1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
|
#ifndef INCLUDES_MYSQL_SQL_LIST_H
#define INCLUDES_MYSQL_SQL_LIST_H
/* Copyright (c) 2000, 2025, Oracle and/or its affiliates.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is designed to work with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have either included with
the program or referenced in the documentation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
#include <stddef.h>
#include <sys/types.h>
#include <algorithm>
#include <iterator>
#include <type_traits>
#include "my_alloc.h"
#include "my_compiler.h"
#include "my_dbug.h"
#include "my_sharedlib.h"
#include "sql/thr_malloc.h"
/**
Simple intrusive linked list.
@remark Similar in nature to base_list, but intrusive. It keeps a
a pointer to the first element in the list and a indirect
reference to the last element.
*/
template <typename T>
class SQL_I_List {
public:
uint elements;
/** The first element in the list. */
T *first;
/** A reference to the next element in the list. */
T **next;
SQL_I_List() { clear(); }
SQL_I_List(const SQL_I_List &tmp)
: elements(tmp.elements),
first(tmp.first),
next(elements ? tmp.next : &first) {}
SQL_I_List(SQL_I_List &&) = default;
inline void clear() {
elements = 0;
first = nullptr;
next = &first;
}
inline void link_in_list(T *element, T **next_ptr) {
elements++;
(*next) = element;
next = next_ptr;
*next = nullptr;
}
inline void save_and_clear(SQL_I_List<T> *save) {
*save = *this;
clear();
}
inline void push_front(SQL_I_List<T> *save) {
/* link current list last */
*save->next = first;
first = save->first;
elements += save->elements;
}
inline void push_back(SQL_I_List<T> *save) {
if (save->first) {
*next = save->first;
next = save->next;
elements += save->elements;
}
}
inline uint size() const { return elements; }
SQL_I_List &operator=(SQL_I_List &) = default;
SQL_I_List &operator=(SQL_I_List &&) = default;
};
/*
Basic single linked list
Used for item and item_buffs.
All list ends with a pointer to the 'end_of_list' element, which
data pointer is a null pointer and the next pointer points to itself.
This makes it very fast to traverse lists as we don't have to
test for a specialend condition for list that can't contain a null
pointer.
*/
/**
list_node - a node of a single-linked list.
@note We never call a destructor for instances of this class.
*/
struct list_node {
list_node *next;
void *info;
list_node(void *info_par, list_node *next_par)
: next(next_par), info(info_par) {}
list_node() /* For end_of_list */
{
info = nullptr;
next = this;
}
};
extern MYSQL_PLUGIN_IMPORT list_node end_of_list;
class base_list {
protected:
list_node *first, **last;
public:
uint elements;
bool operator==(const base_list &rhs) const {
return elements == rhs.elements && first == rhs.first && last == rhs.last;
}
inline void clear() {
elements = 0;
first = &end_of_list;
last = &first;
}
inline base_list() { clear(); }
/**
This is a shallow copy constructor that implicitly passes the ownership
from the source list to the new instance. The old instance is not
updated, so both objects end up sharing the same nodes. If one of
the instances then adds or removes a node, the other becomes out of
sync ('last' pointer), while still operational. Some old code uses and
relies on this behaviour. This logic is quite tricky: please do not use
it in any new code.
*/
base_list(const base_list &tmp)
: first(tmp.first),
last(tmp.elements ? tmp.last : &first),
elements(tmp.elements) {}
base_list &operator=(const base_list &tmp) {
elements = tmp.elements;
first = tmp.first;
last = elements ? tmp.last : &first;
return *this;
}
/**
Construct a deep copy of the argument in memory root mem_root.
The elements themselves are copied by pointer.
