1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
|
#ifndef SQL_EXECUTOR_INCLUDED
#define SQL_EXECUTOR_INCLUDED
/* Copyright (c) 2000, 2025, Oracle and/or its affiliates.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is designed to work with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have either included with
the program or referenced in the documentation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
/**
@file sql/sql_executor.h
Classes for query execution.
*/
#include <sys/types.h>
#include <cstring>
#include <memory>
#include <string>
#include <vector>
#include "my_alloc.h"
#include "my_inttypes.h"
#include "my_table_map.h"
#include "sql/iterators/row_iterator.h"
#include "sql/sql_lex.h"
#include "sql/sql_opt_exec_shared.h" // QEP_shared_owner
#include "sql/table.h"
#include "sql/temp_table_param.h" // Temp_table_param
class CacheInvalidatorIterator;
class Cached_item;
class Field;
class Field_longlong;
class Filesort;
class FollowTailIterator;
class Item;
class Item_sum;
class JOIN;
class JOIN_TAB;
class KEY;
class MultiRangeRowIterator;
class Opt_trace_object;
class QEP_TAB;
class RowIterator;
class THD;
class Window;
template <class T>
class mem_root_deque;
enum class Window_retrieve_cached_row_reason;
struct AccessPath;
struct CACHE_FIELD;
struct POSITION;
template <class T>
class List;
template <typename Element_type>
class Mem_root_array;
/*
Array of pointers to tables whose rowids compose the temporary table
record.
*/
struct SJ_TMP_TABLE_TAB {
QEP_TAB *qep_tab;
uint rowid_offset;
ushort null_byte;
uchar null_bit;
};
/*
Temporary table used by semi-join DuplicateElimination strategy
This consists of the temptable itself and data needed to put records
into it. The table's DDL is as follows:
CREATE TABLE tmptable (col VARCHAR(n) BINARY, PRIMARY KEY(col));
where the primary key can be replaced with unique constraint if n exceeds
the limit (as it is always done for query execution-time temptables).
The record value is a concatenation of rowids of tables from the join we're
executing. If a join table is on the inner side of the outer join, we
assume that its rowid can be NULL and provide means to store this rowid in
the tuple.
*/
class SJ_TMP_TABLE {
public:
SJ_TMP_TABLE() : hash_field(nullptr) {}
SJ_TMP_TABLE_TAB *tabs;
SJ_TMP_TABLE_TAB *tabs_end;
/*
is_confluent==true means this is a special case where the temptable record
has zero length (and presence of a unique key means that the temptable can
have either 0 or 1 records).
In this case we don't create the physical temptable but instead record
its state in SJ_TMP_TABLE::have_confluent_record.
*/
bool is_confluent;
/*
When is_confluent==true: the contents of the table (whether it has the
record or not).
*/
bool have_confluent_row;
/* table record parameters */
uint null_bits;
uint null_bytes;
uint rowid_len;
/* The temporary table itself (NULL means not created yet) */
TABLE *tmp_table;
/* Pointer to next table (next->start_idx > this->end_idx) */
SJ_TMP_TABLE *next;
/* Calc hash instead of too long key */
Field_longlong *hash_field;
};
/**
Executor structure for the materialized semi-join info, which contains
- Description of expressions selected from subquery
- The sj-materialization temporary table
*/
class Semijoin_mat_exec {
public:
Semijoin_mat_exec(Table_ref *sj_nest, bool is_scan, uint table_count,
uint mat_table_index, uint inner_table_index)
: sj_nest(sj_nest),
is_scan(is_scan),
table_count(table_count),
mat_table_index(mat_table_index),
inner_table_index(inner_table_index),
table_param(),
table(nullptr) {}
~Semijoin_mat_exec() = default;
Table_ref *const sj_nest; ///< Semi-join nest for this materialization
const bool is_scan; ///< true if executing a scan, false if lookup
const uint table_count; ///< Number of tables in the sj-nest
const uint mat_table_index; ///< Index in join_tab for materialized table
const uint inner_table_index; ///< Index in join_tab for first inner table
Temp_table_param table_param; ///< The temptable and its related info
TABLE *table; ///< Reference to temporary table
};
void setup_tmptable_write_func(QEP_TAB *tab, Opt_trace_object *trace);
[[nodiscard]] bool copy_fields(Temp_table_param *param, const THD *thd,
bool reverse_copy = false);
enum Copy_func_type : int {
/**
In non-windowing step, copies functions
*/
CFT_ALL,
/**
In windowing step, copies framing window function, including
all grouping aggregates, e.g. SUM, AVG and FIRST_VALUE, LAST_VALUE.
