1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787
|
/* Copyright (c) 2000, 2025, Oracle and/or its affiliates.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is designed to work with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have either included with
the program or referenced in the documentation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
/**
@file
@brief Optimize query expressions: Make optimal table join order, select
optimal access methods per table, apply grouping, sorting and
limit processing.
@defgroup Query_Optimizer Query Optimizer
@{
*/
#include "sql/sql_optimizer.h"
#include "my_base.h"
#include "sql/sql_optimizer_internal.h"
#include <limits.h>
#include <algorithm>
#include <atomic>
#include <cmath>
#include <deque>
#include <limits>
#include <new>
#include <string>
#include <utility>
#include <vector>
#include "field_types.h" // enum_field_types
#include "ft_global.h"
#include "m_ctype.h"
#include "mem_root_deque.h"
#include "memory_debugging.h"
#include "my_bit.h" // my_count_bits
#include "my_bitmap.h"
#include "my_compiler.h"
#include "my_dbug.h"
#include "my_inttypes.h"
#include "my_sqlcommand.h"
#include "my_sys.h"
#include "mysql/udf_registration_types.h"
#include "mysql_com.h"
#include "mysqld_error.h"
#include "sql/check_stack.h"
#include "sql/current_thd.h"
#include "sql/debug_sync.h" // DEBUG_SYNC
#include "sql/derror.h" // ER_THD
#include "sql/enum_query_type.h"
#include "sql/error_handler.h" // Functional_index_error_handler
#include "sql/handler.h"
#include "sql/item.h"
#include "sql/item_cmpfunc.h"
#include "sql/item_func.h"
#include "sql/item_row.h"
#include "sql/item_subselect.h"
#include "sql/item_sum.h" // Item_sum
#include "sql/iterators/basic_row_iterators.h"
#include "sql/iterators/timing_iterator.h"
#include "sql/join_optimizer/access_path.h"
#include "sql/join_optimizer/join_optimizer.h"
#include "sql/join_optimizer/walk_access_paths.h"
#include "sql/key.h"
#include "sql/key_spec.h"
#include "sql/lock.h" // mysql_unlock_some_tables
#include "sql/mysqld.h" // stage_optimizing
#include "sql/nested_join.h"
#include "sql/opt_costmodel.h"
#include "sql/opt_explain.h" // join_type_str
#include "sql/opt_hints.h" // hint_table_state
#include "sql/opt_trace.h" // Opt_trace_object
#include "sql/opt_trace_context.h"
#include "sql/parse_tree_node_base.h"
#include "sql/parser_yystype.h"
#include "sql/query_options.h"
#include "sql/query_result.h"
#include "sql/range_optimizer/partition_pruning.h"
#include "sql/range_optimizer/path_helpers.h"
#include "sql/range_optimizer/range_optimizer.h"
#include "sql/sql_base.h" // init_ftfuncs
#include "sql/sql_bitmap.h"
#include "sql/sql_class.h"
#include "sql/sql_const.h"
#include "sql/sql_const_folding.h"
#include "sql/sql_error.h"
#include "sql/sql_join_buffer.h" // JOIN_CACHE
#include "sql/sql_planner.h" // calculate_condition_filter
#include "sql/sql_test.h" // print_where
#include "sql/sql_tmp_table.h"
#include "sql/system_variables.h"
#include "sql/table.h"
#include "sql/thd_raii.h"
#include "sql/window.h"
#include "sql_string.h"
#include "template_utils.h"
using std::ceil;
using std::max;
using std::min;
const char *antijoin_null_cond = "<ANTIJOIN-NULL>";
static bool optimize_semijoin_nests_for_materialization(JOIN *join);
static void calculate_materialization_costs(JOIN *join, Table_ref *sj_nest,
uint n_tables,
Semijoin_mat_optimize *sjm);
static bool make_join_query_block(JOIN *join, Item *item);
static bool list_contains_unique_index(JOIN_TAB *tab,
bool (*find_func)(Field *, void *),
void *data);
static bool find_field_in_item_list(Field *field, void *data);
static bool find_field_in_order_list(Field *field, void *data);
static TABLE *get_sort_by_table(ORDER *a, ORDER *b, Table_ref *tables);
static void trace_table_dependencies(Opt_trace_context *trace,
JOIN_TAB *join_tabs, uint table_count);
static bool update_ref_and_keys(THD *thd, Key_use_array *keyuse,
JOIN_TAB *join_tab, uint tables, Item *cond,
table_map normal_tables,
Query_block *query_block,
SARGABLE_PARAM **sargables);
static bool pull_out_semijoin_tables(JOIN *join);
static void add_loose_index_scan_and_skip_scan_keys(JOIN *join,
JOIN_TAB *join_tab);
static ha_rows get_quick_record_count(THD *thd, JOIN_TAB *tab, ha_rows limit,
Item *condition);
static bool only_eq_ref_tables(JOIN *join, ORDER *order, table_map tables,
table_map *cached_eq_ref_tables,
table_map *eq_ref_tables);
static bool setup_join_buffering(JOIN_TAB *tab, JOIN *join, uint no_jbuf_after);
static bool test_if_skip_sort_order(JOIN_TAB *tab, ORDER_with_src &order,
ha_rows select_limit, const bool no_changes,
const Key_map *map, int *best_idx);
static Item_func_match *test_if_ft_index_order(ORDER *order);
static uint32 get_key_length_tmp_table(Item *item);
static bool can_switch_from_ref_to_range(THD *thd, JOIN_TAB *tab,
enum_order ordering,
bool recheck_range);
static bool has_not_null_predicate(Item *cond, Item_field *not_null_item);
JOIN::JOIN(THD *thd_arg, Query_block *select)
: query_block(select),
thd(thd_arg),
// @todo Can this be substituted with select->is_explicitly_grouped()?
grouped(select->is_explicitly_grouped()),
// Inner tables may always be considered to be constant:
const_table_map(INNER_TABLE_BIT),
found_const_table_map(INNER_TABLE_BIT),
// Needed in case optimizer short-cuts, set properly in
// make_tmp_tables_info()
fields(&select->fields),
tmp_table_param(thd_arg->mem_root),
lock(thd->lock),
// @todo Can this be substituted with select->is_implicitly_grouped()?
implicit_grouping(select->is_implicitly_grouped()),
select_distinct(select->is_distinct()),
keyuse_array(thd->mem_root),
order(select->order_list.first, ESC_ORDER_BY),
group_list(select->group_list.first, ESC_GROUP_BY),
m_windows(select->m_windows),
/*
Those four members are meaningless before JOIN::optimize(), so force a
crash if they are used before that.
*/
where_cond(reinterpret_cast<Item *>(1)),
having_cond(reinterpret_cast<Item *>(1)),
having_for_explain(reinterpret_cast<Item *>(1)),
tables_list(reinterpret_cast<Table_ref *>(1)),
current_ref_item_slice(REF_SLICE_SAVED_BASE),
with_json_agg(select->json_agg_func_used()) {
rollup_state = RollupState::NONE;
if (select->order_list.first) explain_flags.set(ESC_ORDER_BY, ESP_EXISTS);
if (select->group_list.first) explain_flags.set(ESC_GROUP_BY, ESP_EXISTS);
if (select->is_distinct()) explain_flags.set(ESC_DISTINCT, ESP_EXISTS);
if (m_windows.elements > 0) explain_flags.set(ESC_WINDOWING, ESP_EXISTS);
// Calculate the number of groups
for (ORDER *group = group_list.order; group; group = group->next)
send_group_parts++;
}
bool JOIN::alloc_ref_item_slice(THD *thd_arg, int sliceno) {
assert(sliceno > 0);
assert(ref_items[sliceno].is_null());
size_t count = ref_items[0].size();
Item **slice = thd_arg->mem_root->ArrayAlloc<Item *>(count);
if (slice == nullptr) return true;
ref_items[sliceno] = Ref_item_array(slice, count);
return false;
}
bool JOIN::alloc_indirection_slices() {
const int num_slices = REF_SLICE_WIN_1 + m_windows.elements;
assert(ref_items == nullptr);
ref_items = (*THR_MALLOC)->ArrayAlloc<Ref_item_array>(num_slices);
if (ref_items == nullptr) return true;
tmp_fields =
(*THR_MALLOC)
->ArrayAlloc<mem_root_deque<Item *>>(num_slices, *THR_MALLOC);
if (tmp_fields == nullptr) return true;
return false;
}
/**
The List<Item_equal> in COND_EQUAL partially overlaps with the argument list
in various Item_cond via C-style casts. However, the hypergraph optimizer can
modify the lists in Item_cond (by calling compile()), causing an Item_equal to
be replaced with Item_func_eq, and this can cause a List<Item_equal> not to
contain Item_equal pointers anymore. This is is obviously bad if anybody wants
to actually look into these lists after optimization (in particular, NDB
wants this).
Since untangling this spaghetti seems very hard, we solve it by brute force:
Make a copy of all the COND_EQUAL lists, so that they no longer reach into the
Item_cond. This allows us to modify the Item_cond at will.
*/
static void SaveCondEqualLists(COND_EQUAL *cond_equal) {
if (cond_equal == nullptr) {
return;
}
List<Item_equal> copy;
for (Item_equal &item : cond_equal->current_level) {
copy.push_back(&item);
}
cond_equal->current_level = std::move(copy);
SaveCondEqualLists(cond_equal->upper_levels);
}
bool JOIN::check_access_path_with_fts() const {
// Only relevant to the old optimizer.
assert(!thd->lex->using_hypergraph_optimizer());
assert(query_block->has_ft_funcs());
assert(rollup_state != RollupState::NONE);
// Find all tables referenced from non-aggregated MATCH calls in the SELECT
// list or in any hidden items lifted to the SELECT list from other clauses.
table_map fulltext_tables = 0;
for (Item *field : *fields) {
WalkItem(field, enum_walk::PREFIX | enum_walk::POSTFIX,
NonAggregatedFullTextSearchVisitor(
[&fulltext_tables](Item_func_match *item) {
fulltext_tables |= item->used_tables();
return false;
}));
}
if (fulltext_tables == 0) return false;
// See if any of those tables is accessed without materialization between the
// table access path and the aggregate access path.
bool found = false;
WalkAccessPaths(
root_access_path(), this, WalkAccessPathPolicy::ENTIRE_QUERY_BLOCK,
[fulltext_tables, &found](const AccessPath *path, const JOIN *) {
if (path->type == AccessPath::AGGREGATE) {
// Does the aggregate path access any of "fulltext_tables" without an
// intermediate materialization step? GetUsedTableMap() does not see
// through materialization and returns RAND_TABLE_BIT instead of the
// actual tables if "path" reads materialized results.
found |=
Overlaps(fulltext_tables,
GetUsedTableMap(path, /*include_pruned_tables=*/true));
}
return found;
});
if (found) {
my_error(ER_NOT_SUPPORTED_YET, MYF(0),
"reading non-aggregated results of the MATCH full-text search "
"function after GROUP BY WITH ROLLUP");
return true;
}
return false;
}
/**
Optimizes one query block into a query execution plan (QEP.)
This is the entry point to the query optimization phase. This phase
applies both logical (equivalent) query rewrites, cost-based join
optimization, and rule-based access path selection. Once an optimal
plan is found, the member function creates/initializes all
structures needed for query execution. The main optimization phases
are outlined below:
-# Logical transformations:
- Outer to inner joins transformation.
- Equality/constant propagation.
- Partition pruning.
- COUNT(*), MIN(), MAX() constant substitution in case of
implicit grouping.
- ORDER BY optimization.
-# Perform cost-based optimization of table order and access path
selection. See JOIN::make_join_plan()
-# Post-join order optimization:
- Create optimal table conditions from the where clause and the
join conditions.
- Inject outer-join guarding conditions.
- Adjust data access methods after determining table condition
(several times.)
- Optimize ORDER BY/DISTINCT.
-# Code generation
- Set data access functions.
- Try to optimize away sorting/distinct.
- Setup temporary table usage for grouping and/or sorting.
@retval false Success.
@retval true Error, error code saved in member JOIN::error.
*/
bool JOIN::optimize(bool finalize_access_paths) {
DBUG_TRACE;
uint no_jbuf_after = UINT_MAX;
Query_block *const set_operand_block =
query_expression()->non_simple_result_query_block();
assert(query_block->leaf_table_count == 0 ||
thd->lex->is_query_tables_locked() ||
query_block == set_operand_block);
assert(tables == 0 && primary_tables == 0 && tables_list == (Table_ref *)1);
// to prevent double initialization on EXPLAIN
if (optimized) return false;
DEBUG_SYNC(thd, "before_join_optimize");
THD_STAGE_INFO(thd, stage_optimizing);
Opt_trace_context *const trace = &thd->opt_trace;
Opt_trace_object trace_wrapper(trace);
Opt_trace_object trace_optimize(trace, "join_optimization");
trace_optimize.add_select_number(query_block->select_number);
Opt_trace_array trace_steps(trace, "steps");
count_field_types(query_block, &tmp_table_param, *fields, false, false);
assert(tmp_table_param.sum_func_count == 0 || !group_list.empty() ||
implicit_grouping);
const bool has_windows = m_windows.elements != 0;
if (has_windows && Window::setup_windows2(thd, &m_windows))
return true; /* purecov: inspected */
if (query_block->olap == ROLLUP_TYPE && optimize_rollup())
return true; /* purecov: inspected */
if (alloc_func_list()) return true; /* purecov: inspected */
if (query_block->get_optimizable_conditions(thd, &where_cond, &having_cond))
return true;
for (Item_rollup_group_item *item : query_block->rollup_group_items) {
rollup_group_items.push_back(item);
}
for (Item_rollup_sum_switcher *item : query_block->rollup_sums) {
rollup_sums.push_back(item);
}
set_optimized();
tables_list = query_block->leaf_tables;
if (alloc_indirection_slices()) return true;
// The base ref items from query block are assigned as JOIN's ref items
ref_items[REF_SLICE_ACTIVE] = query_block->base_ref_items;
/* dump_TABLE_LIST_graph(query_block, query_block->leaf_tables); */
/*
Run optimize phase for all derived tables/views used in this SELECT,
including those in semi-joins.
*/
// if (query_block->materialized_derived_table_count) {
{ // WL#6570
for (Table_ref *tl = query_block->leaf_tables; tl; tl = tl->next_leaf) {
tl->access_path_for_derived = nullptr;
if (tl->is_view_or_derived()) {
if (tl->optimize_derived(thd)) return true;
} else if (tl->is_table_function()) {
TABLE *const table = tl->table;
if (!table->has_storage_handler()) {
if (setup_tmp_table_handler(
thd, table,
query_block->active_options() | TMP_TABLE_ALL_COLUMNS))
return true; /* purecov: inspected */
}
table->file->stats.records = 2;
}
}
}
if (thd->lex->using_hypergraph_optimizer()) {
// The hypergraph optimizer also wants all subselect items to be optimized,
// so that it has cost information to attach to filter nodes.
for (Query_expression *unit = query_block->first_inner_query_expression();
unit; unit = unit->next_query_expression()) {
// Derived tables and const subqueries are already optimized
if (!unit->is_optimized() &&
unit->optimize(thd, /*materialize_destination=*/nullptr,
/*create_iterators=*/false,
/*finalize_access_paths=*/false))
return true;
}
// The hypergraph optimizer does not do const tables,
// nor does it evaluate subqueries during optimization.
query_block->add_active_options(OPTION_NO_CONST_TABLES |
OPTION_NO_SUBQUERY_DURING_OPTIMIZATION);
}
has_lateral = false;
/* dump_TABLE_LIST_graph(query_block, query_block->leaf_tables); */
row_limit = ((select_distinct || !order.empty() || !group_list.empty())
? HA_POS_ERROR
: query_expression()->select_limit_cnt);
// m_select_limit is used to decide if we are likely to scan the whole table.
m_select_limit = query_expression()->select_limit_cnt;
if (query_expression()->first_query_block()->active_options() &
OPTION_FOUND_ROWS) {
/*
Calculate found rows (ie., keep counting rows even after we hit LIMIT) if
- LIMIT is set, and
- This is the outermost query block (for a UNION query, this is the
block that contains the limit applied on the final UNION
evaluation, cf query_term.h for explanation).
*/
calc_found_rows = m_select_limit != HA_POS_ERROR &&
(!query_expression()->is_set_operation() ||
query_block == set_operand_block);
}
if (having_cond || calc_found_rows) m_select_limit = HA_POS_ERROR;
if (query_expression()->select_limit_cnt == 0 && !calc_found_rows) {
zero_result_cause = "Zero limit";
best_rowcount = 0;
create_access_paths_for_zero_rows();
goto setup_subq_exit;
}
if (where_cond || query_block->outer_join) {
if (optimize_cond(thd, &where_cond, &cond_equal, &query_block->m_table_nest,
&query_block->cond_value)) {
error = 1;
DBUG_PRINT("error", ("Error from optimize_cond"));
return true;
}
if (query_block->cond_value == Item::COND_FALSE) {
zero_result_cause = "Impossible WHERE";
best_rowcount = 0;
create_access_paths_for_zero_rows();
goto setup_subq_exit;
}
}
if (having_cond) {
if (optimize_cond(thd, &having_cond, &cond_equal, nullptr,
&query_block->having_value)) {
error = 1;
DBUG_PRINT("error", ("Error from optimize_cond"));
return true;
}
if (query_block->having_value == Item::COND_FALSE) {
zero_result_cause = "Impossible HAVING";
best_rowcount = 0;
create_access_paths_for_zero_rows();
goto setup_subq_exit;
}
}
if (query_block->partitioned_table_count && prune_table_partitions()) {
error = 1;
DBUG_PRINT("error", ("Error from prune_partitions"));
return true;
}
/*
Try to optimize count(*), min() and max() to const fields if
there is implicit grouping (aggregate functions but no
group_list). In this case, the result set shall only contain one
row.
*/
if (tables_list && implicit_grouping &&
!(query_block->active_options() & OPTION_NO_CONST_TABLES)) {
aggregate_evaluated outcome;
if (optimize_aggregated_query(thd, query_block, *fields, where_cond,
&outcome)) {
error = 1;
DBUG_PRINT("error", ("Error from optimize_aggregated_query"));
return true;
}
switch (outcome) {
case AGGR_REGULAR:
// Query was not (fully) evaluated. Revert to regular optimization.
break;
case AGGR_DELAYED:
// Query was not (fully) evaluated. Revert to regular optimization,
// but indicate that storage engine supports HA_COUNT_ROWS_INSTANT.
select_count = true;
break;
case AGGR_COMPLETE: {
// All SELECT expressions are fully evaluated
DBUG_PRINT("info", ("Select tables optimized away"));
zero_result_cause = "Select tables optimized away";
tables_list = nullptr; // All tables resolved
best_rowcount = 1;
const_tables = tables = primary_tables = query_block->leaf_table_count;
AccessPath *path =
NewFakeSingleRowAccessPath(thd, /*count_examined_rows=*/true);
path = attach_access_paths_for_having_and_limit(path);
m_root_access_path = path;
/*
There are no relevant conditions left from the WHERE;
optimize_aggregated_query() will not return AGGR_COMPLETE if there are
any table-independent conditions, and all other conditions have been
optimized away by it. Thus, remove the condition, unless we have
EXPLAIN (in which case we will keep it for printing).
*/
if (!thd->lex->is_explain()) {
#ifndef NDEBUG
// Verify, to be sure.
if (where_cond != nullptr) {
Item *table_independent_conds = make_cond_for_table(
thd, where_cond, PSEUDO_TABLE_BITS, table_map(0),
/*exclude_expensive_cond=*/true);
assert(table_independent_conds == nullptr);
}
#endif
where_cond = nullptr;
}
goto setup_subq_exit;
}
case AGGR_EMPTY:
// It was detected that the result tables are empty
DBUG_PRINT("info", ("No matching min/max row"));
zero_result_cause = "No matching min/max row";
create_access_paths_for_zero_rows();
goto setup_subq_exit;
}
}
if (tables_list == nullptr) {
DBUG_PRINT("info", ("No tables"));
best_rowcount = 1;
error = 0;
if (make_tmp_tables_info()) return true;
count_field_types(query_block, &tmp_table_param, *fields, false, false);
// Make plan visible for EXPLAIN
set_plan_state(NO_TABLES);
create_access_paths();
return false;
}
error = -1; // Error is sent to client
{
m_windowing_steps = false; // initialization
m_windows_sort = false;
List_iterator<Window> li(m_windows);
Window *w;
while ((w = li++))
if (w->needs_sorting()) {
m_windows_sort = true;
break;
}
}
sort_by_table = get_sort_by_table(order.order, group_list.order,
query_block->leaf_tables);
if ((where_cond || !group_list.empty() || !order.empty()) &&
substitute_gc(thd, query_block, where_cond, group_list.order,
order.order)) {
// We added hidden fields to the all_fields list, count them.
count_field_types(query_block, &tmp_table_param, query_block->fields, false,
false);
}
// Ensure there are no errors prior making query plan
if (thd->is_error()) return true;
if (thd->lex->using_hypergraph_optimizer()) {
// Get the WHERE and HAVING clauses with the IN-to-EXISTS predicates
// removed, so that we can plan both with and without the IN-to-EXISTS
// conversion.
Item *where_cond_no_in2exists = remove_in2exists_conds(where_cond);
Item *having_cond_no_in2exists = remove_in2exists_conds(having_cond);
std::string trace_str;
std::string *trace_ptr = thd->opt_trace.is_started() ? &trace_str : nullptr;
SaveCondEqualLists(cond_equal);
m_root_access_path = FindBestQueryPlan(thd, query_block, trace_ptr);
if (finalize_access_paths && m_root_access_path != nullptr) {
if (FinalizePlanForQueryBlock(thd, query_block)) {
return true;
}
}
// If this query block was modified by IN-to-EXISTS conversion,
// the outer query block may want to undo that conversion and materialize
// us instead, depending on cost. (Materialization has high initial cost,
// but looking up in the materialized table is typically cheaper than
// running the entire query.) If so, we will need to plan the query again,
// but with all extra conditions added by IN-to-EXISTS removed, as those
// are specific to the values referred to by the outer query.
//
// Thus, we detect this here, and plan a second query plan. There are
// computations that could be shared between the two plans (e.g. join order
// between tables for which there is no IN-to-EXISTS-related condition),
// so it is somewhat wasteful, but experiments have shown that planning
// both at the same time quickly clutters the code with such handling;
// there are so many places such filters could be added (base table filters,
// filters after various types of joins, join conditions, post-join filters,
// HAVING, possibly others) that trying to plan paths both with and without
// them incurs complexity that is not justified by the small computational
// gain it would bring.
if (where_cond != where_cond_no_in2exists ||
having_cond != having_cond_no_in2exists) {
if (trace_ptr != nullptr) {
*trace_ptr +=
"\nPlanning an alternative with in2exists conditions removed:\n";
}
where_cond = where_cond_no_in2exists;
having_cond = having_cond_no_in2exists;
assert(!finalize_access_paths);
m_root_access_path_no_in2exists =
FindBestQueryPlan(thd, query_block, trace_ptr);
} else {
m_root_access_path_no_in2exists = nullptr;
}
if (trace != nullptr) {
Opt_trace_object trace_wrapper2(&thd->opt_trace);
Opt_trace_array join_optimizer(&thd->opt_trace, "join_optimizer");
// Split by newlines.
for (size_t pos = 0; pos < trace_str.size();) {
size_t len = strcspn(trace_str.data() + pos, "\n");
join_optimizer.add_utf8(trace_str.data() + pos, len);
pos += len + 1;
}
}
if (m_root_access_path == nullptr) {
return true;
}
set_plan_state(PLAN_READY);
DEBUG_SYNC(thd, "after_join_optimize");
return false;
}
// ----------------------------------------------------------------------------
// All of this is never called for the hypergraph join optimizer!
// ----------------------------------------------------------------------------
assert(!thd->lex->using_hypergraph_optimizer());
// Don't expect to get here if the hypergraph optimizer is enabled via an
// optimizer switch. We only check it for regular statements. Prepared
// statements and stored programs use the optimizer that was active when the
// statement was prepared, and don't check the optimizer switch for each
// subsequent execution.
assert(!thd->optimizer_switch_flag(OPTIMIZER_SWITCH_HYPERGRAPH_OPTIMIZER) ||
!thd->stmt_arena->is_regular());
// Set up join order and initial access paths
THD_STAGE_INFO(thd, stage_statistics);
if (make_join_plan()) {
if (thd->killed) thd->send_kill_message();
DBUG_PRINT("error", ("Error: JOIN::make_join_plan() failed"));
return true;
}
// At this stage, join_tab==NULL, JOIN_TABs are listed in order by best_ref.
ASSERT_BEST_REF_IN_JOIN_ORDER(this);
if (zero_result_cause != nullptr) { // Can be set by make_join_plan().
create_access_paths_for_zero_rows();
goto setup_subq_exit;
}
if (rollup_state == RollupState::NONE) {
/* Remove distinct if only const tables */
select_distinct &= !plan_is_const();
}
if (const_tables && !thd->locked_tables_mode &&
!(query_block->active_options() & SELECT_NO_UNLOCK)) {
TABLE *ct[MAX_TABLES];
for (uint i = 0; i < const_tables; i++) {
ct[i] = best_ref[i]->table();
ct[i]->file->ha_index_or_rnd_end();
}
mysql_unlock_some_tables(thd, ct, const_tables);
}
if (!where_cond && query_block->outer_join) {
/* Handle the case where we have an OUTER JOIN without a WHERE */
where_cond = new Item_func_true(); // Always true
}
error = 0;
/*
Among the equal fields belonging to the same multiple equality
choose the one that is to be retrieved first and substitute
all references to these in where condition for a reference for
the selected field.
*/
if (where_cond) {
where_cond =
substitute_for_best_equal_field(thd, where_cond, cond_equal, map2table);
if (thd->is_error()) {
error = 1;
DBUG_PRINT("error", ("Error from substitute_for_best_equal"));
return true;
}
where_cond->update_used_tables();
DBUG_EXECUTE("where",
print_where(thd, where_cond, "after substitute_best_equal",
QT_ORDINARY););
}
/*
Perform the same optimization on field evaluation for all join conditions.
*/
for (uint i = const_tables; i < tables; ++i) {
JOIN_TAB *const tab = best_ref[i];
if (tab->position() && tab->join_cond()) {
tab->set_join_cond(substitute_for_best_equal_field(
thd, tab->join_cond(), tab->cond_equal, map2table));
if (thd->is_error()) {
error = 1;
DBUG_PRINT("error", ("Error from substitute_for_best_equal"));
return true;
}
tab->join_cond()->update_used_tables();
if (tab->join_cond())
tab->join_cond()->walk(&Item::cast_incompatible_args,
enum_walk::POSTFIX, nullptr);
}
}
if (init_ref_access()) {
error = 1;
DBUG_PRINT("error", ("Error from init_ref_access"));
return true;
}
// Update table dependencies after assigning ref access fields
update_depend_map();
THD_STAGE_INFO(thd, stage_preparing);
if (make_join_query_block(this, where_cond)) {
if (thd->is_error()) return true;
zero_result_cause = "Impossible WHERE noticed after reading const tables";
create_access_paths_for_zero_rows();
goto setup_subq_exit;
}
// Inject cast nodes into the WHERE conditions
if (where_cond)
where_cond->walk(&Item::cast_incompatible_args, enum_walk::POSTFIX,
nullptr);
error = -1; /* if goto err */
if (optimize_distinct_group_order()) return true;
if ((query_block->active_options() & SELECT_NO_JOIN_CACHE) ||
query_block->ftfunc_list->elements)
no_jbuf_after = 0;
/* Perform FULLTEXT search before all regular searches */
if (query_block->has_ft_funcs() && optimize_fts_query()) return true;
/*
By setting child_subquery_can_materialize so late we gain the following:
JOIN::compare_costs_of_subquery_strategies() can test this variable to
know if we are have finished evaluating constant conditions, which itself
helps determining fanouts.
*/
child_subquery_can_materialize = true;
/*
It's necessary to check const part of HAVING cond as
there is a chance that some cond parts may become
const items after make_join_plan() (for example
when Item is a reference to const table field from
outer join).
This check is performed only for those conditions
which do not use aggregate functions. In such case
temporary table may not be used and const condition
elements may be lost during further having
condition transformation in JOIN::exec.
*/
if (having_cond && !having_cond->has_aggregation() && (const_tables > 0)) {
having_cond->update_used_tables();
if (remove_eq_conds(thd, having_cond, &having_cond,
&query_block->having_value)) {
error = 1;
DBUG_PRINT("error", ("Error from remove_eq_conds"));
return true;
}
if (query_block->having_value == Item::COND_FALSE) {
having_cond = new Item_func_false();
zero_result_cause =
"Impossible HAVING noticed after reading const tables";
create_access_paths_for_zero_rows();
goto setup_subq_exit;
}
}
// Inject cast nodes into the HAVING conditions
if (having_cond)
having_cond->walk(&Item::cast_incompatible_args, enum_walk::POSTFIX,
nullptr);
// Traverse the expressions and inject cast nodes to compatible data types,
// if needed.
for (Item *item : *fields) {
item->walk(&Item::cast_incompatible_args, enum_walk::POSTFIX, nullptr);
}
// Also GROUP BY expressions, so that find_in_group_list() doesn't
// inadvertently fail because the SELECT list has casts that GROUP BY doesn't.
for (ORDER *ord = group_list.order; ord != nullptr; ord = ord->next) {
(*ord->item)
->walk(&Item::cast_incompatible_args, enum_walk::POSTFIX, nullptr);
}
// See if this subquery can be evaluated with subselect_indexsubquery_engine
if (const int ret = replace_index_subquery()) {
if (ret == -1) {
// Error (e.g. allocation failed, or some condition was attempted
// evaluated statically and failed).
return true;
}
create_access_paths_for_index_subquery();
set_plan_state(PLAN_READY);
/*
We leave optimize() because the rest of it is only about order/group
which those subqueries don't have and about setting up plan which
we're not going to use due to different execution method.
*/
return false;
}
{
/*
If the hint FORCE INDEX FOR ORDER BY/GROUP BY is used for the first
table (it does not make sense for other tables) then we cannot do join
buffering.
*/
if (!plan_is_const()) {
const TABLE *const first = best_ref[const_tables]->table();
if ((first->force_index_order && !order.empty()) ||
(first->force_index_group && !group_list.empty()))
no_jbuf_after = 0;
}
bool simple_sort = true;
Table_map_restorer deps_lateral(&deps_of_remaining_lateral_derived_tables);
// Check whether join cache could be used
for (uint i = const_tables; i < tables; i++) {
JOIN_TAB *const tab = best_ref[i];
if (!tab->position()) continue;
if (setup_join_buffering(tab, this, no_jbuf_after)) return true;
if (tab->use_join_cache() != JOIN_CACHE::ALG_NONE) simple_sort = false;
assert(tab->type() != JT_FT ||
tab->use_join_cache() == JOIN_CACHE::ALG_NONE);
if (has_lateral && get_lateral_deps(*best_ref[i]) != 0) {
deps_of_remaining_lateral_derived_tables =
calculate_deps_of_remaining_lateral_derived_tables(all_table_map,
i + 1);
}
}
if (!simple_sort) {
/*
A join buffer is used for this table. We here inform the optimizer
that it should not rely on rows of the first non-const table being in
order thanks to an index scan; indeed join buffering of the present
table subsequently changes the order of rows.
*/
simple_order = simple_group = false;
}
}
if (!plan_is_const() && !order.empty()) {
/*
Force using of tmp table if sorting by a SP or UDF function due to
their expensive and probably non-deterministic nature.
*/
for (ORDER *tmp_order = order.order; tmp_order;
tmp_order = tmp_order->next) {
Item *item = *tmp_order->item;
if (item->is_expensive()) {
/* Force tmp table without sort */
simple_order = simple_group = false;
break;
}
}
}
/*
Check if we need to create a temporary table prior to any windowing.
(1) If there is ROLLUP, which happens before DISTINCT, windowing and ORDER
BY, any of those clauses needs the result of ROLLUP in a tmp table.
Rows which ROLLUP adds to the result are visible only to DISTINCT,
windowing and ORDER BY which we handled above. So for the rest of
conditions ((2), etc), we can do as if there were no ROLLUP.
(2) If all tables are constant, the query's result is guaranteed to have 0
or 1 row only, so all SQL clauses discussed below (DISTINCT, ORDER BY,
GROUP BY, windowing, SQL_BUFFER_RESULT) are useless and need no tmp
table.
(3) If there is GROUP BY which isn't resolved by using an index or sorting
the first table, we need a tmp table to compute the grouped rows.
GROUP BY happens before windowing; so it is a pre-windowing tmp
table.
(4) (5) If there is DISTINCT, or ORDER BY which isn't resolved by using an
index or sorting the first table, those clauses need an input tmp table.
If we have windowing, as those clauses are used after windowing, they can
use the last window's tmp table.
(6) If there are different ORDER BY and GROUP BY orders, ORDER BY needs an
input tmp table, so it's like (5).
(7) If the user wants us to buffer the result, we need a tmp table. But
windowing creates one anyway, and so does the materialization of a derived
table.
See also the computation of Window::m_short_circuit,
where we make sure to create a tmp table if the clauses above want one.
(8) If the first windowing step needs sorting, filesort() will be used; it
can sort one table but not a join of tables, so we need a tmp table
then. If GROUP BY was optimized away, the pre-windowing result is 0 or 1
row so doesn't need sorting.
*/
if (rollup_state != RollupState::NONE && // (1)
(select_distinct || has_windows || !order.empty()))
need_tmp_before_win = true;
/*
If we have full-text columns involved in aggregation, we may need to
materialize them. Materialization is needed if the result of a full-text
search (the MATCH function) is accessed after aggregation, as the saving and
loading of rows in AggregateIterator does not include FTS information. If we
have a GROUP BY, we'll either have an aggregate-to-table or a sort, which
fixes the issue. However, in the case of implicit grouping, we need to force
the temporary table here.
*/
if (!need_tmp_before_win && implicit_grouping &&
contains_non_aggregated_fts()) {
need_tmp_before_win = true;
}
if (!plan_is_const()) // (2)
{
if ((!group_list.empty() && !simple_group) || // (3)
(!has_windows && (select_distinct || // (4)
(!order.empty() && !simple_order) || // (5)
(!group_list.empty() && !order.empty()))) || // (6)
((query_block->active_options() & OPTION_BUFFER_RESULT) &&
!has_windows &&
!(query_expression()->derived_table &&
query_expression()
->derived_table->uses_materialization())) || // (7)
(has_windows && (primary_tables - const_tables) > 1 && // (8)
m_windows[0]->needs_sorting() && !group_optimized_away))
need_tmp_before_win = true;
}
DBUG_EXECUTE("info", TEST_join(this););
if (alloc_qep(tables)) return (error = 1); /* purecov: inspected */
if (!plan_is_const()) {
// Test if we can use an index instead of sorting
test_skip_sort();
if (finalize_table_conditions(thd)) return true;
}
if (make_join_readinfo(this, no_jbuf_after))
return true; /* purecov: inspected */
if (make_tmp_tables_info()) return true;
/*
If we decided to not sort after all, update the cost of the JOIN.
Windowing sorts are handled elsewhere
*/
if (sort_cost > 0.0 &&
!explain_flags.any(ESP_USING_FILESORT, ESC_WINDOWING)) {
best_read -= sort_cost;
sort_cost = 0.0;
}
count_field_types(query_block, &tmp_table_param, *fields, false, false);
create_access_paths();
// Creating iterators may evaluate a constant hash join condition, which may
// fail:
if (thd->is_error()) return true;
if (rollup_state != RollupState::NONE && query_block->has_ft_funcs()) {
if (check_access_path_with_fts()) {
return true;
}
}
/*
At this stage, we have set up an AccessPath 'plan'. Traverse the
AccessPath structures and find components which may be offloaded to
the engines. This process is allowed to modify the AccessPath itself.
(Removing/modifying FILTERs where pushed to the engines, change JOIN*
algorithms being used, modify aggregate expressions, ...).
This will later affects which type of Iterator we should create. Thus no
Iterators should be set up until after push_to_engines() has completed.
Note that when the Hypergraph optimizer is used, there is an entirely
different code path to push_to_engine(). (We create the AcccesPath directly
instead of converting the QEP_TABs into an AccessPath structure).
In the HG case we push_to_engine() when FinalizePlanForQueryBlock()
has finalized the 'plan'.
*/
if (push_to_engines()) return true;
// Make plan visible for EXPLAIN
set_plan_state(PLAN_READY);
DEBUG_SYNC(thd, "after_join_optimize");
error = 0;
return false;
setup_subq_exit:
assert(zero_result_cause != nullptr);
assert(m_root_access_path != nullptr);
/*
Even with zero matching rows, subqueries in the HAVING clause may
need to be evaluated if there are aggregate functions in the
query. If this JOIN is part of an outer query, subqueries in HAVING may
be evaluated several times in total; so subquery materialization makes
sense.
*/
child_subquery_can_materialize = true;
trace_steps.end(); // because all steps are done
Opt_trace_object(trace, "empty_result").add_alnum("cause", zero_result_cause);
having_for_explain = having_cond;
error = 0;
if (!qep_tab && best_ref) {
/*
After creation of JOIN_TABs in make_join_plan(), we have shortcut due to
some zero_result_cause. For simplification, if we have JOIN_TABs we
want QEP_TABs too.
*/
if (alloc_qep(tables)) return true; /* purecov: inspected */
unplug_join_tabs();
}
set_plan_state(ZERO_RESULT);
return false;
}
void JOIN::change_to_access_path_without_in2exists() {
if (m_root_access_path_no_in2exists != nullptr) {
m_root_access_path = m_root_access_path_no_in2exists;
}
}
void JOIN::create_access_paths_for_zero_rows() {
if (send_row_on_empty_set()) {
// Aggregate no rows into an aggregate row.
m_root_access_path =
NewZeroRowsAggregatedAccessPath(thd, zero_result_cause);
m_root_access_path =
attach_access_paths_for_having_and_limit(m_root_access_path);
} else {
// Send no row at all (so also no need to check HAVING or LIMIT).
m_root_access_path = NewZeroRowsAccessPath(thd, zero_result_cause);
}
m_root_access_path =
attach_access_path_for_update_or_delete(m_root_access_path);
}
/**
Push (parts of) the query execution down to the storage engines if they
can provide faster execution of the query, or part of it.
The handler will inspect the QEP through the
AQP (Abstract Query Plan) and extract from it whatever
it might implement of pushed execution.
It is the responsibility of the handler to store
any information it need for the later execution of
pushed queries and conditions.
@retval false Success.
@retval true Error, error code saved in member JOIN::error.
*/
bool JOIN::push_to_engines() {
DBUG_TRACE;
assert(m_root_access_path != nullptr);
for (Table_ref *tl = query_block->leaf_tables; tl; tl = tl->next_leaf) {
const handlerton *hton = tl->table->file->hton_supporting_engine_pushdown();
if (hton != nullptr) { // Involved an engine supporting pushdown.
if (unlikely(hton->push_to_engine(thd, m_root_access_path, this))) {
return true;
}
break; // Assume that at most a single handlerton per query support
// pushdown
}
}
return false;
}
/**
Substitute all expressions in the WHERE condition and ORDER/GROUP lists
that match generated columns (GC) expressions with GC fields, if any.
@details This function does 3 things:
1) Creates list of all GC fields that are a part of a key and the GC
expression is a function. All query tables are scanned. If there's no
such fields, function exits.
2) By means of Item::compile() WHERE clause is transformed.
@see Item_func::gc_subst_transformer() for details.
3) If there's ORDER/GROUP BY clauses, this function tries to substitute
expressions in these lists with GC too. It removes from the list of
indexed GC all elements which index blocked by hints. This is done to
reduce amount of further work. Next it goes through ORDER/GROUP BY list
and matches the expression in it against GC expressions in indexed GC
list. When a match is found, the expression is replaced with a new
Item_field for the matched GC field. Also, this new field is added to
the hidden part of all_fields list.
@param thd thread handle
@param query_block the current select
@param where_cond the WHERE condition, possibly NULL
@param group_list the GROUP BY clause, possibly NULL
@param order the ORDER BY clause, possibly NULL
@return true if the GROUP BY clause or the ORDER BY clause was
changed, false otherwise
*/
bool substitute_gc(THD *thd, Query_block *query_block, Item *where_cond,
ORDER *group_list, ORDER *order) {
List<Field> indexed_gc;
Opt_trace_context *const trace = &thd->opt_trace;
Opt_trace_object trace_wrapper(trace);
Opt_trace_object subst_gc(trace, "substitute_generated_columns");
// Collect all GCs that are a part of a key
for (Table_ref *tl = query_block->leaf_tables; tl; tl = tl->next_leaf) {
if (tl->table->s->keys == 0) continue;
for (uint i = 0; i < tl->table->s->fields; i++) {
Field *fld = tl->table->field[i];
if (fld->is_gcol() &&
!(fld->part_of_key.is_clear_all() &&
fld->part_of_prefixkey.is_clear_all()) &&
fld->gcol_info->expr_item->can_be_substituted_for_gc()) {
// Don't check allowed keys here as conditions/group/order use
// different keymaps for that.
indexed_gc.push_back(fld);
}
}
}
// No GC in the tables used in the query
if (indexed_gc.elements == 0) return false;
if (where_cond) {
// Item_func::compile will dereference this pointer, provide valid value.
uchar i, *dummy = &i;
if (where_cond->compile(&Item::gc_subst_analyzer, &dummy,
&Item::gc_subst_transformer,
pointer_cast<uchar *>(&indexed_gc)) == nullptr)
return true;
subst_gc.add("resulting_condition", where_cond);
}
// An error occur during substitution. Let caller handle it.
if (thd->is_error()) return false;
if (!(group_list || order)) return false;
// Filter out GCs that do not have index usable for GROUP/ORDER
Field *gc;
List_iterator<Field> li(indexed_gc);
while ((gc = li++)) {
Key_map tkm = gc->part_of_key;
tkm.intersect(group_list ? gc->table->keys_in_use_for_group_by
: gc->table->keys_in_use_for_order_by);
if (tkm.is_clear_all()) li.remove();
}
if (!indexed_gc.elements) return false;
// Index could be used for ORDER only if there is no GROUP
ORDER *list = group_list ? group_list : order;
bool changed = false;
for (ORDER *ord = list; ord; ord = ord->next) {
li.rewind();
if (!(*ord->item)->can_be_substituted_for_gc()) continue;
while ((gc = li++)) {
Item_field *const field =
get_gc_for_expr(*ord->item, gc, gc->result_type());
if (field != nullptr) {
changed = true;
/* Add new field to field list. */
Item **new_field = query_block->add_hidden_item(field);
thd->change_item_tree(ord->item, *new_field);
query_block->hidden_items_from_optimization++;
break;
}
}
}
// An error occur during substitution. Let caller handle it.
if (thd->is_error()) return false;
if (changed && trace->is_started()) {
String str;
Query_block::print_order(
thd, &str, list,
enum_query_type(QT_TO_SYSTEM_CHARSET | QT_SHOW_SELECT_NUMBER |
QT_NO_DEFAULT_DB));
subst_gc.add_utf8(group_list ? "resulting_GROUP_BY" : "resulting_ORDER_BY",
str.ptr(), str.length());
}
return changed;
}
/**
Sets the plan's state of the JOIN. This is always the final step of
optimization; starting from this call, we expose the plan to other
connections (via EXPLAIN CONNECTION) so the plan has to be final.
keyread_optim is set here.
*/
void JOIN::set_plan_state(enum_plan_state plan_state_arg) {
// A plan should not change to another plan:
assert(plan_state_arg == NO_PLAN || plan_state == NO_PLAN);
if (plan_state == NO_PLAN && plan_state_arg != NO_PLAN) {
if (qep_tab != nullptr) {
/*
We want to cover primary tables, tmp tables. Note that
make_tmp_tables_info() may have added a sort to the first non-const
primary table, so it's important to do this assignment after
make_tmp_tables_info().
*/
for (uint i = const_tables; i < tables; ++i) {
qep_tab[i].set_condition_optim();
qep_tab[i].set_keyread_optim();
}
}
}
DEBUG_SYNC(thd, "before_set_plan");
// If SQLCOM_END, no thread is explaining our statement anymore.
const bool need_lock = thd->query_plan.get_command() != SQLCOM_END;
if (need_lock) thd->lock_query_plan();
plan_state = plan_state_arg;
if (need_lock) thd->unlock_query_plan();
}
bool JOIN::alloc_qep(uint n) {
static_assert(MAX_TABLES <= INT_MAX8, "plan_idx needs to be wide enough.");
ASSERT_BEST_REF_IN_JOIN_ORDER(this);
qep_tab = new (thd->mem_root)
QEP_TAB[n + 1]; // The last one holds only the final op_type.
if (!qep_tab) return true; /* purecov: inspected */
for (uint i = 0; i < n; ++i) qep_tab[i].init(best_ref[i]);
return false;
}
void QEP_TAB::init(JOIN_TAB *jt) {
jt->share_qs(this);
set_table(table()); // to update table()->reginfo.qep_tab
table_ref = jt->table_ref;
}
/// @returns semijoin strategy for this table.
uint QEP_TAB::get_sj_strategy() const {
if (first_sj_inner() == NO_PLAN_IDX) return SJ_OPT_NONE;
const uint s = join()->qep_tab[first_sj_inner()].position()->sj_strategy;
assert(s != SJ_OPT_NONE);
return s;
}
/**
Return the index used for a table in a QEP
The various access methods have different places where the index/key
number is stored, so this function is needed to return the correct value.
@returns index number, or MAX_KEY if not applicable.
JT_SYSTEM and JT_ALL does not use an index, and will always return MAX_KEY.
JT_INDEX_MERGE supports more than one index. Hence MAX_KEY is returned and
a further inspection is needed.
*/
uint QEP_TAB::effective_index() const {
switch (type()) {
case JT_SYSTEM:
assert(ref().key == -1);
return MAX_KEY;
case JT_CONST:
case JT_EQ_REF:
case JT_REF_OR_NULL:
case JT_REF:
assert(ref().key != -1);
return uint(ref().key);
case JT_INDEX_SCAN:
case JT_FT:
return index();
case JT_INDEX_MERGE:
assert(used_index(range_scan()) == MAX_KEY);
return MAX_KEY;
case JT_RANGE:
return used_index(range_scan());
case JT_ALL:
default:
// @todo Check why JT_UNKNOWN is a valid value here.
assert(type() == JT_ALL || type() == JT_UNKNOWN);
return MAX_KEY;
}
}
uint JOIN_TAB::get_sj_strategy() const {
if (first_sj_inner() == NO_PLAN_IDX) return SJ_OPT_NONE;
ASSERT_BEST_REF_IN_JOIN_ORDER(join());
JOIN_TAB *tab = join()->best_ref[first_sj_inner()];
uint s = tab->position()->sj_strategy;
assert(s != SJ_OPT_NONE);
return s;
}
int JOIN::replace_index_subquery() {
DBUG_TRACE;
ASSERT_BEST_REF_IN_JOIN_ORDER(this);
if (!group_list.empty() ||
!(query_expression()->item &&
query_expression()->item->substype() == Item_subselect::IN_SUBS) ||
primary_tables != 1 || !where_cond ||
query_expression()->is_set_operation())
return 0;
// Guaranteed by remove_redundant_subquery_clauses():
assert(order.empty() && !select_distinct);
Item_in_subselect *const in_subs =
static_cast<Item_in_subselect *>(query_expression()->item);
bool found_engine = false;
JOIN_TAB *const first_join_tab = best_ref[0];
if (in_subs->strategy == Subquery_strategy::SUBQ_MATERIALIZATION) {
// We cannot have two engines at the same time
} else if (first_join_tab->table_ref->is_view_or_derived() &&
first_join_tab->table_ref->derived_query_expression()
->is_recursive()) {
// The index subquery engine, which runs the derived table machinery
// from the old executor, is not capable of materializing a WITH RECURSIVE
// query from the iterator executor. Thus, be conservative here, so that the
// case never happens.