*/
base_list(const base_list &rhs, MEM_ROOT *mem_root);
inline bool push_back(void *info) {
*last = new (*THR_MALLOC) list_node(info, &end_of_list);
if (*last) {
last = &(*last)->next;
elements++;
return false;
}
return true;
}
inline bool push_back(void *info, MEM_ROOT *mem_root) {
*last = new (mem_root) list_node(info, &end_of_list);
if (*last) {
last = &(*last)->next;
elements++;
return false;
}
return true;
}
inline bool push_front(void *info) {
list_node *node = new (*THR_MALLOC) list_node(info, first);
if (node) {
if (last == &first) last = &node->next;
first = node;
elements++;
return false;
}
return true;
}
inline bool push_front(void *info, MEM_ROOT *mem_root) {
list_node *node = new (mem_root) list_node(info, first);
if (node) {
if (last == &first) last = &node->next;
first = node;
elements++;
return false;
}
return true;
}
void remove(list_node **prev) {
list_node *node = (*prev)->next;
if (!--elements)
last = &first;
else if (last == &(*prev)->next)
last = prev;
destroy(*prev);
*prev = node;
}
inline void concat(base_list *list) {
if (!list->is_empty()) {
*last = list->first;
last = list->last;
elements += list->elements;
}
}
inline void *pop(void) {
if (first == &end_of_list) return nullptr;
list_node *tmp = first;
first = first->next;
if (!--elements) last = &first;
return tmp->info;
}
inline void disjoin(base_list *list) {
list_node **prev = &first;
list_node *node = first;
list_node *list_first = list->first;
elements = 0;
while (node && node != list_first) {
prev = &node->next;
node = node->next;
elements++;
}
*prev = *last;
last = prev;
}
inline void prepend(base_list *list) {
if (!list->is_empty()) {
*list->last = first;
if (is_empty()) last = list->last;
first = list->first;
elements += list->elements;
}
}
/**
Swap two lists.
*/
inline void swap(base_list &rhs) {
std::swap(first, rhs.first);
std::swap(last, rhs.last);
std::swap(elements, rhs.elements);
}
inline list_node *last_node() { return *last; }
inline list_node *first_node() { return first; }
inline void *head() { return first->info; }
inline const void *head() const { return first->info; }
inline void **head_ref() {
return first != &end_of_list ? &first->info : nullptr;
}
inline bool is_empty() const { return first == &end_of_list; }
inline list_node *last_ref() { return &end_of_list; }
inline uint size() const { return elements; }
friend class base_list_iterator;
friend class error_list;
friend class error_list_iterator;
#ifdef LIST_EXTRA_DEBUG
/*
Check list invariants and print results into trace. Invariants are:
- (*last) points to end_of_list
- There are no NULLs in the list.
- base_list::elements is the number of elements in the list.
SYNOPSIS
check_list()
name Name to print to trace file
RETURN
1 The list is Ok.
0 List invariants are not met.
*/
bool check_list(const char *name) {
base_list *list = this;
list_node *node = first;
uint cnt = 0;
while (node->next != &end_of_list) {
if (!node->info) {
DBUG_PRINT("list_invariants",
("%s: error: NULL element in the list", name));
return false;
}
node = node->next;
cnt++;
}
if (last != &(node->next)) {
DBUG_PRINT("list_invariants", ("%s: error: wrong last pointer", name));
return false;
}
if (cnt + 1 != elements) {
DBUG_PRINT("list_invariants", ("%s: error: wrong element count", name));
return false;
}
DBUG_PRINT("list_invariants", ("%s: list is ok", name));
return true;
}
#endif // LIST_EXTRA_DEBUG
protected:
void after(void *info, list_node *node) {
list_node *new_node = new (*THR_MALLOC) list_node(info, node->next);
node->next = new_node;
elements++;
if (last == &(node->next)) last = &new_node->next;
}
bool after(void *info, list_node *node, MEM_ROOT *mem_root) {
list_node *new_node = new (mem_root) list_node(info, node->next);
if (!new_node) return true; // OOM
node->next = new_node;
elements++;
if (last == &(node->next)) last = &new_node->next;
return false;
}
};
class base_list_iterator {
protected:
base_list *list;
list_node **el, **prev, *current;
void sublist(base_list &ls, uint elm) {
ls.first = *el;
ls.last = list->last;
ls.elements = elm;
}
public:
base_list_iterator()
: list(nullptr), el(nullptr), prev(nullptr), current(nullptr) {}
base_list_iterator(base_list &list_par) { init(list_par); }
inline void init(base_list &list_par) {
list = &list_par;
el = &list_par.first;
prev = nullptr;
current = nullptr;
}
inline void *next(void) {
prev = el;
current = *el;
el = ¤t->next;
return current->info;
}
inline void *next_fast(void) {
list_node *tmp;
tmp = *el;
el = &tmp->next;