*/
CFT_WF_FRAMING,
/**
In windowing step, copies non framing window function, e.g.
ROW_NUMBER, RANK, DENSE_RANK, except those that are two_pass cf.
copy_two_pass_window_functions which are treated separately.
*/
CFT_WF_NON_FRAMING,
/**
In windowing step, copies window functions that need frame cardinality,
that is we need to read all rows of a partition before we can compute the
wf's value for the the first row in the partition.
*/
CFT_WF_NEEDS_PARTITION_CARDINALITY,
/**
In windowing step, copies framing window functions that read only one row
per frame.
*/
CFT_WF_USES_ONLY_ONE_ROW,
/**
In first windowing step, copies non-window functions which do not rely on
window functions, i.e. those that have Item::has_wf() == false.
*/
CFT_HAS_NO_WF,
/**
In final windowing step, copies all non-wf functions. Must be called after
all wfs have been evaluated, as non-wf functions may reference wf,
e.g. 1+RANK.
*/
CFT_HAS_WF,
/**
Copies all window functions.
*/
CFT_WF,
/**
Copies Item_field only (typically because other functions might depend
on those fields).
*/
CFT_FIELDS,
};
bool copy_funcs(Temp_table_param *, const THD *thd,
Copy_func_type type = CFT_ALL);
/**
Copy the lookup key into the table ref's key buffer.
@param thd pointer to the THD object
@param table the table to read
@param ref information about the index lookup key
@retval false ref key copied successfully
@retval true error detected during copying of key
*/
bool construct_lookup(THD *thd, TABLE *table, Index_lookup *ref);
/** Help function when we get some an error from the table handler. */
int report_handler_error(TABLE *table, int error);
int join_read_const_table(JOIN_TAB *tab, POSITION *pos);
int do_sj_dups_weedout(THD *thd, SJ_TMP_TABLE *sjtbl);
int update_item_cache_if_changed(List<Cached_item> &list);
// Create list for using with temporary table
bool change_to_use_tmp_fields(mem_root_deque<Item *> *fields, THD *thd,
Ref_item_array ref_item_array,
mem_root_deque<Item *> *res_fields,
size_t added_non_hidden_fields);
// Create list for using with temporary table
bool change_to_use_tmp_fields_except_sums(mem_root_deque<Item *> *fields,
THD *thd, Query_block *select,
Ref_item_array ref_item_array,
mem_root_deque<Item *> *res_fields,
size_t added_non_hidden_fields);
bool prepare_sum_aggregators(Item_sum **func_ptr, bool need_distinct);
bool setup_sum_funcs(THD *thd, Item_sum **func_ptr);
bool make_group_fields(JOIN *main_join, JOIN *curr_join);
bool check_unique_constraint(TABLE *table);
ulonglong unique_hash(const Field *field, ulonglong *hash);
int read_const(TABLE *table, Index_lookup *ref);
class QEP_TAB : public QEP_shared_owner {
public:
QEP_TAB()
: QEP_shared_owner(),
table_ref(nullptr),
flush_weedout_table(nullptr),
check_weed_out_table(nullptr),
firstmatch_return(NO_PLAN_IDX),
loosescan_key_len(0),
match_tab(NO_PLAN_IDX),
rematerialize(false),
not_used_in_distinct(false),
having(nullptr),
tmp_table_param(nullptr),
filesort(nullptr),
ref_item_slice(REF_SLICE_SAVED_BASE),
m_keyread_optim(false),
m_reversed_access(false),
lateral_derived_tables_depend_on_me(0) {}
/// Initializes the object from a JOIN_TAB
void init(JOIN_TAB *jt);
// Cleans up.
