition guard is relevant, so we need to use
// the AlternativeIterator.
AccessPath *table_scan_path = NewTableScanAccessPath(
join()->thd, table(), /*count_examined_rows=*/true);
table_scan_path->set_num_output_rows(table()->file->stats.records);
table_scan_path->cost = table()->file->table_scan_cost().total_cost();
path = NewAlternativeAccessPath(join()->thd, path, table_scan_path,
used_ref);
break;
}
}
}
if (filesort) {
// Evaluate any conditions before sorting entire row set.
if (condition()) {
vector<Item *> predicates_below_join;
vector<PendingCondition> predicates_above_join;
SplitConditions(condition(), this, &predicates_below_join,
&predicates_above_join,
/*join_conditions=*/nullptr,
/*semi_join_table_idx=*/NO_PLAN_IDX, /*left_tables=*/0);
table_map conditions_depend_on_outer_tables = 0;
path = PossiblyAttachFilter(path, predicates_below_join, join()->thd,
&conditions_depend_on_outer_tables);
mark_condition_as_pushed_to_sort();
}
// Wrap the chosen RowIterator in a SortingIterator, so that we get
// sorted results out.
path = NewSortAccessPath(join()->thd, path, filesort, filesort_pushed_order,
/*count_examined_rows=*/true);
}
// If we wrapped the table path in for example a sort or a filter, add cost to
// the wrapping path too.
if (path->num_output_rows() == -1 && position() != nullptr) {
SetCostOnTableAccessPath(*join()->thd->cost_model(), position(),
/*is_after_filter=*/false, path);
}
return path;
}
static bool cmp_field_value(Field *field, ptrdiff_t diff) {
assert(field);
/*
Records are different when:
1) NULL flags aren't the same
2) length isn't the same
3) data isn't the same
*/
const bool value1_isnull = field->is_real_null();
const bool value2_isnull = field->is_real_null(diff);
if (value1_isnull != value2_isnull) // 1
return true;
if (value1_isnull) return false; // Both values are null, no need to proceed.
const size_t value1_length = field->data_length();
const size_t value2_length = field->data_length(diff);
if (field->type() == MYSQL_TYPE_JSON) {
Field_json *json_field = down_cast<Field_json *>(field);
// Fetch the JSON value on the left side of the comparison.
Json_wrapper left_wrapper;
if (json_field->val_json(&left_wrapper))
return true; /* purecov: inspected */
// Fetch the JSON value on the right side of the comparison.
Json_wrapper right_wrapper;
json_field->move_field_offset(diff);
bool err = json_field->val_json(&right_wrapper);
json_field->move_field_offset(-diff);
if (err) return true; /* purecov: inspected */
return (left_wrapper.compare(right_wrapper) != 0);
}
// Trailing space can't be skipped and length is different
if (!field->is_text_key_type() && value1_length != value2_length) // 2
return true;
if (field->cmp_max(field->field_ptr(), field->field_ptr() + diff, // 3
std::max(value1_length, value2_length)))
return true;
return false;
}
/**
Compare GROUP BY in from tmp table's record[0] and record[1]
@returns
true records are different
false records are the same
*/
static bool group_rec_cmp(ORDER *group, uchar *rec0, uchar *rec1) {
DBUG_TRACE;
ptrdiff_t diff = rec1 - rec0;
for (ORDER *grp = group; grp; grp = grp->next) {
Field *field = grp->field_in_tmp_table;
if (cmp_field_value(field, diff)) return true;
}
return false;
}
/**
Compare GROUP BY in from tmp table's record[0] and record[1]
@returns
true records are different
false records are the same
*/
static bool table_rec_cmp(TABLE *table) {
DBUG_TRACE;
ptrdiff_t diff = table->record[1] - table->record[0];
Field **fields = table->visible_field_ptr();
for (uint i = 0; i < table->visible_field_count(); i++) {
Field *field = fields[i];
if (cmp_field_value(field, diff)) return true;
}
return false;
}
/**
Generate hash for a field
@returns generated hash
*/
ulonglong unique_hash(const Field *field, ulonglong *hash_val) {
uint64_t seed1 = 0, seed2 = 4;
uint64_t crc = *hash_val;
if (field->is_null()) {
/*
Change crc in a way different from an empty string or 0.