return tmp->info;
}
inline void rewind(void) { el = &list->first; }
inline void *replace(void *element) { // Return old element
void *tmp = current->info;
assert(current->info != nullptr);
current->info = element;
return tmp;
}
void *replace(base_list &new_list) {
void *ret_value = current->info;
if (!new_list.is_empty()) {
*new_list.last = current->next;
current->info = new_list.first->info;
current->next = new_list.first->next;
if ((list->last == ¤t->next) && (new_list.elements > 1))
list->last = new_list.last;
list->elements += new_list.elements - 1;
}
return ret_value; // return old element
}
inline void remove(void) // Remove current
{
list->remove(prev);
el = prev;
current = nullptr; // Safeguard
}
void after(void *element) // Insert element after current
{
list->after(element, current);
current = current->next;
el = ¤t->next;
}
bool after(void *a, MEM_ROOT *mem_root) {
if (list->after(a, current, mem_root)) return true;
current = current->next;
el = ¤t->next;
return false;
}
inline void **ref(void) // Get reference pointer
{
return ¤t->info;
}
inline bool is_last(void) { return el == list->last; }
inline bool is_before_first() const { return current == nullptr; }
bool prepend(void *a, MEM_ROOT *mem_root) {
if (list->push_front(a, mem_root)) return true;
el = &list->first;
prev = el;
el = &(*el)->next;
return false;
}
friend class error_list_iterator;
};
template <class T>
class List_STL_Iterator;
template <class T>
class List : public base_list {
public:
List() : base_list() {}
inline List(const List<T> &tmp) : base_list(tmp) {}
List &operator=(const List &tmp) {
return static_cast<List &>(base_list::operator=(tmp));
}
inline List(const List<T> &tmp, MEM_ROOT *mem_root)
: base_list(tmp, mem_root) {}
/*
Typecasting to (void *) it's necessary if we want to declare List<T> with
constant T parameter (like List<const char>), since the untyped storage
is "void *", and assignment of const pointer to "void *" is a syntax error.
*/
inline bool push_back(T *a) {
return base_list::push_back(const_cast<void *>(((const void *)a)));
}
inline bool push_back(T *a, MEM_ROOT *mem_root) {
return base_list::push_back(const_cast<void *>((const void *)a), mem_root);
}
inline bool push_front(T *a) {
return base_list::push_front(const_cast<void *>((const void *)a));
}
inline bool push_front(T *a, MEM_ROOT *mem_root) {
return base_list::push_front(const_cast<void *>((const void *)a), mem_root);
}
inline T *head() { return static_cast<T *>(base_list::head()); }
inline const T *head() const {
return static_cast<const T *>(base_list::head());
}
inline T **head_ref() { return (T **)base_list::head_ref(); }
inline T *pop() { return (T *)base_list::pop(); }
inline void concat(List<T> *list) { base_list::concat(list); }
inline void disjoin(List<T> *list) { base_list::disjoin(list); }
inline void prepend(List<T> *list) { base_list::prepend(list); }
void delete_elements(void) {
list_node *element, *next;
for (element = first; element != &end_of_list; element = next) {
next = element->next;
delete (T *)element->info;
}
clear();
}
void destroy_elements(void) {
list_node *element, *next;
for (element = first; element != &end_of_list; element = next) {
next = element->next;
destroy((T *)element->info);
}
clear();
}
T *operator[](uint index) const {
assert(index < elements);
list_node *current = first;
for (uint i = 0; i < index; ++i) current = current->next;
return static_cast<T *>(current->info);
}
void replace(uint index, T *new_value) {
assert(index < elements);
list_node *current = first;
for (uint i = 0; i < index; ++i) current = current->next;
current->info = new_value;
}
bool swap_elts(uint index1, uint index2) {
if (index1 == index2) return false;
if (index1 >= elements || index2 >= elements) return true; // error
if (index2 < index1) std::swap(index1, index2);
list_node *current1 = first;
for (uint i = 0; i < index1; ++i) current1 = current1->next;
list_node *current2 = current1;
for (uint i = 0; i < index2 - index1; ++i) current2 = current2->next;
std::swap(current1->info, current2->info);
return false;
}
/**
@brief
Sort the list
@param cmp node comparison function
@details
The function sorts list nodes by an exchange sort algorithm.
The order of list nodes isn't changed, values of info fields are
swapped instead. Due to this, list iterators that are initialized before
sort could be safely used after sort, i.e they wouldn't cause a crash.
As this isn't an effective algorithm the list to be sorted is supposed to
be short.