void cleanup();
// Getters and setters
Item *condition_optim() const { return m_condition_optim; }
void set_condition_optim() { m_condition_optim = condition(); }
bool keyread_optim() const { return m_keyread_optim; }
void set_keyread_optim() {
if (table()) m_keyread_optim = table()->key_read;
}
bool reversed_access() const { return m_reversed_access; }
void set_reversed_access(bool arg) { m_reversed_access = arg; }
void set_table(TABLE *t) {
m_qs->set_table(t);
if (t) t->reginfo.qep_tab = this;
}
/// @returns semijoin strategy for this table.
uint get_sj_strategy() const;
/// Return true if join_tab should perform a FirstMatch action
bool do_firstmatch() const { return firstmatch_return != NO_PLAN_IDX; }
/// Return true if join_tab should perform a LooseScan action
bool do_loosescan() const { return loosescan_key_len; }
/// Return true if join_tab starts a Duplicate Weedout action
bool starts_weedout() const { return flush_weedout_table; }
/// Return true if join_tab finishes a Duplicate Weedout action
bool finishes_weedout() const { return check_weed_out_table; }
/**
A helper function that allocates appropriate join cache object and
sets next_query_block function of previous tab.
*/
void init_join_cache(JOIN_TAB *join_tab);
/**
@returns query block id for an inner table of materialized semi-join, and
0 for all other tables.
@note implementation is not efficient (loops over all tables) - use this
function only in EXPLAIN.
*/
uint sjm_query_block_id() const;
/// @returns whether this is doing QS_DYNAMIC_RANGE
bool dynamic_range() const {
if (!position()) return false; // tmp table
return using_dynamic_range;
}
bool use_order() const; ///< Use ordering provided by chosen index?
/**
Construct an access path for reading from this table in the query,
using the access method that has been determined previously
(e.g., table scan, ref access, optional sort afterwards, etc.).
*/
AccessPath *access_path();
void push_index_cond(const JOIN_TAB *join_tab, uint keyno,
Opt_trace_object *trace_obj);
/// @return the index used for a table in a QEP
uint effective_index() const;
bool pfs_batch_update(const JOIN *join) const;
public:
/// Pointer to table reference
Table_ref *table_ref;
/* Variables for semi-join duplicate elimination */
SJ_TMP_TABLE *flush_weedout_table;
SJ_TMP_TABLE *check_weed_out_table;
/*
If set, means we should stop join enumeration after we've got the first
match and return to the specified join tab. May be PRE_FIRST_PLAN_IDX
which means stopping join execution after the first match.
*/
plan_idx firstmatch_return;
/*
Length of key tuple (depends on #keyparts used) to use for loose scan.
If zero, means that loosescan is not used.
*/
uint loosescan_key_len;
/*
If doing a LooseScan, this QEP is the first (i.e. "driving")
QEP_TAB, and match_tab points to the last QEP_TAB handled by the strategy.
match_tab->found_match should be checked to see if the current value group
had a match.
*/
plan_idx match_tab;
/// Dependent table functions have to be materialized on each new scan
bool rematerialize;
enum Setup_func {
NO_SETUP,
MATERIALIZE_TABLE_FUNCTION,
MATERIALIZE_DERIVED,
MATERIALIZE_SEMIJOIN
};
Setup_func materialize_table = NO_SETUP;
bool using_dynamic_range = false;
/** true <=> remove duplicates on this table. */
bool needs_duplicate_removal = false;
// If we have a query of the type SELECT DISTINCT t1.* FROM t1 JOIN t2
// ON ..., (ie., we join in one or more tables that we don't actually
// read any columns from), we can stop scanning t2 as soon as we see the
// first row. This pattern seems to be a workaround for lack of semijoins
// in older versions of MySQL.
bool not_used_in_distinct;
/** HAVING condition for checking prior saving a record into tmp table*/
Item *having;
// Operation between the previous QEP_TAB and this one.
enum enum_op_type {
// Regular nested loop.