(This is an optimisation; The code will work even if
this isn't done)
*/
crc = ((crc << 8) + 511 + (crc >> (8 * sizeof(ha_checksum) - 8)));
goto finish;
}
if (field->type() == MYSQL_TYPE_JSON) {
const Field_json *json_field = down_cast<const Field_json *>(field);
crc = json_field->make_hash_key(*hash_val);
} else if (field->key_type() == HA_KEYTYPE_TEXT ||
field->key_type() == HA_KEYTYPE_VARTEXT1 ||
field->key_type() == HA_KEYTYPE_VARTEXT2) {
const uchar *data_ptr = field->data_ptr();
// Do not pass nullptr to hash function: undefined behaviour.
if (field->data_length() == 0 && data_ptr == nullptr) {
data_ptr = pointer_cast<const uchar *>(const_cast<char *>(""));
}
field->charset()->coll->hash_sort(field->charset(), data_ptr,
field->data_length(), &seed1, &seed2);
my_hash_combine(crc, seed1);
} else {
const uchar *pos = field->data_ptr();
const uchar *end = pos + field->data_length();
while (pos != end)
crc = ((crc << 8) + (*pos++)) + (crc >> (8 * sizeof(ha_checksum) - 8));
}
finish:
*hash_val = crc;
return crc;
}
/**
Generate hash for unique constraint according to group-by list.
This reads the values of the GROUP BY expressions from fields so assumes
those expressions have been computed and stored into fields of a temporary
table; in practice this means that copy_funcs() must have been called.
*/
static ulonglong unique_hash_group(ORDER *group) {
DBUG_TRACE;
ulonglong crc = 0;
for (ORDER *ord = group; ord; ord = ord->next) {
Field *field = ord->field_in_tmp_table;
assert(field);
unique_hash(field, &crc);
}
return crc;
}
/**
Generate hash for unique_constraint for all visible fields of a table
@param table the table for which we want a hash of its fields
@return the hash value
*/
static ulonglong unique_hash_fields(TABLE *table) {
ulonglong crc = 0;
Field **fields = table->visible_field_ptr();
for (uint i = 0; i < table->visible_field_count(); i++)
unique_hash(fields[i], &crc);
return crc;
}
/**
Check unique_constraint.
@details Calculates record's hash and checks whether the record given in
table->record[0] is already present in the tmp table.
@param table JOIN_TAB of tmp table to check
@note This function assumes record[0] is already filled by the caller.
Depending on presence of table->group, it's or full list of table's fields
are used to calculate hash.
@returns
false same record was found
true record wasn't found
*/
bool check_unique_constraint(TABLE *table) {
ulonglong hash;
if (!table->hash_field) return true;
if (table->no_keyread) return true;
if (table->group)
hash = unique_hash_group(table->group);
else
hash = unique_hash_fields(table);
table->hash_field->store(hash, true);
int res = table->file->ha_index_read_map(table->record[1],
table->hash_field->field_ptr(),
HA_WHOLE_KEY, HA_READ_KEY_EXACT);
while (res == 0) {
// Check whether records are the same.
if (!(table->group
? group_rec_cmp(table->group, table->record[0], table->record[1])
: table_rec_cmp(table))) {
return false; // skip it
}
res = table->file->ha_index_next_same(
table->record[1], table->hash_field->field_ptr(), sizeof(hash));
}
return true;
}
bool construct_lookup(THD *thd, TABLE *table, Index_lookup *ref) {
enum enum_check_fields save_check_for_truncated_fields =
thd->check_for_truncated_fields;
thd->check_for_truncated_fields = CHECK_FIELD_IGNORE;
my_bitmap_map *old_map = dbug_tmp_use_all_columns(table, table->write_set);
bool result = false;
for (uint part_no = 0; part_no < ref->key_parts; part_no++) {
store_key *s_key = ref->key_copy[part_no];
if (!s_key) continue;
/*
copy() can return STORE_KEY_OK even when there are errors so need to
check thd->is_error().