} else if (having_cond == nullptr) {
const join_type type = first_join_tab->type();
if ((type == JT_EQ_REF || type == JT_REF) &&
first_join_tab->ref().items[0]->item_name.ptr() == in_left_expr_name) {
found_engine = true;
}
} else if (first_join_tab->type() == JT_REF_OR_NULL &&
first_join_tab->ref().items[0]->item_name.ptr() ==
in_left_expr_name &&
having_cond->created_by_in2exists()) {
found_engine = true;
}
if (!found_engine) return 0;
/* Remove redundant predicates and cache constant expressions */
if (finalize_table_conditions(thd)) return -1;
if (alloc_qep(tables)) return -1; /* purecov: inspected */
unplug_join_tabs();
error = 0;
QEP_TAB *const first_qep_tab = &qep_tab[0];
if (first_qep_tab->table()->covering_keys.is_set(first_qep_tab->ref().key)) {
assert(!first_qep_tab->table()->no_keyread);
first_qep_tab->table()->set_keyread(true);
}
subselect_indexsubquery_engine *engine =
new (thd->mem_root) subselect_indexsubquery_engine(
first_qep_tab->table(), first_qep_tab->table_ref,
first_qep_tab->ref(), first_qep_tab->type(),
down_cast<Item_in_subselect *>(query_expression()->item),
first_qep_tab->condition(), having_cond);
query_expression()->item->set_indexsubquery_engine(engine);
return 1;
}
bool JOIN::optimize_distinct_group_order() {
DBUG_TRACE;
ASSERT_BEST_REF_IN_JOIN_ORDER(this);
const bool windowing = m_windows.elements > 0;
const bool may_trace = select_distinct || !group_list.empty() ||
!order.empty() || windowing ||
tmp_table_param.sum_func_count;
Opt_trace_context *const trace = &thd->opt_trace;
Opt_trace_disable_I_S trace_disabled(trace, !may_trace);
Opt_trace_object wrapper(trace);
Opt_trace_object trace_opt(trace, "optimizing_distinct_group_by_order_by");
/* Optimize distinct away if possible */
{
ORDER *org_order = order.order;
order = ORDER_with_src(
remove_const(order.order, where_cond, rollup_state == RollupState::NONE,
&simple_order, false),
order.src, /*const_optimized=*/true);
if (thd->is_error()) {
error = 1;
DBUG_PRINT("error", ("Error from remove_const"));
return true;
}
/*
If we are using ORDER BY NULL or ORDER BY const_expression,
return result in any order (even if we are using a GROUP BY)
*/
if (order.empty() && org_order) skip_sort_order = true;
}
/*
Check if we can optimize away GROUP BY/DISTINCT.
We can do that if there are no aggregate functions, the
fields in DISTINCT clause (if present) and/or columns in GROUP BY
(if present) contain direct references to all key parts of
an unique index (in whatever order) and if the key parts of the
unique index cannot contain NULLs.
Note that the unique keys for DISTINCT and GROUP BY should not
be the same (as long as they are unique).
The FROM clause must contain a single non-constant table.
@todo Apart from the LIS test, every condition depends only on facts
which can be known in Query_block::prepare(), possibly this block should
move there.
*/
JOIN_TAB *const tab = best_ref[const_tables];
if (plan_is_single_table() && (!group_list.empty() || select_distinct) &&
!tmp_table_param.sum_func_count &&
(!tab->range_scan() ||
tab->range_scan()->type != AccessPath::GROUP_INDEX_SKIP_SCAN)) {
if (!group_list.empty() && rollup_state == RollupState::NONE &&
list_contains_unique_index(tab, find_field_in_order_list,
(void *)group_list.order)) {
/*
We have found that grouping can be removed since groups correspond to
only one row anyway.
*/
group_list.clean();
grouped = false;
}
if (select_distinct &&
list_contains_unique_index(tab, find_field_in_item_list, fields)) {
select_distinct = false;
trace_opt.add("distinct_is_on_unique", true)
.add("removed_distinct", true);
}
}
if (!(!group_list.empty() || tmp_table_param.sum_func_count || windowing) &&
select_distinct &&
(plan_is_single_table() || query_block->original_tables_map == 1) &&
rollup_state == RollupState::NONE) {
int order_idx = -1, group_idx = -1;
/*
We are only using one table. In this case we change DISTINCT to a
GROUP BY query if:
- The GROUP BY can be done through indexes (no sort) and the ORDER
BY only uses selected fields.
(In this case we can later optimize away GROUP BY and ORDER BY)
- We are scanning the whole table without LIMIT
This can happen if:
- We are using CALC_FOUND_ROWS
- We are using an ORDER BY that can't be optimized away.
- Selected expressions are not set functions (those cannot be put
into GROUP BY).
We don't want to use this optimization when we are using LIMIT
because in this case we can just create a temporary table that
holds LIMIT rows and stop when this table is full.
*/
if (!order.empty()) {
skip_sort_order = test_if_skip_sort_order(
tab, order, m_select_limit,
true, // no_changes
&tab->table()->keys_in_use_for_order_by, &order_idx);
count_field_types(query_block, &tmp_table_param, *fields, false, false);
}
ORDER *o;
bool all_order_fields_used;
if ((o = create_order_from_distinct(
thd, ref_items[REF_SLICE_ACTIVE], order.order, fields,
/*skip_aggregates=*/true,
/*convert_bit_fields_to_long=*/true, &all_order_fields_used))) {
group_list = ORDER_with_src(o, ESC_DISTINCT);
const bool skip_group =
skip_sort_order &&
test_if_skip_sort_order(tab, group_list, m_select_limit,
true, // no_changes
&tab->table()->keys_in_use_for_group_by,
&group_idx);
count_field_types(query_block, &tmp_table_param, *fields, false, false);
// ORDER BY and GROUP BY are using different indexes, can't skip sorting
if (group_idx >= 0 && order_idx >= 0 && group_idx != order_idx)
skip_sort_order = false;
if ((skip_group && all_order_fields_used) ||
m_select_limit == HA_POS_ERROR ||
(!order.empty() && !skip_sort_order)) {
/* Change DISTINCT to GROUP BY */
select_distinct = false;
/*
group_list was created with ORDER BY clause as prefix and
replaces it. So it must respect ordering. If there is no
ORDER BY, GROUP BY need not have to provide order.
*/
if (order.empty()) {
for (ORDER *group = group_list.order; group; group = group->next)
group->direction = ORDER_NOT_RELEVANT;
}
if (all_order_fields_used && skip_sort_order && !order.empty()) {
/*
Force MySQL to read the table in sorted order to get result in
ORDER BY order.
*/
tmp_table_param.allow_group_via_temp_table = false;
}
grouped = true; // For end_write_group
trace_opt.add("changed_distinct_to_group_by", true);
} else
group_list.clean();
} else if (thd->is_fatal_error()) // End of memory
return true;
}
simple_group = false;
ORDER *old_group_list = group_list.order;
group_list = ORDER_with_src(
remove_const(group_list.order, where_cond,
rollup_state == RollupState::NONE, &simple_group, true),
group_list.src, /*const_optimized=*/true);
if (thd->is_error()) {
error = 1;
DBUG_PRINT("error", ("Error from remove_const"));
return true;
}
if (old_group_list && group_list.empty()) select_distinct = false;
if (group_list.empty() && grouped) {
order.clean(); // The output has only one row
simple_order = true;
select_distinct = false; // No need in distinct for 1 row
group_optimized_away = true;
}
calc_group_buffer(this, group_list.order);
send_group_parts = tmp_table_param.group_parts; /* Save org parts */
/*
If ORDER BY is a prefix of GROUP BY and if windowing or ROLLUP
doesn't change this order, ORDER BY can be removed and we can
enforce GROUP BY to provide order.
Also true if the result is one row.
*/
if ((test_if_subpart(group_list.order, order.order) && !m_windows_sort &&
query_block->olap != ROLLUP_TYPE) ||
(group_list.empty() && tmp_table_param.sum_func_count)) {
if (!order.empty()) {
order.clean();
trace_opt.add("removed_order_by", true);
}
if (is_indexed_agg_distinct(this, nullptr)) streaming_aggregation = false;
}
return false;
}
void JOIN::test_skip_sort() {
DBUG_TRACE;
ASSERT_BEST_REF_IN_JOIN_ORDER(this);
JOIN_TAB *const tab = best_ref[const_tables];
assert(m_ordered_index_usage == ORDERED_INDEX_VOID);
if (!group_list.empty()) // GROUP BY honoured first
// (DISTINCT was rewritten to GROUP BY if skippable)
{
/*
If the SQL_BIG_RESULT option is set on the query block or a JSON
aggregation function is used, check if it is possible to sort using index
for GROUP BY and thus avoid materializing the row set to disk, unless:
1. A group min-max optimization will be used, or
2. Some non-aggregated full-text search results must be accessible after
aggregation.
*/
if (!(query_block->active_options() & SELECT_BIG_RESULT || with_json_agg) ||
(tab->range_scan() &&
tab->range_scan()->type == AccessPath::GROUP_INDEX_SKIP_SCAN) ||
contains_non_aggregated_fts()) {
if (simple_group && // GROUP BY is possibly skippable
!select_distinct) // .. if not preceded by a DISTINCT
{
/*
Calculate a possible 'limit' of table rows for 'GROUP BY':
A specified 'LIMIT' is relative to the final resultset.
'need_tmp' implies that there will be more postprocessing
so the specified 'limit' should not be enforced yet.
*/
const ha_rows limit =
(need_tmp_before_win ? HA_POS_ERROR : m_select_limit);
int dummy;
if (test_if_skip_sort_order(tab, group_list, limit, false,
&tab->table()->keys_in_use_for_group_by,
&dummy)) {
m_ordered_index_usage = ORDERED_INDEX_GROUP_BY;
}
}
/*
If we are going to use semi-join LooseScan, it will depend
on the selected index scan to be used. If index is not used
for the GROUP BY, we risk that sorting is put on the LooseScan
table. In order to avoid this, force use of temporary table.
TODO: Explain the allow_group_via_temp_table part of the test below.
*/
if ((m_ordered_index_usage != ORDERED_INDEX_GROUP_BY) &&
(tmp_table_param.allow_group_via_temp_table ||
(tab->emb_sj_nest &&
tab->position()->sj_strategy == SJ_OPT_LOOSE_SCAN))) {
need_tmp_before_win = true;
simple_order = simple_group = false; // Force tmp table without sort
}
}
} else if (!order.empty() && // ORDER BY wo/ preceding GROUP BY
(simple_order ||
skip_sort_order) && // which is possibly skippable,
!m_windows_sort) // and WFs will not shuffle rows
{
int dummy;
if ((skip_sort_order = test_if_skip_sort_order(
tab, order, m_select_limit, false,
&tab->table()->keys_in_use_for_order_by, &dummy))) {
m_ordered_index_usage = ORDERED_INDEX_ORDER_BY;
/*
Update plan cost if there is only one table. Multi-table/join scenarios
are more complex and will not reflect updated costs after access change.
*/
if (primary_tables == 1 && tab->table()->s->has_secondary_engine()) {
best_read = qep_tab->position()->prefix_cost + sort_cost;
}
}
}
}
/**
Test if ORDER BY is a single MATCH function(ORDER BY MATCH)
and sort order is descending.
@param order pointer to ORDER struct.
@retval
Pointer to MATCH function if order is 'ORDER BY MATCH() DESC'
@retval
NULL otherwise
*/
static Item_func_match *test_if_ft_index_order(ORDER *order) {
if (order && order->next == nullptr && order->direction == ORDER_DESC &&
is_function_of_type(*order->item, Item_func::FT_FUNC))
return down_cast<Item_func_match *>(*order->item)->get_master();
return nullptr;
}
/**
Test if this is a prefix index.
@param table table
@param idx index to check
@return TRUE if this is a prefix index
*/
bool is_prefix_index(TABLE *table, uint idx) {
if (!table || !table->key_info) {
return false;
}
KEY *key_info = table->key_info;
uint key_parts = key_info[idx].user_defined_key_parts;
KEY_PART_INFO *key_part = key_info[idx].key_part;
for (uint i = 0; i < key_parts; i++, key_part++) {
if (key_part->field &&
!(table->field[key_part->fieldnr - 1]
->part_of_prefixkey.is_clear_all()) &&
!(key_info->flags & (HA_FULLTEXT | HA_SPATIAL))) {
return true;
}
}
return false;
}
/**
Test if one can use the key to resolve ordering.
@param order_src Sort order
@param table Table to sort
@param idx Index to check
@param[out] used_key_parts NULL by default, otherwise return value for
used key parts.
@param[out] skip_quick Whether found index can be used for backward range
scans
@note
used_key_parts is set to correct key parts used if return value != 0
(On other cases, used_key_part may be changed)
Note that the value may actually be greater than the number of index
key parts. This can happen for storage engines that have the primary
key parts as a suffix for every secondary key.
@retval
1 key is ok.
@retval
0 Key can't be used
@retval
-1 Reverse key can be used
*/
int test_if_order_by_key(ORDER_with_src *order_src, TABLE *table, uint idx,
uint *used_key_parts, bool *skip_quick) {
DBUG_TRACE;
KEY_PART_INFO *key_part, *key_part_end;
key_part = table->key_info[idx].key_part;
key_part_end = key_part + table->key_info[idx].user_defined_key_parts;
key_part_map const_key_parts = table->const_key_parts[idx];
int reverse = 0;
uint key_parts;
bool on_pk_suffix = false;
// Whether [extended] key has key parts with mixed ASC/DESC order
bool mixed_order = false;
// Order direction of the first key part
bool reverse_sorted = (bool)(key_part->key_part_flag & HA_REVERSE_SORT);
ORDER *order = order_src->order;
*skip_quick = false;
for (; order; order = order->next, const_key_parts >>= 1) {
/*
Since only fields can be indexed, ORDER BY <something> that is
not a field cannot be resolved by using an index.
*/
Item *real_itm = (*order->item)->real_item();
if (real_itm->type() != Item::FIELD_ITEM) return 0;
const Field *field = down_cast<const Item_field *>(real_itm)->field;
/*
Skip key parts that are constants in the WHERE clause if these are
already removed in the ORDER expression by check_field_is_const().
If they are not removed in the ORDER expression yet, then we skip
the constant keyparts that are not part of the ORDER expression.
*/
for (; const_key_parts & 1 && key_part < key_part_end &&
(order_src->is_const_optimized() || key_part->field != field);
const_key_parts >>= 1) {
key_part++;
}
/* Avoid usage of prefix index for sorting a partition table */
if (table->part_info && key_part != table->key_info[idx].key_part &&
key_part != key_part_end && is_prefix_index(table, idx))
return 0;
if (key_part == key_part_end) {
/*
We are at the end of the key. Check if the engine has the primary
key as a suffix to the secondary keys. If it has continue to check
the primary key as a suffix.
*/
if (!on_pk_suffix &&
(table->file->ha_table_flags() & HA_PRIMARY_KEY_IN_READ_INDEX) &&
table->s->primary_key != MAX_KEY && table->s->primary_key != idx) {
on_pk_suffix = true;
key_part = table->key_info[table->s->primary_key].key_part;
key_part_end =
key_part +
table->key_info[table->s->primary_key].user_defined_key_parts;
const_key_parts = table->const_key_parts[table->s->primary_key];
/*
Skip key parts that are constants in the WHERE clause if these are
already removed in the ORDER expression by check_field_is_const().
If they are not removed in the ORDER expression yet, then we skip
the constant keyparts that are not part of the ORDER expression.
*/
for (; const_key_parts & 1 && key_part < key_part_end &&
(order_src->is_const_optimized() || key_part->field != field);
const_key_parts >>= 1) {
key_part++;
}
/*
The primary and secondary key parts were all const (i.e. there's
one row). The sorting doesn't matter.
*/
if (key_part == key_part_end && reverse == 0) {
key_parts = 0;
reverse = 1;
goto ok;
}
} else
return 0;
}
if (key_part->field != field || !field->part_of_sortkey.is_set(idx))
return 0;
if (order->direction != ORDER_NOT_RELEVANT) {
const enum_order keypart_order =
(key_part->key_part_flag & HA_REVERSE_SORT) ? ORDER_DESC : ORDER_ASC;
/* set flag to 1 if we can use read-next on key, else to -1 */
int cur_scan_dir = (order->direction == keypart_order) ? 1 : -1;
if (reverse && cur_scan_dir != reverse) return 0;
reverse = cur_scan_dir; // Remember if reverse
}
mixed_order |=
(reverse_sorted != (bool)((key_part)->key_part_flag & HA_REVERSE_SORT));
key_part++;
}
/*
The index picked here might be used for range scans with multiple ranges.
This will require tricky reordering in case of ranges would have to be
scanned backward and index consists of mixed ASC/DESC key parts. Due to that
backward scans on such indexes are disabled.
*/
if (mixed_order && reverse < 0) *skip_quick = true;
if (!reverse) {
/*
We get here when the key is suitable and we don't care about it's
order, i.e. GROUP BY/DISTINCT. Use forward scan.
*/
reverse = 1;
}
if (on_pk_suffix) {
uint used_key_parts_secondary = table->key_info[idx].user_defined_key_parts;
uint used_key_parts_pk =
(uint)(key_part - table->key_info[table->s->primary_key].key_part);
key_parts = used_key_parts_pk + used_key_parts_secondary;
if (reverse == -1 &&
(!(table->file->index_flags(idx, used_key_parts_secondary - 1, true) &
HA_READ_PREV) ||
!(table->file->index_flags(table->s->primary_key,
used_key_parts_pk - 1, true) &
HA_READ_PREV)))
reverse = 0; // Index can't be used
} else {
key_parts = (uint)(key_part - table->key_info[idx].key_part);
if (reverse == -1 &&
!(table->file->index_flags(idx, key_parts - 1, true) & HA_READ_PREV))
reverse = 0; // Index can't be used
}
ok:
if (used_key_parts != nullptr) *used_key_parts = key_parts;
return reverse;
}
/**
Find shortest key suitable for full table scan.
@param table Table to scan
@param usable_keys Allowed keys
@note
As far as
1) clustered primary key entry data set is a set of all record
fields (key fields and not key fields) and
2) secondary index entry data is a union of its key fields and
primary key fields (at least InnoDB and its derivatives don't
duplicate primary key fields there, even if the primary and
the secondary keys have a common subset of key fields),
then secondary index entry data is always a subset of primary key entry.
Unfortunately, key_info[nr].key_length doesn't show the length
of key/pointer pair but a sum of key field lengths only, thus
we can't estimate index IO volume comparing only this key_length
value of secondary keys and clustered PK.
So, try secondary keys first, and choose PK only if there are no
usable secondary covering keys or found best secondary key include
all table fields (i.e. same as PK):
@return
MAX_KEY no suitable key found
key index otherwise
*/
uint find_shortest_key(TABLE *table, const Key_map *usable_keys) {
uint best = MAX_KEY;
uint usable_clustered_pk = (table->file->primary_key_is_clustered() &&
table->s->primary_key != MAX_KEY &&
usable_keys->is_set(table->s->primary_key))
? table->s->primary_key
: MAX_KEY;
if (!usable_keys->is_clear_all()) {
uint min_length = (uint)~0;
for (uint nr = 0; nr < table->s->keys; nr++) {
if (nr == usable_clustered_pk) continue;
if (usable_keys->is_set(nr)) {
/*
Cannot do full index scan on rtree index. It is not supported by
Innodb as it's rtree index does not store data, but only the
minimum bouding box (maybe makes sense only for geometries of
type POINT). Index scans on rtrees are probabaly not supported
by other storage engines either.
A multi-valued key requires unique filter, and won't be the most
fast option even if it will be the shortest one.
*/
const KEY &key_ref = table->key_info[nr];
assert(!(key_ref.flags & HA_MULTI_VALUED_KEY) &&
!(key_ref.flags & HA_SPATIAL));
if (key_ref.key_length < min_length) {
min_length = key_ref.key_length;
best = nr;
}
}
}
}
if (usable_clustered_pk != MAX_KEY) {
/*
If the primary key is clustered and found shorter key covers all table
fields then primary key scan normally would be faster because amount of
data to scan is the same but PK is clustered.
It's safe to compare key parts with table fields since duplicate key
parts aren't allowed.
*/
if (best == MAX_KEY ||
table->key_info[best].user_defined_key_parts >= table->s->fields)
best = usable_clustered_pk;
}
return best;
}
/**
Test if a second key is the subkey of the first one.
@param key_part First key parts
@param ref_key_part Second key parts
@param ref_key_part_end Last+1 part of the second key
@note
Second key MUST be shorter than the first one.
@retval
1 is a subkey
@retval
0 no sub key
*/
inline bool is_subkey(KEY_PART_INFO *key_part, KEY_PART_INFO *ref_key_part,
KEY_PART_INFO *ref_key_part_end) {
for (; ref_key_part < ref_key_part_end; key_part++, ref_key_part++)
if (!key_part->field->eq(ref_key_part->field)) return false;
return true;
}
/**
Test if REF_OR_NULL optimization will be used if the specified
ref_key is used for REF-access to 'tab'
@retval
true JT_REF_OR_NULL will be used
@retval
false no JT_REF_OR_NULL access
*/
static bool is_ref_or_null_optimized(const JOIN_TAB *tab, uint ref_key) {
if (tab->keyuse()) {
const Key_use *keyuse = tab->keyuse();
while (keyuse->key != ref_key && keyuse->table_ref == tab->table_ref)
keyuse++;
const table_map const_tables = tab->join()->const_table_map;
while (keyuse->key == ref_key && keyuse->table_ref == tab->table_ref) {
if (!(keyuse->used_tables & ~const_tables)) {
if (keyuse->optimize & KEY_OPTIMIZE_REF_OR_NULL) return true;
}
keyuse++;
}
}
return false;
}
/**
Test if we can use one of the 'usable_keys' instead of 'ref' key
for sorting.
@param order The query block's order clause.
@param tab Current JOIN_TAB.
@param ref Number of key, used for WHERE clause
@param ref_key_parts Index columns used for ref lookup.
@param usable_keys Keys for testing
@return
- MAX_KEY If we can't use other key
- the number of found key Otherwise
*/
static uint test_if_subkey(ORDER_with_src *order, JOIN_TAB *tab, uint ref,
uint ref_key_parts, const Key_map *usable_keys) {
uint nr;
uint min_length = (uint)~0;
uint best = MAX_KEY;
TABLE *table = tab->table();
KEY_PART_INFO *ref_key_part = table->key_info[ref].key_part;
KEY_PART_INFO *ref_key_part_end = ref_key_part + ref_key_parts;
for (nr = 0; nr < table->s->keys; nr++) {
bool skip_quick;
if (usable_keys->is_set(nr) &&
table->key_info[nr].key_length < min_length &&
table->key_info[nr].user_defined_key_parts >= ref_key_parts &&
is_subkey(table->key_info[nr].key_part, ref_key_part,
ref_key_part_end) &&
!is_ref_or_null_optimized(tab, nr) &&
test_if_order_by_key(order, table, nr, nullptr, &skip_quick) &&
!skip_quick) {
min_length = table->key_info[nr].key_length;
best = nr;
}
}
return best;
}
/**
It is not obvious to see that test_if_skip_sort_order() never changes the
plan if no_changes is true. So we double-check: creating an instance of this
class saves some important access-path-related information of the current
table; when the instance is destroyed, the latest access-path information is
compared with saved data.
*/
class Plan_change_watchdog {
#ifndef NDEBUG
public:
/**
@param tab_arg table whose access path is being determined
@param no_changes_arg whether a change to the access path is allowed
*/
Plan_change_watchdog(const JOIN_TAB *tab_arg, const bool no_changes_arg) {
if (no_changes_arg) {
tab = tab_arg;
type = tab->type();
if ((quick = tab->range_scan())) quick_index = used_index(quick);
use_quick = tab->use_quick;
ref_key = tab->ref().key;
ref_key_parts = tab->ref().key_parts;
index = tab->index();
} else {
tab = nullptr;
type = JT_UNKNOWN;
quick = nullptr;
ref_key = ref_key_parts = index = 0;
use_quick = QS_NONE;
}
}
~Plan_change_watchdog() {
if (tab == nullptr) return;
// changes are not allowed, we verify:
assert(tab->type() == type);
assert(tab->range_scan() == quick);
assert(quick == nullptr || used_index(tab->range_scan()) == quick_index);
assert(tab->use_quick == use_quick);
assert(tab->ref().key == ref_key);
assert(tab->ref().key_parts == ref_key_parts);
assert(tab->index() == index);
}
private:
const JOIN_TAB *tab; ///< table, or NULL if changes are allowed
enum join_type type; ///< copy of tab->type()
// "Range / index merge" info
const AccessPath *quick{nullptr}; ///< copy of tab->select->quick
uint quick_index{0}; ///< copy of tab->select->quick->index
enum quick_type use_quick; ///< copy of tab->use_quick
// "ref access" info
int ref_key; ///< copy of tab->ref().key
uint ref_key_parts; /// copy of tab->ref().key_parts
// Other index-related info
uint index; ///< copy of tab->index
#else // in non-debug build, empty class
public:
Plan_change_watchdog(const JOIN_TAB *, const bool) {}
#endif
};
/**
Test if we can skip ordering by using an index.
If the current plan is to use an index that provides ordering, the
plan will not be changed. Otherwise, if an index can be used, the
JOIN_TAB / tab->select struct is changed to use the index.
The index must cover all fields in @<order@>, or it will not be considered.
@param tab NULL or JOIN_TAB of the accessed table
@param order Linked list of ORDER BY arguments
@param select_limit LIMIT value, or HA_POS_ERROR if no limit
@param no_changes No changes will be made to the query plan.
@param map Key_map of applicable indexes.
@param [out] order_idx Number of index selected, -1 if no applicable index
found
@todo
- sergeyp: Results of all index merge selects actually are ordered
by clustered PK values.
@note
This function may change tmp_table_param.precomputed_group_by. This
affects how create_tmp_table() treats aggregation functions, so
count_field_types() must be called again to make sure this is taken
into consideration.
@retval
0 We have to use filesort to do the sorting
@retval
1 We can use an index.
*/
static bool test_if_skip_sort_order(JOIN_TAB *tab, ORDER_with_src &order,
ha_rows select_limit, const bool no_changes,
const Key_map *map, int *order_idx) {
DBUG_TRACE;
int ref_key;
uint ref_key_parts = 0;
int order_direction = 0;
uint used_key_parts = 0;
TABLE *const table = tab->table();
JOIN *const join = tab->join();
THD *const thd = join->thd;
AccessPath *const save_range_scan = tab->range_scan();
int best_key = -1;
double best_read_time = 0;
bool set_up_ref_access_to_key = false;
bool can_skip_sorting = false; // used as return value
int changed_key = -1;
/* Check that we are always called with first non-const table */
assert((uint)tab->idx() == join->const_tables);
Plan_change_watchdog watchdog(tab, no_changes);
*order_idx = -1;
/* Sorting a single row can always be skipped */
if (tab->type() == JT_EQ_REF || tab->type() == JT_CONST ||
tab->type() == JT_SYSTEM) {
return true;
}
/*
Check if FT index can be used to retrieve result in the required order.
It is possible if ordering is on the first non-constant table.
*/
if (!join->order.empty() && join->simple_order) {
/*
Check if ORDER is DESC, ORDER BY is a single MATCH function.
*/
Item_func_match *ft_func = test_if_ft_index_order(order.order);
/*
Two possible cases when we can skip sort order:
1. FT_SORTED must be set(Natural mode, no ORDER BY).
2. If FT_SORTED flag is not set then
the engine should support deferred sorting. Deferred sorting means
that sorting is postponed utill the start of index reading(InnoDB).
In this case we set FT_SORTED flag here to let the engine know that
internal sorting is needed.
*/
if (ft_func && ft_func->ft_handler && ft_func->ordered_result()) {
/*
FT index scan is used, so the only additional requirement is
that ORDER BY MATCH function is the same as the function that
is used for FT index.
*/
if (tab->type() == JT_FT &&
ft_func->eq(tab->position()->key->val, true)) {
ft_func->set_hints(join, FT_SORTED, select_limit, false);
return true;
}
/*
No index is used, it's possible to use FT index for ORDER BY if
LIMIT is present and does not exceed count of the records in FT index
and there is no WHERE condition since a condition may potentially
require more rows to be fetch from FT index.
*/
if (!tab->condition() && select_limit != HA_POS_ERROR &&
select_limit <= ft_func->get_count()) {
/* test_if_ft_index_order() always returns master MATCH function. */
assert(!ft_func->master);
/* ref is not set since there is no WHERE condition */
assert(tab->ref().key == -1);
/*Make EXPLAIN happy */
tab->set_type(JT_FT);
tab->ref().key = ft_func->key;
tab->ref().key_parts = 0;
tab->set_index(ft_func->key);
tab->set_ft_func(ft_func);
/* Setup FT handler */
ft_func->set_hints(join, FT_SORTED, select_limit, true);
ft_func->score_from_index_scan = true;
table->file->ft_handler = ft_func->ft_handler;
return true;
}
}
}
/*
Keys disabled by ALTER TABLE ... DISABLE KEYS should have already
been taken into account.
*/
Key_map usable_keys = *map;
for (ORDER *tmp_order = order.order; tmp_order; tmp_order = tmp_order->next) {
const Item *item = (*tmp_order->item)->real_item();
if (item->type() != Item::FIELD_ITEM) {
usable_keys.clear_all();
return false;
}
usable_keys.intersect(
down_cast<const Item_field *>(item)->field->part_of_sortkey);
if (usable_keys.is_clear_all()) return false; // No usable keys
}
if (tab->type() == JT_REF_OR_NULL || tab->type() == JT_FT) return false;
ref_key = -1;
/* Test if constant range in WHERE */
if (tab->type() == JT_REF) {
assert(tab->ref().key >= 0 && tab->ref().key_parts);
ref_key = tab->ref().key;
ref_key_parts = tab->ref().key_parts;
} else if (tab->type() == JT_RANGE || tab->type() == JT_INDEX_MERGE) {
// Range found by opt_range
/*
assume results are not ordered when index merge is used
TODO: sergeyp: Results of all index merge selects actually are ordered
by clustered PK values.
*/
if (tab->range_scan()->type == AccessPath::INDEX_MERGE ||
tab->range_scan()->type == AccessPath::ROWID_UNION ||
tab->range_scan()->type == AccessPath::ROWID_INTERSECTION)
return false;
ref_key = used_index(tab->range_scan());
ref_key_parts = get_used_key_parts(tab->range_scan());
} else if (tab->type() == JT_INDEX_SCAN) {
// The optimizer has decided to use an index scan.
ref_key = tab->index();
ref_key_parts = actual_key_parts(&table->key_info[tab->index()]);
}
Opt_trace_context *const trace = &thd->opt_trace;
Opt_trace_object trace_wrapper_1(trace);
Opt_trace_object trace_skip_sort_order(
trace, "reconsidering_access_paths_for_index_ordering");
trace_skip_sort_order.add_alnum(
"clause", (order.src == ESC_ORDER_BY ? "ORDER BY" : "GROUP BY"));
Opt_trace_array trace_steps(trace, "steps");
if (ref_key >= 0) {
/*
We come here when ref/index scan/range scan access has been set
up for this table. Do not change access method if ordering is
provided already.
*/
if (!usable_keys.is_set(ref_key)) {
/*
We come here when ref_key is not among usable_keys, try to find a
usable prefix key of that key.
*/
uint new_ref_key;
/*
If using index only read, only consider other possible index only
keys
*/
if (table->covering_keys.is_set(ref_key))
usable_keys.intersect(table->covering_keys);
if ((new_ref_key = test_if_subkey(&order, tab, ref_key, ref_key_parts,
&usable_keys)) < MAX_KEY) {
/* Found key that can be used to retrieve data in sorted order */
if (tab->ref().key >= 0) {
/*
We'll use ref access method on key new_ref_key. The actual change
is done further down in this function where we update the plan.
*/
set_up_ref_access_to_key = true;
} else if (!no_changes) {
/*
The range optimizer constructed QUICK_RANGE for ref_key, and
we want to use instead new_ref_key as the index. We can't
just change the index of the quick select, because this may
result in an inconsistent RowIterator object. Below we
create a new RowIterator from scratch so that all its
parameres are set correctly by the range optimizer.
Note that the range optimizer is NOT called if
no_changes==true. This reason is that the range optimizer
cannot find a QUICK that can return ordered result unless
index access (ref or index scan) is also able to do so
(which test_if_order_by_key () will tell).
Admittedly, range access may be much more efficient than
e.g. index scan, but the only thing that matters when
no_change==true is the answer to the question: "Is it
possible to avoid sorting if an index is used to access
this table?". The answer does not depend on the outcome of
the range optimizer.
*/
Key_map new_ref_key_map; // Force the creation of quick select
new_ref_key_map.set_bit(new_ref_key); // only for new_ref_key.
Opt_trace_object trace_wrapper_2(trace);
Opt_trace_object trace_recest(trace, "rows_estimation");
trace_recest.add_utf8_table(tab->table_ref)
.add_utf8("index", table->key_info[new_ref_key].name);
AccessPath *range_scan;
MEM_ROOT temp_mem_root(key_memory_test_quick_select_exec,
thd->variables.range_alloc_block_size);
const bool no_quick =
test_quick_select(
thd, thd->mem_root, &temp_mem_root, new_ref_key_map, 0,
0, // empty table_map
join->calc_found_rows
? HA_POS_ERROR
: join->query_expression()->select_limit_cnt,
false, // don't force quick range
order.order->direction, tab->table(),
tab->skip_records_in_range(),
// we are after make_join_query_block():
tab->condition(), &tab->needed_reg, tab->table()->force_index,
join->query_block, &range_scan) <= 0;
assert(tab->range_scan() == save_range_scan);
tab->set_range_scan(range_scan);
if (no_quick) {
can_skip_sorting = false;
goto fix_ICP;
}
}
ref_key = new_ref_key;
changed_key = new_ref_key;
}
}
bool dummy;
/* Check if we get the rows in requested sorted order by using the key */
if (usable_keys.is_set(ref_key))
// Last parameter can be ignored as it'll be checked later, if needed
order_direction =
test_if_order_by_key(&order, table, ref_key, &used_key_parts, &dummy);
}
if (ref_key < 0 || order_direction <= 0) {
/*
There is no ref/index scan/range scan access set up for this
table, or it does not provide the requested ordering, or it uses
backward scan. Do a cost-based search on all keys.
*/
uint best_key_parts = 0;
uint saved_best_key_parts = 0;
int best_key_direction = 0;
ha_rows table_records = table->file->stats.records;
/*
If an index scan that cannot provide ordering has been selected
then do not use the index scan key as starting hint to
test_if_cheaper_ordering()
*/
const int ref_key_hint =
(order_direction == 0 && tab->type() == JT_INDEX_SCAN) ? -1 : ref_key;
// Does the query have a "FORCE INDEX [FOR GROUP BY] (idx)" (if clause is
// group by) or a "FORCE INDEX [FOR ORDER BY] (idx)" (if clause is order
// by)?
const bool is_group_by =
join && join->grouped && order.order == join->group_list.order;
const bool is_force_index =
table->force_index ||
(is_group_by ? table->force_index_group : table->force_index_order);
// We try to find an ordering_index alternative over the chosen plan, if:
// 1. "prefer_ordering_index" switch is on or
// 2. Force index for order/group is specified or
// 3. Optimizer has chosen to do table scan currently.
if (thd->optimizer_switch_flag(OPTIMIZER_SWITCH_PREFER_ORDERING_INDEX) ||
is_force_index || ref_key == -1)
test_if_cheaper_ordering(tab, &order, table, usable_keys, ref_key_hint,
select_limit, &best_key, &best_key_direction,
&select_limit, &best_key_parts,
&saved_best_key_parts, &best_read_time);
// Try backward scan for previously found key
if (best_key < 0 && order_direction < 0) goto check_reverse_order;
if (best_key < 0) {
// No usable key has been found
can_skip_sorting = false;
goto fix_ICP;
}
/*
If found index will use backward index scan, ref_key uses backward
range/ref, pick the latter as it has better selectivity.
*/
if (order_direction < 0 && order_direction == best_key_direction) {
best_key = -1; // reset found best key
goto check_reverse_order;
}
/*
filesort() and join cache are usually faster than reading in
index order and not using join cache. Don't use index scan
unless:
- the user specified FORCE INDEX [FOR {GROUP|ORDER} BY] (have to assume
the user knows what's best)
- the chosen index is clustered primary key (table scan is not cheaper)
*/
if (!is_force_index && (select_limit >= table_records) &&
(tab->type() == JT_ALL &&
join->primary_tables > join->const_tables + 1) &&
((unsigned)best_key != table->s->primary_key ||
!table->file->primary_key_is_clustered())) {
can_skip_sorting = false;
goto fix_ICP;
}
if (table->quick_keys.is_set(best_key) &&
!tab->quick_order_tested.is_set(best_key) && best_key != ref_key) {
tab->quick_order_tested.set_bit(best_key);
Opt_trace_object trace_wrapper_3(trace);
Opt_trace_object trace_recest(trace, "rows_estimation");
trace_recest.add_utf8_table(tab->table_ref)
.add_utf8("index", table->key_info[best_key].name);
Key_map keys_to_use; // Force the creation of quick select
keys_to_use.set_bit(best_key); // only best_key.
MEM_ROOT temp_mem_root(key_memory_test_quick_select_exec,
thd->variables.range_alloc_block_size);
AccessPath *range_scan;
test_quick_select(
thd, thd->mem_root, &temp_mem_root, keys_to_use, 0,
0, // empty table_map
join->calc_found_rows ? HA_POS_ERROR
: join->query_expression()->select_limit_cnt,
true, // force quick range
order.order->direction, tab->table(), tab->skip_records_in_range(),
tab->condition(), &tab->needed_reg, tab->table()->force_index,
join->query_block, &range_scan);
if (order_direction < 0 && tab->range_scan() != nullptr &&
tab->range_scan() != save_range_scan) {
/*
We came here in case when 3 indexes are available for quick
select:
1 - found by join order optimizer (greedy search) and saved in
save_range_scan
2 - constructed far above, as better suited for order by, but it was
found that it requires backward scan.
3 - constructed right above
In this case we drop quick #2 as #3 is expected to be better.
*/
destroy(tab->range_scan());
tab->set_range_scan(nullptr);
}
/*
If tab->range_scan() pointed to another quick than save_range_scan, we
would lose access to it and leak memory.
*/
assert(tab->range_scan() == save_range_scan ||
tab->range_scan() == nullptr);
tab->set_range_scan(range_scan);
}
order_direction = best_key_direction;
/*
saved_best_key_parts is actual number of used keyparts found by the
test_if_order_by_key function. It could differ from keyinfo->key_parts,
thus we have to restore it in case of desc order as it affects
ReverseIndexRangeScanIterator behaviour.
*/
used_key_parts =
(order_direction == -1) ? saved_best_key_parts : best_key_parts;
changed_key = best_key;
// We will use index scan or range scan:
set_up_ref_access_to_key = false;
}
check_reverse_order:
assert(order_direction != 0);
if (order_direction == -1) // If ORDER BY ... DESC
{
if (tab->range_scan()) {
/*
Don't reverse the sort order, if it's already done.
(In some cases test_if_order_by_key() can be called multiple times
*/
if (is_reverse_sorted_range(tab->range_scan())) {
can_skip_sorting = true;
goto fix_ICP;
}
// test_if_cheaper_ordering() might disable range scan on current index
if (tab->table()->quick_keys.is_set(used_index(tab->range_scan())) &&
reverse_sort_possible(tab->range_scan()))
can_skip_sorting = true;
else {
can_skip_sorting = false;
goto fix_ICP;
}
} else {
// Other index access (ref or scan) poses no problem
can_skip_sorting = true;
}
} else {
// ORDER BY ASC poses no problem
can_skip_sorting = true;
}
assert(can_skip_sorting);
/*
Update query plan with access pattern for doing
ordered access according to what we have decided
above.
*/
if (!no_changes) // We are allowed to update QEP
{
if (set_up_ref_access_to_key) {
/*
We'll use ref access method on key changed_key. In general case
the index search tuple for changed_ref_key will be different (e.g.
when one index is defined as (part1, part2, ...) and another as
(part1, part2(N), ...) and the WHERE clause contains
"part1 = const1 AND part2=const2".
So we build tab->ref() from scratch here.
*/
Key_use *keyuse = tab->keyuse();
while (keyuse->key != (uint)changed_key &&
keyuse->table_ref == tab->table_ref)
keyuse++;
if (create_ref_for_key(join, tab, keyuse, tab->prefix_tables())) {
can_skip_sorting = false;
goto fix_ICP;
}
assert(tab->type() != JT_REF_OR_NULL && tab->type() != JT_FT);
// Changing the key makes filter_effect obsolete
tab->position()->filter_effect = COND_FILTER_STALE;
/*
Check if it is possible to shift from ref to range. The index chosen
for 'ref' has changed since the last time this function was called.
*/
if (can_switch_from_ref_to_range(thd, tab, order.order->direction,
true)) {
// Allow the code to fall-through to the next if condition.
set_up_ref_access_to_key = false;
best_key = changed_key;
}
}
if (!set_up_ref_access_to_key && best_key >= 0) {
// Cancel any ref-access previously set up
tab->ref().key = -1;
tab->ref().key_parts = 0;
/*
If ref_key used index tree reading only ('Using index' in EXPLAIN),
and best_key doesn't, then revert the decision.
*/
if (!table->covering_keys.is_set(best_key)) table->set_keyread(false);
// Create an index scan if the table is not a temporary table that uses
// Temptable engine (Does not support index_first() and index_last()) and
// if there was no new range scan created.
if (!(is_temporary_table(tab->table_ref) &&
tab->table_ref->table->s->db_type() == temptable_hton) &&
((!tab->range_scan() || tab->range_scan() == save_range_scan))) {
// Avoid memory leak:
assert(tab->range_scan() == save_range_scan ||
tab->range_scan() == nullptr);
tab->set_range_scan(nullptr);
tab->set_index(best_key);
tab->set_type(JT_INDEX_SCAN); // Read with index_first(), index_next()
/*
There is a bug. When we change here, e.g. from group_min_max to
index scan: loose index scan expected to read a small number of rows
(jumping through the index), this small number was in
position()->rows_fetched; index scan will read much more, so
rows_fetched should be updated. So should the filtering effect.
It is visible in main.distinct in trunk:
explain SELECT distinct a from t3 order by a desc limit 2;
id select_type table partitions type
possible_keys key key_len ref rows filtered Extra 1
SIMPLE t3 NULL index a a 5 NULL
40 25.00 Using index "rows=40" should be ~200 i.e. # of records
in table. Filter should be 100.00 (no WHERE).
*/
table->file->ha_index_or_rnd_end();
tab->position()->filter_effect = COND_FILTER_STALE;
} else if (tab->type() != JT_ALL) {
/*
We're about to use a quick access to the table.
We need to change the access method so as the quick access
method is actually used.
*/
assert(tab->range_scan());
assert(used_index(tab->range_scan()) == (uint)best_key);
tab->set_type(calc_join_type(tab->range_scan()));
tab->use_quick = QS_RANGE;
if (is_loose_index_scan(tab->range_scan()))
join->tmp_table_param.precomputed_group_by = true;
tab->position()->filter_effect = COND_FILTER_STALE;
}
} // best_key >= 0
if (order_direction == -1) // If ORDER BY ... DESC
{
if (tab->range_scan()) {
/* ORDER BY range_key DESC */
if (make_reverse(used_key_parts, tab->range_scan())) {
/* purecov: begin inspected */
can_skip_sorting = false; // Reverse sort failed -> filesort
goto fix_ICP;
/* purecov: end */
}
tab->set_type(calc_join_type(tab->range_scan()));
tab->position()->filter_effect = COND_FILTER_STALE;
} else if (tab->type() == JT_REF &&
tab->ref().key_parts <= used_key_parts) {
/*
SELECT * FROM t1 WHERE a=1 ORDER BY a DESC,b DESC
Use a traversal function that starts by reading the last row
with key part (A) and then traverse the index backwards.
*/
tab->reversed_access = true;
/*
The current implementation of the reverse RefIterator does not
work well in combination with ICP and can lead to increased
execution time. Setting changed_key to the current key
(based on that we change the access order for the key) will
ensure that a pushed index condition will be cancelled.
*/
changed_key = tab->ref().key;
} else if (tab->type() == JT_INDEX_SCAN)
tab->reversed_access = true;
} else if (tab->range_scan())
set_need_sorted_output(tab->range_scan());
} // QEP has been modified
fix_ICP:
/*
Cleanup:
We may have both a 'tab->range_scan()' and 'save_range_scan' (original)
at this point. Delete the one that we won't use.
*/
if (can_skip_sorting && !no_changes) {
if (tab->type() == JT_INDEX_SCAN &&
select_limit < table->file->stats.records) {
assert(select_limit > 0);
tab->position()->rows_fetched = select_limit;
/*
Update the cost data if secondary engine is active as it is needed to
make the query offload decision later.
*/
if (best_read_time > 0 && join->primary_tables == 1 &&
table->s->has_secondary_engine()) {
tab->position()->read_cost = best_read_time;
/*
Assume no filter at this point to calculate the access cost. This
will be updated later to proper values when/if filter_effect is
updated. The logic is to ensure the cost covers accessing at least
LIMIT number of rows using the access method. If there exists a WHERE
clause, then more than LIMIT number of rows needs to be accessed.
Ideally we should calculate proper filtering effect and update
rows_fetched to include the filtering effect as well. Eg:
tab->position()->rows_fetched = select_limit / filter_effect;
*/
tab->position()->filter_effect = COND_FILTER_ALLPASS;
// Update the cost values accordingly.
tab->position()->set_prefix_join_cost(tab->idx(), join->cost_model());
}
// Update filter effect to reflect the access change.
tab->position()->filter_effect = COND_FILTER_STALE_NO_CONST;
}
// Keep current (ordered) tab->range_scan()
if (save_range_scan != tab->range_scan()) destroy(save_range_scan);
} else {
// Restore original save_range_scan
if (tab->range_scan() != save_range_scan) {
destroy(tab->range_scan());
tab->set_range_scan(save_range_scan);
}
}
trace_steps.end();
Opt_trace_object trace_change_index(trace, "index_order_summary");
trace_change_index.add_utf8_table(tab->table_ref)
.add("index_provides_order", can_skip_sorting)
.add_alnum("order_direction",
order_direction == 1
? "asc"
: ((order_direction == -1) ? "desc" : "undefined"));
if (changed_key >= 0) {
// switching to another index
// Should be no pushed index conditions at this point
assert(!table->file->pushed_idx_cond);
if (unlikely(trace->is_started())) {
trace_change_index.add_utf8("index", table->key_info[changed_key].name);
trace_change_index.add("plan_changed", !no_changes);
if (!no_changes)
trace_change_index.add_alnum("access_type", join_type_str[tab->type()]);
}
} else if (unlikely(trace->is_started())) {
trace_change_index.add_utf8(
"index", ref_key >= 0 ? table->key_info[ref_key].name : "unknown");
trace_change_index.add("plan_changed", false);
}
*order_idx = best_key < 0 ? ref_key : best_key;
return can_skip_sorting;
}
/**
Prune partitions for all tables of a join (query block).
Requires that tables have been locked.
@returns false if success, true if error
*/
bool JOIN::prune_table_partitions() {
assert(query_block->partitioned_table_count);
for (Table_ref *tbl = query_block->leaf_tables; tbl; tbl = tbl->next_leaf) {
// This will try to prune non-static conditions, which can be probed after
// the tables are locked.
// Predicates for pruning of this table must be placed in the outer-most
// join nest (Predicates in other join nests, or in the WHERE clause,
// would have caused an outer join to be converted to an inner join,
// and thus there would be no join nest graph to traverse)
// Look up the join nest hierarchy for the outermost condition:
Item *cond = where_cond;
const table_map tbl_map = tbl->map();
for (Table_ref *nest = tbl; nest != nullptr; nest = nest->embedding) {
if (nest->join_cond_optim() != nullptr &&
Overlaps(tbl_map, nest->join_cond_optim()->used_tables())) {
cond = nest->join_cond_optim();
// For an anti-join operation, a synthetic left join nest is added above
// the anti-join nest. Make sure that we skip this when searching for
// the predicate to prune.
if (nest->is_aj_nest()) break;
}
}
if (prune_partitions(thd, tbl->table, query_block, cond)) {
return true;
}
}
return false;
}
/**
A helper function to check whether it's better to use range than ref.
@details
Heuristic: Switch from 'ref' to 'range' access if 'range'
access can utilize more keyparts than 'ref' access. Conditions
for doing switching:
1) Range access is possible
2) 'ref' access and 'range' access uses the same index
3) Used parts of key shouldn't have nullable parts & ref_or_null isn't used.
4) 'ref' access depends on a constant, not a value read from a
table earlier in the join sequence.