OT_NONE,
// Aggregate (GROUP BY).
OT_AGGREGATE,
// Various temporary table operations, used at the end of the join.
OT_MATERIALIZE,
OT_AGGREGATE_THEN_MATERIALIZE,
OT_AGGREGATE_INTO_TMP_TABLE,
OT_WINDOWING_FUNCTION,
// Block-nested loop (rewritten to hash join).
OT_BNL,
// Batch key access.
OT_BKA
} op_type = OT_NONE;
/* Tmp table info */
Temp_table_param *tmp_table_param;
/* Sorting related info */
Filesort *filesort;
/**
If we pushed a global ORDER BY down onto this first table, that ORDER BY
list will be preserved here.
*/
ORDER *filesort_pushed_order = nullptr;
/**
Slice number of the ref items array to switch to before reading rows from
this table.
*/
uint ref_item_slice;
/// Condition as it was set by the optimizer, used for EXPLAIN.
/// m_condition may be overwritten at a later stage.
Item *m_condition_optim = nullptr;
/**
True if only index is going to be read for this table. This is the
optimizer's decision.
*/
bool m_keyread_optim;
/**
True if reversed scan is used. This is the optimizer's decision.
*/
bool m_reversed_access;
/**
Maps of all lateral derived tables which should be refreshed when
execution reads a new row from this table.
@note that if a LDT depends on t1 and t2, and t2 is after t1 in the plan,
then only t2::lateral_derived_tables_depend_on_me gets the map of the
LDT, for efficiency (less useless calls to QEP_TAB::refresh_lateral())
and clarity in EXPLAIN.
*/
qep_tab_map lateral_derived_tables_depend_on_me;
Mem_root_array<const AccessPath *> *invalidators = nullptr;
QEP_TAB(const QEP_TAB &); // not defined
QEP_TAB &operator=(const QEP_TAB &); // not defined
};
bool set_record_buffer(TABLE *table, double expected_rows_to_fetch);
void init_tmptable_sum_functions(Item_sum **func_ptr);
void update_tmptable_sum_func(Item_sum **func_ptr, TABLE *tmp_table);
bool has_rollup_result(Item *item);
bool is_rollup_group_wrapper(const Item *item);
Item *unwrap_rollup_group(Item *item);
/*
If a condition cannot be applied right away, for instance because it is a
WHERE condition and we're on the right side of an outer join, we have to
return it up so that it can be applied on a higher recursion level.
This structure represents such a condition.
*/
struct PendingCondition {
Item *cond;
int table_index_to_attach_to; // -1 means “on the last possible outer join”.
};
/**
Cache invalidator iterators we need to apply, but cannot yet due to outer
joins. As soon as “table_index_to_invalidate” is visible in our current join
nest (which means there could no longer be NULL-complemented rows we could
forget), we can and must output this invalidator and remove it from the array.
*/
struct PendingInvalidator {
/**
The table whose every (post-join) row invalidates one or more derived
lateral tables.
*/
QEP_TAB *qep_tab;
plan_idx table_index_to_invalidate;
};
enum CallingContext {
TOP_LEVEL,
DIRECTLY_UNDER_SEMIJOIN,
DIRECTLY_UNDER_OUTER_JOIN,
DIRECTLY_UNDER_WEEDOUT
};
/**
Create an AND conjunction of all given items. If there are no items, returns
nullptr. If there's only one item, returns that item.