@todo This is due to missing handling of error return value from
Field::store().
*/
if (s_key->copy() != store_key::STORE_KEY_OK || thd->is_error()) {
result = true;
break;
}
}
thd->check_for_truncated_fields = save_check_for_truncated_fields;
dbug_tmp_restore_column_map(table->write_set, old_map);
return result;
}
/**
allocate group fields or take prepared (cached).
@param main_join join of current select
@param curr_join current join (join of current select or temporary copy
of it)
@retval
0 ok
@retval
1 failed
*/
bool make_group_fields(JOIN *main_join, JOIN *curr_join) {
DBUG_TRACE;
if (main_join->group_fields_cache.elements) {
curr_join->group_fields = main_join->group_fields_cache;
curr_join->streaming_aggregation = true;
} else {
if (alloc_group_fields(curr_join, curr_join->group_list.order)) return true;
main_join->group_fields_cache = curr_join->group_fields;
}
return false;
}
/**
Get a list of buffers for saving last group.
Groups are saved in reverse order for easier check loop.
*/
static bool alloc_group_fields(JOIN *join, ORDER *group) {
if (group) {
for (; group; group = group->next) {
Cached_item *tmp = new_Cached_item(join->thd, *group->item);
if (!tmp || join->group_fields.push_front(tmp)) return true;
}
}
join->streaming_aggregation = true; /* Mark for do_query_block */
return false;
}
/*
Test if a single-row cache of items changed, and update the cache.
@details Test if a list of items that typically represents a result
row has changed. If the value of some item changed, update the cached
value for this item.
@param list list of <item, cached_value> pairs stored as Cached_item.
@return -1 if no item changed
@return index of the first item that changed
*/
int update_item_cache_if_changed(List<Cached_item> &list) {
DBUG_TRACE;
List_iterator<Cached_item> li(list);
int idx = -1, i;
Cached_item *buff;
for (i = (int)list.elements - 1; (buff = li++); i--) {
if (buff->cmp()) idx = i;
}
DBUG_PRINT("info", ("idx: %d", idx));
return idx;
}
/// Compute the position mapping from fields to ref_item_array, cf.
/// detailed explanation in change_to_use_tmp_fields_except_sums
static size_t compute_ria_idx(const mem_root_deque<Item *> &fields, size_t i,
size_t added_non_hidden_fields, size_t border) {
const size_t num_select_elements = fields.size() - border;
const size_t orig_num_select_elements =
num_select_elements - added_non_hidden_fields;
size_t idx;
if (i < border) {
idx = fields.size() - i - 1 - added_non_hidden_fields;
} else {
idx = i - border;
if (idx >= orig_num_select_elements) idx += border;
}
return idx;
}
/**
Make a copy of all simple SELECT'ed fields.
This is used in window functions, to copy fields to and from the frame buffer.
(It used to be used in materialization, but now that is entirely done by
copy_funcs(), even for Item_field.)
@param param Represents the current temporary file being produced
@param thd The current thread
@param reverse_copy If true, copies fields *back* from the frame buffer
tmp table to the output table's buffer,
cf. #bring_back_frame_row.
@returns false if OK, true on error.
*/
bool copy_fields(Temp_table_param *param, const THD *thd, bool reverse_copy) {
DBUG_TRACE;
DBUG_PRINT("enter", ("for param %p", param));
for (Copy_field &ptr : param->copy_fields) ptr.invoke_do_copy(reverse_copy);
if (thd->is_error()) return true;
return false;
}
/**
For each rollup wrapper below the given item, replace it with a temporary
field, e.g.