Rationale: if 'ref' depends on a value from another table,
the join condition is not used to limit the rows read by
'range' access (that would require dynamic range - 'Range
checked for each record'). In other words, if 'ref' depends
on a value from another table, we have a query with
conditions of the form
this_table.idx_col1 = other_table.col AND <<- used by 'ref'
this_table.idx_col1 OP @<const@> AND <<- used by 'range'
this_table.idx_col2 OP @<const@> AND ... <<- used by 'range'
and an index on (idx_col1,idx_col2,...). But the fact that
'range' access uses more keyparts does not mean that it is
more selective than 'ref' access because these access types
utilize different parts of the query condition. We
therefore trust the cost based choice made by
best_access_path() instead of forcing a heuristic choice
here.
5) 'range' access uses more keyparts than 'ref' access
6) ORDER BY might make range better than table scan:
Check possibility of range scan even if it was previously deemed unviable
(for example when table scan was estimated to be cheaper). If yes,
range-access should be chosen only for larger key length.
@param thd To re-run range optimizer.
@param tab JOIN_TAB to check
@param ordering Used as a parameter to call test_quick_select.
@param recheck_range Check possibility of range scan even if it is currently
unviable.
@return true Range is better than ref
@return false Ref is better or switch isn't possible
@todo: This decision should rather be made in best_access_path()
*/
static bool can_switch_from_ref_to_range(THD *thd, JOIN_TAB *tab,
enum_order ordering,
bool recheck_range) {
if ((tab->range_scan() && // 1)
tab->position()->key->key == used_index(tab->range_scan())) || // 2)
recheck_range) {
uint keyparts = 0, length = 0;
table_map dep_map = 0;
bool maybe_null = false;
calc_length_and_keyparts(tab->position()->key, tab,
tab->position()->key->key, tab->prefix_tables(),
nullptr, &length, &keyparts, &dep_map,
&maybe_null);
if (thd->is_error()) {
return true;
}
if (!maybe_null && // 3)
!dep_map) // 4)
{
if (recheck_range) // 6)
{
Key_map new_ref_key_map;
new_ref_key_map.set_bit(tab->ref().key);
Opt_trace_context *const trace = &thd->opt_trace;
Opt_trace_object trace_wrapper(trace);
Opt_trace_object can_switch(
trace, "check_if_range_uses_more_keyparts_than_ref");
Opt_trace_object trace_cond(
trace, "rerunning_range_optimizer_for_single_index");
AccessPath *range_scan;
MEM_ROOT temp_mem_root(key_memory_test_quick_select_exec,
thd->variables.range_alloc_block_size);
if (test_quick_select(
thd, thd->mem_root, &temp_mem_root, new_ref_key_map, 0,
0, // empty table_map
tab->join()->row_limit, false, ordering, tab->table(),
tab->skip_records_in_range(),
tab->join_cond() ? tab->join_cond() : tab->join()->where_cond,
&tab->needed_reg, recheck_range, tab->join()->query_block,
&range_scan) > 0) {
if (length < get_max_used_key_length(range_scan)) {
destroy(tab->range_scan());
tab->set_range_scan(range_scan);
return true;
}
Opt_trace_object(trace, "access_type_unchanged")
.add("ref_key_length", length)
.add("range_key_length", get_max_used_key_length(range_scan));
destroy(range_scan);
}
} else
return length < get_max_used_key_length(tab->range_scan()); // 5)
}
}
return false;
}
/**
An utility function - apply heuristics and optimize access methods to tables.
Currently this function can change REF to RANGE and ALL to INDEX scan if
latter is considered to be better (not cost-based) than the former.
@note Side effect - this function could set 'Impossible WHERE' zero
result.
*/
void JOIN::adjust_access_methods() {
ASSERT_BEST_REF_IN_JOIN_ORDER(this);
for (uint i = const_tables; i < tables; i++) {
JOIN_TAB *const tab = best_ref[i];
Table_ref *const tl = tab->table_ref;
if (tab->type() == JT_ALL) {
/*
It's possible to speedup query by switching from full table scan to
the scan of covering index, due to less data being read.
Prerequisites for this are:
1) Keyread (i.e index only scan) is allowed (table isn't updated/deleted
from)
2) Covering indexes are available
3) This isn't a derived table/materialized view
*/
if (!tab->table()->no_keyread && // 1
!tab->table()->covering_keys.is_clear_all() && // 2
!tl->uses_materialization()) // 3
{
/*
It has turned out that the change commented out below, while speeding
things up for disk-bound loads, slows them down for cases when the data
is in disk cache (see BUG#35850):
// See bug #26447: "Using the clustered index for a table scan
// is always faster than using a secondary index".
if (table->s->primary_key != MAX_KEY &&
table->file->primary_key_is_clustered())
tab->index= table->s->primary_key;
else
tab->index=find_shortest_key(table, & table->covering_keys);
*/
if (tab->position()->sj_strategy != SJ_OPT_LOOSE_SCAN)
tab->set_index(
find_shortest_key(tab->table(), &tab->table()->covering_keys));
tab->set_type(JT_INDEX_SCAN); // Read with index_first / index_next
// From table scan to index scan, thus filter effect needs no recalc.
}
} else if (tab->type() == JT_REF) {
if (can_switch_from_ref_to_range(thd, tab, ORDER_NOT_RELEVANT, false)) {
tab->set_type(JT_RANGE);
Opt_trace_context *const trace = &thd->opt_trace;
Opt_trace_object wrapper(trace);
Opt_trace_object(trace, "access_type_changed")
.add_utf8_table(tl)
.add_utf8("index",
tab->table()->key_info[tab->position()->key->key].name)
.add_alnum("old_type", "ref")
.add_alnum("new_type", join_type_str[tab->type()])
.add_alnum("cause", "uses_more_keyparts");
tab->use_quick = QS_RANGE;
tab->position()->filter_effect = COND_FILTER_STALE;
} else {
// Cleanup quick, REF/REF_OR_NULL/EQ_REF, will be clarified later
::destroy(tab->range_scan());
tab->set_range_scan(nullptr);
}
}
// Ensure AM consistency
assert(!(tab->range_scan() &&
(tab->type() == JT_REF || tab->type() == JT_ALL)));
assert((tab->type() != JT_RANGE && tab->type() != JT_INDEX_MERGE) ||
tab->range_scan());
if (!tab->const_keys.is_clear_all() &&
tab->table()->reginfo.impossible_range &&
((i == const_tables && tab->type() == JT_REF) ||
((tab->type() == JT_ALL || tab->type() == JT_RANGE ||
tab->type() == JT_INDEX_MERGE || tab->type() == JT_INDEX_SCAN) &&
tab->use_quick != QS_RANGE)) &&
!tab->table_ref->is_inner_table_of_outer_join())
zero_result_cause = "Impossible WHERE noticed after reading const tables";
}
}
static JOIN_TAB *alloc_jtab_array(THD *thd, uint table_count) {
JOIN_TAB *t = new (thd->mem_root) JOIN_TAB[table_count];
if (!t) return nullptr; /* purecov: inspected */
QEP_shared *qs = new (thd->mem_root) QEP_shared[table_count];
if (!qs) return nullptr; /* purecov: inspected */
for (uint i = 0; i < table_count; ++i) t[i].set_qs(qs++);
return t;
}
/**
Set up JOIN_TAB structs according to the picked join order in best_positions.
This allocates execution structures so may be called only after we have the
very final plan. It must be called after
Optimize_table_order::fix_semijoin_strategies().
@return False if success, True if error
@details
- create join->join_tab array and copy from existing JOIN_TABs in join order
- create helper structs for materialized semi-join handling
- finalize semi-join strategy choices
- Number of intermediate tables "tmp_tables" is calculated.
- "tables" and "primary_tables" are recalculated.
- for full and index scans info of estimated # of records is updated.
- in a helper function:
- all heuristics are applied and the final access method type is picked
for each join_tab (only test_if_skip_sort_order() could override it)
- AM consistency is ensured (e.g only range and index merge are allowed
to have quick select set).
- if "Impossible WHERE" is detected - appropriate zero_result_cause is
set.
Notice that intermediate tables will not have a POSITION reference; and they
will not have a TABLE reference before the final stages of code generation.
@todo the block which sets tab->type should move to adjust_access_methods
for unification.
*/
bool JOIN::get_best_combination() {
DBUG_TRACE;
// At this point "tables" and "primary"tables" represent the same:
assert(tables == primary_tables);
/*
Allocate additional space for tmp tables.
Number of plan nodes:
# of regular input tables (including semi-joined ones) +
# of semi-join nests for materialization +
1? + // For GROUP BY (or implicit grouping when we have windowing)
1? + // For DISTINCT
1? + // For aggregation functions aggregated in outer query
// when used with distinct
1? + // For ORDER BY
1? // buffer result
Up to 2 tmp tables + N window output tmp are allocated (NOTE: windows also
have frame buffer tmp tables, but those are not relevant here).
*/
uint num_tmp_tables =
(!group_list.empty() || (implicit_grouping && m_windows.elements > 0)
? 1
: 0) +
(select_distinct ? (tmp_table_param.outer_sum_func_count ? 2 : 1) : 0) +
(order.empty() ? 0 : 1) +
(query_block->active_options() &
(SELECT_BIG_RESULT | OPTION_BUFFER_RESULT)
? 1
: 0) +
m_windows.elements + 1; /* the presence of windows may increase need for
grouping tmp tables, cf. de-optimization
in make_tmp_tables_info
*/
if (num_tmp_tables > (2 + m_windows.elements))
num_tmp_tables = 2 + m_windows.elements;
/*
Rearrange queries with materialized semi-join nests so that the semi-join
nest is replaced with a reference to a materialized temporary table and all
materialized subquery tables are placed after the intermediate tables.
After the following loop, "inner_target" is the position of the first
subquery table (if any). "outer_target" is the position of first outer
table, and will later be used to track the position of any materialized
temporary tables.
*/
const bool has_semijoin = !query_block->sj_nests.empty();
uint outer_target = 0;
uint inner_target = primary_tables + num_tmp_tables;
uint sjm_nests = 0;
if (has_semijoin) {
for (uint tableno = 0; tableno < primary_tables;) {
if (sj_is_materialize_strategy(best_positions[tableno].sj_strategy)) {
sjm_nests++;
inner_target -= (best_positions[tableno].n_sj_tables - 1);
tableno += best_positions[tableno].n_sj_tables;
} else
tableno++;
}
}
JOIN_TAB *tmp_join_tabs = nullptr;
if (sjm_nests + num_tmp_tables) {
// join_tab array only has "primary_tables" tables. We need those more:
if (!(tmp_join_tabs = alloc_jtab_array(thd, sjm_nests + num_tmp_tables)))
return true; /* purecov: inspected */
}
// To check that we fill the array correctly: fill it with zeros first
memset(best_ref, 0,
sizeof(JOIN_TAB *) * (primary_tables + sjm_nests + num_tmp_tables));
int sjm_index = tables; // Number assigned to materialized temporary table
int remaining_sjm_inner = 0;
bool err = false;
for (uint tableno = 0; tableno < tables; tableno++) {
POSITION *const pos = best_positions + tableno;
if (has_semijoin && sj_is_materialize_strategy(pos->sj_strategy)) {
assert(outer_target < inner_target);
Table_ref *const sj_nest = pos->table->emb_sj_nest;
// Handle this many inner tables of materialized semi-join
remaining_sjm_inner = pos->n_sj_tables;
/*
If we fail in some allocation below, we cannot bail out immediately;
that would put us in a difficult situation to clean up; imagine we
have planned this layout:
outer1 - sj_mat_tmp1 - outer2 - sj_mat_tmp2 - outer3
We have successfully filled a JOIN_TAB for sj_mat_tmp1, and are
failing to fill a JOIN_TAB for sj_mat_tmp2 (OOM). So we want to quit
this function, which will lead to cleanup functions.
But sj_mat_tmp1 is in this->best_ref only, outer3 is in this->join_tab
only: what is the array to traverse for cleaning up? What is the
number of tables to loop over?
So: if we fail in the present loop, we record the error but continue
filling best_ref; when it's fully filled, bail out, because then
best_ref can be used as reliable array for cleaning up.
*/
JOIN_TAB *const tab = tmp_join_tabs++;
best_ref[outer_target] = tab;
tab->set_join(this);
tab->set_idx(outer_target);
/*
Up to this point there cannot be a failure. JOIN_TAB has been filled
enough to be clean-able.
*/
Semijoin_mat_exec *const sjm_exec = new (thd->mem_root) Semijoin_mat_exec(
sj_nest, (pos->sj_strategy == SJ_OPT_MATERIALIZE_SCAN),
remaining_sjm_inner, outer_target, inner_target);
tab->set_sj_mat_exec(sjm_exec);
if (!sjm_exec || setup_semijoin_materialized_table(
tab, sjm_index, pos, best_positions + sjm_index))
err = true; /* purecov: inspected */
outer_target++;
sjm_index++;
}
/*
Locate join_tab target for the table we are considering.
(remaining_sjm_inner becomes negative for non-SJM tables, this can be
safely ignored).
*/
const uint target =
(remaining_sjm_inner--) > 0 ? inner_target++ : outer_target++;
JOIN_TAB *const tab = pos->table;
best_ref[target] = tab;
tab->set_idx(target);
tab->set_position(pos);
TABLE *const table = tab->table();
if (tab->type() != JT_CONST && tab->type() != JT_SYSTEM) {
if (pos->sj_strategy == SJ_OPT_LOOSE_SCAN && tab->range_scan() &&
used_index(tab->range_scan()) != pos->loosescan_key) {
/*
We must use the duplicate-eliminating index, so this QUICK is not
an option.
*/
::destroy(tab->range_scan());
tab->set_range_scan(nullptr);
}
if (table->is_intersect() || table->is_except()) {
tab->set_type(JT_ALL); // INTERSECT, EXCEPT can't use ref access yet
} else if (!pos->key) {
if (tab->range_scan())
tab->set_type(calc_join_type(tab->range_scan()));
else
tab->set_type(JT_ALL);
} else {
// REF or RANGE, clarify later when prefix tables are set for JOIN_TABs
tab->set_type(JT_REF);
}
}
assert(tab->type() != JT_UNKNOWN);
assert(table->reginfo.join_tab == tab);
if (!tab->join_cond())
table->reginfo.not_exists_optimize = false; // Only with LEFT JOIN
map2table[tab->table_ref->tableno()] = tab;
}
// Count the materialized semi-join tables as regular input tables
tables += sjm_nests + num_tmp_tables;
// Set the number of non-materialized tables:
primary_tables = outer_target;
/*
Between the last outer table or sj-mat tmp table, and the first sj-mat
inner table, there may be 2 slots for sort/group/etc tmp tables:
*/
for (uint i = 0; i < num_tmp_tables; ++i) {
const uint idx = outer_target + i;
tmp_join_tabs->set_join(this);
tmp_join_tabs->set_idx(idx);
assert(best_ref[idx] == nullptr); // verify that not overwriting
best_ref[idx] = tmp_join_tabs++;
/*
note that set_table() cannot be called yet. We may not even use this
JOIN_TAB in the end, it's dummy at the moment. Which can be tested with
"position()!=NULL".
*/
}
// make array unreachable: should walk JOIN_TABs by best_ref now
join_tab = nullptr;
if (err) return true; /* purecov: inspected */
if (has_semijoin) {
set_semijoin_info();
// Update equalities and keyuses after having added SJ materialization
if (update_equalities_for_sjm()) return true;
}
if (!plan_is_const()) {
// Assign map of "available" tables to all tables belonging to query block
set_prefix_tables();
adjust_access_methods();
}
// Calculate outer join info
if (query_block->outer_join) make_outerjoin_info();
// sjm is no longer needed, trash it. To reuse it, reset its members!
for (Table_ref *sj_nest : query_block->sj_nests) {
TRASH(&sj_nest->nested_join->sjm, sizeof(sj_nest->nested_join->sjm));
}
return false;
}
/**
Finds the dependencies of the remaining lateral derived tables.
@param plan_tables map of all tables that the planner is processing
(tables already in plan and tables to be added to plan).
@param idx index of the table which the planner is currently
considering.
@return A map of the dependencies of the remaining
lateral derived tables (from best_ref[idx] and on).
*/
table_map JOIN::calculate_deps_of_remaining_lateral_derived_tables(
table_map plan_tables, uint idx) const {
assert(has_lateral);
table_map deps = 0;
auto last = best_ref + tables;
for (auto **pos = best_ref + idx; pos < last; pos++) {
if ((*pos)->table_ref && ((*pos)->table_ref->map() & plan_tables)) {
deps |= get_lateral_deps(**pos);
}
}
return deps;
}
/*
Revise usage of join buffer for the specified table and the whole nest
SYNOPSIS
revise_cache_usage()
tab join table for which join buffer usage is to be revised
DESCRIPTION
The function revise the decision to use a join buffer for the table 'tab'.
If this table happened to be among the inner tables of a nested outer join/
semi-join the functions denies usage of join buffers for all of them
RETURN
none
*/
static void revise_cache_usage(JOIN_TAB *join_tab) {
plan_idx first_inner = join_tab->first_inner();
JOIN *const join = join_tab->join();
if (first_inner != NO_PLAN_IDX) {
plan_idx end_tab = join_tab->idx();
for (first_inner = join_tab->first_inner(); first_inner != NO_PLAN_IDX;
first_inner = join->best_ref[first_inner]->first_upper()) {
for (plan_idx i = end_tab - 1; i >= first_inner; --i)
join->best_ref[i]->set_use_join_cache(JOIN_CACHE::ALG_NONE);
end_tab = first_inner;
}
} else if (join_tab->get_sj_strategy() == SJ_OPT_FIRST_MATCH) {
plan_idx first_sj_inner = join_tab->first_sj_inner();
for (plan_idx i = join_tab->idx() - 1; i >= first_sj_inner; --i) {
JOIN_TAB *tab = join->best_ref[i];
if (tab->first_sj_inner() == first_sj_inner)
tab->set_use_join_cache(JOIN_CACHE::ALG_NONE);
}
} else
join_tab->set_use_join_cache(JOIN_CACHE::ALG_NONE);
assert(join->qep_tab == nullptr);
}
/**
Set up join buffering for a specified table, if possible.
@param tab joined table to check join buffer usage for
@param join join for which the check is performed
@param no_jbuf_after don't use join buffering after table with this number
@return false if successful, true if error.
Currently, allocation errors for join cache objects are ignored,
and regular execution is chosen silently.
@details
The function finds out whether the table 'tab' can be joined using a join
buffer. This check is performed after the best execution plan for 'join'
has been chosen. If the function decides that a join buffer can be employed
then it selects the most appropriate join cache type, which later will
be instantiated by init_join_cache().
If it has already been decided to not use join buffering for this table,
no action is taken.
Often it is already decided that join buffering will be used earlier in
the optimization process, and this will also ensure that the most correct
cost for the operation is calculated, and hence the probability of
choosing an optimal join plan is higher. However, some join buffering
decisions cannot currently be taken before this stage, hence we need this
function to decide the most accurate join buffering strategy.
@todo Long-term it is the goal that join buffering strategy is decided
when the plan is selected.
The result of the check and the type of the join buffer to be used
depend on:
- the access method to access rows of the joined table
- whether the join table is an inner table of an outer join or semi-join
- the optimizer_switch settings for join buffering
- the join 'options'.
In any case join buffer is not used if the number of the joined table is
greater than 'no_jbuf_after'.
If block_nested_loop is turned on, and if all other criteria for using
join buffering is fulfilled (see below), then join buffer is used
for any join operation (inner join, outer join, semi-join) with 'JT_ALL'
access method. In that case, a JOIN_CACHE_BNL type is always employed.
If an index is used to access rows of the joined table and
batched_key_access is on, then a JOIN_CACHE_BKA type is employed.
If the function decides that a join buffer can be used to join the table
'tab' then it sets @c tab->use_join_cache to reflect the chosen algorithm.
@note
For a nested outer join/semi-join, currently, we either use join buffers for
all inner tables or for none of them.
Join buffering is enabled for a few more cases for secondary engine.
Currently if blocked nested loop(BNL) is employed for join buffering,
it is replaced by hash joins in the executor. So the reasons for disabling
join buffering because of the way BNL works are no more valid. This gives
us an oppotunity to enable join buffering for more cases. However,
we enable it only for secondary engine (in particular for semijoins),
because of the following reasons:
Secondary engine does not care about the cost based decisions
involved in arriving at the best possible semijoin strategy;
because it can only interpret a plan using "FirstMatch" strategy
and can only do table scans. So the choices are very limited.
However, it's not the case for mysql. There are serveral semijoin
stratagies that could be picked. And these are picked based
on the assumption that a nested-loop join(NLJ) would be used because
optimizer currently generates plans only for NLJs and not
hash joins. So, when executor replaces with hash joins, the number
of rows that would be looked into for a particular semijoin strategy
will differ from what the optimizer presumed while picking that
strategy.
For mysql server, we could enable join buffering for more cases, when
a cost model for using hash joins is developed and optimizer could
generate plans for hash joins.
@todo
Support BKA inside SJ-Materialization nests. When doing this, we'll need
to only store sj-inner tables in the join buffer.
@verbatim
JOIN_TAB *first_tab= join->join_tab+join->const_tables;
uint n_tables= i-join->const_tables;
/ *
We normally put all preceding tables into the join buffer, except
for the constant tables.
If we're inside a semi-join materialization nest, e.g.
outer_tbl1 outer_tbl2 ( inner_tbl1, inner_tbl2 ) ...
^-- we're here
then we need to put into the join buffer only the tables from
within the nest.
* /
if (i >= first_sjm_table && i < last_sjm_table)
{
n_tables= i - first_sjm_table; // will be >0 if we got here
first_tab= join->join_tab + first_sjm_table;
}
@endverbatim
*/
static bool setup_join_buffering(JOIN_TAB *tab, JOIN *join,
uint no_jbuf_after) {
ASSERT_BEST_REF_IN_JOIN_ORDER(join);
Cost_estimate cost;
ha_rows rows;
uint bufsz = 4096;
uint join_cache_flags = 0;
const bool bnl_on = hint_table_state(join->thd, tab->table_ref, BNL_HINT_ENUM,
OPTIMIZER_SWITCH_BNL);
const bool bka_on = hint_table_state(join->thd, tab->table_ref, BKA_HINT_ENUM,
OPTIMIZER_SWITCH_BKA);
const uint tableno = tab->idx();
const uint tab_sj_strategy = tab->get_sj_strategy();
/*
If all key_parts are null_rejecting, the MultiRangeRowIterator will
eliminate all NULL values in the key set, such that
HA_MRR_NO_NULL_ENDPOINTS can be promised.
*/
const key_part_map keypart_map = make_prev_keypart_map(tab->ref().key_parts);
if (tab->ref().null_rejecting == keypart_map) {
join_cache_flags |= HA_MRR_NO_NULL_ENDPOINTS;
}
// Set preliminary join cache setting based on decision from greedy search
if (!join->select_count)
tab->set_use_join_cache(tab->position()->use_join_buffer
? JOIN_CACHE::ALG_BNL
: JOIN_CACHE::ALG_NONE);
if (tableno == join->const_tables) {
assert(tab->use_join_cache() == JOIN_CACHE::ALG_NONE);
return false;
}
if (!(bnl_on || bka_on)) goto no_join_cache;
/*
psergey-todo: why the below when execution code seems to handle the
"range checked for each record" case?
*/
if (tab->use_quick == QS_DYNAMIC_RANGE) goto no_join_cache;
/* No join buffering if prevented by no_jbuf_after */
if (tableno > no_jbuf_after) goto no_join_cache;
/*
An inner table of an outer join nest must not use join buffering if
the first inner table of that outer join nest does not use join buffering.
This condition is not handled by earlier optimizer stages.
*/
if (tab->first_inner() != NO_PLAN_IDX && tab->first_inner() != tab->idx() &&
!join->best_ref[tab->first_inner()]->use_join_cache())
goto no_join_cache;
/*
The first inner table of an outer join nest must not use join buffering
if the tables in the embedding outer join nest do not use join buffering.
This condition is not handled by earlier optimizer stages.
*/
if (tab->first_upper() != NO_PLAN_IDX &&
!join->best_ref[tab->first_upper()]->use_join_cache())
goto no_join_cache;
if (tab->table()->pos_in_table_list->is_table_function() && tab->dependent)
goto no_join_cache;
switch (tab_sj_strategy) {
case SJ_OPT_FIRST_MATCH:
/*
Use join cache with FirstMatch semi-join strategy only when semi-join
contains only one table.
As mentioned earlier (in comments), we lift this restriction for
secondary engine.
*/
if (!(current_thd->lex->m_sql_cmd != nullptr &&
current_thd->lex->m_sql_cmd->using_secondary_storage_engine())) {
if (!tab->is_single_inner_of_semi_join()) {
assert(tab->use_join_cache() == JOIN_CACHE::ALG_NONE);
goto no_join_cache;
}
}
break;
case SJ_OPT_LOOSE_SCAN:
/* No join buffering if this semijoin nest is handled by loosescan */
assert(tab->use_join_cache() == JOIN_CACHE::ALG_NONE);
goto no_join_cache;
case SJ_OPT_MATERIALIZE_LOOKUP:
case SJ_OPT_MATERIALIZE_SCAN:
/*
The Materialize strategies reuse the join_tab belonging to the
first table that was materialized. Neither table can use join buffering:
- The first table in a join never uses join buffering.
- The join_tab used for looking up a row in the materialized table, or
scanning the rows of a materialized table, cannot use join buffering.
We allow join buffering for the remaining tables of the materialized
semi-join nest.
*/
if (tab->first_sj_inner() == tab->idx()) {
assert(tab->use_join_cache() == JOIN_CACHE::ALG_NONE);
goto no_join_cache;
}
break;
case SJ_OPT_DUPS_WEEDOUT:
// This strategy allows the same join buffering as a regular join would.
case SJ_OPT_NONE:
break;
}
/*
The following code prevents use of join buffering when there is an
outer join operation and first match semi-join strategy is used, because:
Outer join needs a "match flag" to track that a row should be
NULL-complemented, such flag being attached to first inner table's cache
(tracks whether the cached row from outer table got a match, in which case
no NULL-complemented row is needed).
FirstMatch also needs a "match flag", such flag is attached to sj inner
table's cache (tracks whether the cached row from outer table already got
a first match in the sj-inner table, in which case we don't need to join
this cached row again)
- but a row in a cache has only one "match flag"
- so if "sj inner table"=="first inner", there is a problem.
As mentioned earlier(in comments), we lift this restriction for
secondary engine.
*/
if (!(current_thd->lex->m_sql_cmd != nullptr &&
current_thd->lex->m_sql_cmd->using_secondary_storage_engine())) {
if (tab_sj_strategy == SJ_OPT_FIRST_MATCH &&
tab->is_inner_table_of_outer_join())
goto no_join_cache;
}
if (join->deps_of_remaining_lateral_derived_tables &
(tab->prefix_tables() & ~tab->added_tables())) {
/*
Even though the planner said "no jbuf please", the switch below may
force it.
If first-dependency-of-lateral-table < table-we-plan-for <=
lateral-table, disable join buffering.
Reason for this rule:
consider a plan t1-t2-dt where dt is LATERAL and depends only on t1, and
imagine t2 could do join buffering: then we buffer many rows of t1, then
read one row of t2, fetch row#1 of t1 from cache, then materialize "dt"
(as it depends on t1) and send row to client; then fetch row#2 of t1
from cache, rematerialize "dt": it's very inefficient. So we forbid join
buffering on t2; this way, the signal "row of t1 changed" is emitted at
the level of t1's operator, i.e. much less often, as one row of t1 may
serve N rows of t2 before changing.
On the other hand, t1 can do join buffering.
A nice side-effect is to disable join buffering for "dt" itself. If
"dt" would do join buffering: "dt" buffers many rows from t1/t2, then in a
second phase we read one row from "dt" and join it with the many rows
from t1/t2; but we cannot read a row from "dt" without first choosing a
row of t1/t2 as "dt" depends on t1.
See similar code in best_access_path().
*/
goto no_join_cache;
}
switch (tab->type()) {
case JT_ALL:
case JT_INDEX_SCAN:
case JT_RANGE:
case JT_INDEX_MERGE:
if (!bnl_on) {
assert(tab->use_join_cache() == JOIN_CACHE::ALG_NONE);
goto no_join_cache;
}
if (!join->select_count) tab->set_use_join_cache(JOIN_CACHE::ALG_BNL);
return false;
case JT_SYSTEM:
case JT_CONST:
case JT_REF:
case JT_EQ_REF:
if (!bka_on) {
assert(tab->use_join_cache() == JOIN_CACHE::ALG_NONE);
goto no_join_cache;
}
/*
Disable BKA for materializable derived tables/views as they aren't
instantiated yet.
*/
if (tab->table_ref->uses_materialization()) goto no_join_cache;
/*
Can't use BKA for subquery if dealing with a subquery that can
turn a ref access into a "full scan on NULL key" table scan.
@see Item_in_optimizer::val_int()
@see subselect_iterator_engine::exec()
@see Index_lookup::cond_guards
@see push_index_cond()
@todo: This choice to not use BKA should be done before making
cost estimates, e.g. in set_join_buffer_properties(). That
happens before cond guards are set up, so instead of doing the
check below, BKA should be disabled if
- We are in an IN subquery, and
- The IN predicate is not a top_level_item, and
- The left_expr of the IN predicate may contain NULL values
(left_expr->maybe_null)
*/
if (tab->has_guarded_conds()) goto no_join_cache;
if (tab->table()->covering_keys.is_set(tab->ref().key))
join_cache_flags |= HA_MRR_INDEX_ONLY;
rows = tab->table()->file->multi_range_read_info(
tab->ref().key, 10, 20, &bufsz, &join_cache_flags, &cost);
/*
Cannot use BKA if
1. MRR scan cannot be performed, or
2. MRR default implementation is used, or
3. HA_MRR_NO_ASSOCIATION flag is set
*/
if ((rows == HA_POS_ERROR) || // 1
(join_cache_flags & HA_MRR_USE_DEFAULT_IMPL) || // 2
(join_cache_flags & HA_MRR_NO_ASSOCIATION)) // 3
goto no_join_cache;
tab->set_use_join_cache(JOIN_CACHE::ALG_BKA);
tab->join_cache_flags = join_cache_flags;
return false;
default:;
}
no_join_cache:
revise_cache_usage(tab);
tab->set_use_join_cache(JOIN_CACHE::ALG_NONE);
return false;
}
/*****************************************************************************
Make some simple condition optimization:
If there is a test 'field = const' change all refs to 'field' to 'const'
Remove all dummy tests 'item = item', 'const op const'.
Remove all 'item is NULL', when item can never be null!
Return in cond_value false if condition is impossible (1 = 2)
*****************************************************************************/
class COND_CMP : public ilink<COND_CMP> {
public:
static void *operator new(size_t size) { return (*THR_MALLOC)->Alloc(size); }
static void operator delete(void *ptr [[maybe_unused]],
size_t size [[maybe_unused]]) {
TRASH(ptr, size);
}
Item *and_level;
Item_func *cmp_func;
COND_CMP(Item *a, Item_func *b) : and_level(a), cmp_func(b) {}
};
Item_equal *find_item_equal(COND_EQUAL *cond_equal,
const Item_field *item_field, bool *inherited_fl) {
Item_equal *item = nullptr;
bool in_upper_level = false;
while (cond_equal) {
List_iterator_fast<Item_equal> li(cond_equal->current_level);
while ((item = li++)) {
if (item->contains(item_field->field)) goto finish;
}
in_upper_level = true;
cond_equal = cond_equal->upper_levels;
}
in_upper_level = false;
finish:
*inherited_fl = in_upper_level;
return item;
}
/**
Get the best field substitution for a given field.
If the field is member of a multiple equality, look up that equality
and return the most appropriate field. Usually this is the equivalenced
field belonging to the outer-most table in the join order, but
@see Item_field::get_subst_item() for details.
Otherwise, return the same field.
@param item_field The field that we are seeking a substitution for.
@param cond_equal multiple equalities to search in
@return The substituted field.
*/
Item_field *get_best_field(Item_field *item_field, COND_EQUAL *cond_equal) {
bool dummy;
Item_equal *item_eq = find_item_equal(cond_equal, item_field, &dummy);
if (!item_eq) return item_field;
return item_eq->get_subst_item(item_field);
}
/**
Check whether an equality can be used to build multiple equalities.
This function first checks whether the equality (left_item=right_item)
is a simple equality i.e. one that equates a field with another field
or a constant (field=field_item or field=const_item).
If this is the case the function looks for a multiple equality
in the lists referenced directly or indirectly by cond_equal inferring
the given simple equality. If it doesn't find any, it builds a multiple
equality that covers the predicate, i.e. the predicate can be inferred
from this multiple equality.
The built multiple equality could be obtained in such a way:
create a binary multiple equality equivalent to the predicate, then
merge it, if possible, with one of old multiple equalities.
This guarantees that the set of multiple equalities covering equality
predicates will be minimal.
EXAMPLE:
For the where condition
@code
WHERE a=b AND b=c AND
(b=2 OR f=e)
@endcode
the check_equality will be called for the following equality
predicates a=b, b=c, b=2 and f=e.
- For a=b it will be called with *cond_equal=(0,[]) and will transform
*cond_equal into (0,[Item_equal(a,b)]).
- For b=c it will be called with *cond_equal=(0,[Item_equal(a,b)])
and will transform *cond_equal into CE=(0,[Item_equal(a,b,c)]).
- For b=2 it will be called with *cond_equal=(ptr(CE),[])
and will transform *cond_equal into (ptr(CE),[Item_equal(2,a,b,c)]).
- For f=e it will be called with *cond_equal=(ptr(CE), [])
and will transform *cond_equal into (ptr(CE),[Item_equal(f,e)]).
@note
Now only fields that have the same type definitions (verified by
the Field::eq_def method) are placed to the same multiple equalities.
Because of this some equality predicates are not eliminated and
can be used in the constant propagation procedure.
We could weaken the equality test as soon as at least one of the
equal fields is to be equal to a constant. It would require a
more complicated implementation: we would have to store, in
general case, its own constant for each fields from the multiple
equality. But at the same time it would allow us to get rid
of constant propagation completely: it would be done by the call
to build_equal_items_for_cond.
The implementation does not follow exactly the above rules to
build a new multiple equality for the equality predicate.
If it processes the equality of the form field1=field2, it
looks for multiple equalities me1 containing field1 and me2 containing
field2. If only one of them is found the function expands it with
the lacking field. If multiple equalities for both fields are
found they are merged. If both searches fail a new multiple equality
containing just field1 and field2 is added to the existing
multiple equalities.
If the function processes the predicate of the form field1=const,
it looks for a multiple equality containing field1. If found, the
function checks the constant of the multiple equality. If the value
is unknown, it is setup to const. Otherwise the value is compared with
const and the evaluation of the equality predicate is performed.
When expanding/merging equality predicates from the upper levels
the function first copies them for the current level. It looks
acceptable, as this happens rarely. The implementation without
copying would be much more complicated.
@param thd Thread handler
@param left_item left term of the equality to be checked
@param right_item right term of the equality to be checked
@param item equality item if the equality originates from a condition
predicate, 0 if the equality is the result of row
elimination
@param cond_equal multiple equalities that must hold together with the
equality
@param[out] simple_equality
true if the predicate is a simple equality predicate
to be used for building multiple equalities
false otherwise
@returns false if success, true if error
*/
static bool check_simple_equality(THD *thd, Item *left_item, Item *right_item,
Item *item, COND_EQUAL *cond_equal,
bool *simple_equality) {
*simple_equality = false;
if (left_item->type() == Item::REF_ITEM &&
down_cast<Item_ref *>(left_item)->ref_type() == Item_ref::VIEW_REF) {
if (down_cast<Item_ref *>(left_item)->is_outer_reference()) return false;
left_item = left_item->real_item();
}
if (right_item->type() == Item::REF_ITEM &&
down_cast<Item_ref *>(right_item)->ref_type() == Item_ref::VIEW_REF) {
if (down_cast<Item_ref *>(right_item)->is_outer_reference()) return false;
right_item = right_item->real_item();
}
const Item_field *left_item_field, *right_item_field;
if (left_item->type() == Item::FIELD_ITEM &&
right_item->type() == Item::FIELD_ITEM &&
(left_item_field = down_cast<const Item_field *>(left_item)) &&
(right_item_field = down_cast<const Item_field *>(right_item)) &&
!left_item_field->depended_from && !right_item_field->depended_from) {
/* The predicate the form field1=field2 is processed */
const Field *const left_field = left_item_field->field;
const Field *const right_field = right_item_field->field;
if (!left_field->eq_def(right_field)) return false;
/* Search for multiple equalities containing field1 and/or field2 */
bool left_copyfl, right_copyfl;
Item_equal *left_item_equal =
find_item_equal(cond_equal, left_item_field, &left_copyfl);
Item_equal *right_item_equal =
find_item_equal(cond_equal, right_item_field, &right_copyfl);
/* As (NULL=NULL) != TRUE we can't just remove the predicate f=f */
if (left_field->eq(right_field)) /* f = f */
{
*simple_equality =
!((left_field->is_nullable() || left_field->table->is_nullable()) &&
!left_item_equal);
return false;
}
if (left_item_equal && left_item_equal == right_item_equal) {
/*
The equality predicate is inference of one of the existing
multiple equalities, i.e the condition is already covered
by upper level equalities
*/
*simple_equality = true;
return false;
}
/* Copy the found multiple equalities at the current level if needed */
if (left_copyfl) {
/* left_item_equal of an upper level contains left_item */
left_item_equal = new Item_equal(left_item_equal);
if (left_item_equal == nullptr) return true;
cond_equal->current_level.push_back(left_item_equal);
}
if (right_copyfl) {
/* right_item_equal of an upper level contains right_item */
right_item_equal = new Item_equal(right_item_equal);
if (right_item_equal == nullptr) return true;
cond_equal->current_level.push_back(right_item_equal);
}
if (left_item_equal) {
/* left item was found in the current or one of the upper levels */
if (!right_item_equal)
left_item_equal->add(down_cast<Item_field *>(right_item));
else {
/* Merge two multiple equalities forming a new one */
if (left_item_equal->merge(thd, right_item_equal)) return true;
/* Remove the merged multiple equality from the list */
List_iterator<Item_equal> li(cond_equal->current_level);
while ((li++) != right_item_equal)
;
li.remove();
}
} else {
/* left item was not found neither the current nor in upper levels */
if (right_item_equal) {
right_item_equal->add(down_cast<Item_field *>(left_item));
} else {
/* None of the fields was found in multiple equalities */
Item_equal *item_equal =
new Item_equal(down_cast<Item_field *>(left_item),
down_cast<Item_field *>(right_item));
if (item_equal == nullptr) return true;
cond_equal->current_level.push_back(item_equal);
}
}
*simple_equality = true;
return false;
}
{
/* The predicate of the form field=const/const=field is processed */
Item *const_item = nullptr;
Item_field *field_item = nullptr;
if (left_item->type() == Item::FIELD_ITEM &&
(field_item = down_cast<Item_field *>(left_item)) &&
field_item->depended_from == nullptr &&
right_item->const_for_execution()) {
const_item = right_item;
} else if (right_item->type() == Item::FIELD_ITEM &&
(field_item = down_cast<Item_field *>(right_item)) &&
field_item->depended_from == nullptr &&
left_item->const_for_execution()) {
const_item = left_item;
}
// Don't evaluate subqueries if they are disabled during optimization.
if (const_item != nullptr &&
!evaluate_during_optimization(const_item,
thd->lex->current_query_block()))
return false;
/*
If the constant expression contains a reference to the field
(for example, a = (a IS NULL)), we don't want to replace the
field with the constant expression as it makes the predicates
more complex and may introduce cycles in the Item tree.
*/
if (const_item != nullptr &&
const_item->walk(&Item::find_field_processor, enum_walk::POSTFIX,
pointer_cast<uchar *>(field_item->field)))
return false;
if (const_item && field_item->result_type() == const_item->result_type()) {
if (field_item->result_type() == STRING_RESULT) {
const CHARSET_INFO *cs = field_item->field->charset();
if (!item) {
Item_func_eq *const eq_item = new Item_func_eq(left_item, right_item);
if (eq_item == nullptr || eq_item->set_cmp_func()) return true;
eq_item->quick_fix_field();
item = eq_item;
}
if ((cs != down_cast<Item_func *>(item)->compare_collation()) ||
!cs->coll->propagate(cs, nullptr, 0))
return false;
// Don't build multiple equalities mixing strings and JSON, not even
// when they have the same collation, since string comparison and JSON
// comparison are very different.
if ((field_item->data_type() == MYSQL_TYPE_JSON) !=
(const_item->data_type() == MYSQL_TYPE_JSON)) {
return false;
}
// Similarly, strings and temporal types have different semantics for
// equality comparison.
if (const_item->is_temporal()) {
// No multiple equality for string columns compared to temporal
// values. See also comment in comparable_in_index().
if (!field_item->is_temporal()) {
return false;
}
// No multiple equality for TIME columns compared to temporal values.
// See also comment in comparable_in_index().
if (const_item->is_temporal_with_date() &&
!field_item->is_temporal_with_date()) {
return false;
}
}
}
bool copyfl;
Item_equal *item_equal = find_item_equal(cond_equal, field_item, ©fl);
if (copyfl) {
item_equal = new Item_equal(item_equal);
if (item_equal == nullptr) return true;
cond_equal->current_level.push_back(item_equal);
}
if (item_equal) {
if (item_equal->const_arg() != nullptr) {
// Make sure that the existing const and new one are of comparable
// collation.
DTCollation cmp_collation;
if (cmp_collation.set(const_item->collation,
item_equal->const_arg()->collation,
MY_COLL_CMP_CONV) ||
cmp_collation.derivation == DERIVATION_NONE) {
return false;
}
}
/*
The flag cond_false will be set to 1 after this, if item_equal
already contains a constant and its value is not equal to
the value of const_item.
*/
if (item_equal->add(thd, const_item, field_item)) return true;
} else {
item_equal = new Item_equal(const_item, field_item);
if (item_equal == nullptr) return true;
cond_equal->current_level.push_back(item_equal);
}
*simple_equality = true;
return false;
}
}
return false;
}
/**
Convert row equalities into a conjunction of regular equalities.
The function converts a row equality of the form (E1,...,En)=(E'1,...,E'n)
into a list of equalities E1=E'1,...,En=E'n. For each of these equalities
Ei=E'i the function checks whether it is a simple equality or a row
equality. If it is a simple equality it is used to expand multiple
equalities of cond_equal. If it is a row equality it converted to a
sequence of equalities between row elements. If Ei=E'i is neither a
simple equality nor a row equality the item for this predicate is added
to eq_list.
@param thd thread handle
@param left_row left term of the row equality to be processed
@param right_row right term of the row equality to be processed
@param cond_equal multiple equalities that must hold together with the
predicate
@param eq_list results of conversions of row equalities that are not
simple enough to form multiple equalities
@param[out] simple_equality
true if the row equality is composed of only
simple equalities.
@returns false if conversion succeeded, true if any error.
*/
static bool check_row_equality(THD *thd, Item *left_row, Item_row *right_row,
COND_EQUAL *cond_equal, List<Item> *eq_list,
bool *simple_equality) {
*simple_equality = false;
uint n = left_row->cols();
for (uint i = 0; i < n; i++) {
bool is_converted;
Item *left_item = left_row->element_index(i);
Item *right_item = right_row->element_index(i);
if (left_item->type() == Item::ROW_ITEM &&
right_item->type() == Item::ROW_ITEM) {
if (check_row_equality(thd, down_cast<Item_row *>(left_item),
down_cast<Item_row *>(right_item), cond_equal,
eq_list, &is_converted))
return true;
if (!is_converted) thd->lex->current_query_block()->cond_count++;
} else {
if (check_simple_equality(thd, left_item, right_item, nullptr, cond_equal,
&is_converted))
return true;
thd->lex->current_query_block()->cond_count++;
}
if (!is_converted) {
Item_func_eq *const eq_item = new Item_func_eq(left_item, right_item);
if (eq_item == nullptr) return true;
if (eq_item->set_cmp_func()) {
// Failed to create cmp func -> not only simple equalitities
return true;
}
eq_item->quick_fix_field();
eq_list->push_back(eq_item);
}
}
*simple_equality = true;
return false;
}
/**
Eliminate row equalities and form multiple equalities predicates.
This function checks whether the item is a simple equality
i.e. the one that equates a field with another field or a constant
(field=field_item or field=constant_item), or, a row equality.
For a simple equality the function looks for a multiple equality
in the lists referenced directly or indirectly by cond_equal inferring
the given simple equality. If it doesn't find any, it builds/expands
multiple equality that covers the predicate.
Row equalities are eliminated substituted for conjunctive regular
equalities which are treated in the same way as original equality
predicates.
@param thd thread handle
@param item predicate to process
@param cond_equal multiple equalities that must hold together with the
predicate
@param eq_list results of conversions of row equalities that are not
simple enough to form multiple equalities
@param[out] equality
true if re-writing rules have been applied
false otherwise, i.e.
if the predicate is not an equality, or
if the equality is neither a simple nor a row equality
@returns false if success, true if error
@note If the equality was created by IN->EXISTS, it may be removed later by
subquery materialization. So we don't mix this possibly temporary equality
with others; if we let it go into a multiple-equality (Item_equal), then we
could not remove it later. There is however an exception: if the outer
expression is a constant, it is safe to leave the equality even in
materialization; all it can do is preventing NULL/FALSE distinction but if
such distinction mattered the equality would be in a triggered condition so
we would not come to this function. And injecting constants is good because
it makes the materialized table smaller.
*/
static bool check_equality(THD *thd, Item *item, COND_EQUAL *cond_equal,
List<Item> *eq_list, bool *equality) {
*equality = false;
assert(item->is_bool_func());
Item_func *item_func;
if (item->type() == Item::FUNC_ITEM &&
(item_func = down_cast<Item_func *>(item))->functype() ==
Item_func::EQ_FUNC) {
Item *left_item = item_func->arguments()[0];
Item *right_item = item_func->arguments()[1];
if (item->created_by_in2exists() && !left_item->const_item())
return false; // See note above
if (left_item->type() == Item::ROW_ITEM &&
right_item->type() == Item::ROW_ITEM) {
thd->lex->current_query_block()->cond_count--;
return check_row_equality(thd, down_cast<Item_row *>(left_item),
down_cast<Item_row *>(right_item), cond_equal,
eq_list, equality);
} else
return check_simple_equality(thd, left_item, right_item, item, cond_equal,
equality);
}
return false;
}
/**
Replace all equality predicates in a condition by multiple equality items.
At each 'and' level the function detects items for equality predicates
and replaces them by a set of multiple equality items of class Item_equal,
taking into account inherited equalities from upper levels.
If an equality predicate is used not in a conjunction it's just
replaced by a multiple equality predicate.
For each 'and' level the function set a pointer to the inherited
multiple equalities in the cond_equal field of the associated
object of the type Item_cond_and.
The function also traverses the cond tree and for each field reference
sets a pointer to the multiple equality item containing the field, if there
is any. If this multiple equality equates fields to a constant the
function replaces the field reference by the constant in the cases
when the field is not of a string type or when the field reference is
just an argument of a comparison predicate.
The function also determines the maximum number of members in
equality lists of each Item_cond_and object assigning it to
thd->lex->current_query_block()->max_equal_elems.
@note
Multiple equality predicate =(f1,..fn) is equivalent to the conjunction of
f1=f2, .., fn-1=fn. It substitutes any inference from these
equality predicates that is equivalent to the conjunction.
Thus, =(a1,a2,a3) can substitute for ((a1=a3) AND (a2=a3) AND (a2=a1)) as
it is equivalent to ((a1=a2) AND (a2=a3)).
The function always makes a substitution of all equality predicates occurred
in a conjunction for a minimal set of multiple equality predicates.
This set can be considered as a canonical representation of the
sub-conjunction of the equality predicates.
E.g. (t1.a=t2.b AND t2.b>5 AND t1.a=t3.c) is replaced by
(=(t1.a,t2.b,t3.c) AND t2.b>5), not by
(=(t1.a,t2.b) AND =(t1.a,t3.c) AND t2.b>5);
while (t1.a=t2.b AND t2.b>5 AND t3.c=t4.d) is replaced by
(=(t1.a,t2.b) AND =(t3.c=t4.d) AND t2.b>5),
but if additionally =(t4.d,t2.b) is inherited, it
will be replaced by (=(t1.a,t2.b,t3.c,t4.d) AND t2.b>5)
The function performs the substitution in a recursive descent of
the condition tree, passing to the next AND level a chain of multiple
equality predicates which have been built at the upper levels.