*/
template <typename Node_cmp_func>
void sort(Node_cmp_func cmp) {
if (elements < 2) return;
for (list_node *n1 = first; n1 && n1 != &end_of_list; n1 = n1->next) {
for (list_node *n2 = n1->next; n2 && n2 != &end_of_list; n2 = n2->next) {
if (cmp(static_cast<T *>(n1->info), static_cast<T *>(n2->info)) > 0) {
void *tmp = n1->info;
n1->info = n2->info;
n2->info = tmp;
}
}
}
}
// For C++11 range-based for loops.
using iterator = List_STL_Iterator<T>;
iterator begin() { return iterator(first); }
iterator end() {
// If the list overlaps another list, last isn't actually
// the last element, and if so, we'd give a different result from
// List_iterator_fast.
assert((*last)->next == &end_of_list);
return iterator(*last);
}
using const_iterator = List_STL_Iterator<const T>;
const_iterator begin() const { return const_iterator(first); }
const_iterator end() const {
assert((*last)->next == &end_of_list);
return const_iterator(*last);
}
const_iterator cbegin() const { return const_iterator(first); }
const_iterator cend() const {
assert((*last)->next == &end_of_list);
return const_iterator(*last);
}
};
template <class T>
class List_iterator : public base_list_iterator {
public:
List_iterator(List<T> &a) : base_list_iterator(a) {}
List_iterator() : base_list_iterator() {}
inline void init(List<T> &a) { base_list_iterator::init(a); }
inline T *operator++(int) { return (T *)base_list_iterator::next(); }
inline T *replace(T *a) { return (T *)base_list_iterator::replace(a); }
inline T *replace(List<T> &a) { return (T *)base_list_iterator::replace(a); }
inline void rewind(void) { base_list_iterator::rewind(); }
inline void remove() { base_list_iterator::remove(); }
inline void after(T *a) { base_list_iterator::after(a); }
inline bool after(T *a, MEM_ROOT *mem_root) {
return base_list_iterator::after(a, mem_root);
}
inline T **ref(void) {
return const_cast<T **>(
(std::remove_const_t<T> **)base_list_iterator::ref());
}
};
template <class T>
class List_iterator_fast : public base_list_iterator {
protected:
inline T *replace(T *) { return (T *)0; }
inline T *replace(List<T> &) { return (T *)0; }
inline void remove(void) {}
inline void after(T *) {}
inline T **ref(void) { return (T **)0; }
public:
inline List_iterator_fast(List<T> &a) : base_list_iterator(a) {}
inline List_iterator_fast() : base_list_iterator() {}
inline void init(List<T> &a) { base_list_iterator::init(a); }
inline T *operator++(int) { return (T *)base_list_iterator::next_fast(); }
inline void rewind(void) { base_list_iterator::rewind(); }
void sublist(List<T> &list_arg, uint el_arg) {
base_list_iterator::sublist(list_arg, el_arg);
}
};
/*
Like List_iterator<T>, but with an STL-compatible interface
(ForwardIterator), so that you can use it in range-based for loops.
Prefer this to List_iterator<T> wherever possible, but also prefer
std::vector<T> or std::list<T> to List<T> wherever possible.
*/
template <class T>
class List_STL_Iterator {
public:
explicit List_STL_Iterator(list_node *node) : m_current(node) {}
// Iterator (required for InputIterator).
T &operator*() const { return *static_cast<T *>(m_current->info); }
List_STL_Iterator &operator++() {
m_current = m_current->next;
return *this;
}
using difference_type = ptrdiff_t;
using value_type = T; // NOTE: std::remove_cv_t<T> from C++20.
using pointer = T *;
using reference = T &;
using iterator_category = std::forward_iterator_tag;
// EqualityComparable (required for InputIterator).
bool operator==(const List_STL_Iterator &other) const {
return m_current == other.m_current;
}
// InputIterator (required for ForwardIterator).
bool operator!=(const List_STL_Iterator &other) const {
return !(*this == other);
}
T *operator->() const { return static_cast<T *>(m_current->info); }
// DefaultConstructible (required for ForwardIterator).
List_STL_Iterator() = default;
// ForwardIterator.
List_STL_Iterator operator++(int) {
List_STL_Iterator copy = *this;
m_current = m_current->next;
return copy;
}
private:
list_node *m_current;
};
template <typename T>
class base_ilist;
template <typename T>
class base_ilist_iterator;
/*
A simple intrusive list.