1 + rollup_group_item(a) -> 1 + \<temporary\>.`rollup_group_item(a)`
Which temporary field to use is found by looking at the other fields;
the rollup_group_item should already exist earlier in the list
(and having a temporary table field set up), simply by virtue of being a
group item.
*/
static bool replace_embedded_rollup_references_with_tmp_fields(
THD *thd, Item *item, mem_root_deque<Item *> *fields) {
if (!item->has_rollup_expr()) {
return false;
}
const auto replace_functor = [thd, item, fields](Item *sub_item, Item *,
unsigned) -> ReplaceResult {
if (!is_rollup_group_wrapper(sub_item)) {
return {ReplaceResult::KEEP_TRAVERSING, nullptr};
}
for (Item *other_item : *fields) {
if (other_item->eq(sub_item, false)) {
Field *field = other_item->get_tmp_table_field();
Item *item_field = new (thd->mem_root) Item_field(field);
if (item_field == nullptr) return {ReplaceResult::ERROR, nullptr};
item_field->item_name = item->item_name;
return {ReplaceResult::REPLACE, item_field};
}
}
// A const item that is part of group by and not found in
// select list will not be found in "fields" (It's not added
// as a hidden item).
if (unwrap_rollup_group(sub_item)->const_for_execution()) {
return {ReplaceResult::REPLACE, sub_item};
}
assert(false);
return {ReplaceResult::ERROR, nullptr};
};
return WalkAndReplace(thd, item, std::move(replace_functor));
}
/**
Change all funcs and sum_funcs to fields in tmp table, and create
new list of all items.
@param fields list of all fields; should really be const,
but Item does not always respect
constness
@param thd THD pointer
@param [out] ref_item_array array of pointers to top elements of filed
list
@param [out] res_fields new list of all items
@param added_non_hidden_fields number of visible fields added by subquery
to derived transformation
@returns false if success, true if error
*/
bool change_to_use_tmp_fields(mem_root_deque<Item *> *fields, THD *thd,
Ref_item_array ref_item_array,
mem_root_deque<Item *> *res_fields,
size_t added_non_hidden_fields) {
DBUG_TRACE;
res_fields->clear();
const auto num_hidden_fields = CountHiddenFields(*fields);
auto it = fields->begin();
for (size_t i = 0; it != fields->end(); ++i, ++it) {
Item *item = *it;
Item_field *orig_field = item->real_item()->type() == Item::FIELD_ITEM
? down_cast<Item_field *>(item->real_item())
: nullptr;
Item *new_item;
Field *field;
if (item->has_aggregation() && item->type() != Item::SUM_FUNC_ITEM)
new_item = item;
else if (item->type() == Item::FIELD_ITEM)
new_item = item->get_tmp_table_item(thd);
else if (item->type() == Item::FUNC_ITEM &&
((Item_func *)item)->functype() == Item_func::SUSERVAR_FUNC) {
field = item->get_tmp_table_field();
if (field != nullptr) {
/*
Replace "@:=<expression>" with "@:=<tmp table column>". Otherwise, we
would re-evaluate <expression>, and if expression were a subquery,
this would access already-unlocked tables.