The Item_equal items built at the level are attached to other
non-equality conjuncts as a sublist. The pointer to the inherited
multiple equalities is saved in the and condition object (Item_cond_and).
This chain allows us for any field reference occurrence to easily find a
multiple equality that must be held for this occurrence.
For each AND level we do the following:
- scan it for all equality predicate (=) items
- join them into disjoint Item_equal() groups
- process the included OR conditions recursively to do the same for
lower AND levels.
We need to do things in this order as lower AND levels need to know about
all possible Item_equal objects in upper levels.
@param thd thread handle
@param cond condition(expression) where to make replacement
@param[out] retcond returned condition
@param inherited path to all inherited multiple equality items
@param do_inherit whether or not to inherit equalities from other parts
of the condition
@returns false if success, true if error
*/
static bool build_equal_items_for_cond(THD *thd, Item *cond, Item **retcond,
COND_EQUAL *inherited, bool do_inherit) {
Item_equal *item_equal;
COND_EQUAL cond_equal;
cond_equal.upper_levels = inherited;
assert(cond->is_bool_func());
if (check_stack_overrun(thd, STACK_MIN_SIZE, nullptr))
return true; // Fatal error flag is set!
const enum Item::Type cond_type = cond->type();
if (cond_type == Item::COND_ITEM) {
List<Item> eq_list;
Item_cond *const item_cond = down_cast<Item_cond *>(cond);
const bool and_level = item_cond->functype() == Item_func::COND_AND_FUNC;
List<Item> *args = item_cond->argument_list();
List_iterator<Item> li(*args);
Item *item;
if (and_level) {
/*
Retrieve all conjuncts of this level detecting the equality
that are subject to substitution by multiple equality items and
removing each such predicate from the conjunction after having
found/created a multiple equality whose inference the predicate is.
*/
while ((item = li++)) {
/*
PS/SP note: we can safely remove a node from AND-OR
structure here because it's restored before each
re-execution of any prepared statement/stored procedure.
*/
bool equality;
if (check_equality(thd, item, &cond_equal, &eq_list, &equality))
return true;
if (equality) li.remove();
}
/*
Check if we eliminated all the predicates of the level, e.g.
(a=a AND b=b AND a=a).
*/
if (!args->elements && !cond_equal.current_level.elements &&
!eq_list.elements) {
*retcond = new Item_func_true();
return *retcond == nullptr;
}
List_iterator_fast<Item_equal> it(cond_equal.current_level);
while ((item_equal = it++)) {
if (item_equal->resolve_type(thd)) return true;
item_equal->update_used_tables();
thd->lex->current_query_block()->max_equal_elems =
std::max(thd->lex->current_query_block()->max_equal_elems,
item_equal->members());
}
Item_cond_and *const item_cond_and = down_cast<Item_cond_and *>(cond);
item_cond_and->cond_equal = cond_equal;
inherited = &item_cond_and->cond_equal;
}
/*
Make replacement of equality predicates for lower levels
of the condition expression.
*/
li.rewind();
while ((item = li++)) {
Item *new_item;
if (build_equal_items_for_cond(thd, item, &new_item, inherited,
do_inherit))
return true;
if (new_item != item) {
/* This replacement happens only for standalone equalities */
/*
This is ok with PS/SP as the replacement is done for
arguments of an AND/OR item, which are restored for each
execution of PS/SP.
*/
li.replace(new_item);
}
}
if (and_level) {
args->concat(&eq_list);
args->concat((List<Item> *)&cond_equal.current_level);
}
} else if (cond->type() == Item::FUNC_ITEM) {
List<Item> eq_list;
/*
If an equality predicate forms the whole and level,
we call it standalone equality and it's processed here.
E.g. in the following where condition
WHERE a=5 AND (b=5 or a=c)
(b=5) and (a=c) are standalone equalities.
In general we can't leave alone standalone eqalities:
for WHERE a=b AND c=d AND (b=c OR d=5)
b=c is replaced by =(a,b,c,d).
*/
bool equality;
if (check_equality(thd, cond, &cond_equal, &eq_list, &equality))
return true;
if (equality) {
int n = cond_equal.current_level.elements + eq_list.elements;
if (n == 0) {
*retcond = new Item_func_true();
return *retcond == nullptr;
} else if (n == 1) {
if ((item_equal = cond_equal.current_level.pop())) {
if (item_equal->resolve_type(thd)) return true;
item_equal->update_used_tables();
thd->lex->current_query_block()->max_equal_elems =
std::max(thd->lex->current_query_block()->max_equal_elems,
item_equal->members());
*retcond = item_equal;
return false;
}
*retcond = eq_list.pop();
return false;
} else {
/*
Here a new AND level must be created. It can happen only
when a row equality is processed as a standalone predicate.
*/
Item_cond_and *and_cond = new Item_cond_and(eq_list);
if (and_cond == nullptr) return true;
and_cond->quick_fix_field();
List<Item> *args = and_cond->argument_list();
List_iterator_fast<Item_equal> it(cond_equal.current_level);
while ((item_equal = it++)) {
if (item_equal->resolve_type(thd)) return true;
item_equal->update_used_tables();
thd->lex->current_query_block()->max_equal_elems =
std::max(thd->lex->current_query_block()->max_equal_elems,
item_equal->members());
}
and_cond->cond_equal = cond_equal;
args->concat((List<Item> *)&cond_equal.current_level);
*retcond = and_cond;
return false;
}
}
if (do_inherit) {
/*
For each field reference in cond, not from equal item predicates,
set a pointer to the multiple equality it belongs to (if there is any)
as soon the field is not of a string type or the field reference is
an argument of a comparison predicate.
*/
uchar *is_subst_valid = (uchar *)1;
cond = cond->compile(&Item::subst_argument_checker, &is_subst_valid,
&Item::equal_fields_propagator, (uchar *)inherited);
if (cond == nullptr) return true;
}
cond->update_used_tables();
}
*retcond = cond;
return false;
}
/**
Build multiple equalities for a WHERE condition and all join conditions that
inherit these multiple equalities.
The function first applies the build_equal_items_for_cond function
to build all multiple equalities for condition cond utilizing equalities
referred through the parameter inherited. The extended set of
equalities is returned in the structure referred by the cond_equal_ref
parameter. After this the function calls itself recursively for
all join conditions whose direct references can be found in join_list
and who inherit directly the multiple equalities just having built.
@note
The join condition used in an outer join operation inherits all equalities
from the join condition of the embedding join, if there is any, or
otherwise - from the where condition.
This fact is not obvious, but presumably can be proved.
Consider the following query:
@code
SELECT * FROM (t1,t2) LEFT JOIN (t3,t4) ON t1.a=t3.a AND t2.a=t4.a
WHERE t1.a=t2.a;
@endcode
If the join condition in the query inherits =(t1.a,t2.a), then we
can build the multiple equality =(t1.a,t2.a,t3.a,t4.a) that infers
the equality t3.a=t4.a. Although the join condition
t1.a=t3.a AND t2.a=t4.a AND t3.a=t4.a is not equivalent to the one
in the query the latter can be replaced by the former: the new query
will return the same result set as the original one.
Interesting that multiple equality =(t1.a,t2.a,t3.a,t4.a) allows us
to use t1.a=t3.a AND t3.a=t4.a under the join condition:
@code
SELECT * FROM (t1,t2) LEFT JOIN (t3,t4) ON t1.a=t3.a AND t3.a=t4.a
WHERE t1.a=t2.a
@endcode
This query equivalent to:
@code
SELECT * FROM (t1 LEFT JOIN (t3,t4) ON t1.a=t3.a AND t3.a=t4.a),t2
WHERE t1.a=t2.a
@endcode
Similarly the original query can be rewritten to the query:
@code
SELECT * FROM (t1,t2) LEFT JOIN (t3,t4) ON t2.a=t4.a AND t3.a=t4.a
WHERE t1.a=t2.a
@endcode
that is equivalent to:
@code
SELECT * FROM (t2 LEFT JOIN (t3,t4)ON t2.a=t4.a AND t3.a=t4.a), t1
WHERE t1.a=t2.a
@endcode
Thus, applying equalities from the where condition we basically
can get more freedom in performing join operations.
Although we don't use this property now, it probably makes sense to use
it in the future.
@param thd Thread handler
@param cond condition to build the multiple equalities for
@param[out] retcond Returned condition
@param inherited path to all inherited multiple equality items
@param do_inherit whether or not to inherit equalities from other
parts of the condition
@param join_list list of join tables that the condition refers to
@param[out] cond_equal_ref pointer to the structure to place built
equalities in
@returns false if success, true if error
*/
bool build_equal_items(THD *thd, Item *cond, Item **retcond,
COND_EQUAL *inherited, bool do_inherit,
mem_root_deque<Table_ref *> *join_list,
COND_EQUAL **cond_equal_ref) {
COND_EQUAL *cond_equal = nullptr;
if (cond) {
if (build_equal_items_for_cond(thd, cond, &cond, inherited, do_inherit))
return true;
cond->update_used_tables();
// update_used_tables() returns void but can still fail.
if (thd->is_error()) return true;
const enum Item::Type cond_type = cond->type();
if (cond_type == Item::COND_ITEM &&
down_cast<Item_cond *>(cond)->functype() == Item_func::COND_AND_FUNC)
cond_equal = &down_cast<Item_cond_and *>(cond)->cond_equal;
else if (cond_type == Item::FUNC_ITEM &&
down_cast<Item_func *>(cond)->functype() ==
Item_func::MULT_EQUAL_FUNC) {
cond_equal = new (thd->mem_root) COND_EQUAL;
if (cond_equal == nullptr) return true;
cond_equal->current_level.push_back(down_cast<Item_equal *>(cond));
}
}
if (cond_equal) {
cond_equal->upper_levels = inherited;
inherited = cond_equal;
}
*cond_equal_ref = cond_equal;
if (join_list) {
for (Table_ref *table : *join_list) {
if (table->join_cond_optim()) {
mem_root_deque<Table_ref *> *nested_join_list =
table->nested_join ? &table->nested_join->m_tables : nullptr;
Item *join_cond;
if (build_equal_items(thd, table->join_cond_optim(), &join_cond,
inherited, do_inherit, nested_join_list,
&table->cond_equal))
return true;
table->set_join_cond_optim(join_cond);
}
}
}
*retcond = cond;
return false;
}
/**
Compare field items by table order in the execution plan.
field1 considered as better than field2 if the table containing
field1 is accessed earlier than the table containing field2.
The function finds out what of two fields is better according
this criteria.
@param field1 first field item to compare
@param field2 second field item to compare
@param table_join_idx index to tables determining table order
@retval
-1 if field1 is better than field2
@retval
1 if field2 is better than field1
@retval
0 otherwise
*/
static int compare_fields_by_table_order(Item_field *field1, Item_field *field2,
JOIN_TAB **table_join_idx) {
int cmp = 0;
bool outer_ref = false;
if (field1->is_outer_reference()) {
outer_ref = true;
cmp = -1;
}
if (field2->is_outer_reference()) {
outer_ref = true;
cmp++;
}
if (outer_ref) return cmp;
/*
table_join_idx is NULL if this function was not called from JOIN::optimize()
but from e.g. mysql_delete() or mysql_update(). In these cases
there is only one table and both fields belong to it. Example
condition where this is the case: t1.fld1=t1.fld2
*/
if (!table_join_idx) return 0;
// Locate JOIN_TABs thanks to table_join_idx, then compare their index.
cmp = table_join_idx[field1->table_ref->tableno()]->idx() -
table_join_idx[field2->table_ref->tableno()]->idx();
return cmp < 0 ? -1 : (cmp ? 1 : 0);
}
/**
Generate minimal set of simple equalities equivalent to a multiple equality.
The function retrieves the fields of the multiple equality item
item_equal and for each field f:
- if item_equal contains const it generates the equality f=const_item;
- otherwise, if f is not the first field, generates the equality
f=item_equal->get_first().
All generated equality are added to the cond conjunction.
@param thd the session context
@param cond condition to add the generated equality to
@param upper_levels structure to access multiple equality of upper levels
@param item_equal multiple equality to generate simple equality from
@note
Before generating an equality function checks that it has not
been generated for multiple equalities of the upper levels.
E.g. for the following where condition
WHERE a=5 AND ((a=b AND b=c) OR c>4)
the upper level AND condition will contain =(5,a),
while the lower level AND condition will contain =(5,a,b,c).
When splitting =(5,a,b,c) into a separate equality predicates
we should omit 5=a, as we have it already in the upper level.
The following where condition gives us a more complicated case:
WHERE t1.a=t2.b AND t3.c=t4.d AND (t2.b=t3.c OR t4.e>5 ...) AND ...
Given the tables are accessed in the order t1->t2->t3->t4 for
the selected query execution plan the lower level multiple
equality =(t1.a,t2.b,t3.c,t4.d) formally should be converted to
t1.a=t2.b AND t1.a=t3.c AND t1.a=t4.d. But t1.a=t2.a will be
generated for the upper level. Also t3.c=t4.d will be generated there.
So only t1.a=t3.c should be left in the lower level.
If cond is equal to 0, then not more then one equality is generated
and a pointer to it is returned as the result of the function.
@return
- The condition with generated simple equalities or
a pointer to the simple generated equality, if success.
- 0, otherwise.
*/
static Item *eliminate_item_equal(THD *thd, Item *cond,
COND_EQUAL *upper_levels,
Item_equal *item_equal) {
List<Item> eq_list;
Item *eq_item = nullptr;
if (item_equal->const_item() && !item_equal->val_int())
return new Item_func_false();
Item *const item_const = item_equal->const_arg();
auto it = item_equal->get_fields().begin();
if (!item_const) {
/*
If there is a const item, match all field items with the const item,
otherwise match the second and subsequent field items with the first one:
*/
it++;
}
while (it != item_equal->get_fields().end()) {
/*
Generate an equality of the form:
item_field = some previous field in item_equal's list.
First see if we really need to generate it:
*/
Item_field *item_field = &*it++; // Field to generate equality for.
Item_equal *const upper = item_field->find_item_equal(upper_levels);
if (upper) // item_field is in this upper equality
{
if (item_const && upper->const_arg())
continue; // Const at both levels, no need to generate at current level
/*
If the upper-level multiple equality contains this item, there is no
need to generate the equality, unless item_field belongs to a
semi-join nest that is used for Materialization, and refers to tables
that are outside of the materialized semi-join nest,
As noted in Item_equal::get_subst_item(), subquery materialization
does not have this problem.
*/
JOIN_TAB *const tab = item_field->field->table->reginfo.join_tab;
if (!(tab && sj_is_materialize_strategy(tab->get_sj_strategy()))) {
Item_field *item_match;
auto li = item_equal->get_fields().begin();
while ((item_match = &*li++) != item_field) {
if (item_match->find_item_equal(upper_levels) == upper)
break; // (item_match, item_field) is also in upper level equality
}
if (item_match != item_field) continue;
}
} // ... if (upper).
/*
item_field should be compared with the head of the multiple equality
list.
item_field may refer to a table that is within a semijoin materialization
nest. In that case, the order of the join_tab entries may look like:
ot1 ot2 <subquery> ot5 SJM(it3 it4)
If we have a multiple equality
(ot1.c1, ot2.c2, <subquery>.c it3.c3, it4.c4, ot5.c5),
we should generate the following equalities:
1. ot1.c1 = ot2.c2
2. ot1.c1 = <subquery>.c
3. it3.c3 = it4.c4
4. ot1.c1 = ot5.c5
Equalities 1) and 4) are regular equalities between two outer tables.
Equality 2) is an equality that matches the outer query with a
materialized temporary table. It is either performed as a lookup
into the materialized table (SJM-lookup), or as a condition on the
outer table (SJM-scan).
Equality 3) is evaluated during semijoin materialization.
If there is a const item, match against this one.
Otherwise, match against the first field item in the multiple equality,
unless the item is within a materialized semijoin nest, in case it will
be matched against the first item within the SJM nest.
@see JOIN::set_prefix_tables()
@see Item_equal::get_subst_item()
*/
Item *const head =
item_const ? item_const : item_equal->get_subst_item(item_field);
if (head == item_field) continue;
// we have a pair, can generate 'item_field=head'
if (eq_item) eq_list.push_back(eq_item);
if (head->type() == Item::FIELD_ITEM) {
// Store away all fields that were considered equal, so that we are able
// to undo this operation later if we have to. See
// Item_func::ensure_multi_equality_fields_are_available for more details.
Item_field *head_field = down_cast<Item_field *>(head);
head_field->set_item_equal_all_join_nests(item_equal);
}
eq_item = new Item_func_eq(item_field, head);
if (!eq_item || down_cast<Item_func_eq *>(eq_item)->set_cmp_func())
return nullptr;
eq_item->quick_fix_field();
if (item_const != nullptr) {
eq_item->apply_is_true();
Item::cond_result res;
if (fold_condition(thd, eq_item, &eq_item, &res)) return nullptr;
if (res == Item::COND_FALSE) {
eq_item = new (thd->mem_root) Item_func_false();
if (eq_item == nullptr) return nullptr;
return eq_item; // entire AND is false
} else if (res == Item::COND_TRUE) {
eq_item = new (thd->mem_root) Item_func_true();
if (eq_item == nullptr) return nullptr;
}
}
} // ... while ((item_field= it++))
if (!cond && !eq_list.head()) {
if (!eq_item) return new Item_func_true();
return eq_item;
}
if (eq_item) eq_list.push_back(eq_item);
if (!cond)
cond = new Item_cond_and(eq_list);
else {
assert(cond->type() == Item::COND_ITEM);
if (eq_list.elements) ((Item_cond *)cond)->add_at_head(&eq_list);
}
cond->quick_fix_field();
cond->update_used_tables();
return cond;
}
/**
Substitute every field reference in a condition by the best equal field
and eliminate all multiple equality predicates.
The function retrieves the cond condition and for each encountered
multiple equality predicate it sorts the field references in it
according to the order of tables specified by the table_join_idx
parameter. Then it eliminates the multiple equality predicate by
replacing it with the conjunction of simple equality predicates
equating every field from the multiple equality to the first
field in it, or to the constant, if there is any.
After this, the function retrieves all other conjuncted
predicates and substitutes every field reference by the field reference
to the first equal field or equal constant if there are any.
@param thd the session context
@param cond condition to process
@param cond_equal multiple equalities to take into consideration
@param table_join_idx index to tables determining field preference
@note
At the first glance, a full sort of fields in multiple equality
seems to be an overkill. Yet it's not the case due to possible
new fields in multiple equality item of lower levels. We want
the order in them to comply with the order of upper levels.
@return
The transformed condition, or NULL in case of error
*/
Item *substitute_for_best_equal_field(THD *thd, Item *cond,
COND_EQUAL *cond_equal,
JOIN_TAB **table_join_idx) {
assert(cond->is_bool_func());
if (cond->type() == Item::COND_ITEM) {
List<Item> *cond_list = ((Item_cond *)cond)->argument_list();
bool and_level =
((Item_cond *)cond)->functype() == Item_func::COND_AND_FUNC;
if (and_level) {
cond_equal = &((Item_cond_and *)cond)->cond_equal;
cond_list->disjoin((List<Item> *)&cond_equal->current_level);
List_iterator_fast<Item_equal> it(cond_equal->current_level);
auto cmp = [table_join_idx](Item_field *f1, Item_field *f2) {
return compare_fields_by_table_order(f1, f2, table_join_idx);
};
Item_equal *item_equal;
while ((item_equal = it++)) {
item_equal->sort(cmp);
}
}
List_iterator<Item> li(*cond_list);
Item *item;
while ((item = li++)) {
Item *new_item = substitute_for_best_equal_field(thd, item, cond_equal,
table_join_idx);
if (new_item == nullptr) return nullptr;
/*
This works OK with PS/SP re-execution as changes are made to
the arguments of AND/OR items only
*/
if (new_item != item) li.replace(new_item);
}
if (and_level) {
List_iterator_fast<Item_equal> it(cond_equal->current_level);
Item_equal *item_equal;
while ((item_equal = it++)) {
cond = eliminate_item_equal(thd, cond, cond_equal->upper_levels,
item_equal);
if (cond == nullptr) return nullptr;
// This occurs when eliminate_item_equal() founds that cond is
// always false and substitutes it with a false value.
// Due to this, value of item_equal will be 0, so just return it.
if (cond->type() != Item::COND_ITEM) break;
}
}
if (cond->type() == Item::COND_ITEM &&
!((Item_cond *)cond)->argument_list()->elements)
cond = cond->val_bool() ? implicit_cast<Item *>(new Item_func_true())
: implicit_cast<Item *>(new Item_func_false());
} else if (cond->type() == Item::FUNC_ITEM &&
(down_cast<Item_func *>(cond))->functype() ==
Item_func::MULT_EQUAL_FUNC) {
Item_equal *item_equal = down_cast<Item_equal *>(cond);
item_equal->sort([table_join_idx](Item_field *f1, Item_field *f2) {
return compare_fields_by_table_order(f1, f2, table_join_idx);
});
if (cond_equal && cond_equal->current_level.head() == item_equal)
cond_equal = cond_equal->upper_levels;
return eliminate_item_equal(thd, nullptr, cond_equal, item_equal);
} else {
uchar *dummy = nullptr;
if (cond->compile(&Item::visit_all_analyzer, &dummy,
&Item::replace_equal_field, nullptr) == nullptr)
return nullptr;
}
return cond;
}
/**
change field = field to field = const for each found field = const in the
and_level
@param thd Thread handler
@param save_list saved list of COND_CMP
@param and_father father of AND op
@param cond Condition where fields are replaced with constant values
@param field The field that will be substituted
@param value The substitution value
@returns false if success, true if error
*/
static bool change_cond_ref_to_const(THD *thd, I_List<COND_CMP> *save_list,
Item *and_father, Item *cond, Item *field,
Item *value) {
assert(cond->real_item()->is_bool_func());
if (cond->type() == Item::COND_ITEM) {
Item_cond *const item_cond = down_cast<Item_cond *>(cond);
bool and_level = item_cond->functype() == Item_func::COND_AND_FUNC;
List_iterator<Item> li(*item_cond->argument_list());
Item *item;
while ((item = li++)) {
if (change_cond_ref_to_const(thd, save_list, and_level ? cond : item,
item, field, value))
return true;
}
return false;
}
if (cond->eq_cmp_result() == Item::COND_OK)
return false; // Not a boolean function
Item_bool_func2 *func = down_cast<Item_bool_func2 *>(cond);
Item **args = func->arguments();
Item *left_item = args[0];
Item *right_item = args[1];
Item_func::Functype functype = func->functype();
if (right_item->eq(field, false) && left_item != value &&
right_item->cmp_context == field->cmp_context &&
(left_item->result_type() != STRING_RESULT ||
value->result_type() != STRING_RESULT ||
left_item->collation.collation == value->collation.collation)) {
Item *const clone = value->clone_item();
if (thd->is_error()) return true;
if (clone == nullptr) return false;
clone->collation.set(right_item->collation);
thd->change_item_tree(args + 1, clone);
func->update_used_tables();
if ((functype == Item_func::EQ_FUNC || functype == Item_func::EQUAL_FUNC) &&
and_father != cond && !left_item->const_item()) {
cond->marker = Item::MARKER_CONST_PROPAG;
COND_CMP *const cond_cmp = new COND_CMP(and_father, func);
if (cond_cmp == nullptr) return true;
save_list->push_back(cond_cmp);
}
if (func->set_cmp_func()) return true;
} else if (left_item->eq(field, false) && right_item != value &&
left_item->cmp_context == field->cmp_context &&
(right_item->result_type() != STRING_RESULT ||
value->result_type() != STRING_RESULT ||
right_item->collation.collation == value->collation.collation)) {
Item *const clone = value->clone_item();
if (thd->is_error()) return true;
if (clone == nullptr) return false;
clone->collation.set(left_item->collation);
thd->change_item_tree(args, clone);
value = clone;
func->update_used_tables();
if ((functype == Item_func::EQ_FUNC || functype == Item_func::EQUAL_FUNC) &&
and_father != cond && !right_item->const_item()) {
args[0] = args[1]; // For easy check
thd->change_item_tree(args + 1, value);
cond->marker = Item::MARKER_CONST_PROPAG;
COND_CMP *const cond_cmp = new COND_CMP(and_father, func);
if (cond_cmp == nullptr) return true;
save_list->push_back(cond_cmp);
}
if (func->set_cmp_func()) return true;
}
return false;
}
/**
Propagate constant values in a condition
@param thd Thread handler
@param save_list saved list of COND_CMP
@param and_father father of AND op
@param cond Condition for which constant values are propagated
@returns false if success, true if error
*/
static bool propagate_cond_constants(THD *thd, I_List<COND_CMP> *save_list,
Item *and_father, Item *cond) {
assert(cond->real_item()->is_bool_func());
if (cond->type() == Item::COND_ITEM) {
Item_cond *const item_cond = down_cast<Item_cond *>(cond);
bool and_level = item_cond->functype() == Item_func::COND_AND_FUNC;
List_iterator_fast<Item> li(*item_cond->argument_list());
Item *item;
I_List<COND_CMP> save;
while ((item = li++)) {
if (propagate_cond_constants(thd, &save, and_level ? cond : item, item))
return true;
}
if (and_level) { // Handle other found items
I_List_iterator<COND_CMP> cond_itr(save);
COND_CMP *cond_cmp;
while ((cond_cmp = cond_itr++)) {
Item **args = cond_cmp->cmp_func->arguments();
if (!args[0]->const_item() &&
change_cond_ref_to_const(thd, &save, cond_cmp->and_level,
cond_cmp->and_level, args[0], args[1]))
return true;
}
}
} else if (and_father != cond &&
cond->marker != Item::MARKER_CONST_PROPAG) // In a AND group
{
Item_func *func;
if (cond->type() == Item::FUNC_ITEM &&
(func = down_cast<Item_func *>(cond)) &&
(func->functype() == Item_func::EQ_FUNC ||
func->functype() == Item_func::EQUAL_FUNC)) {
Item **args = func->arguments();
bool left_const = args[0]->const_item();
bool right_const = args[1]->const_item();
if (!(left_const && right_const) &&
args[0]->result_type() == args[1]->result_type()) {
if (right_const) {
Item *item = args[1];
if (resolve_const_item(thd, &item, args[0])) return true;
thd->change_item_tree(&args[1], item);
func->update_used_tables();
if (change_cond_ref_to_const(thd, save_list, and_father, and_father,
args[0], args[1]))
return true;
} else if (left_const) {
Item *item = args[0];
if (resolve_const_item(thd, &item, args[1])) return true;
thd->change_item_tree(&args[0], item);
func->update_used_tables();
if (change_cond_ref_to_const(thd, save_list, and_father, and_father,
args[1], args[0]))
return true;
}
}
}
}
return false;
}
/**
Assign each nested join structure a bit in nested_join_map.
@param join_list List of tables
@param first_unused Number of first unused bit in nested_join_map before the
call
@note
This function is called after simplify_joins(), when there are no
redundant nested joins.
We cannot have more nested joins in a query block than there are tables,
so as long as the number of bits in nested_join_map is not less than the
maximum number of tables in a query block, nested_join_map can never
overflow.
@return
First unused bit in nested_join_map after the call.
*/
uint build_bitmap_for_nested_joins(mem_root_deque<Table_ref *> *join_list,
uint first_unused) {
DBUG_TRACE;
for (Table_ref *table : *join_list) {
NESTED_JOIN *nested_join;
if ((nested_join = table->nested_join)) {
// We should have a join condition or a semi-join condition or both
assert((table->join_cond() != nullptr) || table->is_sj_nest());
nested_join->nj_map = 0;
nested_join->nj_total = 0;
/*
We only record nested join information for outer join nests.
Tables belonging in semi-join nests are recorded in the
embedding outer join nest, if one exists.
*/
if (table->join_cond()) {
assert(first_unused < sizeof(nested_join_map) * 8);
nested_join->nj_map = (nested_join_map)1 << first_unused++;
nested_join->nj_total = nested_join->m_tables.size();
} else if (table->is_sj_nest()) {
NESTED_JOIN *const outer_nest =
table->embedding ? table->embedding->nested_join : nullptr;
/*
The semi-join nest has already been counted into the table count
for the outer join nest as one table, so subtract 1 from the
table count.
*/
if (outer_nest)
outer_nest->nj_total += (nested_join->m_tables.size() - 1);
} else
assert(false);
first_unused =
build_bitmap_for_nested_joins(&nested_join->m_tables, first_unused);
}
}
return first_unused;
}
/** Update the dependency map for the tables. */
void JOIN::update_depend_map() {
ASSERT_BEST_REF_IN_JOIN_ORDER(this);
for (uint tableno = 0; tableno < tables; tableno++) {
JOIN_TAB *const tab = best_ref[tableno];
Index_lookup *const ref = &tab->ref();
table_map depend_map = 0;
Item **item = ref->items;
for (uint i = 0; i < ref->key_parts; i++, item++)
depend_map |= (*item)->used_tables();
depend_map &= ~PSEUDO_TABLE_BITS;
ref->depend_map = depend_map;
for (JOIN_TAB **tab2 = map2table; depend_map; tab2++, depend_map >>= 1) {
if (depend_map & 1) ref->depend_map |= (*tab2)->ref().depend_map;
}
}
}
/** Update the dependency map for the sort order. */
void JOIN::update_depend_map(ORDER *order) {
DBUG_TRACE;
for (; order; order = order->next) {
table_map depend_map;
order->item[0]->update_used_tables();
order->depend_map = depend_map =
order->item[0]->used_tables() & ~INNER_TABLE_BIT;
order->used = 0;
// Not item_sum(), RAND() and no reference to table outside of sub select
if (!(order->depend_map & (OUTER_REF_TABLE_BIT | RAND_TABLE_BIT)) &&
!order->item[0]->has_aggregation()) {
for (JOIN_TAB **tab = map2table; depend_map; tab++, depend_map >>= 1) {
if (depend_map & 1) order->depend_map |= (*tab)->ref().depend_map;
}
}
}
}
/**
Update equalities and keyuse references after semi-join materialization
strategy is chosen.
@details
For each multiple equality that contains a field that is selected
from a subquery, and that subquery is executed using a semi-join
materialization strategy, add the corresponding column in the materialized
temporary table to the equality.
For each injected semi-join equality that is not converted to
multiple equality, replace the reference to the expression selected
from the subquery with the corresponding column in the temporary table.
This is needed to properly reflect the equalities that involve injected
semi-join equalities when materialization strategy is chosen.
@see eliminate_item_equal() for how these equalities are used to generate
correct equality predicates.
The MaterializeScan semi-join strategy requires some additional processing:
All primary tables after the materialized temporary table must be inspected
for keyuse objects that point to expressions from the subquery tables.
These references must be replaced with references to corresponding columns
in the materialized temporary table instead. Those primary tables using
ref access will thus be made to depend on the materialized temporary table
instead of the subquery tables.
Only the injected semi-join equalities need this treatment, other predicates
will be handled correctly by the regular item substitution process.
@return False if success, true if error
*/
bool JOIN::update_equalities_for_sjm() {
ASSERT_BEST_REF_IN_JOIN_ORDER(this);
List_iterator<Semijoin_mat_exec> sj_it(sjm_exec_list);
Semijoin_mat_exec *sjm_exec;
while ((sjm_exec = sj_it++)) {
Table_ref *const sj_nest = sjm_exec->sj_nest;
Item *cond;
/*
Conditions involving SJ-inner tables are only to be found in the closest
nest's condition, which may be an AJ nest, a LEFT JOIN nest, or the
WHERE clause.
*/
if (sj_nest->is_aj_nest())
cond = sj_nest->join_cond_optim();
else if (sj_nest->outer_join_nest())
cond = sj_nest->outer_join_nest()->join_cond_optim();
else
cond = where_cond;
if (!cond) continue;
uchar *dummy = nullptr;
cond = cond->compile(&Item::equality_substitution_analyzer, &dummy,
&Item::equality_substitution_transformer,
(uchar *)sj_nest);
if (cond == nullptr) return true;
cond->update_used_tables();
// Loop over all primary tables that follow the materialized table
for (uint j = sjm_exec->mat_table_index + 1; j < primary_tables; j++) {
JOIN_TAB *const tab = best_ref[j];
for (Key_use *keyuse = tab->position()->key;
keyuse && keyuse->table_ref == tab->table_ref &&
keyuse->key == tab->position()->key->key;
keyuse++) {
uint fieldno = 0;
for (Item *old : sj_nest->nested_join->sj_inner_exprs) {
if (old->real_item()->eq(keyuse->val->real_item(), false)) {
/*
Replace the expression selected from the subquery with the
corresponding column of the materialized temporary table.
*/
keyuse->val = sj_nest->nested_join->sjm.mat_fields[fieldno];
keyuse->used_tables = keyuse->val->used_tables();
break;
}
fieldno++;
}
}
}
}
return false;
}
/**
Assign set of available (prefix) tables to all tables in query block.
Also set added tables, ie the tables added in each JOIN_TAB compared to the
previous JOIN_TAB.
This function must be called for every query block after the table order
has been determined.
*/
void JOIN::set_prefix_tables() {
ASSERT_BEST_REF_IN_JOIN_ORDER(this);
assert(!plan_is_const());
/*
The const tables are available together with the first non-const table in
the join order.
*/
table_map const initial_tables_map =
const_table_map | (allow_outer_refs ? OUTER_REF_TABLE_BIT : 0);
table_map current_tables_map = initial_tables_map;
table_map prev_tables_map = (table_map)0;
table_map saved_tables_map = (table_map)0;
JOIN_TAB *last_non_sjm_tab = nullptr; // Track the last non-sjm table
for (uint i = const_tables; i < tables; i++) {
JOIN_TAB *const tab = best_ref[i];
if (!tab->table()) continue;
/*
Tables that are within SJ-Materialization nests cannot have their
conditions referring to preceding non-const tables.
- If we're looking at the first SJM table, reset current_tables_map
to refer to only allowed tables
@see Item_equal::get_subst_item()
@see eliminate_item_equal()
*/
if (sj_is_materialize_strategy(tab->get_sj_strategy())) {
const table_map sjm_inner_tables = tab->emb_sj_nest->sj_inner_tables;
if (!(sjm_inner_tables & current_tables_map)) {
saved_tables_map = current_tables_map;
current_tables_map = initial_tables_map;
prev_tables_map = (table_map)0;
}
current_tables_map |= tab->table_ref->map();
tab->set_prefix_tables(current_tables_map, prev_tables_map);
prev_tables_map = current_tables_map;
if (!(sjm_inner_tables & ~current_tables_map)) {
/*
At the end of a semi-join materialization nest,
add non-deterministic expressions to the last table of the nest:
*/
tab->add_prefix_tables(RAND_TABLE_BIT);
// Restore the previous map:
current_tables_map = saved_tables_map;
prev_tables_map =
last_non_sjm_tab ? last_non_sjm_tab->prefix_tables() : (table_map)0;
}
} else {
last_non_sjm_tab = tab;
current_tables_map |= tab->table_ref->map();
tab->set_prefix_tables(current_tables_map, prev_tables_map);
prev_tables_map = current_tables_map;
}
}
/*
Non-deterministic expressions must be added to the last table's condition.
It solves problem with queries like SELECT * FROM t1 WHERE rand() > 0.5
*/
if (last_non_sjm_tab != nullptr)
last_non_sjm_tab->add_prefix_tables(RAND_TABLE_BIT);
}
/**
Calculate best possible join order and initialize the join structure.
@return true if success, false if error.
The JOIN object is populated with statistics about the query,
and a plan with table order and access method selection is made.
The list of tables to be optimized is taken from query_block->leaf_tables.
JOIN::where_cond is also used in the optimization.
As a side-effect, JOIN::keyuse_array is populated with key_use information.
Here is an overview of the logic of this function:
- Initialize JOIN data structures and setup basic dependencies between tables.
- Update dependencies based on join information.
- Make key descriptions (update_ref_and_keys()).
- Pull out semi-join tables based on table dependencies.
- Extract tables with zero or one rows as const tables.
- Read contents of const tables, substitute columns from these tables with
actual data. Also keep track of empty tables vs. one-row tables.
- After const table extraction based on row count, more tables may
have become functionally dependent. Extract these as const tables.
- Add new sargable predicates based on retrieved const values.
- Calculate number of rows to be retrieved from each table.
- Calculate cost of potential semi-join materializations.
- Calculate best possible join order based on available statistics.
- Fill in remaining information for the generated join order.
*/
bool JOIN::make_join_plan() {
DBUG_TRACE;
SARGABLE_PARAM *sargables = nullptr;
Opt_trace_context *const trace = &thd->opt_trace;
if (init_planner_arrays()) // Create and initialize the arrays
return true;
// Outer join dependencies were initialized above, now complete the analysis.
if (query_block->outer_join || query_block->is_recursive()) {
if (propagate_dependencies()) {
/*
Catch illegal join order.
SQL2011 forbids:
WITH RECURSIVE rec AS (
... UNION ALL SELECT ... FROM tbl LEFT JOIN rec ON...)c...
MySQL also forbids the same query with STRAIGHT_JOIN instead of LEFT
JOIN, because the algorithm of with-recursive imposes that "rec" be
first in plan, i.e. "tbl" depends on "rec", but STRAIGHT_JOIN imposes
the opposite dependency.
*/
assert(query_block->is_recursive());
my_error(ER_CTE_RECURSIVE_FORBIDDEN_JOIN_ORDER, MYF(0),
query_block->recursive_reference->alias);
return true;
}
init_key_dependencies();
}
if (unlikely(trace->is_started()))
trace_table_dependencies(trace, join_tab, primary_tables);
// Build the key access information, which is the basis for ref access.
if (where_cond || query_block->outer_join) {
if (update_ref_and_keys(thd, &keyuse_array, join_tab, tables, where_cond,
~query_block->outer_join, query_block, &sargables))
return true;
}
/*
Pull out semi-join tables based on dependencies. Dependencies are valid
throughout the lifetime of a query, so this operation can be performed
on the first optimization only.
*/
if (!query_block->sj_pullout_done && !query_block->sj_nests.empty() &&
pull_out_semijoin_tables(this))
return true;
query_block->sj_pullout_done = true;
const uint sj_nests = query_block->sj_nests.size(); // Changed by pull-out
if (!(query_block->active_options() & OPTION_NO_CONST_TABLES)) {
// Detect tables that are const (0 or 1 row) and read their contents.
if (extract_const_tables()) return true;
// Detect tables that are functionally dependent on const values.
if (extract_func_dependent_tables()) return true;
}
// Possibly able to create more sargable predicates from const rows.
if (const_tables && sargables) update_sargable_from_const(sargables);
// Make a first estimate of the fanout for each table in the query block.
if (estimate_rowcount()) return true;
/*
Apply join order hints, with the exception of
JOIN_FIXED_ORDER and STRAIGHT_JOIN.
*/
if (query_block->opt_hints_qb &&
!(query_block->active_options() & SELECT_STRAIGHT_JOIN))
query_block->opt_hints_qb->apply_join_order_hints(this);
if (sj_nests) {
set_semijoin_embedding();
query_block->update_semijoin_strategies(thd);
}
if (!plan_is_const()) optimize_keyuse();
allow_outer_refs = true;
if (sj_nests && optimize_semijoin_nests_for_materialization(this))
return true;
// Choose the table order based on analysis done so far.
if (Optimize_table_order(thd, this, nullptr).choose_table_order())
return true;
DBUG_EXECUTE_IF("bug13820776_1", thd->killed = THD::KILL_QUERY;);
if (thd->killed || thd->is_error()) return true;
// If this is a subquery, decide between In-to-exists and materialization
if (query_expression()->item && decide_subquery_strategy()) return true;
refine_best_rowcount();
positions = nullptr; // But keep best_positions for get_best_combination
// Generate an execution plan from the found optimal join order.
if (get_best_combination()) return true;
// Cleanup after update_ref_and_keys has added keys for derived tables.
if (query_block->materialized_derived_table_count) finalize_derived_keys();
// No need for this struct after new JOIN_TAB array is set up.
best_positions = nullptr;
// Some called function may still set error status unnoticed
if (thd->is_error()) return true;
// There is at least one empty const table
if (const_table_map != found_const_table_map)
zero_result_cause = "no matching row in const table";
return false;
}
/**
Initialize scratch arrays for the join order optimization
@returns false if success, true if error
@note If something fails during initialization, JOIN::cleanup()
will free anything that has been partially allocated and set up.
Arrays are created in the execution mem_root, so they will be
deleted automatically when the mem_root is re-initialized.
*/
bool JOIN::init_planner_arrays() {
// Up to one extra slot per semi-join nest is needed (if materialized)
const uint sj_nests = query_block->sj_nests.size();
const uint table_count = query_block->leaf_table_count;
assert(primary_tables == 0 && tables == 0);
if (!(join_tab = alloc_jtab_array(thd, table_count))) return true;
/*
We add 2 cells:
- because planning stage uses 0-termination so needs +1
- because after get_best_combination, we don't use 0-termination but
need +2, to host at most 2 tmp sort/group/distinct tables.
*/
if (!(best_ref = (JOIN_TAB **)thd->alloc(
sizeof(JOIN_TAB *) *
(table_count + sj_nests + 2 + m_windows.elements))))
return true;
// sort/group tmp tables have no map
if (!(map2table = (JOIN_TAB **)thd->alloc(sizeof(JOIN_TAB *) *
(table_count + sj_nests))))
return true;
if (!(positions = new (thd->mem_root) POSITION[table_count])) return true;
if (!(best_positions = new (thd->mem_root) POSITION[table_count + sj_nests]))
return true;
/*
Initialize data structures for tables to be joined.
Initialize dependencies between tables.
*/
JOIN_TAB **best_ref_p = best_ref;
Table_ref *tl = query_block->leaf_tables;
for (JOIN_TAB *tab = join_tab; tl; tab++, tl = tl->next_leaf, best_ref_p++) {
*best_ref_p = tab;
TABLE *const table = tl->table;
tab->table_ref = tl;
tab->set_table(table);
const int err = tl->fetch_number_of_rows();
if (err) {
table->file->print_error(err, MYF(0));
return true;
}
// Initialize the cost model for the table.
table->init_cost_model(cost_model());
all_table_map |= tl->map();
tab->set_join(this);
if (tl->is_updated() || tl->is_deleted()) {
// As we update or delete rows, we can't read the index
table->no_keyread = true;
}
tab->dependent = tl->dep_tables; // Initialize table dependencies
if (query_block->is_recursive()) {
if (query_block->recursive_reference != tl)
// Recursive reference must go first
tab->dependent |= query_block->recursive_reference->map();
else {
// Recursive reference mustn't use any index
table->covering_keys.clear_all();
table->keys_in_use_for_group_by.clear_all();
table->keys_in_use_for_order_by.clear_all();
}
}
if (tl->schema_table) table->file->stats.records = 2;
table->quick_condition_rows = table->file->stats.records;
tab->init_join_cond_ref(tl);
if (tl->outer_join_nest()) {
// tab belongs to a nested join, maybe to several embedding joins
tab->embedding_map = 0;
for (Table_ref *embedding = tl->embedding; embedding;
embedding = embedding->embedding) {
NESTED_JOIN *const nested_join = embedding->nested_join;
tab->embedding_map |= nested_join->nj_map;
tab->dependent |= embedding->dep_tables;
}
} else if (tab->join_cond()) {
// tab is the only inner table of an outer join
tab->embedding_map = 0;
for (Table_ref *embedding = tl->embedding; embedding;
embedding = embedding->embedding)
tab->embedding_map |= embedding->nested_join->nj_map;
}
if (tl->is_derived() && tl->derived_query_expression()->m_lateral_deps)
has_lateral = true;
tables++; // Count number of initialized tables
}
primary_tables = tables;
*best_ref_p = nullptr; // Last element of array must be NULL
return false;
}
/**
Propagate dependencies between tables due to outer join relations.
@returns false if success, true if error
Build transitive closure for relation 'to be dependent on'.
This will speed up the plan search for many cases with outer joins,
as well as allow us to catch illegal cross references.
Warshall's algorithm is used to build the transitive closure.
As we may restart the outer loop up to 'table_count' times, the
complexity of the algorithm is O((number of tables)^3).
However, most of the iterations will be shortcircuited when
there are no dependencies to propagate.
*/
bool JOIN::propagate_dependencies() {
for (uint i = 0; i < tables; i++) {
if (!join_tab[i].dependent) continue;
// Add my dependencies to other tables depending on me
uint j;
JOIN_TAB *tab;
for (j = 0, tab = join_tab; j < tables; j++, tab++) {
if (tab->dependent & join_tab[i].table_ref->map()) {
const table_map was_dependent = tab->dependent;
tab->dependent |= join_tab[i].dependent;
/*
If we change dependencies for a table we already have
processed: Redo dependency propagation from this table.
*/
if (i > j && tab->dependent != was_dependent) {
i = j - 1;
break;
}
}
}
}
JOIN_TAB *const tab_end = join_tab + tables;
for (JOIN_TAB *tab = join_tab; tab < tab_end; tab++) {
if ((tab->dependent & tab->table_ref->map())) return true;
}
return false;
}
/**
Extract const tables based on row counts.
@returns false if success, true if error
This extraction must be done for each execution.
Tables containing exactly zero or one rows are marked as const, but
notice the additional constraints checked below.
Tables that are extracted have their rows read before actual execution
starts and are placed in the beginning of the join_tab array.
Thus, they do not take part in join order optimization process,
which can significantly reduce the optimization time.
The data read from these tables can also be regarded as "constant"
throughout query execution, hence the column values can be used for
additional constant propagation and extraction of const tables based
on eq-ref properties.
The tables are given the type JT_SYSTEM.
*/
bool JOIN::extract_const_tables() {
enum enum_const_table_extraction {
extract_no_table = 0,
extract_empty_table = 1,
extract_const_table = 2
};
JOIN_TAB *const tab_end = join_tab + tables;
for (JOIN_TAB *tab = join_tab; tab < tab_end; tab++) {
TABLE *const table = tab->table();
Table_ref *const tl = tab->table_ref;
enum enum_const_table_extraction extract_method = extract_const_table;
const bool all_partitions_pruned_away = table->all_partitions_pruned_away;
if (tl->outer_join_nest()) {
/*
Table belongs to a nested join, no candidate for const table extraction.
*/
extract_method = extract_no_table;
} else if (tl->embedding && tl->embedding->is_sj_or_aj_nest()) {
/*
Table belongs to a semi-join.
We do not currently pull out const tables from semi-join nests.
*/
extract_method = extract_no_table;
} else if (tab->join_cond()) {
// tab is the only inner table of an outer join, extract empty tables
extract_method = extract_empty_table;
}
switch (extract_method) {
case extract_no_table:
break;
case extract_empty_table:
// Extract tables with zero rows, but only if statistics are exact
if ((table->file->stats.records == 0 || all_partitions_pruned_away) &&
(table->file->ha_table_flags() & HA_STATS_RECORDS_IS_EXACT))
mark_const_table(tab, nullptr);
break;
case extract_const_table:
/*
Extract tables with zero or one rows, but do not extract tables that
1. are dependent upon other tables, or
2. have no exact statistics, or
3. are full-text searched
4. a derived table which has a stored function
*/
const bool explain_mode = thd->lex->is_explain();
if ((table->s->system || table->file->stats.records <= 1 ||
all_partitions_pruned_away) &&
!tab->dependent && // 1
(table->file->ha_table_flags() & HA_STATS_RECORDS_IS_EXACT) && // 2
!tl->is_fulltext_searched() && // 3
!(explain_mode && tl->is_view_or_derived() &&
tl->has_stored_program())) // 4
mark_const_table(tab, nullptr);
break;
}
}
// Read const tables (tables matching no more than 1 rows)
if (!const_tables) return false;
for (POSITION *p_pos = positions, *p_end = p_pos + const_tables;
p_pos < p_end; p_pos++) {
JOIN_TAB *const tab = p_pos->table;
const int status = join_read_const_table(tab, p_pos);
if (status > 0)
return true;
else if (status == 0) {
found_const_table_map |= tab->table_ref->map();
tab->table_ref->optimized_away = true;
}
}
return false;
}
/**
Extract const tables based on functional dependencies.
@returns false if success, true if error
This extraction must be done for each execution.
Mark as const the tables that
- are functionally dependent on constant values, or
- are inner tables of an outer join and contain exactly zero or one rows
Tables that are extracted have their rows read before actual execution
starts and are placed in the beginning of the join_tab array, just as
described for JOIN::extract_const_tables().
The tables are given the type JT_CONST.