NOTE: this inherently unsafe, since we rely on <T> to have
the same layout as ilink<T> (see base_ilist::sentinel).
Please consider using a different strategy for linking objects.
*/
template <typename T>
class ilink {
T **prev, *next;
public:
ilink() : prev(nullptr), next(nullptr) {}
void unlink() {
/* Extra tests because element doesn't have to be linked */
if (prev) *prev = next;
if (next) next->prev = prev;
prev = nullptr;
next = nullptr;
}
friend class base_ilist<T>;
friend class base_ilist_iterator<T>;
};
/* Needed to be able to have an I_List of char* strings in mysqld.cc. */
class i_string : public ilink<i_string> {
public:
const char *ptr;
i_string() : ptr(nullptr) {}
i_string(const char *s) : ptr(s) {}
};
/* needed for linked list of two strings for replicate-rewrite-db */
class i_string_pair : public ilink<i_string_pair> {
public:
const char *key;
const char *val;
i_string_pair() : key(nullptr), val(nullptr) {}
i_string_pair(const char *key_arg, const char *val_arg)
: key(key_arg), val(val_arg) {}
};
template <class T>
class I_List_iterator;
template <typename T>
class base_ilist {
T *first;
ilink<T> sentinel;
static_assert(!std::is_polymorphic<T>::value,
"Do not use this for classes with virtual members");
public:
// The sentinel is not a T, but at least it is a POD
void clear() SUPPRESS_UBSAN {
first = static_cast<T *>(&sentinel);
sentinel.prev = &first;
}
base_ilist() { clear(); }
// The sentinel is not a T, but at least it is a POD
bool is_empty() const SUPPRESS_UBSAN {
return first == static_cast<const T *>(&sentinel);
}
/// Pushes new element in front of list.
void push_front(T *a) {
first->prev = &a->next;
a->next = first;
a->prev = &first;
first = a;
}
/// Pushes new element to the end of the list, i.e. in front of the sentinel.
void push_back(T *a) {
*sentinel.prev = a;
a->next = static_cast<T *>(&sentinel);
a->prev = sentinel.prev;
sentinel.prev = &a->next;
}
// Unlink first element, and return it.
T *get() {
if (is_empty()) return nullptr;
T *first_link = first;
first_link->unlink();
return first_link;
}
T *head() { return is_empty() ? nullptr : first; }
/**
Moves list elements to new owner, and empties current owner (i.e. this).
@param[in,out] new_owner The new owner of the list elements.
Should be empty in input.
*/
void move_elements_to(base_ilist *new_owner) {
assert(new_owner->is_empty());
new_owner->first = first;
new_owner->sentinel = sentinel;
clear();
}
friend class base_ilist_iterator<T>;
private:
/*
We don't want to allow copying of this class, as that would give us
two list heads containing the same elements.
So we declare, but don't define copy CTOR and assignment operator.
*/
base_ilist(const base_ilist &);
void operator=(const base_ilist &);
};
template <typename T>
class base_ilist_iterator {
base_ilist<T> *list;
T **el, *current;
public:
base_ilist_iterator(base_ilist<T> &list_par)
: list(&list_par), el(&list_par.first), current(nullptr) {}
// The sentinel is not a T, but at least it is a POD
T *next(void) SUPPRESS_UBSAN {
/* This is coded to allow push_back() while iterating */
current = *el;
if (current == static_cast<T *>(&list->sentinel)) return nullptr;
el = ¤t->next;
return current;
}
};
template <class T>
class I_List : private base_ilist<T> {
public:
using base_ilist<T>::clear;
using base_ilist<T>::is_empty;
using base_ilist<T>::get;
using base_ilist<T>::push_front;
using base_ilist<T>::push_back;
using base_ilist<T>::head;
void move_elements_to(I_List<T> *new_owner) {
base_ilist<T>::move_elements_to(new_owner);
}
friend class I_List_iterator<T>;
};
template <class T>
class I_List_iterator : public base_ilist_iterator<T> {
public:
I_List_iterator(I_List<T> &a) : base_ilist_iterator<T>(a) {}
inline T *operator++(int) { return base_ilist_iterator<T>::next(); }
};
void free_list(I_List<i_string> *list);
#endif // INCLUDES_MYSQL_SQL_LIST_H
|