*/
Item_func_set_user_var *suv =
new Item_func_set_user_var(thd, (Item_func_set_user_var *)item);
Item_field *new_field = new Item_field(field);
if (!suv || !new_field) return true; // Fatal error
mem_root_deque<Item *> list(thd->mem_root);
if (list.push_back(new_field)) return true;
if (suv->set_arguments(&list, true)) return true;
new_item = suv;
} else
new_item = item;
} else if ((field = item->get_tmp_table_field())) {
if (item->type() == Item::SUM_FUNC_ITEM && field->table->group) {
new_item = down_cast<Item_sum *>(item)->result_item(field);
assert(new_item != nullptr);
} else {
new_item = new (thd->mem_root) Item_field(field);
if (new_item == nullptr) return true;
}
new_item->item_name = item->item_name;
if (item->type() == Item::REF_ITEM) {
Item_field *ifield = down_cast<Item_field *>(new_item);
Item_ref *iref = down_cast<Item_ref *>(item);
ifield->table_name = iref->table_name;
ifield->set_orignal_db_name(iref->original_db_name());
ifield->db_name = iref->db_name;
}
if (orig_field != nullptr && item != new_item) {
down_cast<Item_field *>(new_item)->set_original_table_name(
orig_field->original_table_name());
}
} else {
new_item = item;
replace_embedded_rollup_references_with_tmp_fields(thd, item, fields);
}
new_item->hidden = item->hidden;
res_fields->push_back(new_item);
const size_t idx =
compute_ria_idx(*fields, i, added_non_hidden_fields, num_hidden_fields);
ref_item_array[idx] = new_item;
}
return false;
}
static Item_rollup_group_item *find_rollup_item_in_group_list(
Item *item, Query_block *query_block) {
for (ORDER *group = query_block->group_list.first; group;
group = group->next) {
Item_rollup_group_item *rollup_item = group->rollup_item;
// If we have duplicate fields in group by
// (E.g. GROUP BY f1,f1,f2), rollup_item is set only for
// the first field.
if (rollup_item != nullptr) {
if (item->eq(rollup_item, /*binary_cmp=*/false)) {
return rollup_item;
}
}
}
return nullptr;
}
/**
For each rollup wrapper below the given item, replace its argument with a
temporary field, e.g.
1 + rollup_group_item(a) -> 1 + rollup_group_item(\<temporary\>.a).
Which temporary field to use is found by looking at the Query_block's group
items, and looking up their (previously set) result fields.
*/
bool replace_contents_of_rollup_wrappers_with_tmp_fields(THD *thd,
Query_block *select,
Item *item_arg) {
return WalkAndReplace(
thd, item_arg,
[thd, select](Item *item, Item *, unsigned) -> ReplaceResult {
if (!is_rollup_group_wrapper(item)) {
return {ReplaceResult::KEEP_TRAVERSING, nullptr};
}
Item_rollup_group_item *rollup_item =
down_cast<Item_rollup_group_item *>(item);
Item_rollup_group_item *group_rollup_item =
find_rollup_item_in_group_list(rollup_item, select);
assert(group_rollup_item != nullptr);
Item_rollup_group_item *new_item = new Item_rollup_group_item(
rollup_item->min_rollup_level(),
group_rollup_item->inner_item()->get_tmp_table_item(thd));
if (new_item == nullptr ||
select->join->rollup_group_items.push_back(new_item)) {
return {ReplaceResult::ERROR, nullptr};
}
new_item->quick_fix_field();
return {ReplaceResult::REPLACE, new_item};
});
}
/**
Change all sum_func refs to fields to point at fields in tmp table.
Change all funcs to be fields in tmp table.
This is used when we set up a temporary table, but aggregate functions
(sum_funcs) cannot be evaluated yet, for instance because data is not
sorted in the right order. (Otherwise, change_to_use_tmp_fields() would
be used.)
@param fields list of all fields; should really be const,
but Item does not always respect
constness
@param select the query block we are doing this to
@param thd THD pointer
@param [out] ref_item_array array of pointers to top elements of filed
list
@param [out] res_fields new list of items of select item list
@param added_non_hidden_fields number of visible fields added by subquery
to derived transformation
@returns false if success, true if error
*/
bool change_to_use_tmp_fields_except_sums(mem_root_deque<Item *> *fields,
THD *thd, Query_block *select,
Ref_item_array ref_item_array,
mem_root_deque<Item *> *res_fields,
size_t added_non_hidden_fields) {
DBUG_TRACE;
res_fields->clear();
const auto num_hidden_items = CountHiddenFields(*fields);
auto it = fields->begin();
for (size_t i = 0; it != fields->end(); ++i, ++it) {
Item *item = *it;
/*
Below we create "new_item" using get_tmp_table_item
based on all_fields[i] and assign them to res_all_fields[i].