*/
bool JOIN::extract_func_dependent_tables() {
// loop until no more const tables are found
bool ref_changed;
// Tables referenced by others; if they're const the others may be too.
table_map found_ref;
do {
more_const_tables_found:
ref_changed = false;
found_ref = 0;
// Loop over all tables that are not already determined to be const
for (JOIN_TAB **pos = best_ref + const_tables; *pos; pos++) {
JOIN_TAB *const tab = *pos;
TABLE *const table = tab->table();
Table_ref *const tl = tab->table_ref;
/*
If equi-join condition by a key is null rejecting and after a
substitution of a const table the key value happens to be null
then we can state that there are no matches for this equi-join.
*/
Key_use *keyuse = tab->keyuse();
if (keyuse && tab->join_cond() && !tab->embedding_map) {
/*
When performing an outer join operation if there are no matching rows
for the single row of the outer table all the inner tables are to be
null complemented and thus considered as constant tables.
Here we apply this consideration to the case of outer join operations
with a single inner table only because the case with nested tables
would require a more thorough analysis.
TODO. Apply single row substitution to null complemented inner tables
for nested outer join operations.
*/
while (keyuse->table_ref == tl) {
if (!(keyuse->val->used_tables() & ~const_table_map) &&
keyuse->val->is_null() && keyuse->null_rejecting &&
(tl->embedding == nullptr ||
!tl->embedding->is_sj_or_aj_nest())) {
table->set_null_row();
table->const_table = true;
found_const_table_map |= tl->map();
mark_const_table(tab, keyuse);
goto more_const_tables_found;
}
keyuse++;
}
}
if (tab->dependent) // If dependent on some table
{
// All dependent tables must be const
if (tab->dependent & ~const_table_map) {
found_ref |= tab->dependent;
continue;
}
/*
Mark a dependent table as constant if
1. it has exactly zero or one rows (it is a system table), and
2. it is not within a nested outer join, and
3. it does not have an expensive outer join condition.
This is because we have to determine whether an outer-joined table
has a real row or a null-extended row in the optimizer phase.
We have no possibility to evaluate its join condition at
execution time, when it is marked as a system table.
*/
if (table->file->stats.records <= 1L && // 1
(table->file->ha_table_flags() & HA_STATS_RECORDS_IS_EXACT) && // 1
!tl->outer_join_nest() && // 2
!(tab->join_cond() && tab->join_cond()->is_expensive())) // 3
{ // system table
mark_const_table(tab, nullptr);
const int status =
join_read_const_table(tab, positions + const_tables - 1);
if (status > 0)
return true;
else if (status == 0)
found_const_table_map |= tl->map();
continue;
}
}
// Check if table can be read by key or table only uses const refs
if ((keyuse = tab->keyuse())) {
while (keyuse->table_ref == tl) {
Key_use *const start_keyuse = keyuse;
const uint key = keyuse->key;
tab->keys().set_bit(key); // QQ: remove this ?
table_map refs = 0;
Key_map const_ref, eq_part;
do {
if (keyuse->val->type() != Item::NULL_ITEM && !keyuse->optimize) {
if (!((~found_const_table_map) & keyuse->used_tables))
const_ref.set_bit(keyuse->keypart);
else
refs |= keyuse->used_tables;
eq_part.set_bit(keyuse->keypart);
}
keyuse++;
} while (keyuse->table_ref == tl && keyuse->key == key);
/*
Extract const tables with proper key dependencies.
Exclude tables that
1. are full-text searched, or
2. are part of nested outer join, or
3. are part of semi-join, or
4. have an expensive outer join condition.
5. are blocked by handler for const table optimize.
6. are not going to be used, typically because they are streamed
instead of materialized
(see Query_expression::can_materialize_directly_into_result()).
7. key evaluated in stored program in EXPLAIN mode
*/
if (eq_part.is_prefix(table->key_info[key].user_defined_key_parts) &&
!tl->is_fulltext_searched() && // 1
!tl->outer_join_nest() && // 2
!(tl->embedding && tl->embedding->is_sj_or_aj_nest()) && // 3
!(tab->join_cond() && tab->join_cond()->is_expensive()) && // 4
!(table->file->ha_table_flags() & HA_BLOCK_CONST_TABLE) && // 5
table->is_created() && // 6
!(thd->lex->is_explain() &&
start_keyuse->val->has_stored_program())) { // 7
if (table->key_info[key].flags & HA_NOSAME) {
if (const_ref == eq_part) { // Found everything for ref.
ref_changed = true;
mark_const_table(tab, start_keyuse);
if (create_ref_for_key(this, tab, start_keyuse,
found_const_table_map))
return true;
const int status =
join_read_const_table(tab, positions + const_tables - 1);
if (status > 0)
return true;
else if (status == 0)
found_const_table_map |= tl->map();
break;
} else
found_ref |= refs; // Table is const if all refs are const
} else if (const_ref == eq_part)
tab->const_keys.set_bit(key);
}
}
}
}
} while
/*
A new const table appeared, that is referenced by others, so re-check
others:
*/
((const_table_map & found_ref) && ref_changed);
return false;
}
/**
Update info on indexes that can be used for search lookups as
reading const tables may has added new sargable predicates.
*/
void JOIN::update_sargable_from_const(SARGABLE_PARAM *sargables) {
for (; sargables->field; sargables++) {
Field *const field = sargables->field;
JOIN_TAB *const tab = field->table->reginfo.join_tab;
Key_map possible_keys = field->key_start;
possible_keys.intersect(field->table->keys_in_use_for_query);
bool is_const = true;
for (uint j = 0; j < sargables->num_values; j++)
is_const &= sargables->arg_value[j]->const_item();
if (is_const) {
tab->const_keys.merge(possible_keys);
tab->keys().merge(possible_keys);
}
}
}
double find_worst_seeks(const TABLE *table, double num_rows,
double table_scan_cost) {
/*
Set a max value for the cost of seek operations we can expect
when using key lookup. This can't be too high as otherwise we
are likely to use table scan.
*/
double worst_seeks =
min(table->file->worst_seek_times(num_rows / 10), table_scan_cost * 3);
const double min_worst_seek = table->file->worst_seek_times(2.0);
return std::max(worst_seeks, min_worst_seek); // Fix for small tables
}
/**
Estimate the number of matched rows for each joined table.
Set up range scan for tables that have proper predicates.
Eliminate tables that have filter conditions that are always false based on
analysis performed in resolver phase or analysis of range scan predicates.
@returns false if success, true if error
*/
bool JOIN::estimate_rowcount() {
Opt_trace_context *const trace = &thd->opt_trace;
Opt_trace_object trace_wrapper(trace);
Opt_trace_array trace_records(trace, "rows_estimation");
JOIN_TAB *const tab_end = join_tab + tables;
for (JOIN_TAB *tab = join_tab; tab < tab_end; tab++) {
Opt_trace_object trace_table(trace);
trace_table.add_utf8_table(tab->table_ref);
if (tab->type() == JT_SYSTEM || tab->type() == JT_CONST) {
trace_table.add("rows", 1)
.add("cost", 1)
.add_alnum("table_type",
(tab->type() == JT_SYSTEM) ? "system" : "const")
.add("empty", tab->table()->has_null_row());
// Only one matching row and one block to read
tab->set_records(tab->found_records = 1);
tab->worst_seeks = tab->table()->file->worst_seek_times(1.0);
tab->read_time = tab->worst_seeks;
continue;
}
// Approximate number of found rows and cost to read them
tab->set_records(tab->found_records = tab->table()->file->stats.records);
const Cost_estimate table_scan_time = tab->table()->file->table_scan_cost();
tab->read_time = table_scan_time.total_cost();
tab->worst_seeks =
find_worst_seeks(tab->table(), tab->found_records, tab->read_time);
/*
Add to tab->const_keys the indexes for which all group fields or
all select distinct fields participate in one index.
Add to tab->skip_scan_keys indexes which can be used for skip
scan access if no aggregates are present.
*/
add_loose_index_scan_and_skip_scan_keys(this, tab);
// Perform range analysis if the table has keys that can be used.
Table_ref *const tl = tab->table_ref;
Item *condition = nullptr;
/*
For an inner table of an outer join, the join condition is either
attached to the actual table, or to the embedding join nest.
For tables that are inner-joined or semi-joined, the join condition
is taken from the WHERE condition.
*/
if (tl->is_inner_table_of_outer_join()) {
for (Table_ref *t = tl; t != nullptr; t = t->embedding) {
if (t->join_cond() != nullptr) {
condition = t->join_cond();
break;
}
}
assert(condition != nullptr);
} else {
condition = where_cond;
}
bool always_false_cond = false, range_analysis_done = false;
if (!tab->const_keys.is_clear_all() ||
!tab->skip_scan_keys.is_clear_all()) {
/*
This call fills tab->range_scan() with the best range access method
possible for this table, and only if it's better than table scan.
It also fills tab->needed_reg.
*/
ha_rows records = get_quick_record_count(thd, tab, row_limit, condition);
if (records == 0 && thd->is_error()) return true;
if (records == 0 && tab->table()->reginfo.impossible_range)
always_false_cond = true;
if (records != HA_POS_ERROR) {
tab->found_records = records;
tab->read_time = tab->range_scan() ? tab->range_scan()->cost : 0.0;
}
range_analysis_done = true;
} else if (tab->join_cond() != nullptr && tab->join_cond()->const_item() &&
tab->join_cond()->val_int() == 0) {
always_false_cond = true;
}
/*
Check for "always false" and mark table as "const".
Exclude outer-joined tables unless the table is the single outer-joined
table in the query block (this also eliminates tables inside
outer-joined derived tables).
Exclude semi-joined and anti-joined tables (only those tables that are
functionally dependent can be marked "const", and subsequently pulled
out of their semi-join nests).
*/
if (always_false_cond &&
(!tl->is_inner_table_of_outer_join() || tl->embedding == nullptr) &&
(!(tl->embedding != nullptr && tl->embedding->is_sj_or_aj_nest()))) {
/*
Always false WHERE condition or (outer) join condition.
In case of outer join, mark that one empty NULL row is matched.
In case of WHERE, don't set found_const_table_map to get the
caller to abort with a zero row result.
*/
mark_const_table(tab, nullptr);
tab->set_type(JT_CONST); // Override setting made in mark_const_table()
if (tab->join_cond() != nullptr) {
// Generate an empty row
trace_table.add("returning_empty_null_row", true)
.add_alnum("cause", "always_false_outer_join_condition");
found_const_table_map |= tl->map();
tab->table()->set_null_row(); // All fields are NULL
} else {
trace_table.add("rows", 0).add_alnum("cause",
"impossible_where_condition");
}
} else if (!range_analysis_done) {
Opt_trace_object(trace, "table_scan")
.add("rows", tab->found_records)
.add("cost", tab->read_time);
}
}
return false;
}
/**
Set semi-join embedding join nest pointers.
Set pointer to embedding semi-join nest for all semi-joined tables.
This is the closest semi-join or anti-join nest.
Note that this must be done for every table inside all semi-join nests,
even for tables within outer join nests embedded in semi-join nests.
A table can never be part of multiple semi-join nests, hence no
ambiguities can ever occur.
Note also that the pointer is not set for Table_ref objects that
are outer join nests within semi-join nests.
*/
void JOIN::set_semijoin_embedding() {
assert(!query_block->sj_nests.empty());
JOIN_TAB *const tab_end = join_tab + primary_tables;
for (JOIN_TAB *tab = join_tab; tab < tab_end; tab++) {
tab->emb_sj_nest = nullptr;
for (Table_ref *tl = tab->table_ref; tl->embedding; tl = tl->embedding) {
if (tl->embedding->is_sj_or_aj_nest()) {
assert(!tab->emb_sj_nest);
tab->emb_sj_nest = tl->embedding;
// Let the up-walk continue, to assert there's no AJ/SJ nest above.
}
}
}
}
/**
@brief Check if semijoin's compared types allow materialization.
@param[in,out] sj_nest Semi-join nest containing information about correlated
expressions. Set nested_join->sjm.scan_allowed to true if
MaterializeScan strategy allowed. Set nested_join->sjm.lookup_allowed
to true if MaterializeLookup strategy allowed
@details
This is a temporary fix for BUG#36752.
There are two subquery materialization strategies for semijoin:
1. Materialize and do index lookups in the materialized table. See
BUG#36752 for description of restrictions we need to put on the
compared expressions.
In addition, since indexes are not supported for BLOB columns,
this strategy can not be used if any of the columns in the
materialized table will be BLOB/GEOMETRY columns. (Note that
also columns for non-BLOB values that may be greater in size
than CONVERT_IF_BIGGER_TO_BLOB, will be represented as BLOB
columns.)
2. Materialize and then do a full scan of the materialized table.
The same criteria as for MaterializeLookup are applied, except that
BLOB/GEOMETRY columns are allowed.
*/
static void semijoin_types_allow_materialization(Table_ref *sj_nest) {
DBUG_TRACE;
assert(sj_nest->nested_join->sj_outer_exprs.size() ==
sj_nest->nested_join->sj_inner_exprs.size());
if (sj_nest->nested_join->sj_outer_exprs.size() > MAX_REF_PARTS ||
sj_nest->nested_join->sj_outer_exprs.size() == 0) {
// building an index is impossible
sj_nest->nested_join->sjm.scan_allowed = false;
sj_nest->nested_join->sjm.lookup_allowed = false;
return;
}
sj_nest->nested_join->sjm.scan_allowed = true;
sj_nest->nested_join->sjm.lookup_allowed = true;
bool blobs_involved = false;
uint total_lookup_index_length = 0;
uint max_key_length, max_key_part_length, max_key_parts;
/*
Maximum lengths for keys and key parts that are supported by
the temporary table storage engine(s).
*/
get_max_key_and_part_length(&max_key_length, &max_key_part_length,
&max_key_parts);
auto it1 = sj_nest->nested_join->sj_outer_exprs.begin();
auto it2 = sj_nest->nested_join->sj_inner_exprs.begin();
while (it1 != sj_nest->nested_join->sj_outer_exprs.end() &&
it2 != sj_nest->nested_join->sj_inner_exprs.end()) {
Item *outer = *it1++;
Item *inner = *it2++;
assert(outer->real_item() && inner->real_item());
if (!types_allow_materialization(outer, inner)) {
sj_nest->nested_join->sjm.scan_allowed = false;
sj_nest->nested_join->sjm.lookup_allowed = false;
return;
}
blobs_involved |= inner->is_blob_field();
// Calculate the index length of materialized table
const uint lookup_index_length = get_key_length_tmp_table(inner);
if (lookup_index_length > max_key_part_length)
sj_nest->nested_join->sjm.lookup_allowed = false;
total_lookup_index_length += lookup_index_length;
}
if (total_lookup_index_length > max_key_length)
sj_nest->nested_join->sjm.lookup_allowed = false;
if (blobs_involved) sj_nest->nested_join->sjm.lookup_allowed = false;
DBUG_PRINT("info", ("semijoin_types_allow_materialization: ok, allowed"));
}
/**
Index dive can be skipped if the following conditions are satisfied:
F1) For a single table query:
a) FORCE INDEX applies to a single index.
b) No subquery is present.
c) Fulltext Index is not involved.
d) No GROUP-BY or DISTINCT clause.
e.I) No ORDER-BY clause or
e.II) The given index can provide the order.
F2) Not applicable to multi-table query.
@param tab JOIN_TAB object.
@param thd THD object.
*/
static bool check_skip_records_in_range_qualification(JOIN_TAB *tab, THD *thd) {
Query_block *select = thd->lex->current_query_block();
TABLE *table = tab->table();
if ((!table->force_index ||
table->keys_in_use_for_query.bits_set() != 1) || // F1.a
!select->parent_lex->is_single_level_stmt() || // F1.b
select->has_ft_funcs() || // F1.c
(select->is_grouped() || select->is_distinct()) || // F1.d
select->m_current_table_nest->size() != 1) // F2
return false;
/*
Index dive is needed to get accurate cost from storage engine. When all
above criteria is met, there are 2 use for the cost. Row access and sort.
F1.e.I) If there is no ORDER BY then getting accurate cost is not needed as
row access is enforced by force index.
F1.e.II) If there is an ORDER BY and the chosen index (enforced by FORCE
INDEX) for row access can provide order then the cost is not really used.
Hence accurate cost calculation is not needed.
*/
// F1.e.I
if (!select->is_ordered()) return true;
int idx = table->keys_in_use_for_query.get_first_set();
uint used_key_parts;
bool skip_quick;
ORDER_with_src order_src(select->order_list.first, ESC_ORDER_BY);
int key_order = test_if_order_by_key(&order_src, table, idx, &used_key_parts,
&skip_quick);
// Condition F1.e.II
return key_order != 0;
}
/*****************************************************************************
Create JOIN_TABS, make a guess about the table types,
Approximate how many records will be used in each table
*****************************************************************************/
/**
Returns estimated number of rows that could be fetched by given
access method.
The function calls the range optimizer to estimate the cost of the
cheapest QUICK_* index access method to scan one or several of the
'keys' using the conditions 'select->cond'. The range optimizer
compares several different types of 'quick select' methods (range
scan, index merge, loose index scan) and selects the cheapest one.
If the best index access method is cheaper than a table- and an index
scan, then the range optimizer also constructs the corresponding
QUICK_* object and assigns it to select->quick. In most cases this
is the QUICK_* object used at later (optimization and execution)
phases.
@param thd Session that runs the query.
@param tab JOIN_TAB of source table.
@param limit maximum number of rows to select.
@param condition the condition to be used for the range check,
@note
In case of valid range, a RowIterator object will be constructed and
saved in select->quick.
@return Estimated number of result rows selected from 'tab'.
@retval HA_POS_ERROR For derived tables/views or if an error occur.
@retval 0 If impossible query (i.e. certainly no rows will be
selected.)
*/
static ha_rows get_quick_record_count(THD *thd, JOIN_TAB *tab, ha_rows limit,
Item *condition) {
DBUG_TRACE;
uchar buff[STACK_BUFF_ALLOC];
if (check_stack_overrun(thd, STACK_MIN_SIZE, buff))
return 0; // Fatal error flag is set
Table_ref *const tl = tab->table_ref;
tab->set_skip_records_in_range(
check_skip_records_in_range_qualification(tab, thd));
// Derived tables aren't filled yet, so no stats are available.
if (!tl->uses_materialization()) {
AccessPath *range_scan;
Key_map keys_to_use = tab->const_keys;
keys_to_use.merge(tab->skip_scan_keys);
MEM_ROOT temp_mem_root(key_memory_test_quick_select_exec,
thd->variables.range_alloc_block_size);
int error = test_quick_select(
thd, thd->mem_root, &temp_mem_root, keys_to_use, 0,
0, // empty table_map
limit,
false, // don't force quick range
ORDER_NOT_RELEVANT, tab->table(), tab->skip_records_in_range(),
condition, &tab->needed_reg, tab->table()->force_index,
tab->join()->query_block, &range_scan);
tab->set_range_scan(range_scan);
if (error == 1) return range_scan->num_output_rows();
if (error == -1) {
tl->table->reginfo.impossible_range = true;
return 0;
}
DBUG_PRINT("warning", ("Couldn't use record count on const keypart"));
} else if (tl->is_table_function() || tl->materializable_is_const(thd)) {
tl->fetch_number_of_rows();
return tl->table->file->stats.records;
}
return HA_POS_ERROR;
}
/*
Get estimated record length for semi-join materialization temptable
SYNOPSIS
get_tmp_table_rec_length()
items IN subquery's select list.
DESCRIPTION
Calculate estimated record length for semi-join materialization
temptable. It's an estimate because we don't follow every bit of
create_tmp_table()'s logic. This isn't necessary as the return value of
this function is used only for cost calculations.
RETURN
Length of the temptable record, in bytes
*/
static uint get_tmp_table_rec_length(const mem_root_deque<Item *> &items) {
uint len = 0;
for (Item *item : VisibleFields(items)) {
switch (item->result_type()) {
case REAL_RESULT:
len += sizeof(double);
break;
case INT_RESULT:
if (item->max_length >= (MY_INT32_NUM_DECIMAL_DIGITS - 1))
len += 8;
else
len += 4;
break;
case STRING_RESULT:
/* DATE/TIME and GEOMETRY fields have STRING_RESULT result type. */
if (item->is_temporal() || item->data_type() == MYSQL_TYPE_GEOMETRY)
len += 8;
else
len += item->max_length;
break;
case DECIMAL_RESULT:
len += 10;
break;
case ROW_RESULT:
default:
assert(0); /* purecov: deadcode */
break;
}
}
return len;
}
/**
Writes to the optimizer trace information about dependencies between
tables.
@param trace optimizer trace
@param join_tabs all JOIN_TABs of the join
@param table_count how many JOIN_TABs in the 'join_tabs' array
*/
static void trace_table_dependencies(Opt_trace_context *trace,
JOIN_TAB *join_tabs, uint table_count) {
Opt_trace_object trace_wrapper(trace);
Opt_trace_array trace_dep(trace, "table_dependencies");
for (uint i = 0; i < table_count; i++) {
Table_ref *table_ref = join_tabs[i].table_ref;
Opt_trace_object trace_one_table(trace);
trace_one_table.add_utf8_table(table_ref).add(
"row_may_be_null", table_ref->table->is_nullable());
const table_map map = table_ref->map();
assert(map < (1ULL << table_count));
for (uint j = 0; j < table_count; j++) {
if (map & (1ULL << j)) {
trace_one_table.add("map_bit", j);
break;
}
}
Opt_trace_array depends_on(trace, "depends_on_map_bits");
static_assert(sizeof(table_ref->map()) <= 64,
"RAND_TABLE_BIT may be in join_tabs[i].dependent, so we test "
"all 64 bits.");
for (uint j = 0; j < 64; j++) {
if (join_tabs[i].dependent & (1ULL << j)) depends_on.add(j);
}
}
}
/**
Add to join_tab[i]->condition() "table.field IS NOT NULL" conditions
we've inferred from ref/eq_ref access performed.
This function is a part of "Early NULL-values filtering for ref access"
optimization.
Example of this optimization:
For query SELECT * FROM t1,t2 WHERE t2.key=t1.field @n
and plan " any-access(t1), ref(t2.key=t1.field) " @n
add "t1.field IS NOT NULL" to t1's table condition. @n
Description of the optimization:
We look through equalities chosen to perform ref/eq_ref access,
pick equalities that have form "tbl.part_of_key = othertbl.field"
(where othertbl is a non-const table and othertbl.field may be NULL)
and add them to conditions on corresponding tables (othertbl in this
example).
Exception from that is the case when referred_tab->join != join.
I.e. don't add NOT NULL constraints from any embedded subquery.
Consider this query:
@code
SELECT A.f2 FROM t1 LEFT JOIN t2 A ON A.f2 = f1
WHERE A.f3=(SELECT MIN(f3) FROM t2 C WHERE A.f4 = C.f4) OR A.f3 IS NULL;
@endcode
Here condition A.f3 IS NOT NULL is going to be added to the WHERE
condition of the embedding query.
Another example:
SELECT * FROM t10, t11 WHERE (t10.a < 10 OR t10.a IS NULL)
AND t11.b <=> t10.b AND (t11.a = (SELECT MAX(a) FROM t12
WHERE t12.b = t10.a ));
Here condition t10.a IS NOT NULL is going to be added.
In both cases addition of NOT NULL condition will erroneously reject
some rows of the result set.
referred_tab->join != join constraint would disallow such additions.
This optimization doesn't affect the choices that ref, range, or join
optimizer make. This was intentional because this was added after 4.1
was GA.
Implementation overview
1. update_ref_and_keys() accumulates info about null-rejecting
predicates in in Key_field::null_rejecting
1.1 add_key_part saves these to Key_use.
2. create_ref_for_key copies them to Index_lookup.
3. add_not_null_conds adds "x IS NOT NULL" to join_tab->m_condition of
appropriate JOIN_TAB members.
@returns false on success, true on error
*/
static bool add_not_null_conds(JOIN *join) {
DBUG_TRACE;
ASSERT_BEST_REF_IN_JOIN_ORDER(join);
for (uint i = join->const_tables; i < join->tables; i++) {
JOIN_TAB *const tab = join->best_ref[i];
if ((tab->type() != JT_REF && tab->type() != JT_EQ_REF &&
tab->type() != JT_REF_OR_NULL) ||
tab->table()->is_nullable()) {
continue;
}
for (uint keypart = 0; keypart < tab->ref().key_parts; keypart++) {
if ((tab->ref().null_rejecting & ((key_part_map)1 << keypart)) == 0) {
continue;
}
Item *const item = tab->ref().items[keypart]->real_item();
if (item->type() != Item::FIELD_ITEM || !item->is_nullable()) continue;
Item_field *const not_null_item = down_cast<Item_field *>(item);
JOIN_TAB *referred_tab = not_null_item->field->table->reginfo.join_tab;
/*
For UPDATE queries such as:
UPDATE t1 SET t1.f2=(SELECT MAX(t2.f4) FROM t2 WHERE t2.f3=t1.f1);
not_null_item is the t1.f1, but it's referred_tab is 0.
*/
if (referred_tab == nullptr || referred_tab->join() != join) continue;
/* Skip if we already have a 'not null' predicate for 'item' */
if (has_not_null_predicate(referred_tab->condition(), not_null_item))
continue;
Item *notnull = new Item_func_isnotnull(not_null_item);
if (notnull == nullptr) return true;
/*
We need to do full fix_fields() call here in order to have correct
notnull->const_item(). This is needed e.g. by test_quick_select
when it is called from make_join_query_block after this function is
called.
*/
if (notnull->fix_fields(join->thd, ¬null)) return true;
DBUG_EXECUTE("where",
print_where(join->thd, notnull, referred_tab->table()->alias,
QT_ORDINARY););
referred_tab->and_with_condition(notnull);
}
}
return false;
}
/**
Check all existing AND'ed predicates in 'cond' for an existing
'is not null 'not_null_item''-predicate.
A condition consisting of multiple AND'ed terms is recursively
decomposed in the search for the specified not null predicate.
@param cond Condition to be checked.
@param not_null_item The item in: 'is not null 'item'' to search for
@return true if 'is not null 'not_null_item'' is a predicate
in the specified 'cond'.
*/
static bool has_not_null_predicate(Item *cond, Item_field *not_null_item) {
if (cond == nullptr) return false;
if (cond->type() == Item::FUNC_ITEM) {
Item_func *item_func = down_cast<Item_func *>(cond);
const Item_func::Functype func_type = item_func->functype();
return (func_type == Item_func::ISNOTNULL_FUNC &&
item_func->key_item() == not_null_item);
} else if (cond->type() == Item::COND_ITEM) {
Item_cond *item_cond = down_cast<Item_cond *>(cond);
if (item_cond->functype() == Item_func::COND_AND_FUNC) {
List_iterator<Item> li(*item_cond->argument_list());
Item *item;
while ((item = li++)) {
if (has_not_null_predicate(item, not_null_item)) return true;
}
}
}
return false;
}
/**
Check if given expression only uses fields covered by index @a keyno in the
table tbl. The expression can use any fields in any other tables.
The expression is guaranteed not to be AND or OR - those constructs are
handled outside of this function.
Restrict some function types from being pushed down to storage engine:
a) Don't push down the triggered conditions with exception for
IS_NOT_NULL_COMPL trigger condition since the NULL-complemented rows are added
at a later stage in the iterators, so we won't see NULL-complemented rows when
evaluating it as an index condition. Nested outer joins execution code may
need to evaluate a condition several times (both triggered and untriggered).
TODO: Consider cloning the triggered condition and using the copies for:
1. push the first copy down, to have most restrictive index condition
possible.
2. Put the second copy into tab->m_condition.
b) Stored functions contain a statement that might start new operations (like
DML statements) from within the storage engine. This does not work against
all SEs.
c) Subqueries might contain nested subqueries and involve more tables.
TODO: ROY: CHECK THIS
d) Do not push down internal functions of type DD_INTERNAL_FUNC. When ICP is
enabled, pushing internal functions to storage engine for evaluation will
open data-dictionary tables. In InnoDB storage engine this will result in
situation like recursive latching of same page by the same thread. To avoid
such situation, internal functions of type DD_INTERNAL_FUNC are not pushed
to storage engine for evaluation.
@param item Expression to check
@param tbl The table having the index
@param keyno The index number
@param other_tbls_ok true <=> Fields of other non-const tables are allowed
@return false if No, true if Yes
*/
bool uses_index_fields_only(Item *item, TABLE *tbl, uint keyno,
bool other_tbls_ok) {
// Restrictions b and c.
if (item->has_stored_program() || item->has_subquery()) return false;
// No table fields in const items
if (item->const_for_execution()) return true;
const Item::Type item_type = item->type();
switch (item_type) {
case Item::FUNC_ITEM: {
Item_func *item_func = (Item_func *)item;
const Item_func::Functype func_type = item_func->functype();
if (func_type == Item_func::DD_INTERNAL_FUNC) // Restriction d.
return false;
// Restriction a.
if (func_type == Item_func::TRIG_COND_FUNC &&
down_cast<Item_func_trig_cond *>(item_func)->get_trig_type() !=
Item_func_trig_cond::IS_NOT_NULL_COMPL) {
return false;
}
/* This is a function, apply condition recursively to arguments */
if (item_func->argument_count() > 0) {
Item **item_end =
(item_func->arguments()) + item_func->argument_count();
for (Item **child = item_func->arguments(); child != item_end;
child++) {
if (!uses_index_fields_only(*child, tbl, keyno, other_tbls_ok))
return false;
}
}
return true;
}
case Item::COND_ITEM: {
/*
This is a AND/OR condition. Regular AND/OR clauses are handled by
make_cond_for_index() which will chop off the part that can be
checked with index. This code is for handling non-top-level AND/ORs,
e.g. func(x AND y).
*/
List_iterator<Item> li(*((Item_cond *)item)->argument_list());
Item *cond_item;
while ((cond_item = li++)) {
if (!uses_index_fields_only(cond_item, tbl, keyno, other_tbls_ok))
return false;
}
return true;
}
case Item::FIELD_ITEM: {
const Item_field *item_field = down_cast<const Item_field *>(item);
if (item_field->field->table != tbl) return other_tbls_ok;
/*
The below is probably a repetition - the first part checks the
other two, but let's play it safe:
*/
return item_field->field->part_of_key.is_set(keyno) &&
item_field->field->type() != MYSQL_TYPE_GEOMETRY &&
item_field->field->type() != MYSQL_TYPE_BLOB;
}
case Item::REF_ITEM:
return uses_index_fields_only(item->real_item(), tbl, keyno,
other_tbls_ok);
default:
return false; /* Play it safe, don't push unknown non-const items */
}
}
/**
Optimize semi-join nests that could be run with sj-materialization
@param join The join to optimize semi-join nests for
@details
Optimize each of the semi-join nests that can be run with
materialization. For each of the nests, we
- Generate the best join order for this "sub-join" and remember it;
- Remember the sub-join execution cost (it's part of materialization
cost);
- Calculate other costs that will be incurred if we decide
to use materialization strategy for this semi-join nest.
All obtained information is saved and will be used by the main join
optimization pass.
@return false if successful, true if error
*/
static bool optimize_semijoin_nests_for_materialization(JOIN *join) {
DBUG_TRACE;
Opt_trace_context *const trace = &join->thd->opt_trace;
for (Table_ref *sj_nest : join->query_block->sj_nests) {
/* As a precaution, reset pointers that were used in prior execution */
sj_nest->nested_join->sjm.positions = nullptr;
/* Calculate the cost of materialization if materialization is allowed. */
if (sj_nest->nested_join->sj_enabled_strategies &
OPTIMIZER_SWITCH_MATERIALIZATION) {
/* A semi-join nest should not contain tables marked as const */
assert(!(sj_nest->sj_inner_tables & join->const_table_map));
Opt_trace_object trace_wrapper(trace);
Opt_trace_object trace_sjmat(
trace, "execution_plan_for_potential_materialization");
Opt_trace_array trace_sjmat_steps(trace, "steps");
/*
Try semijoin materialization if the semijoin is classified as
non-trivially-correlated.
*/
if (sj_nest->nested_join->sj_corr_tables) continue;
/*
Check whether data types allow execution with materialization.
*/
semijoin_types_allow_materialization(sj_nest);
if (!sj_nest->nested_join->sjm.scan_allowed &&
!sj_nest->nested_join->sjm.lookup_allowed)
continue;
if (Optimize_table_order(join->thd, join, sj_nest).choose_table_order())
return true;
const uint n_tables = my_count_bits(sj_nest->sj_inner_tables);
calculate_materialization_costs(join, sj_nest, n_tables,
&sj_nest->nested_join->sjm);
/*
Cost data is in sj_nest->nested_join->sjm. We also need to save the
plan:
*/
if (!(sj_nest->nested_join->sjm.positions =
(POSITION *)join->thd->alloc(sizeof(POSITION) * n_tables)))
return true;
memcpy(sj_nest->nested_join->sjm.positions,
join->best_positions + join->const_tables,
sizeof(POSITION) * n_tables);
}
}
return false;
}
/*
Check if table's Key_use elements have an eq_ref(outer_tables) candidate
SYNOPSIS
find_eq_ref_candidate()
tl Table to be checked
sj_inner_tables Bitmap of inner tables. eq_ref(inner_table) doesn't
count.
DESCRIPTION
Check if table's Key_use elements have an eq_ref(outer_tables) candidate
TODO
Check again if it is feasible to factor common parts with constant table
search
RETURN
true - There exists an eq_ref(outer-tables) candidate
false - Otherwise
*/
static bool find_eq_ref_candidate(Table_ref *tl, table_map sj_inner_tables) {
Key_use *keyuse = tl->table->reginfo.join_tab->keyuse();
if (keyuse) {
while (true) /* For each key */
{
const uint key = keyuse->key;
KEY *const keyinfo = tl->table->key_info + key;
key_part_map bound_parts = 0;
if ((keyinfo->flags & (HA_NOSAME)) == HA_NOSAME) {
do /* For all equalities on all key parts */
{
/* Check if this is "t.keypart = expr(outer_tables) */
if (!(keyuse->used_tables & sj_inner_tables) &&
!(keyuse->optimize & KEY_OPTIMIZE_REF_OR_NULL)) {
/*
Consider only if the resulting condition does not pass a NULL
value through. Especially needed for a UNIQUE index on NULLable
columns where a duplicate row is possible with NULL values.
*/
if (keyuse->null_rejecting || !keyuse->val->is_nullable() ||
!keyinfo->key_part[keyuse->keypart].field->is_nullable())
bound_parts |= (key_part_map)1 << keyuse->keypart;
}
keyuse++;
} while (keyuse->key == key && keyuse->table_ref == tl);
if (bound_parts == LOWER_BITS(uint, keyinfo->user_defined_key_parts))
return true;
if (keyuse->table_ref != tl) return false;
} else {
do {
keyuse++;
if (keyuse->table_ref != tl) return false;
} while (keyuse->key == key);
}
}
}
return false;
}
/**
Pull tables out of semi-join nests based on functional dependencies
@param join The join where to do the semi-join table pullout
@return False if successful, true if error (Out of memory)
@details
Pull tables out of semi-join nests based on functional dependencies,
ie. if a table is accessed via eq_ref(outer_tables).
The function may be called several times, the caller is responsible
for setting up proper key information that this function acts upon.
PRECONDITIONS
When this function is called, the join may have several semi-join nests
but it is guaranteed that one semi-join nest does not contain another.
For functionally dependent tables to be pulled out, key information must
have been calculated (see update_ref_and_keys()).
POSTCONDITIONS
* Tables that were pulled out are removed from the semi-join nest they
belonged to and added to the parent join nest.
* For these tables, the used_tables and not_null_tables fields of
the semi-join nest they belonged to will be adjusted.
The semi-join nest is also marked as correlated, and
sj_corr_tables and sj_depends_on are adjusted if necessary.
* Semi-join nests' sj_inner_tables is set equal to used_tables
NOTE
Table pullout may make uncorrelated subquery correlated. Consider this
example:
... WHERE oe IN (SELECT it1.primary_key WHERE p(it1, it2) ... )
here table it1 can be pulled out (we have it1.primary_key=oe which gives
us functional dependency). Once it1 is pulled out, all references to it1
from p(it1, it2) become references to outside of the subquery and thus
make the subquery (i.e. its semi-join nest) correlated.
Making the subquery (i.e. its semi-join nest) correlated prevents us from
using Materialization or LooseScan to execute it.
*/
static bool pull_out_semijoin_tables(JOIN *join) {
DBUG_TRACE;
assert(!join->query_block->sj_nests.empty());
Opt_trace_context *const trace = &join->thd->opt_trace;
Opt_trace_object trace_wrapper(trace);
Opt_trace_array trace_pullout(trace, "pulled_out_semijoin_tables");
/* Try pulling out tables from each semi-join nest */
for (auto sj_list_it = join->query_block->sj_nests.begin();
sj_list_it != join->query_block->sj_nests.end();) {
Table_ref *sj_nest = *sj_list_it;
if (sj_nest->is_aj_nest()) {
++sj_list_it;
continue;
}
table_map pulled_tables = 0;
/*
Calculate set of tables within this semi-join nest that have
other dependent tables. They cannot be pulled out. For example, with
t1 SEMIJOIN (t2 LEFT JOIN t3 ON ...) ON t1.a=t2.pk,
t2 cannot be pulled out because t3 depends on it.
*/
table_map dep_tables = 0;
for (Table_ref *tbl : sj_nest->nested_join->m_tables) {
if (tbl->dep_tables & sj_nest->nested_join->used_tables)
dep_tables |= tbl->dep_tables;
}
/*
Find which tables we can pull out based on key dependency data.
Note that pulling one table out can allow us to pull out some
other tables too.
*/
bool pulled_a_table;
do {
pulled_a_table = false;
for (Table_ref *tbl : sj_nest->nested_join->m_tables) {
if (tbl->table && !(pulled_tables & tbl->map()) &&
!(dep_tables & tbl->map())) {
if (find_eq_ref_candidate(
tbl, sj_nest->nested_join->used_tables & ~pulled_tables)) {
pulled_a_table = true;
pulled_tables |= tbl->map();
Opt_trace_object(trace).add_utf8_table(tbl).add(
"functionally_dependent", true);
/*
Pulling a table out of uncorrelated subquery in general makes
it correlated. See the NOTE to this function.
*/
sj_nest->nested_join->sj_corr_tables |= tbl->map();
sj_nest->nested_join->sj_depends_on |= tbl->map();
}
}
}
} while (pulled_a_table);
/*
Move the pulled out Table_ref elements to the parents.
*/
sj_nest->nested_join->used_tables &= ~pulled_tables;
sj_nest->nested_join->not_null_tables &= ~pulled_tables;
/* sj_inner_tables is a copy of nested_join->used_tables */
sj_nest->sj_inner_tables = sj_nest->nested_join->used_tables;
bool remove = false;
if (pulled_tables) {
mem_root_deque<Table_ref *> *upper_join_list =
(sj_nest->embedding != nullptr)
? &sj_nest->embedding->nested_join->m_tables
: &join->query_block->m_table_nest;
Prepared_stmt_arena_holder ps_arena_holder(join->thd);
for (auto child_li = sj_nest->nested_join->m_tables.begin();
child_li != sj_nest->nested_join->m_tables.end();) {
Table_ref *tbl = *child_li;
if (tbl->table && !(sj_nest->nested_join->used_tables & tbl->map())) {
/*
Pull the table up in the same way as simplify_joins() does:
update join_list and embedding pointers but keep next[_local]
pointers.
*/
child_li = sj_nest->nested_join->m_tables.erase(child_li);
upper_join_list->push_back(tbl);
tbl->join_list = upper_join_list;
tbl->embedding = sj_nest->embedding;
} else {
++child_li;
}
}
/* Remove the sj-nest itself if we've removed everything from it */
if (!sj_nest->nested_join->used_tables) {
upper_join_list->erase(std::find(upper_join_list->begin(),
upper_join_list->end(), sj_nest));
/* Also remove it from the list of SJ-nests: */
remove = true;
}
}
if (remove) {
sj_list_it = join->query_block->sj_nests.erase(sj_list_it);
} else {
++sj_list_it;
}
}
return false;
}
/* Values in optimize */
#define KEY_OPTIMIZE_EXISTS 1
#define KEY_OPTIMIZE_REF_OR_NULL 2
/**
Merge new key definitions to old ones, remove those not used in both.
This is called for OR between different levels.
To be able to do 'ref_or_null' we merge a comparison of a column
and 'column IS NULL' to one test. This is useful for sub select queries
that are internally transformed to something like:.
@code
SELECT * FROM t1 WHERE t1.key=outer_ref_field or t1.key IS NULL
@endcode
Key_field::null_rejecting is processed as follows: @n
result has null_rejecting=true if it is set for both ORed references.
for example:
- (t2.key = t1.field OR t2.key = t1.field) -> null_rejecting=true
- (t2.key = t1.field OR t2.key <=> t1.field) -> null_rejecting=false
@todo
The result of this is that we're missing some 'ref' accesses.
OptimizerTeam: Fix this
*/
static Key_field *merge_key_fields(Key_field *start, Key_field *new_fields,
Key_field *end, uint and_level) {
if (start == new_fields) return start; // Impossible or
if (new_fields == end) return start; // No new fields, skip all
Key_field *first_free = new_fields;
/* Mark all found fields in old array */
for (; new_fields != end; new_fields++) {
const Field *const new_field = new_fields->item_field->field;
for (Key_field *old = start; old != first_free; old++) {
const Field *const old_field = old->item_field->field;
/*
Check that the Field objects are the same, as we may have several
Item_field objects pointing to the same Field:
*/
if (old_field == new_field) {
/*
NOTE: below const_item() call really works as "!used_tables()", i.e.
it can return false where it is feasible to make it return true.
The cause is as follows: Some of the tables are already known to be
const tables (the detection code is in JOIN::make_join_plan(),
above the update_ref_and_keys() call), but we didn't propagate
information about this: TABLE::const_table is not set to true, and
Item::update_used_tables() hasn't been called for each item.
The result of this is that we're missing some 'ref' accesses.
TODO: OptimizerTeam: Fix this
*/
if (!new_fields->val->const_item()) {
/*
If the value matches, we can use the key reference.
If not, we keep it until we have examined all new values
*/
if (old->val->eq(new_fields->val, old_field->binary())) {
old->level = and_level;
old->optimize =
((old->optimize & new_fields->optimize & KEY_OPTIMIZE_EXISTS) |
((old->optimize | new_fields->optimize) &
KEY_OPTIMIZE_REF_OR_NULL));
old->null_rejecting =
(old->null_rejecting && new_fields->null_rejecting);
}
} else if (old->eq_func && new_fields->eq_func &&
old->val->eq_by_collation(new_fields->val,
old_field->binary(),
old_field->charset())) {
old->level = and_level;
old->optimize =
((old->optimize & new_fields->optimize & KEY_OPTIMIZE_EXISTS) |
((old->optimize | new_fields->optimize) &
KEY_OPTIMIZE_REF_OR_NULL));
old->null_rejecting =
(old->null_rejecting && new_fields->null_rejecting);
} else if (old->eq_func && new_fields->eq_func &&
((old->val->const_item() && old->val->is_null()) ||
new_fields->val->is_null())) {
/* field = expression OR field IS NULL */
old->level = and_level;
old->optimize = KEY_OPTIMIZE_REF_OR_NULL;
/*
Remember the NOT NULL value unless the value does not depend
on other tables.
*/
if (!old->val->used_tables() && old->val->is_null())
old->val = new_fields->val;
/* The referred expression can be NULL: */
old->null_rejecting = false;
} else {
/*
We are comparing two different const. In this case we can't
use a key-lookup on this so it's better to remove the value
and let the range optimizer handle it
*/
if (old == --first_free) // If last item
break;
*old = *first_free; // Remove old value
old--; // Retry this value
}
}
}
}
/* Remove all not used items */
for (Key_field *old = start; old != first_free;) {
if (old->level != and_level) { // Not used in all levels
if (old == --first_free) break;
*old = *first_free; // Remove old value
continue;
}
old++;
}
return first_free;
}
/**
Given a field, return its index in semi-join's select list, or UINT_MAX
@param item_field Field to be looked up in select list
@retval =UINT_MAX Field is not from a semijoin-transformed subquery
@retval <UINT_MAX Index in select list of subquery
@details
Given a field, find its table; then see if the table is within a
semi-join nest and if the field was in select list of the subquery
(if subquery was part of a quantified comparison predicate), or
the field was a result of subquery decorrelation.
If it was, then return the field's index in the select list.
The value is used by LooseScan strategy.
*/
static uint get_semi_join_select_list_index(Item_field *item_field) {
Table_ref *emb_sj_nest = item_field->table_ref->embedding;
if (emb_sj_nest && emb_sj_nest->is_sj_or_aj_nest()) {
const mem_root_deque<Item *> &items =
emb_sj_nest->nested_join->sj_inner_exprs;
for (size_t i = 0; i < items.size(); i++) {
const Item *sel_item = items[i];
if (sel_item->type() == Item::FIELD_ITEM &&
down_cast<const Item_field *>(sel_item)->field->eq(item_field->field))
return i;
}
}
return UINT_MAX;
}
/**
@brief
If EXPLAIN or if the --safe-updates option is enabled, add a warning that an
index cannot be used for ref access.
@details
If EXPLAIN or if the --safe-updates option is enabled, add a warning for each
index that cannot be used for ref access due to either type conversion or
different collations on the field used for comparison
Example type conversion (char compared to int):
CREATE TABLE t1 (url char(1) PRIMARY KEY);
SELECT * FROM t1 WHERE url=1;
Example different collations (danish vs german2):
CREATE TABLE t1 (url char(1) PRIMARY KEY) collate latin1_danish_ci;
SELECT * FROM t1 WHERE url='1' collate latin1_german2_ci;
@param thd Thread for the connection that submitted the query
@param field Field used in comparison
@param cant_use_index Indexes that cannot be used for lookup
*/
static void warn_index_not_applicable(THD *thd, const Field *field,
const Key_map cant_use_index) {
Functional_index_error_handler functional_index_error_handler(field, thd);
if (thd->lex->is_explain() ||
thd->variables.option_bits & OPTION_SAFE_UPDATES)
for (uint j = 0; j < field->table->s->keys; j++)
if (cant_use_index.is_set(j))
push_warning_printf(thd, Sql_condition::SL_WARNING,
ER_WARN_INDEX_NOT_APPLICABLE,
ER_THD(thd, ER_WARN_INDEX_NOT_APPLICABLE), "ref",
field->table->key_info[j].name, field->field_name);
}
/**
Add a possible key to array of possible keys if it's usable as a key
@param [in,out] key_fields Used as an input parameter in the sense that it is
a pointer to a pointer to a memory area where an array of Key_field objects
will stored. It is used as an out parameter in the sense that the pointer will
be updated to point beyond the last Key_field written.
@param thd session context
@param and_level And level, to be stored in Key_field
@param cond Condition predicate
@param item_field Field used in comparison
@param eq_func True if we used =, <=> or IS NULL
@param value Array of values used for comparison with field
@param num_values Number of elements in the array of values
@param usable_tables Tables which can be used for key optimization
@param sargables IN/OUT Array of found sargable candidates.
Will be ignored in case eq_func is true.
@note
If we are doing a NOT NULL comparison on a NOT NULL field in a outer join
table, we store this to be able to do not exists optimization later.
@returns false if success, true if error
*/
static bool add_key_field(THD *thd, Key_field **key_fields, uint and_level,
Item_func *cond, Item_field *item_field, bool eq_func,
Item **value, uint num_values,
table_map usable_tables, SARGABLE_PARAM **sargables) {
assert(cond->is_bool_func());
assert(eq_func || sargables);
assert(cond->functype() == Item_func::EQ_FUNC ||
cond->functype() == Item_func::NE_FUNC ||
cond->functype() == Item_func::GT_FUNC ||
cond->functype() == Item_func::LT_FUNC ||
cond->functype() == Item_func::GE_FUNC ||
cond->functype() == Item_func::LE_FUNC ||
cond->functype() == Item_func::MULT_EQUAL_FUNC ||
cond->functype() == Item_func::EQUAL_FUNC ||
cond->functype() == Item_func::LIKE_FUNC ||
cond->functype() == Item_func::ISNULL_FUNC ||
cond->functype() == Item_func::ISNOTNULL_FUNC ||
cond->functype() == Item_func::BETWEEN ||
cond->functype() == Item_func::IN_FUNC ||
cond->functype() == Item_func::MEMBER_OF_FUNC ||
cond->functype() == Item_func::SP_EQUALS_FUNC ||
cond->functype() == Item_func::SP_WITHIN_FUNC ||
cond->functype() == Item_func::SP_CONTAINS_FUNC ||
cond->functype() == Item_func::SP_INTERSECTS_FUNC ||
cond->functype() == Item_func::SP_DISJOINT_FUNC ||
cond->functype() == Item_func::SP_COVERS_FUNC ||
cond->functype() == Item_func::SP_COVEREDBY_FUNC ||
cond->functype() == Item_func::SP_OVERLAPS_FUNC ||
cond->functype() == Item_func::SP_TOUCHES_FUNC ||
cond->functype() == Item_func::SP_CROSSES_FUNC);
Field *const field = item_field->field;
Table_ref *const tl = item_field->table_ref;
if (tl->table->reginfo.join_tab == nullptr) {
/*
Due to a bug in IN-to-EXISTS (grep for real_item() in item_subselect.cc
for more info), an index over a field from an outer query might be
considered here, which is incorrect. Their query has been fully
optimized already so their reginfo.join_tab is NULL and we reject them.