*/
Item *CreateConjunction(List<Item> *items);
unique_ptr_destroy_only<RowIterator> PossiblyAttachFilterIterator(
unique_ptr_destroy_only<RowIterator> iterator,
const std::vector<Item *> &conditions, THD *thd);
void SplitConditions(Item *condition, QEP_TAB *current_table,
std::vector<Item *> *predicates_below_join,
std::vector<PendingCondition> *predicates_above_join,
std::vector<PendingCondition> *join_conditions,
plan_idx semi_join_table_idx, qep_tab_map left_tables);
/**
For a MATERIALIZE access path, move any non-basic iterators (e.g. sorts and
filters) from table_path to above the path, for easier EXPLAIN and generally
simpler structure. Note the assert in CreateIteratorFromAccessPath() that we
succeeded. (ALTERNATIVE counts as a basic iterator in this regard.)
We do this by finding the second-bottommost access path, and inserting our
materialize node as its child. The bottommost one becomes the actual table
access path.
If a ZERO_ROWS access path is materialized, we simply replace the MATERIALIZE
path with the ZERO_ROWS path, since there is nothing to materialize.
@param path the MATERIALIZE path.
@param query_block The query block in which 'path' belongs.
@returns The new root of the set of AccessPaths formed by 'path' and its
descendants.
*/
AccessPath *MoveCompositeIteratorsFromTablePath(AccessPath *path,
const Query_block &query_block);
AccessPath *GetAccessPathForDerivedTable(THD *thd, QEP_TAB *qep_tab,
AccessPath *table_path);
AccessPath *GetAccessPathForDerivedTable(
THD *thd, Table_ref *table_ref, TABLE *table, bool rematerialize,
Mem_root_array<const AccessPath *> *invalidators, bool need_rowid,
AccessPath *table_path);
void ConvertItemsToCopy(const mem_root_deque<Item *> &items, Field **fields,
Temp_table_param *param);
std::string RefToString(const Index_lookup &ref, const KEY *key,
bool include_nulls);
bool MaterializeIsDoingDeduplication(TABLE *table);
/**
Split AND conditions into their constituent parts, recursively.
Conditions that are not AND conditions are appended unchanged onto
condition_parts. E.g. if you have ((a AND b) AND c), condition_parts
will contain [a, b, c], plus whatever it contained before the call.
*/
bool ExtractConditions(Item *condition,
Mem_root_array<Item *> *condition_parts);
AccessPath *create_table_access_path(THD *thd, TABLE *table,
AccessPath *range_scan,
Table_ref *table_ref, POSITION *position,
bool count_examined_rows);
/**
Creates an iterator for the given table, then calls Init() on the resulting
iterator. Unlike create_table_iterator(), this can create iterators for sort
buffer results (which are set in the TABLE object during query execution).
Returns nullptr on failure.
*/
unique_ptr_destroy_only<RowIterator> init_table_iterator(
THD *thd, TABLE *table, AccessPath *range_scan, Table_ref *table_ref,
POSITION *position, bool ignore_not_found_rows, bool count_examined_rows);
/**
A short form for when there's no range scan, recursive CTEs or cost
information; just a unique_result or a simple table scan. Normally, you should
prefer just instantiating an iterator yourself -- this is for legacy use only.
*/
inline unique_ptr_destroy_only<RowIterator> init_table_iterator(
THD *thd, TABLE *table, bool ignore_not_found_rows,
bool count_examined_rows) {
return init_table_iterator(thd, table, nullptr, nullptr, nullptr,
ignore_not_found_rows, count_examined_rows);
}
AccessPath *ConnectJoins(plan_idx upper_first_idx, plan_idx first_idx,
plan_idx last_idx, QEP_TAB *qep_tabs, THD *thd,
CallingContext calling_context,
std::vector<PendingCondition> *pending_conditions,
std::vector<PendingInvalidator> *pending_invalidators,
std::vector<PendingCondition> *pending_join_conditions,
qep_tab_map *unhandled_duplicates,
table_map *conditions_depend_on_outer_tables);
#endif /* SQL_EXECUTOR_INCLUDED */
|