The new items are also put into ref_item_array, but in another order,
cf the diagram below.
Example of the population of ref_item_array and the fields argument
containing hidden and selected fields. "border" is computed by counting
the number of hidden fields at the beginning of fields:
fields (selected fields)
| |
V V
+--+ +--+ +--+ +--+ +--+ +--+ +--+
|0 |-->| |-->| |-->|3 |-->|4 |-->| |--> .. -->|9 |
+--+ +--+ +--+ +--+ +--+ +--+ +--+
| |
,------------->--------\----/
| |
+-^-+---+---+---+---+---#-^-+---+---+---+
| | | | | | # | | | | ref_item_array
+---+---+---+---+---+---#---+---+---+---+
4 5 6 7 8 9 3 2 1 0 position in fields
similar to ref_all_fields pos
fields.elements == 10 border == 4 (i.e. # of hidden fields)
(visible) elements == 6
i==0 -> afe-0-1 == 9 i==4 -> 4-4 == 0
i==1 -> afe-1-1 == 8 :
i==2 -> afe-2-1 == 7
i==3 -> afe-3-1 == 6 i==9 -> 9-4 == 5
This mapping is further compilated if a scalar subquery to join with
derived table transformation has added (visible) fields to field_list
*after* resolving and adding hidden fields,
cf. decorrelate_derived_scalar_subquery. This is signalled by a value
of added_non_hidden_fields > 0. This makes the mapping look like this,
(Note: only one original select list item "orig" in a scalar subquery):
fields (selected_fields)
| |
V V (orig: 2, added by transform: 3, 4)
+--+ +--+ +--+ +--+ +--+
|0 | -> |1 | -> |2 | -> |3 | -> |4 |
+--+ +--+ +--+ +--+ +--+
+---#---+---#---+---+
| 2 # 1 | 0 # 3 | 4 | resulting ref_item_array
+---#---+---#---+---+
all_fields.elements == 5 border == 2
(visible) elements == 3 added_non_hidden_fields == 2
orig_num_select_elements == 1
If the added visible fields had not been there we would have seen this:
+---#---+---+
| 2 # 1 | 0 | ref_item_array
+---#---+---+
all_fields.elements == 3 border == 2
(visible) elements == 1 added_non_hidden_fields == 0
orig_num_select_elements == 1
so the logic below effectively lets the original fields stay where they
are, tucking the extra fields on at the end, since references
(Item_ref::ref) will point to those positions in the effective slice
array.
*/
Item *new_item;
if (is_rollup_group_wrapper(item)) {
// If we cannot evaluate aggregates at this point, we also cannot
// evaluate rollup NULL items, so we will need to move the wrapper out
// into this layer.
Item_rollup_group_item *rollup_item =
down_cast<Item_rollup_group_item *>(item);
rollup_item->inner_item()->set_result_field(item->get_result_field());
new_item = rollup_item->inner_item()->get_tmp_table_item(thd);
Item_rollup_group_item *group_rollup_item =
find_rollup_item_in_group_list(rollup_item, select);
assert(group_rollup_item != nullptr);
group_rollup_item->inner_item()->set_result_field(
item->get_result_field());
new_item =
new Item_rollup_group_item(rollup_item->min_rollup_level(), new_item);
if (new_item == nullptr ||
select->join->rollup_group_items.push_back(
down_cast<Item_rollup_group_item *>(new_item))) {
return true;
}
new_item->quick_fix_field();
// Remove the rollup wrapper on the inner level; it's harmless to keep
// on the lower level, but also pointless.