*/
return false;
}
DBUG_PRINT("info", ("add_key_field for field %s", field->field_name));
uint exists_optimize = 0;
if (!tl->derived_keys_ready && tl->uses_materialization() &&
!tl->table->is_created()) {
bool allocated;
if (tl->update_derived_keys(thd, field, value, num_values, &allocated))
return true;
if (!allocated) return false;
}
if (!field->is_flag_set(PART_KEY_FLAG)) {
// Don't remove column IS NULL on a LEFT JOIN table
if (!eq_func || (*value)->type() != Item::NULL_ITEM ||
!tl->table->is_nullable() || field->is_nullable())
return false; // Not a key. Skip it
exists_optimize = KEY_OPTIMIZE_EXISTS;
assert(num_values == 1);
} else {
table_map used_tables = 0;
bool optimizable = false;
for (uint i = 0; i < num_values; i++) {
used_tables |= (value[i])->used_tables();
if (!((value[i])->used_tables() & (tl->map() | RAND_TABLE_BIT)))
optimizable = true;
}
if (!optimizable) return false;
if (!(usable_tables & tl->map())) {
if (!eq_func || (*value)->type() != Item::NULL_ITEM ||
!tl->table->is_nullable() || field->is_nullable())
return false; // Can't use left join optimize
exists_optimize = KEY_OPTIMIZE_EXISTS;
} else {
JOIN_TAB *stat = tl->table->reginfo.join_tab;
Key_map possible_keys = field->key_start;
possible_keys.intersect(tl->table->keys_in_use_for_query);
stat[0].keys().merge(possible_keys); // Add possible keys
/*
Save the following cases:
Field op constant
Field LIKE constant where constant doesn't start with a wildcard
Field = field2 where field2 is in a different table
Field op formula
Field IS NULL
Field IS NOT NULL
Field BETWEEN ...
Field IN ...
*/
stat[0].key_dependent |= used_tables;
bool is_const = true;
for (uint i = 0; i < num_values; i++) {
if (!(is_const &= value[i]->const_for_execution())) break;
}
if (is_const)
stat[0].const_keys.merge(possible_keys);
else if (!eq_func) {
/*
Save info to be able check whether this predicate can be
considered as sargable for range analysis after reading const tables.
We do not save info about equalities as update_const_equal_items
will take care of updating info on keys from sargable equalities.
*/
assert(sargables);
(*sargables)--;
/*
The sargables and key_fields arrays share the same memory
buffer, and grow from opposite directions, so make sure they
don't cross.
*/
assert(*sargables > reinterpret_cast<SARGABLE_PARAM *>(*key_fields));
(*sargables)->field = field;
(*sargables)->arg_value = value;
(*sargables)->num_values = num_values;
}
/*
We can't always use indexes when comparing a string index to a
number. cmp_type() is checked to allow compare of dates to numbers.
eq_func is NEVER true when num_values > 1
*/
if (!eq_func) return false;
/*
Check if the field and value are comparable in the index.
*/
if (!comparable_in_index(cond, field, Field::itRAW, cond->functype(),
*value) ||
(field->cmp_type() == STRING_RESULT &&
field->match_collation_to_optimize_range() &&
field->charset() != cond->compare_collation())) {
warn_index_not_applicable(stat->join()->thd, field, possible_keys);
return false;
}
}
}
/*
For the moment eq_func is always true. This slot is reserved for future
extensions where we want to remembers other things than just eq comparisons
*/
assert(eq_func);
/*
Calculate the "null rejecting" property based on the type of predicate.
Only the <=> operator and the IS NULL and IS NOT NULL clauses may return
true on nullable operands that have the NULL value - assuming that all
other predicates are augmented with IS TRUE or IS FALSE truth clause,
so that all UNKNOWN results are converted to TRUE or FALSE.
The "null rejecting" property can be combined with the left and right
operands to perform certain optimizations.
If the condition has form "left.field = right.keypart" and left.field can
be NULL, there will be no matches if left.field is NULL.
We use null_rejecting in add_not_null_conds() to add
'left.field IS NOT NULL' to tab->m_condition, if this is not an outer
join. We also use it to shortcut reading rows from table "right" when
left.field is found to be a NULL value (in RefIterator and BKA).
It is also possible to apply optimizations to the indexed table.
If the operation is null rejecting and there is a unique index over
the key field, an eq_ref operation can be performed on the index, since
we have no interest in the NULL values.
Notice however that the null rejecting property may be cancelled out
by the KEY_OPTIMIZE_REF_OR_NULL property: this can be set when having:
left.field = right.keypart OR right.keypart IS NULL.
*/
const bool null_rejecting = cond->functype() != Item_func::EQUAL_FUNC &&
cond->functype() != Item_func::ISNULL_FUNC &&
cond->functype() != Item_func::ISNOTNULL_FUNC;
/* Store possible eq field */
new (*key_fields) Key_field(item_field, *value, and_level, exists_optimize,
eq_func, null_rejecting, nullptr,
get_semi_join_select_list_index(item_field));
(*key_fields)++;
/*
The sargables and key_fields arrays share the same memory buffer,
and grow from opposite directions, so make sure they don't
cross. But if sargables was NULL, eq_func had to be true and we
don't write any sargables.
*/
assert(sargables == nullptr ||
*key_fields < reinterpret_cast<Key_field *>(*sargables));
return false;
}
/**
Add possible keys to array of possible keys originated from a simple
predicate.
@param thd session context
@param[in,out] key_fields Pointer to add key, if usable
is incremented if key was stored in the array
@param and_level And level, to be stored in Key_field
@param cond Condition predicate
@param field_item Field used in comparison
@param eq_func True if we used =, <=> or IS NULL
@param val Value used for comparison with field
Is NULL for BETWEEN and IN
@param num_values Number of elements in the array of values
@param usable_tables Tables which can be used for key optimization
@param sargables IN/OUT Array of found sargable candidates
@note
If field items f1 and f2 belong to the same multiple equality and
a key is added for f1, the the same key is added for f2.
@returns false if success, true if error
*/
static bool add_key_equal_fields(THD *thd, Key_field **key_fields,
uint and_level, Item_func *cond,
Item_field *field_item, bool eq_func,
Item **val, uint num_values,
table_map usable_tables,
SARGABLE_PARAM **sargables) {
assert(cond->is_bool_func());
if (add_key_field(thd, key_fields, and_level, cond, field_item, eq_func, val,
num_values, usable_tables, sargables))
return true;
Item_equal *item_equal = field_item->item_equal;
if (item_equal == nullptr) return false;
/*
Add to the set of possible key values every substitution of
the field for an equal field included into item_equal
*/
for (Item_field &item : item_equal->get_fields()) {
if (!field_item->field->eq(item.field)) {
if (add_key_field(thd, key_fields, and_level, cond, &item, eq_func, val,
num_values, usable_tables, sargables))
return true;
}
}
return false;
}
/**
Check if an expression is a non-outer field.
Checks if an expression is a field and belongs to the current select.
@param field Item expression to check
@return boolean
@retval true the expression is a local field
@retval false it's something else
*/
static bool is_local_field(Item *field) {
return field->real_item()->type() == Item::FIELD_ITEM &&
!field->is_outer_reference() &&
!down_cast<Item_ident *>(field)->depended_from &&
!down_cast<Item_ident *>(field->real_item())->depended_from;
}
/**
Check if a row constructor expression is over columns in the same query block.
@param item_row Row expression to check.
@return boolean
@retval true The expression is a local column reference.
@retval false It's something else.
*/
static bool is_row_of_local_columns(Item_row *item_row) {
for (uint i = 0; i < item_row->cols(); ++i)
if (!is_local_field(item_row->element_index(i))) return false;
return true;
}
/**
The guts of the ref optimizer. This function, along with the other
add_key_* functions, make up a recursive procedure that analyzes a
condition expression (a tree of AND and OR predicates) and does
many things.
@param thd session context
@param join The query block involving the condition.
@param [in,out] key_fields Start of memory buffer, see below.
@param [in,out] and_level Current 'and level', see below.
@param cond The conditional expression to analyze.
@param usable_tables Tables not in this bitmap will not be examined.
@param [in,out] sargables End of memory buffer, see below.
@returns false if success, true if error
This documentation is the result of reverse engineering and may
therefore not capture the full gist of the procedure, but it is
known to do the following:
- Populate a raw memory buffer from two directions at the same time. An
'array' of Key_field objects fill the buffer from low to high addresses
whilst an 'array' of SARGABLE_PARAM's fills the buffer from high to low
addresses. At the first call to this function, it is assumed that
key_fields points to the beginning of the buffer and sargables point to the
end (except for a poor-mans 'null element' at the very end).
- Update a number of properties in the JOIN_TAB's that can be used
to find search keys (sargables).
- JOIN_TAB::keys
- JOIN_TAB::key_dependent
- JOIN_TAB::const_keys (dictates if the range optimizer will be run
later.)
The Key_field objects are marked with something called an 'and_level', which
does @b not correspond to their nesting depth within the expression tree. It
is rather a tag to group conjunctions together. For instance, in the
conditional expression
@code
a = 0 AND b = 0
@endcode
two Key_field's are produced, both having an and_level of 0.
In an expression such as
@code
a = 0 AND b = 0 OR a = 1
@endcode
three Key_field's are produced, the first two corresponding to 'a = 0' and
'b = 0', respectively, both with and_level 0. The third one corresponds to
'a = 1' and has an and_level of 1.
A separate function, merge_key_fields() performs ref access validation on
the Key_field array on the recursice ascent. If some Key_field's cannot be
used for ref access, the key_fields pointer is rolled back. All other
modifications to the query plan remain.
*/
bool add_key_fields(THD *thd, JOIN *join, Key_field **key_fields,
uint *and_level, Item *cond, table_map usable_tables,
SARGABLE_PARAM **sargables) {
assert(cond->is_bool_func());
if (cond->type() == Item_func::COND_ITEM) {
List_iterator_fast<Item> li(*((Item_cond *)cond)->argument_list());
Key_field *org_key_fields = *key_fields;
if (down_cast<Item_cond *>(cond)->functype() == Item_func::COND_AND_FUNC) {
Item *item;
while ((item = li++)) {
if (add_key_fields(thd, join, key_fields, and_level, item,
usable_tables, sargables))
return true;
}
for (; org_key_fields != *key_fields; org_key_fields++)
org_key_fields->level = *and_level;
} else {
(*and_level)++;
if (add_key_fields(thd, join, key_fields, and_level, li++, usable_tables,
sargables))
return true;
Item *item;
while ((item = li++)) {
Key_field *start_key_fields = *key_fields;
(*and_level)++;
if (add_key_fields(thd, join, key_fields, and_level, item,
usable_tables, sargables))
return true;
*key_fields = merge_key_fields(org_key_fields, start_key_fields,
*key_fields, ++(*and_level));
}
}
return false;
}
/*
Subquery optimization: Conditions that are pushed down into subqueries
are wrapped into Item_func_trig_cond. We process the wrapped condition
but need to set cond_guard for Key_use elements generated from it.
*/
if (cond->type() == Item::FUNC_ITEM &&
down_cast<Item_func *>(cond)->functype() == Item_func::TRIG_COND_FUNC) {
Item *const cond_arg = down_cast<Item_func *>(cond)->arguments()[0];
if (join->group_list.empty() && join->order.empty() &&
join->query_expression()->item &&
join->query_expression()->item->substype() == Item_subselect::IN_SUBS &&
!join->query_expression()->is_set_operation()) {
Key_field *save = *key_fields;
if (add_key_fields(thd, join, key_fields, and_level, cond_arg,
usable_tables, sargables))
return true;
// Indicate that this ref access candidate is for subquery lookup:
for (; save != *key_fields; save++)
save->cond_guard = ((Item_func_trig_cond *)cond)->get_trig_var();
}
return false;
}
/* If item is of type 'field op field/constant' add it to key_fields */
if (cond->type() != Item::FUNC_ITEM) return false;
Item_func *const cond_func = down_cast<Item_func *>(cond);
auto optimize = cond_func->select_optimize(thd);
// Catch errors that might be thrown during select_optimize()
if (thd->is_error()) return true;
switch (optimize) {
case Item_func::OPTIMIZE_NONE:
break;
case Item_func::OPTIMIZE_KEY: {
Item **values;
/*
Build list of possible keys for 'a BETWEEN low AND high'.
It is handled similar to the equivalent condition
'a >= low AND a <= high':
*/
if (cond_func->functype() == Item_func::BETWEEN) {
Item_field *field_item;
bool equal_func = false;
uint num_values = 2;
values = cond_func->arguments();
bool binary_cmp =
(values[0]->real_item()->type() == Item::FIELD_ITEM)
? ((Item_field *)values[0]->real_item())->field->binary()
: true;
/*
Additional optimization: If 'low = high':
Handle as if the condition was "t.key = low".
*/
if (!((Item_func_between *)cond_func)->negated &&
values[1]->eq(values[2], binary_cmp)) {
equal_func = true;
num_values = 1;
}
/*
Append keys for 'field <cmp> value[]' if the
condition is of the form::
'<field> BETWEEN value[1] AND value[2]'
*/
if (is_local_field(values[0])) {
field_item = (Item_field *)(values[0]->real_item());
if (add_key_equal_fields(thd, key_fields, *and_level, cond_func,
field_item, equal_func, &values[1],
num_values, usable_tables, sargables))
return true;
}
/*
Append keys for 'value[0] <cmp> field' if the
condition is of the form:
'value[0] BETWEEN field1 AND field2'
*/
for (uint i = 1; i <= num_values; i++) {
if (is_local_field(values[i])) {
field_item = (Item_field *)(values[i]->real_item());
if (add_key_equal_fields(thd, key_fields, *and_level, cond_func,
field_item, equal_func, values, 1,
usable_tables, sargables))
return true;
}
}
} // if ( ... Item_func::BETWEEN)
else if (cond_func->functype() == Item_func::MEMBER_OF_FUNC &&
is_local_field(cond_func->key_item())) {
// The predicate is <val> IN (<typed array>)
add_key_equal_fields(thd, key_fields, *and_level, cond_func,
(Item_field *)(cond_func->key_item()->real_item()),
true, cond_func->arguments(), 1, usable_tables,
sargables);
} else if (cond_func->functype() == Item_func::JSON_CONTAINS ||
cond_func->functype() == Item_func::JSON_OVERLAPS) {
/*
Applicability analysis was done during substitute_gc().
Check here that a typed array field is used and there's a key over
it.
1) func has a key item
2) key item is a local field
3) key item is a typed array field
If so, mark appropriate index as available for range optimizer
*/
if (!cond_func->key_item() || // 1
!is_local_field(cond_func->key_item()) || // 2
!cond_func->key_item()->returns_array()) // 3
break;
const Field *field =
(down_cast<const Item_field *>(cond_func->key_item()))->field;
JOIN_TAB *tab = field->table->reginfo.join_tab;
Key_map possible_keys = field->key_start;
possible_keys.intersect(field->table->keys_in_use_for_query);
tab->keys().merge(possible_keys); // Add possible keys
tab->const_keys.merge(possible_keys); // Add possible keys
} // if (... Item_func::CONTAINS)
// The predicate is IN or <>
else if (is_local_field(cond_func->key_item()) &&
!cond_func->is_outer_reference()) {
values = cond_func->arguments() + 1;
if (cond_func->functype() == Item_func::NE_FUNC &&
is_local_field(cond_func->arguments()[1]))
values--;
assert(cond_func->functype() != Item_func::IN_FUNC ||
cond_func->argument_count() != 2);
if (add_key_equal_fields(
thd, key_fields, *and_level, cond_func,
(Item_field *)(cond_func->key_item()->real_item()), false,
values, cond_func->argument_count() - 1, usable_tables,
sargables))
return true;
} else if (cond_func->functype() == Item_func::IN_FUNC &&
cond_func->key_item()->type() == Item::ROW_ITEM) {
/*
The condition is (column1, column2, ... ) IN ((const1_1, const1_2),
...) and there is an index on (column1, column2, ...)
The code below makes sure that the row constructor on the lhs indeed
contains only column references before calling add_key_field on them.
We can't do a ref access on IN, yet here we are. Why? We need
to run add_key_field() only because it verifies that there are
only constant expressions in the rows on the IN's rhs, see
comment above the call to add_key_field() below.
Actually, We could in theory do a ref access if the IN rhs
contained just a single row, but there is a hack in the parser
causing such IN predicates be parsed as row equalities.
*/
Item_row *lhs_row = static_cast<Item_row *>(cond_func->key_item());
if (is_row_of_local_columns(lhs_row)) {
for (uint i = 0; i < lhs_row->cols(); ++i) {
Item *const lhs_item = lhs_row->element_index(i)->real_item();
assert(lhs_item->type() == Item::FIELD_ITEM);
Item_field *const lhs_column = static_cast<Item_field *>(lhs_item);
// j goes from 1 since arguments()[0] is the lhs of IN.
for (uint j = 1; j < cond_func->argument_count(); ++j) {
// Here we pick out the i:th column in the j:th row.
Item *rhs_item = cond_func->arguments()[j];
assert(rhs_item->type() == Item::ROW_ITEM);
Item_row *rhs_row = static_cast<Item_row *>(rhs_item);
assert(rhs_row->cols() == lhs_row->cols());
Item **rhs_expr_ptr = rhs_row->addr(i);
/*
add_key_field() will write a Key_field on each call
here, but we don't care, it will never be used. We only
call it for the side effect: update JOIN_TAB::const_keys
so the range optimizer can be invoked. We pass a
scrap buffer and pointer here.
*/
Key_field scrap_key_field = **key_fields;
Key_field *scrap_key_field_ptr = &scrap_key_field;
if (add_key_field(thd, &scrap_key_field_ptr, *and_level,
cond_func, lhs_column,
true, // eq_func
rhs_expr_ptr,
1, // Number of expressions: one
usable_tables,
nullptr)) // sargables
return true;
// The pointer is not supposed to increase by more than one.
assert(scrap_key_field_ptr <= &scrap_key_field + 1);
}
}
}
}
break;
}
case Item_func::OPTIMIZE_OP: {
bool equal_func = (cond_func->functype() == Item_func::EQ_FUNC ||
cond_func->functype() == Item_func::EQUAL_FUNC);
if (is_local_field(cond_func->arguments()[0])) {
if (add_key_equal_fields(
thd, key_fields, *and_level, cond_func,
(Item_field *)(cond_func->arguments()[0])->real_item(),
equal_func, cond_func->arguments() + 1, 1, usable_tables,
sargables))
return true;
} else {
Item *real_item = cond_func->arguments()[0]->real_item();
if (real_item->type() == Item::FUNC_ITEM) {
Item_func *func_item = down_cast<Item_func *>(real_item);
if (func_item->functype() == Item_func::COLLATE_FUNC) {
Item *key_item = func_item->key_item();
if (key_item->type() == Item::FIELD_ITEM) {
if (add_key_equal_fields(thd, key_fields, *and_level, cond_func,
down_cast<Item_field *>(key_item),
equal_func, cond_func->arguments() + 1,
1, usable_tables, sargables))
return true;
}
}
}
}
if (is_local_field(cond_func->arguments()[1]) &&
cond_func->functype() != Item_func::LIKE_FUNC) {
if (add_key_equal_fields(
thd, key_fields, *and_level, cond_func,
(Item_field *)(cond_func->arguments()[1])->real_item(),
equal_func, cond_func->arguments(), 1, usable_tables,
sargables))
return true;
} else {
Item *real_item = cond_func->arguments()[1]->real_item();
if (real_item->type() == Item::FUNC_ITEM) {
Item_func *func_item = down_cast<Item_func *>(real_item);
if (func_item->functype() == Item_func::COLLATE_FUNC) {
Item *key_item = func_item->key_item();
if (key_item->type() == Item::FIELD_ITEM) {
if (add_key_equal_fields(thd, key_fields, *and_level, cond_func,
down_cast<Item_field *>(key_item),
equal_func, cond_func->arguments(), 1,
usable_tables, sargables))
return true;
}
}
}
}
break;
}
case Item_func::OPTIMIZE_NULL:
/* column_name IS [NOT] NULL */
if (is_local_field(cond_func->arguments()[0]) &&
!cond_func->is_outer_reference()) {
Item *tmp = new Item_null;
if (tmp == nullptr) return true;
if (add_key_equal_fields(
thd, key_fields, *and_level, cond_func,
(Item_field *)(cond_func->arguments()[0])->real_item(),
cond_func->functype() == Item_func::ISNULL_FUNC, &tmp, 1,
usable_tables, sargables))
return true;
}
break;
case Item_func::OPTIMIZE_EQUAL:
Item_equal *item_equal = (Item_equal *)cond;
Item *const_item = item_equal->const_arg();
if (const_item) {
/*
For each field field1 from item_equal consider the equality
field1=const_item as a condition allowing an index access of the table
with field1 by the keys value of field1.
*/
for (Item_field &item : item_equal->get_fields()) {
if (add_key_field(thd, key_fields, *and_level, cond_func, &item, true,
&const_item, 1, usable_tables, sargables))
return true;
}
} else {
/*
Consider all pairs of different fields included into item_equal.
For each of them (field1, field1) consider the equality
field1=field2 as a condition allowing an index access of the table
with field1 by the keys value of field2.
*/
for (Item_field &outer : item_equal->get_fields()) {
for (Item_field &inner : item_equal->get_fields()) {
if (!outer.field->eq(inner.field)) {
Item *inner_ptr = &inner;
if (add_key_field(thd, key_fields, *and_level, cond_func, &outer,
true, &inner_ptr, 1, usable_tables, sargables))
return true;
}
}
}
}
break;
}
return false;
}
/*
Add all keys with uses 'field' for some keypart
If field->and_level != and_level then only mark key_part as const_part
RETURN
0 - OK
1 - Out of memory.
*/
static bool add_key_part(Key_use_array *keyuse_array, Key_field *key_field) {
if (key_field->eq_func && !(key_field->optimize & KEY_OPTIMIZE_EXISTS)) {
const Field *const field = key_field->item_field->field;
Table_ref *const tl = key_field->item_field->table_ref;
TABLE *const table = tl->table;
for (uint key = 0; key < table->s->keys; key++) {
if (!(table->keys_in_use_for_query.is_set(key))) continue;
if (table->key_info[key].flags & (HA_FULLTEXT | HA_SPATIAL))
continue; // ToDo: ft-keys in non-ft queries. SerG
uint key_parts = actual_key_parts(&table->key_info[key]);
for (uint part = 0; part < key_parts; part++) {
if (field->eq(table->key_info[key].key_part[part].field)) {
const Key_use keyuse(tl, key_field->val,
key_field->val->used_tables(), key, part,
key_field->optimize & KEY_OPTIMIZE_REF_OR_NULL,
(key_part_map)1 << part,
~(ha_rows)0, // will be set in optimize_keyuse
key_field->null_rejecting, key_field->cond_guard,
key_field->sj_pred_no);
if (keyuse_array->push_back(keyuse))
return true; /* purecov: inspected */
}
}
}
}
return false;
}
/**
Function parses WHERE condition and add key_use for FT index
into key_use array if suitable MATCH function is found.
Condition should be a set of AND expression, OR is not supported.
MATCH function should be a part of simple expression.
Simple expression is MATCH only function or MATCH is a part of
comparison expression ('>=' or '>' operations are supported).
It also sets FT_HINTS values(op_type, op_value).
@param keyuse_array Key_use array
@param cond WHERE condition
@param usable_tables usable tables
@param simple_match_expr true if this is the first call false otherwise.
if MATCH function is found at first call it means
that MATCH is simple expression, otherwise, in case
of AND/OR condition this parameter will be false.
@retval
true if FT key was added to Key_use array
@retval
false if no key was added to Key_use array
*/
static bool add_ft_keys(Key_use_array *keyuse_array, Item *cond,
table_map usable_tables, bool simple_match_expr) {
Item_func_match *cond_func = nullptr;
if (!cond) return false;
assert(cond->is_bool_func());
if (cond->type() == Item::FUNC_ITEM) {
Item_func *func = down_cast<Item_func *>(cond);
Item_func::Functype functype = func->functype();
if (functype == Item_func::MATCH_FUNC) {
func = down_cast<Item_func *>(func->arguments()[0]);
functype = func->functype();
}
enum ft_operation op_type = FT_OP_NO;
double op_value = 0.0;
if (functype == Item_func::FT_FUNC) {
cond_func = down_cast<Item_func_match *>(func)->get_master();
cond_func->set_hints_op(op_type, op_value);
} else if (func->arg_count == 2) {
Item *arg0 = func->arguments()[0];
Item *arg1 = func->arguments()[1];
if (arg1->const_item() && is_function_of_type(arg0, Item_func::FT_FUNC) &&
((functype == Item_func::GE_FUNC &&
(op_value = arg1->val_real()) > 0) ||
(functype == Item_func::GT_FUNC &&
(op_value = arg1->val_real()) >= 0))) {
cond_func = down_cast<Item_func_match *>(arg0)->get_master();
if (functype == Item_func::GE_FUNC)
op_type = FT_OP_GE;
else if (functype == Item_func::GT_FUNC)
op_type = FT_OP_GT;
cond_func->set_hints_op(op_type, op_value);
} else if (arg0->const_item() &&
is_function_of_type(arg1, Item_func::FT_FUNC) &&
((functype == Item_func::LE_FUNC &&
(op_value = arg0->val_real()) > 0) ||
(functype == Item_func::LT_FUNC &&
(op_value = arg0->val_real()) >= 0))) {
cond_func = down_cast<Item_func_match *>(arg1)->get_master();
if (functype == Item_func::LE_FUNC)
op_type = FT_OP_GE;
else if (functype == Item_func::LT_FUNC)
op_type = FT_OP_GT;
cond_func->set_hints_op(op_type, op_value);
}
}
} else if (cond->type() == Item::COND_ITEM) {
List_iterator_fast<Item> li(*down_cast<Item_cond *>(cond)->argument_list());
if (down_cast<Item_cond *>(cond)->functype() == Item_func::COND_AND_FUNC) {
Item *item;
while ((item = li++))
if (add_ft_keys(keyuse_array, item, usable_tables, false)) return true;
}
}
if (!cond_func || cond_func->key == NO_SUCH_KEY ||
!(usable_tables & cond_func->table_ref->map()))
return false;
Table_ref *tbl = cond_func->table_ref;
if (!tbl->table->keys_in_use_for_query.is_set(cond_func->key)) return false;
cond_func->set_simple_expression(simple_match_expr);
const Key_use keyuse(tbl, cond_func, cond_func->key_item()->used_tables(),
cond_func->key, FT_KEYPART,
0, // optimize
0, // keypart_map
~(ha_rows)0, // ref_table_rows
false, // null_rejecting
nullptr, // cond_guard
UINT_MAX); // sj_pred_no
tbl->table->reginfo.join_tab->keys().set_bit(cond_func->key);
return keyuse_array->push_back(keyuse);
}
/**
Compares two keyuse elements.
@param a first Key_use element
@param b second Key_use element
Compare Key_use elements so that they are sorted as follows:
-# By table.
-# By key for each table.
-# By keypart for each key.
-# Const values.
-# Ref_or_null.
@retval true If a < b.
@retval false If a >= b.
*/
static bool sort_keyuse(const Key_use &a, const Key_use &b) {
if (a.table_ref->tableno() != b.table_ref->tableno())
return a.table_ref->tableno() < b.table_ref->tableno();
if (a.key != b.key) return a.key < b.key;
if (a.keypart != b.keypart) return a.keypart < b.keypart;
// Place const values before other ones
bool a_const = a.used_tables & ~OUTER_REF_TABLE_BIT;
bool b_const = b.used_tables & ~OUTER_REF_TABLE_BIT;
if (a_const != b_const) return b_const;
/* Place rows that are not 'OPTIMIZE_REF_OR_NULL' first */
return (a.optimize & KEY_OPTIMIZE_REF_OR_NULL) <
(b.optimize & KEY_OPTIMIZE_REF_OR_NULL);
}
/*
Add to Key_field array all 'ref' access candidates within nested join.
This function populates Key_field array with entries generated from the
ON condition of the given nested join, and does the same for nested joins
contained within this nested join.
@param thd session context
@param[in] nested_join_table Nested join pseudo-table to process
@param[in,out] end End of the key field array
@param[in,out] and_level And-level
@param[in,out] sargables Array of found sargable candidates
@returns false if success, true if error
@note
We can add accesses to the tables that are direct children of this nested
join (1), and are not inner tables w.r.t their neighbours (2).
Example for #1 (outer brackets pair denotes nested join this function is
invoked for):
@code
... LEFT JOIN (t1 LEFT JOIN (t2 ... ) ) ON cond
@endcode
Example for #2:
@code
... LEFT JOIN (t1 LEFT JOIN t2 ) ON cond
@endcode
In examples 1-2 for condition cond, we can add 'ref' access candidates to
t1 only.
Example #3:
@code
... LEFT JOIN (t1, t2 LEFT JOIN t3 ON inner_cond) ON cond
@endcode
Here we can add 'ref' access candidates for t1 and t2, but not for t3.
*/
static bool add_key_fields_for_nj(THD *thd, JOIN *join,
Table_ref *nested_join_table, Key_field **end,
uint *and_level, SARGABLE_PARAM **sargables) {
mem_root_deque<Table_ref *> &join_list =
nested_join_table->nested_join->m_tables;
auto li = join_list.begin();
auto li_end = join_list.end();
auto li2 = join_list.begin();
auto li2_end = join_list.end();
bool have_another = false;
table_map tables = 0;
Table_ref *table;
while ((table = (li != li_end) ? *li++ : nullptr) ||
(have_another && li2 != join_list.end() &&
(li = li2, li_end = li2_end, have_another = false,
(li != li_end) && (table = *li++)))) {
if (table->nested_join) {
if (!table->join_cond_optim()) {
/* It's a semi-join nest. Walk into it as if it wasn't a nest */
have_another = true;
li2 = li;
li2_end = li_end;
li = table->nested_join->m_tables.begin();
li_end = table->nested_join->m_tables.end();
} else {
if (add_key_fields_for_nj(thd, join, table, end, and_level, sargables))
return true;
}
} else if (!table->join_cond_optim())
tables |= table->map();
}
if (nested_join_table->join_cond_optim()) {
if (add_key_fields(thd, join, end, and_level,
nested_join_table->join_cond_optim(), tables, sargables))
return true;
}
return false;
}
/// @} (end of group RefOptimizerModule)
/**
Check for the presence of AGGFN(DISTINCT a) queries that may be subject
to loose index scan.
Check if the query is a subject to AGGFN(DISTINCT) using loose index scan
(GroupIndexSkipScanIterator).
Optionally (if out_args is supplied) will push the arguments of
AGGFN(DISTINCT) to the list
Check for every COUNT(DISTINCT), AVG(DISTINCT) or
SUM(DISTINCT). These can be resolved by Loose Index Scan as long
as all the aggregate distinct functions refer to the same
fields. Thus:
SELECT AGGFN(DISTINCT a, b), AGGFN(DISTINCT b, a)... => can use LIS
SELECT AGGFN(DISTINCT a), AGGFN(DISTINCT a) ... => can use LIS
SELECT AGGFN(DISTINCT a, b), AGGFN(DISTINCT a) ... => cannot use LIS
SELECT AGGFN(DISTINCT a), AGGFN(DISTINCT b) ... => cannot use LIS
etc.
@param join the join to check
@param[out] out_args Collect the arguments of the aggregate functions
to a list. We don't worry about duplicates as
these will be sorted out later in
get_best_group_min_max.
@return does the query qualify for indexed AGGFN(DISTINCT)
@retval true it does
@retval false AGGFN(DISTINCT) must apply distinct in it.
*/
bool is_indexed_agg_distinct(JOIN *join,
mem_root_deque<Item_field *> *out_args) {
Item_sum **sum_item_ptr;
bool result = false;
Field_map first_aggdistinct_fields;
if (join->query_block->original_tables_map > 1 || /* reference more than 1
table originally */
join->select_distinct || /* or a DISTINCT */
join->query_block->olap == ROLLUP_TYPE) /* Check (B3) for ROLLUP */
return false;
if (join->make_sum_func_list(*join->fields, true)) return false;
for (sum_item_ptr = join->sum_funcs; *sum_item_ptr; sum_item_ptr++) {
Item_sum *sum_item = *sum_item_ptr;
Field_map cur_aggdistinct_fields;
Item *expr;
/* aggregate is not AGGFN(DISTINCT) or more than 1 argument to it */
switch (sum_item->sum_func()) {
case Item_sum::MIN_FUNC:
case Item_sum::MAX_FUNC:
continue;
case Item_sum::COUNT_DISTINCT_FUNC:
break;
case Item_sum::AVG_DISTINCT_FUNC:
case Item_sum::SUM_DISTINCT_FUNC:
if (sum_item->argument_count() == 1) break;
[[fallthrough]];
default:
return false;
}
for (uint i = 0; i < sum_item->argument_count(); i++) {
expr = sum_item->get_arg(i);
/* The AGGFN(DISTINCT) arg is not an attribute? */
if (expr->real_item()->type() != Item::FIELD_ITEM) return false;
Item_field *item = static_cast<Item_field *>(expr->real_item());
if (out_args) out_args->push_back(item);
cur_aggdistinct_fields.set_bit(item->field->field_index());
result = true;
}
/*
If there are multiple aggregate functions, make sure that they all
refer to exactly the same set of columns.
*/
if (first_aggdistinct_fields.is_clear_all())
first_aggdistinct_fields.merge(cur_aggdistinct_fields);
else if (first_aggdistinct_fields != cur_aggdistinct_fields)
return false;
}
return result;
}
/**
Print keys that were appended to join_tab->const_keys because they
can be used for GROUP BY or DISTINCT to the optimizer trace.
@param trace The optimizer trace context we're adding info to
@param join_tab The table the indexes cover
@param new_keys The keys that are considered useful because they can
be used for GROUP BY or DISTINCT
@param cause Zero-terminated string with reason for adding indexes
to const_keys
@see add_group_and_distinct_keys()
*/
static void trace_indexes_added_group_distinct(Opt_trace_context *trace,
const JOIN_TAB *join_tab,
const Key_map new_keys,
const char *cause) {
if (likely(!trace->is_started())) return;
KEY *key_info = join_tab->table()->key_info;
Key_map existing_keys = join_tab->const_keys;
uint nbrkeys = join_tab->table()->s->keys;
Opt_trace_object trace_summary(trace, "const_keys_added");
{
Opt_trace_array trace_key(trace, "keys");
for (uint j = 0; j < nbrkeys; j++)
if (new_keys.is_set(j) && !existing_keys.is_set(j))
trace_key.add_utf8(key_info[j].name);
}
trace_summary.add_alnum("cause", cause);
}
/**
Discover the indexes that might be used for GROUP BY or DISTINCT queries or
indexes that might be used for SKIP SCAN.
If the query has a GROUP BY clause, find all indexes that contain
all GROUP BY fields, and add those indexes to join_tab->const_keys
and join_tab->keys.
If the query has a DISTINCT clause, find all indexes that contain
all SELECT fields, and add those indexes to join_tab->const_keys and
join_tab->keys. This allows later on such queries to be processed by
a GroupIndexSkipScanIterator.
If the query does not have GROUP BY clause or any aggregate function
the function collects possible keys to use for skip scan access.
Note that indexes that are not usable for resolving GROUP
BY/DISTINCT may also be added in some corner cases. For example, an
index covering 'a' and 'b' is not usable for the following query but
is still added: "SELECT DISTINCT a+b FROM t1". This is not a big
issue because a) although the optimizer will consider using the
index, it will not chose it (so minor calculation cost added but not
wrong result) and b) it applies only to corner cases.
@param join the current join
@param join_tab joined table
*/
static void add_loose_index_scan_and_skip_scan_keys(JOIN *join,
JOIN_TAB *join_tab) {
assert(join_tab->const_keys.is_subset(join_tab->keys()));
mem_root_deque<Item_field *> indexed_fields(join->thd->mem_root);
ORDER *cur_group;
const char *cause;
/* Find the indexes that might be used for skip scan queries. */
if (join->where_cond != nullptr &&
join->query_block->original_tables_map == 1 &&
join->query_block->original_tables_map == join_tab->table_ref->map() &&
join->group_list.empty() &&
!is_indexed_agg_distinct(join, &indexed_fields) &&
!join->select_distinct) {
bool use_skip_scan =
hint_table_state(join->thd, join_tab->table_ref, SKIP_SCAN_HINT_ENUM,
OPTIMIZER_SKIP_SCAN);
/*
if skip_scan for a table is off, and the hint is applicable to all
indexes, skip processing for possible keys. If the hint has index
mentioned then skip_scan can be used with other indexes.
*/
if (!use_skip_scan && join_tab->table_ref->opt_hints_table != nullptr &&
join_tab->table_ref->opt_hints_table
->get_compound_key_hint(SKIP_SCAN_HINT_ENUM)
->is_key_map_clear_all())
return;
join->where_cond->walk(&Item::collect_item_field_processor,
enum_walk::POSTFIX, (uchar *)&indexed_fields);
Key_map possible_keys;
possible_keys.set_all();
join_tab->skip_scan_keys.clear_all();
for (Item_field *cur_item : indexed_fields) {
if (cur_item->used_tables() != join_tab->table_ref->map()) return;
possible_keys.intersect(cur_item->field->part_of_key);
}
join_tab->skip_scan_keys.merge(possible_keys);
cause = "skip_scan";
return;
}
if (!join->group_list.empty()) {
/* Collect all query fields referenced in the GROUP clause. */
for (cur_group = join->group_list.order; cur_group;
cur_group = cur_group->next)
(*cur_group->item)
->walk(&Item::collect_item_field_processor, enum_walk::POSTFIX,
(uchar *)&indexed_fields);
cause = "group_by";
} else if (join->select_distinct) {
/* Collect all query fields referenced in the SELECT clause. */
for (Item *item : VisibleFields(*join->fields)) {
item->walk(&Item::collect_item_field_processor, enum_walk::POSTFIX,
(uchar *)&indexed_fields);
}
cause = "distinct";
} else if (join->tmp_table_param.sum_func_count &&
is_indexed_agg_distinct(join, &indexed_fields)) {
/*
SELECT list with AGGFN(distinct col). The query qualifies for
loose index scan, and is_indexed_agg_distinct() has already
collected all referenced fields into indexed_fields.
*/
join->streaming_aggregation = true;
cause = "indexed_distinct_aggregate";
} else
return;
if (indexed_fields.empty()) return;
Key_map possible_keys = join_tab->table()->keys_in_use_for_query;
possible_keys.merge(join_tab->table()->keys_in_use_for_group_by);
/* Intersect the keys of all group fields. */
for (Item_field *cur_item : indexed_fields) {
if (cur_item->used_tables() != join_tab->table_ref->map()) {
/*
Doing GROUP BY or DISTINCT on a field in another table so no
index in this table is usable
*/
return;
} else
possible_keys.intersect(cur_item->field->part_of_key);
}
/*
At this point, possible_keys has key bits set only for usable
indexes because indexed_fields is non-empty and if any of the
fields belong to a different table the function would exit in the
loop above.
*/
if (!possible_keys.is_clear_all() &&
!possible_keys.is_subset(join_tab->const_keys)) {
trace_indexes_added_group_distinct(&join->thd->opt_trace, join_tab,
possible_keys, cause);
join_tab->const_keys.merge(possible_keys);
join_tab->keys().merge(possible_keys);
}
assert(join_tab->const_keys.is_subset(join_tab->keys()));
}
/**
Update keyuse array with all possible keys we can use to fetch rows.
@param thd session context
@param[out] keyuse Put here ordered array of Key_use structures
@param join_tab Array in table number order
@param tables Number of tables in join
@param cond WHERE condition (note that the function analyzes
join_tab[i]->join_cond() too)
@param normal_tables Tables not inner w.r.t some outer join (ones
for which we can make ref access based the WHERE
clause)
@param query_block current SELECT
@param[out] sargables Array of found sargable candidates
@returns false if success, true if error
*/
static bool update_ref_and_keys(THD *thd, Key_use_array *keyuse,
JOIN_TAB *join_tab, uint tables, Item *cond,
table_map normal_tables,
Query_block *query_block,
SARGABLE_PARAM **sargables) {
assert(cond == nullptr || cond->is_bool_func());
uint and_level, i;
Key_field *key_fields, *end, *field;
size_t sz;
uint m = max(query_block->max_equal_elems, 1U);
JOIN *const join = query_block->join;
/*
We use the same piece of memory to store both Key_field
and SARGABLE_PARAM structure.
Key_field values are placed at the beginning this memory
while SARGABLE_PARAM values are put at the end.
All predicates that are used to fill arrays of Key_field
and SARGABLE_PARAM structures have at most 2 arguments
except BETWEEN predicates that have 3 arguments and
IN predicates.
This any predicate if it's not BETWEEN/IN can be used
directly to fill at most 2 array elements, either of Key_field
or SARGABLE_PARAM type. For a BETWEEN predicate 3 elements
can be filled as this predicate is considered as
saragable with respect to each of its argument.
An IN predicate can require at most 1 element as currently
it is considered as sargable only for its first argument.
Multiple equality can add elements that are filled after
substitution of field arguments by equal fields. There
can be not more than query_block->max_equal_elems such
substitutions.
*/
sz = max(sizeof(Key_field), sizeof(SARGABLE_PARAM)) *
(((query_block->cond_count + 1) * 2 + query_block->between_count) * m +
1);
if (!(key_fields = (Key_field *)thd->alloc(sz)))
return true; /* purecov: inspected */
and_level = 0;
field = end = key_fields;
*sargables = (SARGABLE_PARAM *)key_fields +
(sz - sizeof((*sargables)[0].field)) / sizeof(SARGABLE_PARAM);
/* set a barrier for the array of SARGABLE_PARAM */
(*sargables)[0].field = nullptr;
if (cond) {
if (add_key_fields(thd, join, &end, &and_level, cond, normal_tables,
sargables))
return true;
// The relevant secondary engines don't support antijoin, so don't enable
// this optimization for them.
if (thd->secondary_engine_optimization() !=
Secondary_engine_optimization::SECONDARY) {
for (Key_field *fld = field; fld != end; fld++) {
/* Mark that we can optimize LEFT JOIN */
if (fld->val->type() == Item::NULL_ITEM &&
!fld->item_field->field->is_nullable()) {
/*
Example:
SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.a WHERE t2.a IS NULL;
this just wants rows of t1 where t1.a does not exist in t2.
*/
fld->item_field->field->table->reginfo.not_exists_optimize = true;
}
}
}
}
for (i = 0; i < tables; i++) {
/*
Block the creation of keys for inner tables of outer joins.
Here only the outer joins that can not be converted to
inner joins are left and all nests that can be eliminated
are flattened.
In the future when we introduce conditional accesses
for inner tables in outer joins these keys will be taken
into account as well.
*/
if (join_tab[i].join_cond()) {
if (add_key_fields(thd, join, &end, &and_level, join_tab[i].join_cond(),
join_tab[i].table_ref->map(), sargables))
return true;
}
}
/* Process ON conditions for the nested joins */
for (Table_ref *tl : query_block->m_table_nest) {
if (tl->nested_join &&
add_key_fields_for_nj(thd, join, tl, &end, &and_level, sargables))
return true;
}
/* Generate keys descriptions for derived tables */
if (query_block->materialized_derived_table_count) {
if (join->generate_derived_keys()) return true;
}
/* fill keyuse with found key parts */
for (; field != end; field++) {
if (add_key_part(keyuse, field)) return true;
}
if (query_block->ftfunc_list->elements) {
if (add_ft_keys(keyuse, cond, normal_tables, true)) return true;
}
/*
Sort the array of possible keys and remove the following key parts:
- ref if there is a keypart which is a ref and a const.
(e.g. if there is a key(a,b) and the clause is a=3 and b=7 and b=t2.d,
then we skip the key part corresponding to b=t2.d)
- keyparts without previous keyparts
(e.g. if there is a key(a,b,c) but only b < 5 (or a=2 and c < 3) is
used in the query, we drop the partial key parts from consideration).
Special treatment for ft-keys.
*/
if (!keyuse->empty()) {
Key_use *save_pos, *use;
std::stable_sort(keyuse->begin(), keyuse->begin() + keyuse->size(),
sort_keyuse);
const Key_use key_end(nullptr, nullptr, 0, 0, 0, 0, 0, 0, false, nullptr,
0);
if (keyuse->push_back(key_end)) // added for easy testing
return true;
use = save_pos = keyuse->begin();
const Key_use *prev = &key_end;
bool found_eq_constant = false;
for (i = 0; i < keyuse->size() - 1; i++, use++) {
TABLE *const table = use->table_ref->table;
if (use->val->const_for_execution() &&
use->optimize != KEY_OPTIMIZE_REF_OR_NULL)
table->const_key_parts[use->key] |= use->keypart_map;
if (use->keypart != FT_KEYPART) {
if (use->key == prev->key && use->table_ref == prev->table_ref) {
if (prev->keypart + 1 < use->keypart ||
(prev->keypart == use->keypart && found_eq_constant))
continue; /* remove */
} else if (use->keypart != 0) // First found must be 0
continue;
}
/*
Protect against self assignment.
The compiler *may* generate a call to memcpy() to do the assignment,
and that is undefined behaviour (memory overlap).
*/
if (save_pos != use) *save_pos = *use;
prev = use;
found_eq_constant = use->val->const_for_execution();
/* Save ptr to first use */
if (!table->reginfo.join_tab->keyuse())
table->reginfo.join_tab->set_keyuse(save_pos);
table->reginfo.join_tab->checked_keys.set_bit(use->key);
save_pos++;
}
i = (uint)(save_pos - keyuse->begin());
keyuse->at(i) = key_end;
keyuse->chop(i);
}
print_keyuse_array(thd, &thd->opt_trace, keyuse);
/*
Number of functions here call val_x() methods, which might throw an error.
Catch those errors here.
*/
return thd->is_error();
}
/**
Create a keyuse array for a table with a primary key.
To be used when creating a materialized temporary table.
@param thd THD pointer, for memory allocation
@param keyparts Number of key parts in the primary key
@param fields fields
@param outer_exprs List of items used for key lookup
@return Pointer to created keyuse array, or NULL if error
*/
Key_use_array *create_keyuse_for_table(
THD *thd, uint keyparts, Item_field **fields,
const mem_root_deque<Item *> &outer_exprs) {
void *mem = thd->alloc(sizeof(Key_use_array));
if (!mem) return nullptr;
Key_use_array *keyuses = new (mem) Key_use_array(thd->mem_root);
auto outer_expr_it = outer_exprs.begin();
for (uint keypartno = 0; keypartno < keyparts; keypartno++) {
Item *const item = *outer_expr_it++;
Key_field key_field(fields[keypartno], item, 0, 0, true,
// null_rejecting must be true for field items only,
// add_not_null_conds() is incapable of handling
// other item types.
(item->type() == Item::FIELD_ITEM), nullptr, UINT_MAX);
if (add_key_part(keyuses, &key_field)) return nullptr;
}
const Key_use key_end(nullptr, nullptr, 0, 0, 0, 0, 0, 0, false, nullptr, 0);
if (keyuses->push_back(key_end)) // added for easy testing
return nullptr;
return keyuses;
}
/**
Move const tables first in the position array.
Increment the number of const tables and set same basic properties for the
const table.
A const table looked up by a key has type JT_CONST.
A const table with a single row has type JT_SYSTEM.
@param tab Table that is designated as a const table
@param key The key definition to use for this table (NULL if table scan)
*/
void JOIN::mark_const_table(JOIN_TAB *tab, Key_use *key) {
POSITION *const position = positions + const_tables;
position->table = tab;
position->key = key;
position->rows_fetched = 1.0; // This is a const table
position->filter_effect = 1.0;
position->prefix_rowcount = 1.0;
position->read_cost = 0.0;
position->ref_depend_map = 0;
position->loosescan_key = MAX_KEY; // Not a LooseScan
position->sj_strategy = SJ_OPT_NONE;
positions->use_join_buffer = false;
// Move the const table as far down as possible in best_ref
JOIN_TAB **pos = best_ref + const_tables + 1;
for (JOIN_TAB *next = best_ref[const_tables]; next != tab; pos++) {
JOIN_TAB *const tmp = pos[0];
pos[0] = next;
next = tmp;
}
best_ref[const_tables] = tab;
tab->set_type(key ? JT_CONST : JT_SYSTEM);
const_table_map |= tab->table_ref->map();
const_tables++;
}
void JOIN::make_outerjoin_info() {
DBUG_TRACE;
assert(query_block->outer_join);
ASSERT_BEST_REF_IN_JOIN_ORDER(this);
query_block->reset_nj_counters();
for (uint i = const_tables; i < tables; ++i) {
JOIN_TAB *const tab = best_ref[i];
TABLE *const table = tab->table();
if (!table) continue;
Table_ref *const tbl = tab->table_ref;
/*
If 'tbl' is inside a SJ/AJ nest served by materialization, we must
limit setting first_inner, last_inner and first_upper for join nests
inside the materialized table. Indeed it is the SJ-tmp table, and not
'tbl', which interacts with the nests outer to the SJ/AJ nest.
*/
const bool sj_mat_inner =
sj_is_materialize_strategy(tab->get_sj_strategy());
if (tbl->outer_join) {
/*
Table tab is the only one inner table for outer join.
(Like table t4 for the table reference t3 LEFT JOIN t4 ON t3.a=t4.a
is in the query above.)
*/
tab->set_last_inner(i);
tab->set_first_inner(i);
tab->init_join_cond_ref(tbl);
tab->cond_equal = tbl->cond_equal;
/*
If this outer join nest is embedded in another join nest,
link the join-tabs:
*/
Table_ref *const outer_join_nest = tbl->outer_join_nest();
if (outer_join_nest) {
assert(outer_join_nest->nested_join->first_nested != NO_PLAN_IDX);
if (!sj_mat_inner ||
(tab->emb_sj_nest->sj_inner_tables &
best_ref[outer_join_nest->nested_join->first_nested]
->table_ref->map()))
tab->set_first_upper(outer_join_nest->nested_join->first_nested);
}
}
for (Table_ref *embedding = tbl->embedding; embedding;
embedding = embedding->embedding) {
// When reaching the outer tables of the materialized temporary table,
// the decoration for this table is complete.
if (sj_mat_inner && embedding == tab->emb_sj_nest) break;
// Ignore join nests that are not outer join nests:
if (!embedding->join_cond_optim()) continue;
NESTED_JOIN *const nested_join = embedding->nested_join;
if (!nested_join->nj_counter) {
/*
Table tab is the first inner table for nested_join.
Save reference to it in the nested join structure.
*/
nested_join->first_nested = i;
// The table's condition is set to point to the join nest's condition
tab->init_join_cond_ref(embedding);
tab->cond_equal = tbl->cond_equal;
Table_ref *const outer_join_nest = embedding->outer_join_nest();
if (outer_join_nest) {
assert(outer_join_nest->nested_join->first_nested != NO_PLAN_IDX);
if (!sj_mat_inner ||
(tab->emb_sj_nest->sj_inner_tables &
best_ref[outer_join_nest->nested_join->first_nested]
->table_ref->map()))
tab->set_first_upper(outer_join_nest->nested_join->first_nested);
}
}
if (tab->first_inner() == NO_PLAN_IDX)
tab->set_first_inner(nested_join->first_nested);
/*
If including the sj-mat tmp table, this also implicitly
includes the inner tables of the sj-nest.
*/
nested_join->nj_counter +=
tab->sj_mat_exec() ? tab->sj_mat_exec()->table_count : 1;
if (nested_join->nj_counter < nested_join->nj_total) break;
// Table tab is the last inner table for nested join.
best_ref[nested_join->first_nested]->set_last_inner(i);
}
}
}
/**
Build a condition guarded by match variables for embedded outer joins.
When generating a condition for a table as part of an outer join condition
or the WHERE condition, the table in question may also be part of an
embedded outer join. In such cases, the condition must be guarded by
the match variable for this embedded outer join. Such embedded outer joins
may also be recursively embedded in other joins.
The function recursively adds guards for a condition ascending from tab
to root_tab, which is the first inner table of an outer join,
or NULL if the condition being handled is the WHERE clause.
@param join the current join
@param idx index of the first inner table for the inner-most outer join
@param cond the predicate to be guarded (must be set)
@param root_idx index of the inner table to stop at
(is NO_PLAN_IDX if this is the WHERE clause)
@return
- pointer to the guarded predicate, if success
- NULL if error
*/
static Item *add_found_match_trig_cond(JOIN *join, plan_idx idx, Item *cond,
plan_idx root_idx) {
ASSERT_BEST_REF_IN_JOIN_ORDER(join);
assert(cond->is_bool_func());
for (; idx != root_idx; idx = join->best_ref[idx]->first_upper()) {
if (!(cond = new Item_func_trig_cond(cond, nullptr, join, idx,
Item_func_trig_cond::FOUND_MATCH)))
return nullptr;
cond->quick_fix_field();
cond->update_used_tables();
}
return cond;
}
/**
Helper for JOIN::attach_join_conditions().
Attaches bits of 'join_cond' to each table in the range [first_inner,
last_tab], with proper guards.
If 'sj_mat_cond' is true, we do not see first_inner (and tables on the same
level of it) as inner to anything, as they're at the top from the POV of
the materialization of the tmp table. So, if the SJ-mat nest is A LJ B,
A will get a part of condition without any guard; B will get another part
with a guard on A->found_match. It's like pushing a WHERE.
*/
bool JOIN::attach_join_condition_to_nest(plan_idx first_inner,
plan_idx last_tab, Item *join_cond,
bool is_sj_mat_cond) {
/*
Add the constant part of the join condition to the first inner table
of the outer join.
*/
Item *cond =
make_cond_for_table(thd, join_cond, const_table_map, table_map(0), false);
if (cond) {
if (!is_sj_mat_cond) {
cond = new Item_func_trig_cond(cond, nullptr, this, first_inner,
Item_func_trig_cond::IS_NOT_NULL_COMPL);
if (!cond) return true;
if (cond->fix_fields(thd, nullptr)) return true;
}
if (best_ref[first_inner]->and_with_condition(cond)) return true;
}
/*
Split the non-constant part of the join condition into parts that
can be attached to the inner tables of the outer join.
*/
for (plan_idx i = first_inner; i <= last_tab; ++i) {
table_map prefix_tables = best_ref[i]->prefix_tables();
table_map added_tables = best_ref[i]->added_tables();
/*
When handling the first inner table of an outer join, we may also
reference all tables ahead of this table:
*/
if (i == first_inner) added_tables = prefix_tables;
/*
We need RAND_TABLE_BIT on the last inner table, in case there is a
non-deterministic function in the join condition.
(RAND_TABLE_BIT is set for the last table of the join plan,
but this is not sufficient for join conditions, which may have a
last inner table that is ahead of the last table of the join plan).
*/
if (i == last_tab) {
prefix_tables |= RAND_TABLE_BIT;
added_tables |= RAND_TABLE_BIT;
}
cond =
make_cond_for_table(thd, join_cond, prefix_tables, added_tables, false);
if (cond == nullptr) continue;
/*
If the table is part of an outer join that is embedded in the
outer join currently being processed, wrap the condition in
triggered conditions for match variables of such embedded outer joins.
*/
if (!(cond = add_found_match_trig_cond(
this, best_ref[i]->first_inner(), cond,
is_sj_mat_cond ? NO_PLAN_IDX : first_inner)))
return true;
if (!is_sj_mat_cond) {
// Add the guard turning the predicate off for the null-complemented row.
cond = new Item_func_trig_cond(cond, nullptr, this, first_inner,
Item_func_trig_cond::IS_NOT_NULL_COMPL);
if (!cond) return true;
if (cond->fix_fields(thd, nullptr)) return true;
}
// Add the generated condition to the existing table condition
if (best_ref[i]->and_with_condition(cond)) return true;
}
return false;
}
/**
Attach outer join conditions to generated table conditions in an optimal way.
@param last_tab - Last table that has been added to the current plan.
Pre-condition: If this is the last inner table of an outer
join operation, a join condition is attached to the first
inner table of that outer join operation.
@return false if success, true if error.
Outer join conditions are attached to individual tables, but we can analyze
those conditions only when reaching the last inner table of an outer join
operation. Notice also that a table can be last within several outer join
nests, hence the outer for() loop of this function.
Example:
SELECT * FROM t1 LEFT JOIN (t2 LEFT JOIN t3 ON t2.a=t3.a) ON t1.a=t2.a
Table t3 is last both in the join nest (t2 - t3) and in (t1 - (t2 - t3))
Thus, join conditions for both join nests will be evaluated when reaching
this table.
For each outer join operation processed, the join condition is split
optimally over the inner tables of the outer join. The split-out conditions
are later referred to as table conditions (but note that several table
conditions stemming from different join operations may be combined into
a composite table condition).
Example:
Consider the above query once more.
The predicate t1.a=t2.a can be evaluated when rows from t1 and t2 are ready,
ie at table t2. The predicate t2.a=t3.a can be evaluated at table t3.
Each non-constant split-out table condition is guarded by a match variable
that enables it only when a matching row is found for all the embedded
outer join operations.
Each split-out table condition is guarded by a variable that turns the
condition off just before a null-complemented row for the outer join
operation is formed. Thus, the join condition will not be checked for
the null-complemented row.
*/
bool JOIN::attach_join_conditions(plan_idx last_tab) {
DBUG_TRACE;
ASSERT_BEST_REF_IN_JOIN_ORDER(this);
JOIN_TAB *lt = best_ref[last_tab];
for (plan_idx first_inner = lt->first_inner();
first_inner != NO_PLAN_IDX &&
best_ref[first_inner]->last_inner() == last_tab;
first_inner = best_ref[first_inner]->first_upper()) {
/*
Table last_tab is the last inner table of an outer join, locate
the corresponding join condition from the first inner table of the
same outer join:
*/
Item *const join_cond = best_ref[first_inner]->join_cond();
assert(join_cond);
if (attach_join_condition_to_nest(first_inner, last_tab, join_cond, false))
return true;
}
if (sj_is_materialize_strategy(lt->get_sj_strategy())) {
plan_idx mat_tbl = NO_PLAN_IDX;
/*
The SJ nest's condition contains both the SJ equality condition and the
WHERE of the replaced subquery. This WHERE must be pushed to SJ-inner
tables for evaluation during materialization!
*/
Semijoin_mat_exec *sjm = nullptr;
for (plan_idx j = last_tab;; j--) {
sjm = best_ref[j]->sj_mat_exec();
if (sjm && sjm->sj_nest == lt->emb_sj_nest) {
// 'j' is the sj-mat tmp table
mat_tbl = j;
break;
}
}
assert(sjm);
if (sjm->inner_table_index + sjm->table_count - 1 == (uint)last_tab) {
// we're at last table of sjmat nest
Item *join_cond = best_ref[mat_tbl]->join_cond();
Table_ref *tr = best_ref[mat_tbl]->table_ref;
while (join_cond == nullptr && tr->embedding != nullptr &&
tr->embedding->is_derived()) {
// If subquery table(s) come from a derived table
join_cond = tr->embedding->join_cond();
tr = tr->embedding;
assert(tr->is_merged());
}
if (join_cond && attach_join_condition_to_nest(sjm->inner_table_index,
last_tab, join_cond, true))
return true;
}
}
/*
See if 'last_tab' is the first inner of an antijoin nest,
then add a IS NULL condition on it.
By attaching the condition to the first inner table, we know that if
it is not satisfied we can just jump back to the table right before
it.
*/
if (lt->table_ref->embedding && lt->table_ref->embedding->is_aj_nest() &&
last_tab == lt->first_inner() &&
/*
Exception: in A AJ (B LJ C) where C is a single table: there is no
join nest for C as it's single; C->embedding is thus the AJ nest; but
C->first_inner() is C (as it's the first inner of the LJ operation).
In that case it's not the first inner table of the AJ.
Catch this case:
*/
!lt->table_ref->join_cond()) {
Item *cond = new Item_func_false();
if (!cond) return true;
// This is a signal for JOIN::create_access_paths
cond->item_name.set(antijoin_null_cond);
/*
For A AJ B ON COND, we need an IS NULL condition which
is tested on the result rows of A LEFT JOIN B ON COND.
It must be tested only after the "match status" of a row of B has been
decided, so is wrapped in a condition triggered by B->found_match.
To have it test IS NULL, it's wrapped in a triggered condition which is
false if B is not NULL-complemented.
We needn't wrap this condition with triggers from upper nests, hence the
last argument of the call below.
*/
cond = add_found_match_trig_cond(this, last_tab, cond, lt->first_upper());
if (!cond) return true;
cond = new Item_func_trig_cond(cond, nullptr, this, last_tab,
Item_func_trig_cond::IS_NOT_NULL_COMPL);
if (!cond) return true;
if (cond->fix_fields(thd, nullptr)) return true;
if (lt->and_with_condition(cond)) return true;
lt->table()->reginfo.not_exists_optimize = true;
// The relevant secondary engines don't support antijoin, so don't enable
// this optimization for them.
assert(thd->secondary_engine_optimization() !=
Secondary_engine_optimization::SECONDARY);
}
return false;
}
/*****************************************************************************
Remove calculation with tables that aren't yet read. Remove also tests
against fields that are read through key where the table is not a
outer join table.
We can't remove tests that are made against columns which are stored
in sorted order.
*****************************************************************************/
static Item *part_of_refkey(TABLE *table, Index_lookup *ref,
const Field *field) {
uint ref_parts = ref->key_parts;
if (ref_parts) {
if (ref->has_guarded_conds()) return nullptr;
const KEY_PART_INFO *key_part = table->key_info[ref->key].key_part;
for (uint part = 0; part < ref_parts; part++, key_part++)
if (field->eq(key_part->field) &&
!(key_part->key_part_flag & HA_PART_KEY_SEG))
return ref->items[part];
}
return nullptr;
}
bool ref_lookup_subsumes_comparison(THD *thd, Field *field, Item *right_item,
bool can_evaluate, bool *subsumes) {
*subsumes = false;
right_item = right_item->real_item();
if (right_item->type() == Item::FIELD_ITEM) {
*subsumes = field->eq_def(down_cast<Item_field *>(right_item)->field);
return false;
} else if (right_item->type() == Item::CACHE_ITEM) {
// remove equalities injected by IN->EXISTS transformation
*subsumes = down_cast<Item_cache *>(right_item)->eq_def(field);
return false;
}
bool right_is_null = true;
if (can_evaluate) {
assert(evaluate_during_optimization(right_item,
thd->lex->current_query_block()));
right_is_null = right_item->is_nullable() && right_item->is_null();
if (thd->is_error()) return true;
}
if (!right_is_null) {
/*
We can remove all fields except:
1. String data types:
- For BINARY/VARBINARY fields with equality against a
string: Ref access can return more rows than match the
string. The reason seems to be that the string constant
is not "padded" to the full length of the field when
setting up ref access. @todo Change how ref access for
BINARY/VARBINARY fields are done so that only qualifying
rows are returned from the storage engine.
2. Float data type: Comparison of float can differ
- When we search "WHERE field=value" using an index,
the "value" side is converted from double to float by
Field_float::store(), then two floats are compared.
- When we search "WHERE field=value" without indexes,
the "field" side is converted from float to double by
Field_float::val_real(), then two doubles are compared.
*/
if (field->type() == MYSQL_TYPE_STRING &&
field->charset()->pad_attribute == NO_PAD) {
/*
For "NO PAD" collations on CHAR columns, this function must return
false, because removal of trailing space in CHAR columns makes the
table value and the index value compare differently. As the column
strips trailing spaces, it can return false candidates. Further
comparison of the actual table values is required.
*/
return false;
}
if (!((field->type() == MYSQL_TYPE_STRING || // 1
field->type() == MYSQL_TYPE_VARCHAR) &&
field->binary()) &&
!(field->type() == MYSQL_TYPE_FLOAT && field->decimals() > 0)) // 2
{
*subsumes = !right_item->save_in_field_no_warnings(field, true);
if (thd->is_error()) return true;
}
}
return false;
}
/**
@brief
Identify redundant predicates.
@details
Test if the equality predicate 'left_item = right_item' is redundant
due to a REF-access already being set up on the table, where 'left_item' is
part of the REF-key being used, and 'right_item' is equal to the key value
specified for that field in the key.
In such cases the predicate is known to be 'true' for any rows retrieved
from that table. Thus it is redundant.
@param thd session context
@param left_item The Item_field possibly being part of A ref-KEY.
@param right_item The equality value specified for 'left_item'.
@param[out] redundant true if predicate is redundant, false otherwise
@returns false if success, true if error
@note See comments in reduce_cond_for_table() about careful
usage/modifications of test_if_ref().
*/
static bool test_if_ref(THD *thd, Item_field *left_item, Item *right_item,
bool *redundant) {
*redundant = false;
if (left_item->depended_from)
return false; // don't even read join_tab of inner subquery!
Field *field = left_item->field;
JOIN_TAB *join_tab = field->table->reginfo.join_tab;
if (join_tab == nullptr) return false;
ASSERT_BEST_REF_IN_JOIN_ORDER(join_tab->join());
// No need to change const test
if (!field->table->const_table &&
/* "ref_or_null" implements "x=y or x is null", not "x=y" */
(join_tab->type() != JT_REF_OR_NULL)) {
Item *ref_item = part_of_refkey(field->table, &join_tab->ref(), field);
if (ref_item != nullptr && ref_item->eq(right_item, true)) {
if (ref_lookup_subsumes_comparison(
thd, field, right_item,
right_item->const_for_execution() &&
!(thd->lex->is_explain() && right_item->has_stored_program()),
redundant)) {
return true;
}
}
}
return false; // keep predicate
}
/**
@brief
Remove redundant predicates from condition, return the reduced condition.
@details
A predicate of the form 'field = value' may be redundant if the
(ref-) access chosen for the table use an index containing 'field',
where 'value' is specified as (part of) its ref-key. This method remove
such redundant predicates, thus reducing the condition, possibly
eliminating it entirely.
If comparing 'values' against outer-joined tables, these are possibly
'null-extended'. Thus the usage of these values in the ref-key, is not
sufficient anymore to guarantee that 'field = value' is 'TRUE'.
The 'null_extended' argument hold the table_map of any such possibly
null-extended tables which are excluded from the above 'reduce' logic.
Any tables referred in Item_func_trig_cond(FOUND_MATCH) conditions are
aggregated into this null_extended table_map.
@param thd thread handler
@param cond The condition to be 'reduced'.
@param null_extended table_map of possibly null-extended outer-tables.
@param[out] reduced The condition with redundant predicates removed,
possibly nullptr.
@returns false if success, true if error
*/
static bool reduce_cond_for_table(THD *thd, Item *cond, table_map null_extended,
Item **reduced) {
DBUG_TRACE;
DBUG_EXECUTE("where",
print_where(current_thd, cond, "cond term", QT_ORDINARY););
*reduced = nullptr;
if (cond->type() == Item::COND_ITEM) {
List<Item> *arguments = down_cast<Item_cond *>(cond)->argument_list();
List_iterator<Item> li(*arguments);
if (down_cast<Item_cond *>(cond)->functype() == Item_func::COND_AND_FUNC) {
Item *item;
while ((item = li++)) {
Item *upd_item;
if (reduce_cond_for_table(thd, item, null_extended, &upd_item)) {
return true;
}
if (upd_item == nullptr) {
li.remove();
} else if (upd_item != item) {
li.replace(upd_item);
}
}
switch (arguments->elements) {
case 0:
return false; // All 'true' -> And-cond true
case 1:
*reduced = arguments->head();
return false;
}
} else { // Or list
Item *item;
while ((item = li++)) {
Item *upd_item;
if (reduce_cond_for_table(thd, item, null_extended, &upd_item)) {
return true;
}
if (upd_item == nullptr) {
return false; // Term 'true' -> entire Or-cond true
} else if (upd_item != item) {
li.replace(upd_item);
}
}
}
} else if (cond->type() == Item::FUNC_ITEM) {
Item_func *func = down_cast<Item_func *>(cond);
if (func->functype() == Item_func::TRIG_COND_FUNC) {
Item_func_trig_cond *func_trig = down_cast<Item_func_trig_cond *>(func);
if (func_trig->get_trig_type() == Item_func_trig_cond::FOUND_MATCH) {
/*
All inner-tables are possible null-extended when evaluating
the 'FOUND_MATCH'. Thus, predicates embedded in this trig_cond,
referring these tables, should not be eliminated.
-> Add to null_extended map.
*/
null_extended |= func_trig->get_inner_tables();
}
Item *cond_arg = func->arguments()[0];
Item *upd_arg;
if (reduce_cond_for_table(thd, cond_arg, null_extended, &upd_arg)) {
return true;
}
if (upd_arg == nullptr) {
return false;
}
func->arguments()[0] = upd_arg;
} else if (func->functype() == Item_func::EQ_FUNC) {
/*
Remove equalities that are guaranteed to be true by use of 'ref' access
method.
Note that ref access implements "table1.field1 <=>
table2.indexed_field2", i.e. if it passed a NULL field1, it will return
NULL indexed_field2 if there are.
Thus the equality "table1.field1 = table2.indexed_field2",
is equivalent to "ref access AND table1.field1 IS NOT NULL"
i.e. "ref access and proper setting/testing of ref->null_rejecting".
Thus, we must be careful, that when we remove equalities below we also
set ref->null_rejecting, and test it at execution; otherwise wrong NULL
matches appear.
So:
- for the optimization phase, the code which is below, and the code in
test_if_ref(), and in add_key_field(), must be kept in sync: if the
applicability conditions in one place are relaxed, they should also be
relaxed elsewhere.
- for the execution phase, all possible execution methods must test
ref->null_rejecting.
*/
Item *left_item = func->arguments()[0]->real_item();
Item *right_item = func->arguments()[1]->real_item();
bool redundant = false;
if (left_item->type() == Item::FIELD_ITEM &&
!(left_item->used_tables() & null_extended) &&
test_if_ref(thd, down_cast<Item_field *>(left_item), right_item,
&redundant)) {
return true;
}
if (redundant) {
return false;
}
if (right_item->type() == Item::FIELD_ITEM &&
!(right_item->used_tables() & null_extended) &&
test_if_ref(thd, down_cast<Item_field *>(right_item), left_item,
&redundant)) {
return true;
}
if (redundant) {
return false;
}
}
}
*reduced = cond;
return false;
}
/**
@brief
Remove redundant predicates and cache constant expressions.
@details
Do a final round on pushed down table conditions and HAVING
clause. Optimize them for faster execution by removing
predicates being obsolete due to the access path selected
for the table. Constant expressions are also cached
to avoid evaluating them for each row being compared.
@param thd thread handler
@returns false if success, true if error
@note This function is run after conditions have been pushed down to
individual tables, so transformation is applied to JOIN_TAB::condition
and not to the WHERE condition.
*/
bool JOIN::finalize_table_conditions(THD *thd) {
/*
Unnecessary to reduce conditions for const tables as they are only
evaluated once.
*/
assert(!plan_is_const());
ASSERT_BEST_REF_IN_JOIN_ORDER(this);
Opt_trace_context *const trace = &thd->opt_trace;
Opt_trace_object trace_wrapper(trace);
Opt_trace_array trace_tables(trace, "finalizing_table_conditions");
for (uint i = const_tables; i < tables; i++) {
Item *condition = best_ref[i]->condition();
if (condition == nullptr) continue;
/*
Table predicates known to be true by the selected
(ref-)access method may be removed from the condition
*/
Opt_trace_object trace_cond(trace);
trace_cond.add_utf8_table(best_ref[i]->table_ref);
trace_cond.add("original_table_condition", condition);
/*
Calculate the set of possibly NULL extended tables when 'condition'
is evaluated. As it is evaluated on a found row from table, that
table is subtracted from the nullable tables. Note that a FOUND_MATCH
trigger is a special case, handled in reduce_cond_for_table().
*/
const table_map null_extended =
query_block->outer_join & ~best_ref[i]->table_ref->map();
if (reduce_cond_for_table(thd, condition, null_extended, &condition)) {
return true;
}
if (condition != nullptr) condition->update_used_tables();
/*
Cache constant expressions in table conditions.
(Moved down from WHERE- and ON-clauses)
*/
if (condition != nullptr) {
cache_const_expr_arg cache_arg;
cache_const_expr_arg *analyzer_arg = &cache_arg;
condition = condition->compile(
&Item::cache_const_expr_analyzer, (uchar **)&analyzer_arg,
&Item::cache_const_expr_transformer, (uchar *)&cache_arg);
if (condition == nullptr) return true;
}
trace_cond.add("final_table_condition ", condition);
best_ref[i]->set_condition(condition);
}
/* Cache constant expressions in HAVING-clauses. */
if (having_cond != nullptr) {
cache_const_expr_arg cache_arg;
cache_const_expr_arg *analyzer_arg = &cache_arg;
having_cond = having_cond->compile(
&Item::cache_const_expr_analyzer, (uchar **)&analyzer_arg,
&Item::cache_const_expr_transformer, (uchar *)&cache_arg);
if (having_cond == nullptr) return true;
}
return false;
}
/**
@brief
Add keys to derived tables'/views' result tables in a list
@details
This function generates keys for all derived tables/views of the query_block
to which this join corresponds to with help of the
Table_ref:generate_keys function.
@return false all keys were successfully added.
@return true OOM error
*/
bool JOIN::generate_derived_keys() {
assert(query_block->materialized_derived_table_count);
for (Table_ref *table = query_block->leaf_tables; table;
table = table->next_leaf) {
table->derived_keys_ready = true;
/* Process tables that aren't materialized yet. */
if (table->uses_materialization() && !table->table->is_created() &&
table->generate_keys())
return true;
}
return false;
}
/**
For each materialized derived table/view, informs every TABLE of the key it
will (not) use, segregates used keys from unused keys in TABLE::key_info,
and eliminates unused keys.
*/
void JOIN::finalize_derived_keys() {
assert(query_block->materialized_derived_table_count);
ASSERT_BEST_REF_IN_JOIN_ORDER(this);
table_map processed_tables = 0;
for (uint i = 0; i < tables; i++) {
TABLE *const table = best_ref[i]->table();
Table_ref *const tr = best_ref[i]->table_ref;
/*
Process the table's key definitions if:
1) it is a materialized derived table, and
2) it is not yet instantiated, and
3) it has some keys defined, and
4) it has not yet been processed (may happen if there are more than one
local references to the same CTE, which are processed on seeing the
first reference).
*/
if (table == nullptr || !tr->uses_materialization() || // (1)
table->is_created() || // (2)
table->s->keys == 0 || // (3)
(processed_tables & tr->map())) { // (4)
continue;
}
/*
Collect all used keys before starting to shuffle them:
First create a map from key number to the table using the key:
*/
assert(table->s->keys <= MAX_INDEXES);
TABLE *table_map[MAX_INDEXES];
for (uint j = 0; j < table->s->keys; j++) {
table_map[j] = nullptr;
}
Key_map used_keys;
// Mark all unique indexes as in use, since they have an effect
// (deduplication) whether any expression refers to them or not.
// In particular, they are used if we want to materialize a UNION DISTINCT
// directly into the derived table.
for (uint key_idx = 0; key_idx < table->s->keys; ++key_idx) {
if (table->key_info[key_idx].flags & HA_NOSAME) {
used_keys.set_bit(key_idx);
}
}
// Same for the hash key used for manual deduplication, if any.
// (It always has index 0 if it exists.)
if (table->hash_field) {
used_keys.set_bit(0);
}
Derived_refs_iterator it(tr);
while (TABLE *t = it.get_next()) {
if (t->pos_in_table_list->query_block != query_block) {
continue;
}
JOIN_TAB *jtab = t->reginfo.join_tab;
Key_use *const keyuse = jtab->position()->key;
if (keyuse != nullptr) {
used_keys.set_bit(keyuse->key);
table_map[keyuse->key] = t;
} else {
jtab->keys().clear_all();
jtab->const_keys.clear_all();
processed_tables |= t->pos_in_table_list->map();
}
}
/*
This call is required to establish the initial value for
TABLE_SHARE::first_unused_tmp_key.
*/
(void)table->s->find_first_unused_tmp_key(used_keys);
// Process keys in increasing key order
for (uint j = 0; j < table->s->keys; j++) {
TABLE *const t = table_map[j];
if (t == nullptr) continue;
/*
Eliminate possible keys created by this JOIN and which it doesn't use.
Collect all keys of this table which are used by any reference in
this query block. Any other query block doesn't matter as:
- either it was optimized before, so it's not using a key we may
want to drop.
- or it was optimized in this same window, so:
* either we own the window, then any key we may want to
drop is not visible to it.
* or it owns the window, then we are using only existing keys.
- or it will be optimized after, so it's not using any key yet.
used_keys is a mix of possible used keys and existing used keys.
*/
if (t->pos_in_table_list->query_block != query_block) {
continue;
}
JOIN_TAB *jtab = t->reginfo.join_tab;
Key_use *const keyuse = jtab->position()->key;
assert(keyuse != nullptr);
// Also updates table->s->first_unused_tmp_key.
uint new_idx = t->s->find_first_unused_tmp_key(used_keys);
const uint old_idx = keyuse->key;
assert(old_idx != new_idx);
if (old_idx > new_idx) {
assert(t->s->owner_of_possible_tmp_keys == query_block);
Derived_refs_iterator it1(tr);
while (TABLE *t1 = it1.get_next()) {
/*
Unlike the collection of used_keys, references from other query
blocks must be considered here, as they need a key_info array
consistent with the to-be-changed table->s->keys.
*/
t1->move_tmp_key(old_idx, it1.is_first());
}
used_keys.clear_bit(old_idx);
used_keys.set_bit(new_idx);
} else {
new_idx = old_idx; // Index stays at same slot
}
/*
If the key was created by earlier-optimized query blocks, and is
already used by nonlocal references, those don't need any further
update: they are already setup to use it and we're not moving the key.
If the key was created by this query block, nonlocal references cannot
possibly be referencing it.
In both cases, only local references need to update their Key_use.
*/
Derived_refs_iterator it2(tr);
while (TABLE *t2 = it2.get_next()) {
if (t2->pos_in_table_list->query_block != query_block) continue;
JOIN_TAB *jt2 = t2->reginfo.join_tab;
Key_use *ku2 = jt2->position()->key;
if (ku2 != nullptr && ku2->key == old_idx) {
processed_tables |= t2->pos_in_table_list->map();
const bool key_is_const = jt2->const_keys.is_set(old_idx);
// tab->keys() was never set, so must be set
jt2->keys().clear_all();
jt2->keys().set_bit(new_idx);
jt2->const_keys.clear_all();
if (key_is_const) jt2->const_keys.set_bit(new_idx);
for (Key_use *kit = ku2;
kit->table_ref == jt2->table_ref && kit->key == old_idx; kit++) {
kit->key = new_idx;
}
}
}
}
// Finally, we know how many keys remain in the table.
if (table->s->owner_of_possible_tmp_keys != query_block) continue;
// Release lock:
table->s->owner_of_possible_tmp_keys = nullptr;
it.rewind();
while (TABLE *t = it.get_next()) {
t->drop_unused_tmp_keys(it.is_first());
}
}
}
/**
@brief
Extract a condition that can be checked after reading given table
@param thd Current session.
@param cond Condition to analyze
@param tables Tables for which "current field values" are available
@param used_table Table(s) that we are extracting the condition for (may
also include PSEUDO_TABLE_BITS, and may be zero)
@param exclude_expensive_cond Do not push expensive conditions
@retval <>NULL Generated condition
@retval = NULL Already checked, OR error
@details
Extract the condition that can be checked after reading the table(s)
specified in @c used_table, given that current-field values for tables
specified in @c tables bitmap are available.
If @c used_table is 0, extract conditions for all tables in @c tables.
This function can be used to extract conditions relevant for a table
in a join order. Together with its caller, it will ensure that all
conditions are attached to the first table in the join order where all
necessary fields are available, and it will also ensure that a given
condition is attached to only one table.
To accomplish this, first initialize @c tables to the empty
set. Then, loop over all tables in the join order, set @c used_table to
the bit representing the current table, accumulate @c used_table into the
@c tables set, and call this function. To ensure correct handling of
const expressions and outer references, add the const table map and
OUTER_REF_TABLE_BIT to @c used_table for the first table. To ensure
that random expressions are evaluated for the final table, add
RAND_TABLE_BIT to @c used_table for the final table.
The function assumes that constant, inexpensive parts of the condition
have already been checked. Constant, expensive parts will be attached
to the first table in the join order, provided that the above call
sequence is followed.
The call order will ensure that conditions covering tables in @c tables
minus those in @c used_table, have already been checked.
The function takes into account that some parts of the condition are
guaranteed to be true by employed 'ref' access methods (the code that
does this is located at the end, search down for "EQ_FUNC").
@note
make_cond_for_info_schema() uses an algorithm similar to
make_cond_for_table().
*/
Item *make_cond_for_table(THD *thd, Item *cond, table_map tables,
table_map used_table, bool exclude_expensive_cond) {
/*
May encounter an Item_cache_int as "condition" here, so cannot
assert that it satisfies is_bool_func().
*/
/*
Ignore this condition if
1. We are extracting conditions for a specific table, and
2. that table is not referenced by the condition, but not if
3. this is a constant condition not checked at optimization time and
this is the first table we are extracting conditions for.
(Assuming that used_table == tables for the first table.)
*/
if (used_table && // 1
!(cond->used_tables() & used_table) && // 2
!(cond->is_expensive() && used_table == tables)) // 3
return nullptr;
if (cond->type() == Item::COND_ITEM) {
if (((Item_cond *)cond)->functype() == Item_func::COND_AND_FUNC) {
/* Create new top level AND item */
Item_cond_and *new_cond = new Item_cond_and;
if (!new_cond) return nullptr;
List_iterator<Item> li(*((Item_cond *)cond)->argument_list());
Item *item;
while ((item = li++)) {
Item *fix = make_cond_for_table(thd, item, tables, used_table,
exclude_expensive_cond);
if (fix) new_cond->argument_list()->push_back(fix);
}
switch (new_cond->argument_list()->elements) {
case 0:
return nullptr; // Always true
case 1:
return new_cond->argument_list()->head();
default:
if (new_cond->fix_fields(thd, nullptr)) return nullptr;
return new_cond;
}
} else { // Or list
Item_cond_or *new_cond = new Item_cond_or;
if (!new_cond) return nullptr;
List_iterator<Item> li(*((Item_cond *)cond)->argument_list());
Item *item;
while ((item = li++)) {
Item *fix = make_cond_for_table(thd, item, tables, table_map(0),
exclude_expensive_cond);
if (!fix) return nullptr; // Always true
new_cond->argument_list()->push_back(fix);
}
if (new_cond->fix_fields(thd, nullptr)) return nullptr;
return new_cond;
}
}
/*
Omit this condition if
1. Some tables referred by the condition are not available, or
2. We are extracting conditions for all tables, the condition is
considered 'expensive', and we want to delay evaluation of such
conditions to the execution phase.
*/
if ((cond->used_tables() & ~tables) || // 1
(!used_table && exclude_expensive_cond && cond->is_expensive())) // 2
return nullptr;
return cond;
}
/**
Separates the predicates in a join condition and pushes them to the
join step where all involved tables are available in the join prefix.
ON clauses from JOIN expressions are also pushed to the most appropriate step.
@param join Join object where predicates are pushed.
@param cond Pointer to condition which may contain an arbitrary number of
predicates, combined using AND, OR and XOR items.
If NULL, equivalent to a predicate that returns true for all
row combinations.
@retval true Found impossible WHERE clause, or out-of-memory
@retval false Other
*/
static bool make_join_query_block(JOIN *join, Item *cond) {
assert(cond == nullptr || cond->is_bool_func());
THD *thd = join->thd;
Opt_trace_context *const trace = &thd->opt_trace;
DBUG_TRACE;
ASSERT_BEST_REF_IN_JOIN_ORDER(join);
// Add IS NOT NULL conditions to table conditions:
if (add_not_null_conds(join)) return true;
/*
Extract constant conditions that are part of the WHERE clause.
Constant parts of join conditions from outer joins are attached to
the appropriate table condition in JOIN::attach_join_conditions().
*/
if (cond) /* Because of GroupIndexSkipScanIterator */
{ /* there may be a select without a cond. */
if (join->primary_tables > 1)
cond->update_used_tables(); // Table number may have changed
if (join->plan_is_const() &&
join->query_block->master_query_expression() ==
thd->lex->unit) // The outer-most query block
join->const_table_map |= RAND_TABLE_BIT;
}
/*
Extract conditions that depend on constant tables.
The const part of the query's WHERE clause can be checked immediately
and if it is not satisfied then the join has empty result
*/
Item *const_cond = nullptr;
if (cond)
const_cond = make_cond_for_table(thd, cond, join->const_table_map,
table_map(0), true);
// Add conditions added by add_not_null_conds()
for (uint i = 0; i < join->const_tables; i++) {
if (and_conditions(&const_cond, join->best_ref[i]->condition()))
return true;
}
DBUG_EXECUTE("where",
print_where(thd, const_cond, "constants", QT_ORDINARY););
if (const_cond != nullptr &&
evaluate_during_optimization(const_cond, join->query_block)) {
const bool const_cond_result = const_cond->val_int() != 0;
if (thd->is_error()) return true;
Opt_trace_object trace_const_cond(trace);
trace_const_cond.add("condition_on_constant_tables", const_cond)
.add("condition_value", const_cond_result);
if (const_cond_result) {
/*
If all the tables referred by the condition are const tables and
if the condition is not expensive, we can remove the where condition
as it will always evaluate to "true".
*/
if (join->plan_is_const() &&
!(cond->used_tables() & ~join->const_table_map) &&
!cond->is_expensive()) {
DBUG_PRINT("info", ("Found always true WHERE condition"));
join->where_cond = nullptr;
}
} else {
DBUG_PRINT("info", ("Found impossible WHERE condition"));
return true;
}
}
/*
Extract remaining conditions from WHERE clause and join conditions,
and attach them to the most appropriate table condition. This means that
a condition will be evaluated as soon as all fields it depends on are
available. For outer join conditions, the additional criterion is that
we must have determined whether outer-joined rows are available, or
have been NULL-extended, see JOIN::attach_join_conditions() for details.
*/
{
Opt_trace_object trace_wrapper(trace);
Opt_trace_object trace_conditions(trace, "attaching_conditions_to_tables");
trace_conditions.add("original_condition", cond);
Opt_trace_array trace_attached_comp(trace,
"attached_conditions_computation");
for (uint i = join->const_tables; i < join->tables; i++) {
JOIN_TAB *const tab = join->best_ref[i];
if (!tab->position()) continue;
/*
first_inner is the X in queries like:
SELECT * FROM t1 LEFT OUTER JOIN (t2 JOIN t3) ON X
*/
const plan_idx first_inner = tab->first_inner();
const table_map used_tables = tab->prefix_tables();
const table_map current_map = tab->added_tables();
Item *tmp = nullptr;
if (cond)
tmp = make_cond_for_table(thd, cond, used_tables, current_map, false);
/* Add conditions added by add_not_null_conds(). */
if (and_conditions(&tmp, tab->condition())) return true;
if (cond && !tmp && tab->range_scan()) { // Outer join
assert(tab->type() == JT_RANGE || tab->type() == JT_INDEX_MERGE);
/*
Hack to handle the case where we only refer to a table
in the ON part of an OUTER JOIN. In this case we want the code
below to check if we should use 'quick' instead.
*/
DBUG_PRINT("info", ("Item_func_true"));
tmp = new Item_func_true(); // Always true
}
if (tmp || !cond || tab->type() == JT_REF ||
tab->type() == JT_REF_OR_NULL || tab->type() == JT_EQ_REF ||
first_inner != NO_PLAN_IDX) {
DBUG_EXECUTE("where",
print_where(thd, tmp, tab->table()->alias, QT_ORDINARY););
/*
If tab is an inner table of an outer join operation,
add a match guard to the pushed down predicate.
The guard will turn the predicate on only after
the first match for outer tables is encountered.
*/
if (cond && tmp) {
/*
Because of GroupIndexSkipScanIterator there may be a select without
a cond, so neutralize the hack above.
*/
if (!(tmp = add_found_match_trig_cond(join, first_inner, tmp,
NO_PLAN_IDX)))
return true;
tab->set_condition(tmp);
} else {
tab->set_condition(nullptr);
}
DBUG_EXECUTE("where",
print_where(thd, tmp, tab->table()->alias, QT_ORDINARY););
if (tab->range_scan()) {
if (tab->needed_reg.is_clear_all() && tab->type() != JT_CONST) {
/*
We keep (for now) the QUICK AM calculated in
get_quick_record_count().
*/
} else {
destroy(tab->range_scan());
tab->set_range_scan(nullptr);
}
}
if ((tab->type() == JT_ALL || tab->type() == JT_RANGE ||
tab->type() == JT_INDEX_MERGE || tab->type() == JT_INDEX_SCAN) &&
tab->use_quick != QS_RANGE) {
/*
We plan to scan (table/index/range scan).
Check again if we should use an index. We can use an index if:
1a) There is a condition that range optimizer can work on, and
1b) There are non-constant conditions on one or more keys, and
1c) Some of the non-constant fields may have been read
already. This may be the case if this is not the first
table in the join OR this is a subselect with
non-constant conditions referring to an outer table
(dependent subquery)
or,
2a) There are conditions only relying on constants
2b) This is the first non-constant table
2c) There is a limit of rows to read that is lower than
the fanout for this table, predicate filters included
(i.e., the estimated number of rows that will be
produced for this table per row combination of
previous tables)
2d) The query is NOT run with FOUND_ROWS() (because in that
case we have to scan through all rows to count them anyway)
*/
enum {
DONT_RECHECK,
NOT_FIRST_TABLE,
LOW_LIMIT
} recheck_reason = DONT_RECHECK;
assert(tab->const_keys.is_subset(tab->keys()));
const join_type orig_join_type = tab->type();
const AccessPath *const orig_range_scan = tab->range_scan();
if (cond && // 1a
(tab->keys() != tab->const_keys) && // 1b
(i > 0 || // 1c
(join->query_block->master_query_expression()->item &&
cond->is_outer_reference())))
recheck_reason = NOT_FIRST_TABLE;
else if (!tab->const_keys.is_clear_all() && // 2a
i == join->const_tables && // 2b
(join->query_expression()->select_limit_cnt <
(tab->position()->rows_fetched *
tab->position()->filter_effect)) && // 2c
!join->calc_found_rows) // 2d
recheck_reason = LOW_LIMIT;
// Don't recheck if the storage engine does not support index access.
if ((tab->table()->file->ha_table_flags() & HA_NO_INDEX_ACCESS) != 0)
recheck_reason = DONT_RECHECK;
if (tab->position()->sj_strategy == SJ_OPT_LOOSE_SCAN) {
/*
Semijoin loose scan has settled for a certain index-based access
method with suitable characteristics, don't substitute it.
*/
recheck_reason = DONT_RECHECK;
}
if (recheck_reason != DONT_RECHECK) {
Opt_trace_object trace_one_table(trace);
trace_one_table.add_utf8_table(tab->table_ref);
Opt_trace_object trace_table(trace, "rechecking_index_usage");
if (recheck_reason == NOT_FIRST_TABLE)
trace_table.add_alnum("recheck_reason", "not_first_table");
else
trace_table.add_alnum("recheck_reason", "low_limit")
.add("limit", join->query_expression()->select_limit_cnt)
.add("row_estimate", tab->position()->rows_fetched *
tab->position()->filter_effect);
/* Join with outer join condition */
Item *orig_cond = tab->condition();
tab->and_with_condition(tab->join_cond());
/*
We can't call sel->cond->fix_fields,
as it will break tab->join_cond() if it's AND condition
(fix_fields currently removes extra AND/OR levels).
Yet attributes of the just built condition are not needed.
Thus we call sel->cond->quick_fix_field for safety.
*/
if (tab->condition() && !tab->condition()->fixed)
tab->condition()->quick_fix_field();
Key_map usable_keys = tab->keys();
enum_order interesting_order = ORDER_NOT_RELEVANT;
if (recheck_reason == LOW_LIMIT) {
int read_direction = 0;
/*
If the current plan is to use range, then check if the
already selected index provides the order dictated by the
ORDER BY clause.
*/
if (tab->range_scan() &&
used_index(tab->range_scan()) != MAX_KEY) {
const uint ref_key = used_index(tab->range_scan());
bool skip_quick;
read_direction = test_if_order_by_key(
&join->order, tab->table(), ref_key, nullptr, &skip_quick);
if (skip_quick) read_direction = 0;
/*
If the index provides order there is no need to recheck
index usage; we already know from the former call to
test_quick_select() that a range scan on the chosen
index is cheapest. Note that previous calls to
test_quick_select() did not take order direction
(ASC/DESC) into account, so in case of DESC ordering
we still need to recheck.
*/
if (read_direction == 1 ||
(read_direction == -1 &&
reverse_sort_possible(tab->range_scan()) &&
!make_reverse(get_used_key_parts(tab->range_scan()),
tab->range_scan()))) {
recheck_reason = DONT_RECHECK;
}
}
// We do a cost based search for an ordering index here, if:
// 1. "prefer_ordering_index" switch is on or
// 2. An index is forced for order by or
// 3. Optimizer has chosen to do table scan.
if (recheck_reason != DONT_RECHECK &&
(thd->optimizer_switch_flag(
OPTIMIZER_SWITCH_PREFER_ORDERING_INDEX) ||
tab->table()->force_index_order || tab->type() == JT_ALL)) {
DBUG_EXECUTE_IF("prefer_ordering_index_check", {
const char act[] =
"now wait_for "
"signal.prefer_ordering_index_check_continue";
assert(!debug_sync_set_action(current_thd,
STRING_WITH_LEN(act)));
});
int best_key = -1;
ha_rows select_limit =
join->query_expression()->select_limit_cnt;
/* Use index specified in FORCE INDEX FOR ORDER BY, if any. */
if (tab->table()->force_index_order)
usable_keys.intersect(tab->table()->keys_in_use_for_order_by);
// Do a cost based search on the indexes that give sort order.
test_if_cheaper_ordering(
tab, &join->order, tab->table(), usable_keys, -1,
select_limit, &best_key, &read_direction, &select_limit);
if (best_key < 0)
recheck_reason = DONT_RECHECK; // No usable keys
else {
// Only usable_key is the best_key chosen
usable_keys.clear_all();
usable_keys.set_bit(best_key);
interesting_order =
(read_direction == -1 ? ORDER_DESC : ORDER_ASC);
}
}
}
bool search_if_impossible = recheck_reason != DONT_RECHECK;
if (search_if_impossible) {
if (tab->range_scan()) {
destroy(tab->range_scan());
tab->set_type(JT_ALL);
}
AccessPath *range_scan;
MEM_ROOT temp_mem_root(key_memory_test_quick_select_exec,
thd->variables.range_alloc_block_size);
search_if_impossible =
test_quick_select(
thd, thd->mem_root, &temp_mem_root, usable_keys,
used_tables & ~tab->table_ref->map(), 0,
join->calc_found_rows
? HA_POS_ERROR
: join->query_expression()->select_limit_cnt,
false, // don't force quick range
interesting_order, tab->table(),
tab->skip_records_in_range(), tab->condition(),
&tab->needed_reg, tab->table()->force_index,
join->query_block, &range_scan) < 0;
tab->set_range_scan(range_scan);
}
tab->set_condition(orig_cond);
if (search_if_impossible) {
/*
Before reporting "Impossible WHERE" for the whole query
we have to check isn't it only "impossible ON" instead
*/
if (!tab->join_cond())
return true; // No ON, so it's really "impossible WHERE"
Opt_trace_object trace_without_on(trace, "without_ON_clause");
if (tab->range_scan()) {
destroy(tab->range_scan());
tab->set_type(JT_ALL);
}
AccessPath *range_scan;
MEM_ROOT temp_mem_root(key_memory_test_quick_select_exec,
thd->variables.range_alloc_block_size);
const bool impossible_where =
test_quick_select(
thd, thd->mem_root, &temp_mem_root, tab->keys(),
used_tables & ~tab->table_ref->map(), 0,
join->calc_found_rows
? HA_POS_ERROR
: join->query_expression()->select_limit_cnt,
false, // don't force quick range
ORDER_NOT_RELEVANT, tab->table(),
tab->skip_records_in_range(), tab->condition(),
&tab->needed_reg, tab->table()->force_index,
join->query_block, &range_scan) < 0;
tab->set_range_scan(range_scan);
if (impossible_where) return true; // Impossible WHERE
}
/*
Access method changed. This is after deciding join order
and access method for all other tables so the info
updated below will not have any effect on the execution
plan.