Item *unwrapped_item = unwrap_rollup_group(item);
unwrapped_item->hidden = item->hidden;
thd->change_item_tree(&*it, unwrapped_item);
} else if ((select->is_implicitly_grouped() &&
((item->used_tables() & ~(RAND_TABLE_BIT | INNER_TABLE_BIT)) ==
0)) || // (1)
item->has_rollup_expr()) { // (2)
/*
We go here when:
(1) The Query_block is implicitly grouped and 'item' does not
depend on any table. Then that field should be evaluated exactly
once, whether there are zero or more rows in the temporary table
(@see create_tmp_table()).
(2) 'item' has a rollup expression. Then we delay processing
until below; see comment further down.
*/
new_item = item->copy_or_same(thd);
if (new_item == nullptr) return true;
} else {
new_item = item->get_tmp_table_item(thd);
if (new_item == nullptr) return true;
}
new_item->update_used_tables();
assert_consistent_hidden_flags(*res_fields, new_item, item->hidden);
new_item->hidden = item->hidden;
res_fields->push_back(new_item);
const size_t idx =
compute_ria_idx(*fields, i, added_non_hidden_fields, num_hidden_items);
ref_item_array[idx] = new_item;
}
for (Item *item : *fields) {
if (!is_rollup_group_wrapper(item) && item->has_rollup_expr()) {
// An item that isn't a rollup wrapper itself, but depends on one (or
// multiple). We need to go into those items, find the rollup wrappers,
// and replace them with rollup wrappers around the temporary fields,
// as in the conditional above. Note that this needs to be done after
// we've gone through all the items, so that we know the right result
// fields for all the rollup wrappers (the function uses them to know
// which temporary field to replace with).
if (replace_contents_of_rollup_wrappers_with_tmp_fields(thd, select,
item)) {
return true;
}
}
}
assert(!thd->is_error());
return false;
}
/**
Set all column values from all input tables to NULL.
This is used when no rows are found during grouping: for FROM clause, a
result row of all NULL values will be output; then SELECT list expressions
get evaluated. E.g. SUM() will be NULL (the special "clear" value) and thus
SUM() IS NULL will be true.
@note Setting field values for input tables is a destructive operation,
since it overwrite the NULL value flags with 1 bits. Rows from
const tables are never re-read, hence their NULL value flags must
be saved by this function and later restored by JOIN::restore_fields().
This is generally not necessary for non-const tables, since field
values are overwritten when new rows are read.
@param[out] save_nullinfo Map of tables whose fields were set to NULL,
and for which NULL values must be restored.
Should be set to all zeroes on entry to function.
@returns false if success, true if error
*/
bool JOIN::clear_fields(table_map *save_nullinfo) {
assert(*save_nullinfo == 0);
for (Table_ref *table_ref = tables_list; table_ref != nullptr;
table_ref = table_ref->next_leaf) {
TABLE *const table = table_ref->table;
if (!table->has_null_row()) {
*save_nullinfo |= table_ref->map();
if (table->const_table) table->save_null_flags();
table->set_null_row(); // All fields are NULL
}
}
return false;
}
/**
Restore all result fields for all tables specified in save_nullinfo.
@param save_nullinfo Set of tables for which restore is necessary.
@note Const tables must have their NULL value flags restored,
@see JOIN::clear_fields().
*/
void JOIN::restore_fields(table_map save_nullinfo) {
assert(save_nullinfo);
for (Table_ref *table_ref = tables_list; table_ref != nullptr;
table_ref = table_ref->next_leaf) {
if (save_nullinfo & table_ref->map()) {
TABLE *const table = table_ref->table;
if (table->const_table) table->restore_null_flags();
table->reset_null_row();
}
}
}
/******************************************************************************
Code for pfs_batch_update
******************************************************************************/
bool QEP_TAB::pfs_batch_update(const JOIN *join) const {
/*
Use PFS batch mode unless
1. tab is not an inner-most table, or
2. a table has eq_ref or const access type, or
3. this tab contains a subquery that accesses one or more tables
*/
return !((join->qep_tab + join->primary_tables - 1) != this || // 1
this->type() == JT_EQ_REF || // 2
this->type() == JT_CONST || this->type() == JT_SYSTEM ||
(condition() && condition()->has_subquery())); // 3
}
/**
@} (end of group Query_Executor)
*/
bool MaterializeIsDoingDeduplication(TABLE *table) {
if (table->hash_field != nullptr) {
// Doing deduplication via hash field.
return true;
}
// We assume that if there's an unique index, it has to be used for
// deduplication (create_tmp_table() never makes them for any other
// reason).
if (table->key_info != nullptr) {
for (size_t i = 0; i < table->s->keys; ++i) {
if ((table->key_info[i].flags & HA_NOSAME) != 0) {
return true;
}
}
}
return false;
}
/**
create_table_access_path is used to scan by using a number of different
methods. Which method to use is set-up in this call so that you can
create an iterator from the returned access path and fetch rows through
said iterator afterwards.
@param thd Thread handle
@param table Table the data [originally] comes from
@param range_scan AccessPath to scan the table with, or nullptr
@param table_ref
Position for the table, must be non-nullptr for
WITH RECURSIVE
@param position Place to get cost information from, or nullptr
@param count_examined_rows
See AccessPath::count_examined_rows.
*/
AccessPath *create_table_access_path(THD *thd, TABLE *table,
AccessPath *range_scan,
Table_ref *table_ref, POSITION *position,
bool count_examined_rows) {
AccessPath *path;
if (range_scan != nullptr) {
range_scan->count_examined_rows = count_examined_rows;
path = range_scan;
} else if (table_ref != nullptr && table_ref->is_recursive_reference()) {
path = NewFollowTailAccessPath(thd, table, count_examined_rows);
} else {
path = NewTableScanAccessPath(thd, table, count_examined_rows);
}
if (position != nullptr) {
SetCostOnTableAccessPath(*thd->cost_model(), position,
/*is_after_filter=*/false, path);
}
return path;
}
unique_ptr_destroy_only<RowIterator> init_table_iterator(
THD *thd, TABLE *table, AccessPath *range_scan, Table_ref *table_ref,
POSITION *position, bool ignore_not_found_rows, bool count_examined_rows) {
unique_ptr_destroy_only<RowIterator> iterator;
empty_record(table);
if (table->unique_result.io_cache &&
my_b_inited(table->unique_result.io_cache)) {
DBUG_PRINT("info", ("using SortFileIndirectIterator"));
iterator = NewIterator<SortFileIndirectIterator>(
thd, thd->mem_root, Mem_root_array<TABLE *>{table},
table->unique_result.io_cache, ignore_not_found_rows,
/*has_null_flags=*/false,
/*examined_rows=*/nullptr);
table->unique_result.io_cache =
nullptr; // Now owned by SortFileIndirectIterator.
} else if (table->unique_result.has_result_in_memory()) {
/*
The Unique class never puts its results into table->sort's
Filesort_buffer.
*/
assert(!table->unique_result.sorted_result_in_fsbuf);
DBUG_PRINT("info", ("using SortBufferIndirectIterator (unique)"));
iterator = NewIterator<SortBufferIndirectIterator>(
thd, thd->mem_root, Mem_root_array<TABLE *>{table},
&table->unique_result, ignore_not_found_rows, /*has_null_flags=*/false,
/*examined_rows=*/nullptr);
} else {
AccessPath *path = create_table_access_path(
thd, table, range_scan, table_ref, position, count_examined_rows);
iterator = CreateIteratorFromAccessPath(thd, path,
/*join=*/nullptr,
/*eligible_for_batch_mode=*/false);
}
if (iterator->Init()) {
return nullptr;
}
return iterator;
}
|