*/
if (tab->range_scan())
tab->set_type(calc_join_type(tab->range_scan()));
} // end of "if (recheck_reason != DONT_RECHECK)"
if (!tab->table()->quick_keys.is_subset(tab->checked_keys) ||
!tab->needed_reg.is_subset(tab->checked_keys)) {
tab->keys().merge(tab->table()->quick_keys);
tab->keys().merge(tab->needed_reg);
/*
The logic below for assigning tab->use_quick is strange.
It bases the decision of which access method to use
(dynamic range, range, scan) based on seemingly
unrelated information like the presence of another index
with too bad selectivity to be used.
Consider the following scenario:
The join optimizer has decided to use join order
(t1,t2), and 'tab' is currently t2. Further, assume that
there is a join condition between t1 and t2 using some
range operator (e.g. "t1.x < t2.y").
It has been decided that a table scan is best for t2.
make_join_query_block() then reran the range optimizer a few
lines up because there is an index 't2.good_idx'
covering the t2.y column. If 'good_idx' is the only
index in t2, the decision below will be to use dynamic
range. However, if t2 also has another index 't2.other'
which the range access method can be used on but
selectivity is bad (#rows estimate is high), then table
scan is chosen instead.
Thus, the choice of DYNAMIC RANGE vs SCAN depends on the
presence of an index that has so bad selectivity that it
will not be used anyway.
*/
if (!tab->needed_reg.is_clear_all() &&
(tab->table()->quick_keys.is_clear_all() ||
(tab->range_scan() &&
(tab->range_scan()->num_output_rows() >= 100.0)))) {
tab->use_quick = QS_DYNAMIC_RANGE;
tab->set_type(JT_ALL);
} else
tab->use_quick = QS_RANGE;
}
if (tab->type() != orig_join_type ||
tab->range_scan() != orig_range_scan) // Access method changed
tab->position()->filter_effect = COND_FILTER_STALE;
}
}
if (join->attach_join_conditions(i)) return true;
}
trace_attached_comp.end();
/*
In outer joins the loop above, in iteration for table #i, may push
conditions to a table before #i. Thus, the processing below has to be in
a separate loop:
*/
Opt_trace_array trace_attached_summary(trace,
"attached_conditions_summary");
for (uint i = join->const_tables; i < join->tables; i++) {
JOIN_TAB *const tab = join->best_ref[i];
if (!tab->table()) continue;
Item *const tab_cond = tab->condition();
Opt_trace_object trace_one_table(trace);
trace_one_table.add_utf8_table(tab->table_ref).add("attached", tab_cond);
if (tab_cond && tab_cond->has_subquery()) // traverse only if needed
{
/*
Why we pass walk_subquery=false: imagine
WHERE t1.col IN (SELECT * FROM t2
WHERE t2.col IN (SELECT * FROM t3)
and tab==t1. The grandchild subquery (SELECT * FROM t3) should not
be marked as "in condition of t1" but as "in condition of t2", for
correct calculation of the number of its executions.
*/
std::pair<Query_block *, int> pair_object(join->query_block, i);
tab_cond->walk(&Item::inform_item_in_cond_of_tab, enum_walk::POSTFIX,
pointer_cast<uchar *>(&pair_object));
}
}
}
return false;
}
/**
Remove the following expressions from ORDER BY and GROUP BY:
Constant expressions @n
Expression that only uses tables that are of type EQ_REF and the reference
is in the ORDER list or if all refereed tables are of the above type.
In the following, the X field can be removed:
@code
SELECT * FROM t1,t2 WHERE t1.a=t2.a ORDER BY t1.a,t2.X
SELECT * FROM t1,t2,t3 WHERE t1.a=t2.a AND t2.b=t3.b ORDER BY t1.a,t3.X
@endcode
These can't be optimized:
@code
SELECT * FROM t1,t2 WHERE t1.a=t2.a ORDER BY t2.X,t1.a
SELECT * FROM t1,t2 WHERE t1.a=t2.a AND t1.b=t2.b ORDER BY t1.a,t2.c
SELECT * FROM t1,t2 WHERE t1.a=t2.a ORDER BY t2.b,t1.a
@endcode
@param join join object
@param start_order clause being analyzed (ORDER BY, GROUP BY...)
@param tab table
@param cached_eq_ref_tables bitmap: bit Z is set if the table of map Z
was already the subject of an eq_ref_table() call for the same clause; then
the return value of this previous call can be found at bit Z of
'eq_ref_tables'
@param eq_ref_tables see above.
*/
static bool eq_ref_table(JOIN *join, ORDER *start_order, JOIN_TAB *tab,
table_map *cached_eq_ref_tables,
table_map *eq_ref_tables) {
/* We can skip const tables only if not an outer table */
if (tab->type() == JT_CONST && tab->first_inner() == NO_PLAN_IDX) return true;
if (tab->type() != JT_EQ_REF || tab->table()->is_nullable()) return false;
const table_map map = tab->table_ref->map();
uint found = 0;
for (Item **ref_item = tab->ref().items,
**end = ref_item + tab->ref().key_parts;
ref_item != end; ref_item++) {
if (!(*ref_item)->const_item()) { // Not a const ref
ORDER *order;
for (order = start_order; order; order = order->next) {
if ((*ref_item)->eq(order->item[0], false)) break;
}
if (order) {
if (!(order->used & map)) {
found++;
order->used |= map;
}
continue; // Used in ORDER BY
}
if (!only_eq_ref_tables(join, start_order, (*ref_item)->used_tables(),
cached_eq_ref_tables, eq_ref_tables))
return false;
}
}
/* Check that there was no reference to table before sort order */
for (; found && start_order; start_order = start_order->next) {
if (start_order->used & map) {
found--;
continue;
}
if (start_order->depend_map & map) return false;
}
return true;
}
/// @see eq_ref_table()
static bool only_eq_ref_tables(JOIN *join, ORDER *order, table_map tables,
table_map *cached_eq_ref_tables,
table_map *eq_ref_tables) {
tables &= ~PSEUDO_TABLE_BITS;
for (JOIN_TAB **tab = join->map2table; tables; tab++, tables >>= 1) {
if (tables & 1) {
const table_map map = (*tab)->table_ref->map();
bool is_eq_ref;
if (*cached_eq_ref_tables & map) // then there exists a cached bit
is_eq_ref = *eq_ref_tables & map;
else {
is_eq_ref = eq_ref_table(join, order, *tab, cached_eq_ref_tables,
eq_ref_tables);
if (is_eq_ref)
*eq_ref_tables |= map;
else
*eq_ref_tables &= ~map;
*cached_eq_ref_tables |= map; // now there exists a cached bit
}
if (!is_eq_ref) return false;
}
}
return true;
}
/**
Check if an expression in ORDER BY or GROUP BY is a duplicate of a
preceding expression.
@param first_order the first expression in the ORDER BY or
GROUP BY clause
@param possible_dup the expression that might be a duplicate of
another expression preceding it the ORDER BY
or GROUP BY clause
@returns true if possible_dup is a duplicate, false otherwise
*/
static bool duplicate_order(const ORDER *first_order,
const ORDER *possible_dup) {
const ORDER *order;
for (order = first_order; order; order = order->next) {
if (order == possible_dup) {
// all expressions preceding possible_dup have been checked.
return false;
} else {
const Item *it1 = order->item[0]->real_item();
const Item *it2 = possible_dup->item[0]->real_item();
if (it1->eq(it2, false)) return true;
}
}
return false;
}
/**
Remove all constants and check if ORDER only contains simple
expressions.
simple_order is set to true if sort_order only uses fields from head table
and the head table is not a LEFT JOIN table.
@param first_order List of GROUP BY or ORDER BY sub-clauses.
@param cond WHERE condition.
@param change If true, remove sub-clauses that need not be evaluated.
If this is not set, then only simple_order is calculated.
@param[out] simple_order Set to true if we are only using simple expressions.
@param group_by True if first_order represents a grouping operation.
@returns new sort order, after const elimination (when change is true).
*/
ORDER *JOIN::remove_const(ORDER *first_order, Item *cond, bool change,
bool *simple_order, bool group_by) {
DBUG_TRACE;
ASSERT_BEST_REF_IN_JOIN_ORDER(this);
if (plan_is_const())
return change ? nullptr : first_order; // No need to sort
Opt_trace_context *const trace = &thd->opt_trace;
Opt_trace_disable_I_S trace_disabled(trace, first_order == nullptr);
Opt_trace_object trace_simpl(
trace, group_by ? "simplifying_group_by" : "simplifying_order_by");
if (trace->is_started()) {
String str;
Query_block::print_order(
thd, &str, first_order,
enum_query_type(QT_TO_SYSTEM_CHARSET | QT_SHOW_SELECT_NUMBER |
QT_NO_DEFAULT_DB));
trace_simpl.add_utf8("original_clause", str.ptr(), str.length());
}
Opt_trace_array trace_each_item(trace, "items");
JOIN_TAB *const first_tab = best_ref[const_tables];
table_map first_table = first_tab->table_ref->map();
table_map not_const_tables = ~const_table_map;
table_map ref;
// Caches to avoid repeating eq_ref_table() calls, @see eq_ref_table()
table_map eq_ref_tables = 0, cached_eq_ref_tables = 0;
ORDER **prev_ptr = &first_order;
*simple_order = !first_tab->join_cond();
// De-optimization in conjunction with window functions
if (group_by && m_windows.elements > 0) *simple_order = false;
update_depend_map(first_order);
for (ORDER *order = first_order; order; order = order->next) {
Opt_trace_object trace_one_item(trace);
trace_one_item.add("item", order->item[0]);
table_map order_tables = order->item[0]->used_tables();
if (order->item[0]->has_aggregation() || order->item[0]->has_wf() ||
/*
If the outer table of an outer join is const (either by itself or
after applying WHERE condition), grouping on a field from such a
table will be optimized away and filesort without temporary table
will be used unless we prevent that now. Filesort is not fit to
handle joins and the join condition is not applied. We can't detect
the case without an expensive test, however, so we force temporary
table for all queries containing more than one table, ROLLUP, and an
outer join.
*/
(primary_tables > 1 && rollup_state == RollupState::INITED &&
query_block->outer_join)) {
*simple_order = false; // Must use a temporary table to sort
} else if ((order_tables & not_const_tables) == 0 &&
evaluate_during_optimization(order->item[0], query_block)) {
if (order->item[0]->has_subquery()) {
if (!thd->lex->is_explain()) {
Opt_trace_array trace_subselect(trace, "subselect_evaluation");
String str;
order->item[0]->val_str(&str);
}
order->item[0]->mark_subqueries_optimized_away();
}
trace_one_item.add("uses_only_constant_tables", true);
continue; // skip const item
} else if (duplicate_order(first_order, order)) {
/*
If 'order' is a duplicate of an expression earlier in the
ORDER/GROUP BY sequence, it can be removed from the ORDER BY
or GROUP BY clause.
*/
trace_one_item.add("duplicate_item", true);
continue;
} else if (order->in_field_list && order->item[0]->has_subquery()) {
/*
If the order item is a subquery that is also in the field
list, a temp table should be used to avoid evaluating the
subquery for each row both when a) creating a sort index and
b) getting the value.
Example: "SELECT (SELECT ... ) as a ... GROUP BY a;"
*/
*simple_order = false;
} else if (order_tables & (RAND_TABLE_BIT | OUTER_REF_TABLE_BIT)) {
*simple_order = false;
} else {
if (cond != nullptr && check_field_is_const(cond, order->item[0])) {
trace_one_item.add("equals_constant_in_where", true);
continue;
}
if ((ref = order_tables & (not_const_tables ^ first_table))) {
if (!(order_tables & first_table) &&
only_eq_ref_tables(this, first_order, ref, &cached_eq_ref_tables,
&eq_ref_tables)) {
trace_one_item.add("eq_ref_to_preceding_items", true);
continue;
}
*simple_order = false; // Must do a temp table to sort
}
}
if (change) *prev_ptr = order; // use this entry
prev_ptr = &order->next;
}
if (change) *prev_ptr = nullptr;
if (prev_ptr == &first_order) // Nothing to sort/group
*simple_order = true;
DBUG_PRINT("exit", ("simple_order: %d", (int)*simple_order));
trace_each_item.end();
trace_simpl.add("resulting_clause_is_simple", *simple_order);
if (trace->is_started() && change) {
String str;
Query_block::print_order(
thd, &str, first_order,
enum_query_type(QT_TO_SYSTEM_CHARSET | QT_SHOW_SELECT_NUMBER |
QT_NO_DEFAULT_DB));
trace_simpl.add_utf8("resulting_clause", str.ptr(), str.length());
}
return first_order;
}
/**
Optimize conditions by
a) applying transitivity to build multiple equality predicates
(MEP): if x=y and y=z the MEP x=y=z is built.
b) apply constants where possible. If the value of x is known to be
42, x is replaced with a constant of value 42. By transitivity, this
also applies to MEPs, so the MEP in a) will become 42=x=y=z.
c) remove conditions that are always false or always true
@param thd Thread handler
@param[in,out] cond WHERE or HAVING condition to optimize
@param[out] cond_equal The built multiple equalities
@param join_list list of join operations with join conditions
= NULL: Called for HAVING condition
@param[out] cond_value Not changed if cond was empty
COND_TRUE if cond is always true
COND_FALSE if cond is impossible
COND_OK otherwise
@returns false if success, true if error
*/
bool optimize_cond(THD *thd, Item **cond, COND_EQUAL **cond_equal,
mem_root_deque<Table_ref *> *join_list,
Item::cond_result *cond_value) {
DBUG_TRACE;
Opt_trace_context *const trace = &thd->opt_trace;
Opt_trace_object trace_wrapper(trace);
Opt_trace_object trace_cond(trace, "condition_processing");
trace_cond.add_alnum("condition", join_list ? "WHERE" : "HAVING");
trace_cond.add("original_condition", *cond);
Opt_trace_array trace_steps(trace, "steps");
/*
Enter this function
a) For a WHERE condition or a query having outer join.
b) For a HAVING condition.
*/
assert(*cond || join_list);
/*
Build all multiple equality predicates and eliminate equality
predicates that can be inferred from these multiple equalities.
For each reference of a field included into a multiple equality
that occurs in a function set a pointer to the multiple equality
predicate. Substitute a constant instead of this field if the
multiple equality contains a constant.
This is performed for the WHERE condition and any join conditions, but
not for the HAVING condition.
*/
if (join_list) {
Opt_trace_object step_wrapper(trace);
step_wrapper.add_alnum("transformation", "equality_propagation");
{
Opt_trace_disable_I_S disable_trace_wrapper(
trace, !(*cond && (*cond)->has_subquery()));
Opt_trace_array trace_subselect(trace, "subselect_evaluation");
if (build_equal_items(thd, *cond, cond, nullptr, true, join_list,
cond_equal))
return true;
}
step_wrapper.add("resulting_condition", *cond);
}
/*
change field = field to field = const for each found field = const
*/
if (*cond) {
Opt_trace_object step_wrapper(trace);
step_wrapper.add_alnum("transformation", "constant_propagation");
{
Opt_trace_disable_I_S disable_trace_wrapper(trace,
!(*cond)->has_subquery());
Opt_trace_array trace_subselect(trace, "subselect_evaluation");
if (propagate_cond_constants(thd, nullptr, *cond, *cond)) return true;
}
step_wrapper.add("resulting_condition", *cond);
}
/*
Remove all instances of item == item
Remove all and-levels where CONST item != CONST item
*/
DBUG_EXECUTE("where",
print_where(thd, *cond, "after const change", QT_ORDINARY););
if (*cond) {
Opt_trace_object step_wrapper(trace);
step_wrapper.add_alnum("transformation", "trivial_condition_removal");
{
Opt_trace_disable_I_S disable_trace_wrapper(trace,
!(*cond)->has_subquery());
Opt_trace_array trace_subselect(trace, "subselect_evaluation");
if (remove_eq_conds(thd, *cond, cond, cond_value)) return true;
}
step_wrapper.add("resulting_condition", *cond);
}
if (thd->is_error()) return true;
return false;
}
/**
Checks if a condition can be evaluated during constant folding. It can be
evaluated if it is constant during execution and not expensive to evaluate. If
it contains a subquery, it should not be evaluated if the option
OPTION_NO_SUBQUERY_DURING_OPTIMIZATION is active.
*/
static bool can_evaluate_condition(THD *thd, Item *condition) {
return condition->const_for_execution() && !condition->is_expensive() &&
evaluate_during_optimization(condition,
thd->lex->current_query_block());
}
/**
Calls fold_condition. If that made the condition constant for execution,
simplify and fold again. @see fold_condition() for arguments.
*/
static bool fold_condition_exec(THD *thd, Item *cond, Item **retcond,
Item::cond_result *cond_value) {
if (fold_condition(thd, cond, retcond, cond_value)) return true;
if (*retcond != nullptr &&
can_evaluate_condition(thd, *retcond)) // simplify further maybe
return remove_eq_conds(thd, *retcond, retcond, cond_value);
return false;
}
/**
Removes const and eq items. Returns the new item, or nullptr if no condition.
@param thd thread handler
@param cond the condition to handle
@param[out] retcond condition after const removal
@param[out] cond_value resulting value of the condition
=COND_OK condition must be evaluated (e.g. field = constant)
=COND_TRUE always true (e.g. 1 = 1)
=COND_FALSE always false (e.g. 1 = 2)
@returns false if success, true if error
*/
bool remove_eq_conds(THD *thd, Item *cond, Item **retcond,
Item::cond_result *cond_value) {
assert(cond->real_item()->is_bool_func());
if (cond->type() == Item::COND_ITEM) {
Item_cond *const item_cond = down_cast<Item_cond *>(cond);
const bool and_level = item_cond->functype() == Item_func::COND_AND_FUNC;
List_iterator<Item> li(*item_cond->argument_list());
bool should_fix_fields = false;
*cond_value = Item::COND_UNDEF;
Item *item;
while ((item = li++)) {
Item *new_item;
Item::cond_result tmp_cond_value;
if (remove_eq_conds(thd, item, &new_item, &tmp_cond_value)) return true;
if (new_item == nullptr)
li.remove();
else if (item != new_item) {
(void)li.replace(new_item);
should_fix_fields = true;
}
if (*cond_value == Item::COND_UNDEF) *cond_value = tmp_cond_value;
switch (tmp_cond_value) {
case Item::COND_OK: // Not true or false
if (and_level || *cond_value == Item::COND_FALSE)
*cond_value = tmp_cond_value;
break;
case Item::COND_FALSE:
if (and_level) // Always false
{
*cond_value = tmp_cond_value;
*retcond = nullptr;
return false;
}
break;
case Item::COND_TRUE:
if (!and_level) // Always true
{
*cond_value = tmp_cond_value;
*retcond = nullptr;
return false;
}
break;
case Item::COND_UNDEF: // Impossible
assert(false); /* purecov: deadcode */
}
}
if (should_fix_fields) item_cond->update_used_tables();
if (item_cond->argument_list()->elements == 0 ||
*cond_value != Item::COND_OK) {
*retcond = nullptr;
return false;
}
if (item_cond->argument_list()->elements == 1) {
/*
BUG#11765699:
We're dealing with an AND or OR item that has only one
argument. However, it is not an option to empty the list
because:
- this function is called for either JOIN::conds or
JOIN::having, but these point to the same condition as
Query_block::where and Query_block::having do.
- The return value of remove_eq_conds() is assigned to
JOIN::conds and JOIN::having, so emptying the list and
returning the only remaining item "replaces" the AND or OR
with item for the variables in JOIN. However, the return
value is not assigned to the Query_block counterparts. Thus,
if argument_list is emptied, Query_block forgets the item in
argument_list()->head().
item is therefore returned, but argument_list is not emptied.
*/
item = item_cond->argument_list()->head();
/*
Consider reenabling the line below when the optimizer has been
split into properly separated phases.
item_cond->argument_list()->empty();
*/
*retcond = item;
return false;
}
} else if (can_evaluate_condition(thd, cond)) {
bool value;
if (eval_const_cond(thd, cond, &value)) return true;
*cond_value = value ? Item::COND_TRUE : Item::COND_FALSE;
*retcond = nullptr;
return false;
} else { // Boolean compare function
*cond_value = cond->eq_cmp_result();
if (*cond_value == Item::COND_OK) {
return fold_condition_exec(thd, cond, retcond, cond_value);
}
Item *left_item = down_cast<Item_func *>(cond)->arguments()[0];
Item *right_item = down_cast<Item_func *>(cond)->arguments()[1];
if (left_item->eq(right_item, true) && !cond->is_non_deterministic()) {
/*
Two identical items are being compared:
1) If the items are not nullable, return result from eq_cmp_result(),
that is, we can short circuit because result is statically always
known to be true or false, depending on which operator we are
dealing with. If the operator allows equality, *cond_value is
Item::COND_TRUE (a non-null value is always equal to itself), else
Item::COND_FALSE (a non-null value is never unequal to itself).
2) If the items are nullable and the result from eq_cmp_result() is
false, result is always false, that is, the operator doesn't
allow for equality, the result is always false: Any non-null
value cannot obviously be unequal to itself, and any NULL value
would yield an undefined result (e.g. NULL < NULL
is undefined), and hence Item::COND_FALSE in this context is the
effective result.
(Call order ensures test is not applied to conditions with explicit
truth value test)
3) If the <=> operator is used, result is always true because
NULL = NULL is true for this operator
*/
if (!left_item->is_nullable() || *cond_value == Item::COND_FALSE ||
down_cast<Item_func *>(cond)->functype() == Item_func::EQUAL_FUNC) {
*retcond = nullptr;
return false;
}
}
}
return fold_condition_exec(thd, cond, retcond, cond_value);
}
/**
Check if GROUP BY/DISTINCT can be optimized away because the set is
already known to be distinct.
Used in removing the GROUP BY/DISTINCT of the following types of
statements:
@code
SELECT [DISTINCT] <unique_key_cols>... FROM <single_table_ref>
[GROUP BY <unique_key_cols>,...]
@endcode
If (a,b,c is distinct)
then <any combination of a,b,c>,{whatever} is also distinct
This function checks if all the key parts of any of the unique keys
of the table are referenced by a list : either the select list
through find_field_in_item_list or GROUP BY list through
find_field_in_order_list.
If the above holds and the key parts cannot contain NULLs then we
can safely remove the GROUP BY/DISTINCT,
as no result set can be more distinct than an unique key.
@param tab The join table to operate on.
@param find_func function to iterate over the list and search
for a field
@param data data that's passed through to to find_func
@retval
1 found
@retval
0 not found.
@note
The function assumes that make_outerjoin_info() has been called in
order for the check for outer tables to work.
*/
static bool list_contains_unique_index(JOIN_TAB *tab,
bool (*find_func)(Field *, void *),
void *data) {
TABLE *table = tab->table();
if (tab->is_inner_table_of_outer_join()) return false;
for (uint keynr = 0; keynr < table->s->keys; keynr++) {
if (keynr == table->s->primary_key ||
(table->key_info[keynr].flags & HA_NOSAME)) {
KEY *keyinfo = table->key_info + keynr;
KEY_PART_INFO *key_part, *key_part_end;
for (key_part = keyinfo->key_part,
key_part_end = key_part + keyinfo->user_defined_key_parts;
key_part < key_part_end; key_part++) {
if (key_part->field->is_nullable() || !find_func(key_part->field, data))
break;
}
if (key_part == key_part_end) return true;
}
}
return false;
}
/**
Helper function for list_contains_unique_index.
Find a field reference in a list of ORDER structures.
Finds a direct reference of the Field in the list.
@param field The field to search for.
@param data ORDER *.The list to search in
@retval
1 found
@retval
0 not found.
*/
static bool find_field_in_order_list(Field *field, void *data) {
ORDER *group = (ORDER *)data;
bool part_found = false;
for (ORDER *tmp_group = group; tmp_group; tmp_group = tmp_group->next) {
const Item *item = (*tmp_group->item)->real_item();
if (item->type() == Item::FIELD_ITEM &&
down_cast<const Item_field *>(item)->field->eq(field)) {
part_found = true;
break;
}
}
return part_found;
}
/**
Helper function for list_contains_unique_index.
Find a field reference in a dynamic list of Items.
Finds a direct reference of the Field in the list.
@param[in] field The field to search for.
@param[in] data List<Item> *.The list to search in
@retval
1 found
@retval
0 not found.
*/
static bool find_field_in_item_list(Field *field, void *data) {
mem_root_deque<Item *> *fields =
reinterpret_cast<mem_root_deque<Item *> *>(data);
bool part_found = false;
for (const Item *item : VisibleFields(*fields)) {
if (item->type() == Item::FIELD_ITEM &&
down_cast<const Item_field *>(item)->field->eq(field)) {
part_found = true;
break;
}
}
return part_found;
}
ORDER *create_order_from_distinct(THD *thd, Ref_item_array ref_item_array,
ORDER *order_list,
mem_root_deque<Item *> *fields,
bool skip_aggregates,
bool convert_bit_fields_to_long,
bool *all_order_by_fields_used) {
ORDER *group = nullptr, **prev = &group;
*all_order_by_fields_used = true;
for (ORDER *order = order_list; order; order = order->next) {
if (order->in_field_list) {
ORDER *ord = (ORDER *)thd->memdup((char *)order, sizeof(ORDER));
if (!ord) return nullptr;
*prev = ord;
prev = &ord->next;
(*ord->item)->marker = Item::MARKER_DISTINCT_GROUP;
} else
*all_order_by_fields_used = false;
}
Mem_root_array<std::pair<Item *, ORDER *>> bit_fields_to_add(thd->mem_root);
for (Item *&item : VisibleFields(*fields)) {
if (!item->const_item() && (!skip_aggregates || !item->has_aggregation()) &&
item->marker != Item::MARKER_DISTINCT_GROUP) {
/*
Don't put duplicate columns from the SELECT list into the
GROUP BY list.
*/
ORDER *ord_iter;
for (ord_iter = group; ord_iter; ord_iter = ord_iter->next)
if ((*ord_iter->item)->eq(item, true)) goto next_item;
ORDER *ord = (ORDER *)thd->mem_calloc(sizeof(ORDER));
if (!ord) return nullptr;
if (item->type() == Item::FIELD_ITEM &&
item->data_type() == MYSQL_TYPE_BIT && convert_bit_fields_to_long) {
/*
Because HEAP tables can't index BIT fields we need to use an
additional hidden field for grouping because later it will be
converted to a LONG field. Original field will remain of the
BIT type and will be returned to a client.
@note setup_ref_array() needs to account for the extra space.
@note We need to defer the actual adding to after the loop,
or we will invalidate the iterator to “fields”.
*/
Item_field *new_item = new Item_field(thd, (Item_field *)item);
ord->item = &item; // Temporary; for the duplicate check above.
bit_fields_to_add.push_back(std::make_pair(new_item, ord));
} else if (ref_item_array.is_null()) {
// No slices are in use, so just use the field from the list.
ord->item = &item;
} else {
/*
We have here only visible fields, so we can use simple indexing
of ref_item_array (order in the array and in the list are same)
*/
ord->item = &ref_item_array[0];
}
ord->direction = ORDER_ASC;
*prev = ord;
prev = &ord->next;
}
next_item:
if (!ref_item_array.is_null()) {
ref_item_array.pop_front();
}
}
for (const auto &item_and_order : bit_fields_to_add) {
item_and_order.second->item =
thd->lex->current_query_block()->add_hidden_item(item_and_order.first);
thd->lex->current_query_block()->hidden_items_from_optimization++;
}
*prev = nullptr;
return group;
}
/**
Return table number if there is only one table in sort order
and group and order is compatible, else return 0.
*/
static TABLE *get_sort_by_table(ORDER *a, ORDER *b, Table_ref *tables) {
DBUG_TRACE;
table_map map = (table_map)0;
if (!a)
a = b; // Only one need to be given
else if (!b)
b = a;
for (; a && b; a = a->next, b = b->next) {
if (!(*a->item)->eq(*b->item, true)) return nullptr;
map |= a->item[0]->used_tables();
}
map &= ~INNER_TABLE_BIT;
if (!map || (map & (RAND_TABLE_BIT | OUTER_REF_TABLE_BIT))) return nullptr;
for (; !(map & tables->map()); tables = tables->next_leaf)
;
if (map != tables->map()) return nullptr; // More than one table
DBUG_PRINT("exit", ("sort by table: %d", tables->tableno()));
return tables->table;
}
/**
Update some values in keyuse for faster choose_table_order() loop.
@todo Check if this is the real meaning of ref_table_rows.
*/
void JOIN::optimize_keyuse() {
for (size_t ix = 0; ix < keyuse_array.size(); ++ix) {
Key_use *keyuse = &keyuse_array.at(ix);
table_map map;
/*
If we find a ref, assume this table matches a proportional
part of this table.
For example 100 records matching a table with 5000 records
gives 5000/100 = 50 records per key
Constant tables are ignored.
To avoid bad matches, we don't make ref_table_rows less than 100.
*/
keyuse->ref_table_rows = ~(ha_rows)0; // If no ref
if (keyuse->used_tables &
(map = keyuse->used_tables & ~(const_table_map | PSEUDO_TABLE_BITS))) {
uint tableno;
for (tableno = 0; !(map & 1); map >>= 1, tableno++) {
}
if (map == 1) // Only one table
{
TABLE *tmp_table = join_tab[tableno].table();
keyuse->ref_table_rows =
max<ha_rows>(tmp_table->file->stats.records, 100);
}
}
/*
Outer reference (external field) is constant for single executing
of subquery
*/
if (keyuse->used_tables == OUTER_REF_TABLE_BIT) keyuse->ref_table_rows = 1;
}
}
/**
Function sets FT hints, initializes FT handlers
and checks if FT index can be used as covered.
*/
bool JOIN::optimize_fts_query() {
ASSERT_BEST_REF_IN_JOIN_ORDER(this);
assert(query_block->has_ft_funcs());
// Only used by the old optimizer.
assert(!thd->lex->using_hypergraph_optimizer());
for (uint i = const_tables; i < tables; i++) {
JOIN_TAB *tab = best_ref[i];
if (tab->type() != JT_FT) continue;
Item_func_match *ifm;
Item_func_match *ft_func =
down_cast<Item_func_match *>(tab->position()->key->val);
List_iterator<Item_func_match> li(*(query_block->ftfunc_list));
while ((ifm = li++)) {
if (!(ifm->used_tables() & tab->table_ref->map()) || ifm->master)
continue;
if (ifm != ft_func) {
if (ifm->can_skip_ranking())
ifm->set_hints(this, FT_NO_RANKING, HA_POS_ERROR, false);
}
}
/*
Check if internal sorting is needed. FT_SORTED flag is set
if no ORDER BY clause or ORDER BY MATCH function is the same
as the function that is used for FT index and FT table is
the first non-constant table in the JOIN.
*/
if (i == const_tables && !(ft_func->get_hints()->get_flags() & FT_BOOL) &&
(order.empty() || ft_func == test_if_ft_index_order(order.order)))
ft_func->set_hints(this, FT_SORTED, m_select_limit, false);
/*
Check if ranking is not needed. FT_NO_RANKING flag is set if
MATCH function is used only in WHERE condition and MATCH
function is not part of an expression.
*/
if (ft_func->can_skip_ranking())
ft_func->set_hints(this, FT_NO_RANKING,
order.empty() ? m_select_limit : HA_POS_ERROR, false);
}
return init_ftfuncs(thd, query_block);
}
/**
Check if FTS index only access is possible.
@param tab pointer to JOIN_TAB structure.
@return true if index only access is possible,
false otherwise.
*/
bool JOIN::fts_index_access(JOIN_TAB *tab) {
assert(tab->type() == JT_FT);
TABLE *table = tab->table();
// Give up if index-only access has already been disabled on this table.
if (table->no_keyread) {
return false;
}
if ((table->file->ha_table_flags() & HA_CAN_FULLTEXT_EXT) == 0)
return false; // Optimizations requires extended FTS support by table
// engine
/*
This optimization does not work with filesort nor GROUP BY
*/
if (grouped ||
(!order.empty() && m_ordered_index_usage != ORDERED_INDEX_ORDER_BY))
return false;
/*
Check whether the FTS result is covering. If only document id
and rank is needed, there is no need to access table rows.
*/
for (uint i = bitmap_get_first_set(table->read_set); i < table->s->fields;
i = bitmap_get_next_set(table->read_set, i)) {
if (table->field[i] != table->fts_doc_id_field ||
!tab->ft_func()->docid_in_result())
return false;
}
return true;
}
bool JOIN::contains_non_aggregated_fts() const {
return query_block->has_ft_funcs() &&
std::any_of(fields->begin(), fields->end(), [](Item *item) {
return WalkItem(item, enum_walk::PREFIX | enum_walk::POSTFIX,
NonAggregatedFullTextSearchVisitor(
[](Item_func_match *) { return true; }));
});
}
/**
For {semijoin,subquery} materialization: calculates various cost
information, based on a plan in join->best_positions covering the
to-be-materialized query block and only this.
@param join JOIN where plan can be found
@param sj_nest sj materialization nest (NULL if subquery materialization)
@param n_tables number of to-be-materialized tables
@param[out] sjm where computed costs will be stored
@note that this function modifies join->map2table, which has to be filled
correctly later.
*/
static void calculate_materialization_costs(JOIN *join, Table_ref *sj_nest,
uint n_tables,
Semijoin_mat_optimize *sjm) {
double mat_cost; // Estimated cost of materialization
double mat_rowcount; // Estimated row count before duplicate removal
double distinct_rowcount; // Estimated rowcount after duplicate removal
mem_root_deque<Item *> *inner_expr_list;
if (sj_nest) {
/*
get_partial_join_cost() assumes a regular join, which is correct when
we optimize a sj-materialization nest (always executed as regular
join).
*/
get_partial_join_cost(join, n_tables, &mat_cost, &mat_rowcount);
n_tables += join->const_tables;
inner_expr_list = &sj_nest->nested_join->sj_inner_exprs;
} else {
mat_cost = join->best_read;
mat_rowcount = static_cast<double>(join->best_rowcount);
inner_expr_list = &join->query_block->fields;
}
/*
Adjust output cardinality estimates. If the subquery has form
... oe IN (SELECT t1.colX, t2.colY, func(X,Y,Z) )
then the number of distinct output record combinations has an
upper bound of product of number of records matching the tables
that are used by the SELECT clause.
TODO:
We can get a more precise estimate if we
- use rec_per_key cardinality estimates. For simple cases like
"oe IN (SELECT t.key ...)" it is trivial.
- Functional dependencies between the tables in the semi-join
nest (the payoff is probably less here?)
*/
{
for (uint i = 0; i < n_tables; i++) {
JOIN_TAB *const tab = join->best_positions[i].table;
join->map2table[tab->table_ref->tableno()] = tab;
}
table_map map = 0;
for (Item *item : VisibleFields(*inner_expr_list)) {
map |= item->used_tables();
}
map &= ~PSEUDO_TABLE_BITS;
Table_map_iterator tm_it(map);
int tableno;
double rows = 1.0;
while ((tableno = tm_it.next_bit()) != Table_map_iterator::BITMAP_END)
rows *= join->map2table[tableno]->table()->quick_condition_rows;
distinct_rowcount = min(mat_rowcount, rows);
}
/*
Calculate temporary table parameters and usage costs
*/
const uint rowlen = get_tmp_table_rec_length(*inner_expr_list);
const Cost_model_server *cost_model = join->cost_model();
Cost_model_server::enum_tmptable_type tmp_table_type;
if (rowlen * distinct_rowcount < join->thd->variables.max_heap_table_size)
tmp_table_type = Cost_model_server::MEMORY_TMPTABLE;
else
tmp_table_type = Cost_model_server::DISK_TMPTABLE;
/*
Let materialization cost include the cost to create the temporary
table and write the rows into it:
*/
mat_cost += cost_model->tmptable_create_cost(tmp_table_type);
mat_cost +=
cost_model->tmptable_readwrite_cost(tmp_table_type, mat_rowcount, 0.0);
sjm->materialization_cost.reset();
sjm->materialization_cost.add_io(mat_cost);
sjm->expected_rowcount = distinct_rowcount;
/*
Set the cost to do a full scan of the temptable (will need this to
consider doing sjm-scan):
*/
sjm->scan_cost.reset();
if (distinct_rowcount > 0.0) {
const double scan_cost = cost_model->tmptable_readwrite_cost(
tmp_table_type, 0.0, distinct_rowcount);
sjm->scan_cost.add_io(scan_cost);
}
// The cost to lookup a row in temp. table
const double row_cost =
cost_model->tmptable_readwrite_cost(tmp_table_type, 0.0, 1.0);
sjm->lookup_cost.reset();
sjm->lookup_cost.add_io(row_cost);
}
/**
Decides between EXISTS and materialization; performs last steps to set up
the chosen strategy.
@returns 'false' if no error
@note If UNION this is called on each contained JOIN.
*/
bool JOIN::decide_subquery_strategy() {
assert(query_expression()->item);
switch (query_expression()->item->substype()) {
case Item_subselect::IN_SUBS:
case Item_subselect::ALL_SUBS:
case Item_subselect::ANY_SUBS:
// All of those are children of Item_in_subselect and may use EXISTS
break;
default:
return false;
}
Item_in_subselect *const in_pred =
static_cast<Item_in_subselect *>(query_expression()->item);
Subquery_strategy chosen_method = in_pred->strategy;
// Materialization does not allow UNION so this can't happen:
assert(chosen_method != Subquery_strategy::SUBQ_MATERIALIZATION);
if ((chosen_method == Subquery_strategy::CANDIDATE_FOR_IN2EXISTS_OR_MAT) &&
compare_costs_of_subquery_strategies(&chosen_method))
return true;
switch (chosen_method) {
case Subquery_strategy::SUBQ_EXISTS:
if (query_block->m_windows.elements > 0) // grep for WL#10431
{
my_error(ER_NOT_SUPPORTED_YET, MYF(0),
"the combination of this ALL/ANY/SOME/IN subquery with this"
" comparison operator and with contained window functions");
return true;
}
return in_pred->finalize_exists_transform(thd, query_block);
case Subquery_strategy::SUBQ_MATERIALIZATION:
return in_pred->finalize_materialization_transform(thd, this);
default:
assert(false);
return true;
}
}
/**
Tells what is the cheapest between IN->EXISTS and subquery materialization,
in terms of cost, for the subquery's JOIN.
Input:
- join->{best_positions,best_read,best_rowcount} must contain the
execution plan of EXISTS (where 'join' is the subquery's JOIN)
- join2->{best_positions,best_read,best_rowcount} must be correctly set
(where 'join2' is the parent join, the grandparent join, etc).
Output:
join->{best_positions,best_read,best_rowcount} contain the cheapest
execution plan (where 'join' is the subquery's JOIN).
This plan choice has to happen before calling functions which set up
execution structures, like JOIN::get_best_combination().
@param[out] method chosen method (EXISTS or materialization) will be put
here.
@returns false if success
*/
bool JOIN::compare_costs_of_subquery_strategies(Subquery_strategy *method) {
*method = Subquery_strategy::SUBQ_EXISTS;
Subquery_strategy allowed_strategies = query_block->subquery_strategy(thd);
/*
A non-deterministic subquery should not use materialization, unless forced.
For a detailed explanation, see Query_block::decorrelate_where_cond().
Here, the same logic is applied also for subqueries that are not converted
to semi-join.
*/
if (allowed_strategies == Subquery_strategy::CANDIDATE_FOR_IN2EXISTS_OR_MAT &&
(query_expression()->uncacheable & UNCACHEABLE_RAND))
allowed_strategies = Subquery_strategy::SUBQ_EXISTS;
if (allowed_strategies == Subquery_strategy::SUBQ_EXISTS) return false;
assert(allowed_strategies ==
Subquery_strategy::CANDIDATE_FOR_IN2EXISTS_OR_MAT ||
allowed_strategies == Subquery_strategy::SUBQ_MATERIALIZATION);
const JOIN *parent_join = query_expression()->outer_query_block()->join;
if (!parent_join || !parent_join->child_subquery_can_materialize)
return false;
Item_in_subselect *const in_pred =
static_cast<Item_in_subselect *>(query_expression()->item);
/*
Testing subquery_allows_etc() at each optimization is necessary as each
execution of a prepared statement may use a different type of parameter.
*/
if (!in_pred->subquery_allows_materialization(
thd, query_block, query_block->outer_query_block()))
return false;
Opt_trace_context *const trace = &thd->opt_trace;
Opt_trace_object trace_wrapper(trace);
Opt_trace_object trace_subqmat(
trace, "execution_plan_for_potential_materialization");
const double saved_best_read = best_read;
const ha_rows saved_best_rowcount = best_rowcount;
POSITION *const saved_best_pos = best_positions;
if (in_pred->in2exists_added_to_where()) {
Opt_trace_array trace_subqmat_steps(trace, "steps");
// Up to one extra slot per semi-join nest is needed (if materialized)
const uint sj_nests = query_block->sj_nests.size();
if (!(best_positions = new (thd->mem_root) POSITION[tables + sj_nests]))
return true;
// Compute plans which do not use outer references
assert(allow_outer_refs);
allow_outer_refs = false;
if (optimize_semijoin_nests_for_materialization(this)) return true;
if (Optimize_table_order(thd, this, nullptr).choose_table_order())
return true;
} else {
/*
If IN->EXISTS didn't add any condition to WHERE (only to HAVING, which
can happen if subquery has aggregates) then the plan for materialization
will be the same as for EXISTS - don't compute it again.
*/
trace_subqmat.add("surely_same_plan_as_EXISTS", true)
.add_alnum("cause", "EXISTS_did_not_change_WHERE");
}
Semijoin_mat_optimize sjm;
calculate_materialization_costs(this, nullptr, primary_tables, &sjm);
/*
The number of evaluations of the subquery influences costs, we need to
compute it.
*/
Opt_trace_object trace_subq_mat_decision(trace, "subq_mat_decision");
const double subq_executions = calculate_subquery_executions(in_pred, trace);
const double cost_exists = subq_executions * saved_best_read;
const double cost_mat_table = sjm.materialization_cost.total_cost();
const double cost_mat =
cost_mat_table + subq_executions * sjm.lookup_cost.total_cost();
const bool mat_chosen =
(allowed_strategies == Subquery_strategy::CANDIDATE_FOR_IN2EXISTS_OR_MAT)
? (cost_mat < cost_exists)
: true;
trace_subq_mat_decision
.add("cost_to_create_and_fill_materialized_table", cost_mat_table)
.add("cost_of_one_EXISTS", saved_best_read)
.add("number_of_subquery_evaluations", subq_executions)
.add("cost_of_materialization", cost_mat)
.add("cost_of_EXISTS", cost_exists)
.add("chosen", mat_chosen);
if (mat_chosen) {
*method = Subquery_strategy::SUBQ_MATERIALIZATION;
} else {
best_read = saved_best_read;
best_rowcount = saved_best_rowcount;
best_positions = saved_best_pos;
/*
Don't restore JOIN::positions or best_ref, they're not used
afterwards. best_positions is (like: by get_sj_strategy()).
*/
}
return false;
}
double calculate_subquery_executions(const Item_subselect *subquery,
Opt_trace_context *trace) {
Opt_trace_array trace_parents(trace, "parent_fanouts");
double subquery_executions = 1.0;
for (;;) {
const Query_block *const parent_query_block =
subquery->unit->outer_query_block();
const JOIN *const parent_join = parent_query_block->join;
if (parent_join == nullptr) {
/*
May be single-table UPDATE/DELETE, has no join.
@todo we should find how many rows it plans to UPDATE/DELETE, taking
inspiration in Explain_table::explain_rows_and_filtered().
This is not a priority as it applies only to
UPDATE - child(non-mat-subq) - grandchild(may-be-mat-subq).
And it will autosolve the day UPDATE gets a JOIN.
*/
break;
}
Opt_trace_object trace_parent(trace);
trace_parent.add_select_number(parent_query_block->select_number);
double parent_fanout;
if ( // safety, not sure needed
parent_join->plan_is_const() ||
// if subq is in condition on constant table:
!parent_join->child_subquery_can_materialize) {
parent_fanout = 1.0;
trace_parent.add("subq_attached_to_const_table", true);
} else {
if (subquery->in_cond_of_tab != NO_PLAN_IDX) {
/*
Subquery is attached to a certain 'pos', pos[-1].prefix_rowcount
is the number of times we'll start a loop accessing 'pos'; each such
loop will read pos->rows_fetched rows of 'pos', so subquery will
be evaluated pos[-1].prefix_rowcount * pos->rows_fetched times.
Exceptions:
- if 'pos' is first, use 1.0 instead of pos[-1].prefix_rowcount
- if 'pos' is first of a sj-materialization nest, same.
If in a sj-materialization nest, pos->rows_fetched and
pos[-1].prefix_rowcount are of the "nest materialization" plan
(copied back in fix_semijoin_strategies()), which is
appropriate as it corresponds to evaluations of our subquery.
pos->prefix_rowcount is not suitable because if we have:
select ... from ot1 where ot1.col in
(select it1.col1 from it1 where it1.col2 not in (subq));
and subq does subq-mat, and plan is ot1 - it1+firstmatch(ot1),
then:
- t1.prefix_rowcount==1 (due to firstmatch)
- subq is attached to it1, and is evaluated for each row read from
t1, potentially way more than 1.
*/
const uint idx = subquery->in_cond_of_tab;
assert((int)idx >= 0 && idx < parent_join->tables);
trace_parent.add("subq_attached_to_table", true);
QEP_TAB *const parent_tab = &parent_join->qep_tab[idx];
trace_parent.add_utf8_table(parent_tab->table_ref);
parent_fanout = parent_tab->position()->rows_fetched;
if ((idx > parent_join->const_tables) &&
!sj_is_materialize_strategy(parent_tab->position()->sj_strategy))
parent_fanout *= parent_tab[-1].position()->prefix_rowcount;
} else {
/*
Subquery is SELECT list, GROUP BY, ORDER BY, HAVING: it is evaluated
at the end of the parent join's execution.
It can be evaluated once per row-before-grouping:
SELECT SUM(t1.col IN (subq)) FROM t1 GROUP BY expr;
or once per row-after-grouping:
SELECT SUM(t1.col) AS s FROM t1 GROUP BY expr HAVING s IN (subq),
SELECT SUM(t1.col) IN (subq) FROM t1 GROUP BY expr
It's hard to tell. We simply assume 'once per
row-before-grouping'.
Another approximation:
SELECT ... HAVING x IN (subq) LIMIT 1
best_rowcount=1 due to LIMIT, though HAVING (and thus the subquery)
may be evaluated many times before HAVING becomes true and the limit
is reached.
*/
trace_parent.add("subq_attached_to_join_result", true);
parent_fanout = static_cast<double>(parent_join->best_rowcount);
}
}
subquery_executions *= parent_fanout;
trace_parent.add("fanout", parent_fanout);
const bool cacheable = parent_query_block->is_cacheable();
trace_parent.add("cacheable", cacheable);
if (cacheable) {
// Parent executed only once
break;
}
/*
Parent query is executed once per outer row => go up to find number of
outer rows. Example:
SELECT ... IN(subq-with-in2exists WHERE ... IN (subq-with-mat))
*/
subquery = parent_join->query_expression()->item;
if (subquery == nullptr) {
// derived table, materialized only once
break;
}
} // for(;;)
return subquery_executions;
}
/**
Optimize rollup specification.
Allocate objects needed for rollup processing.
@returns false if success, true if error.
*/
bool JOIN::optimize_rollup() {
tmp_table_param.allow_group_via_temp_table = false;
rollup_state = RollupState::INITED;
tmp_table_param.group_parts = send_group_parts;
return false;
}
/**
Refine the best_rowcount estimation based on what happens after tables
have been joined: LIMIT and type of result sink.
*/
void JOIN::refine_best_rowcount() {
// If plan is const, 0 or 1 rows should be returned
assert(!plan_is_const() || best_rowcount <= 1);
if (plan_is_const()) return;
/*
If a derived table, or a member of a UNION which itself forms a derived
table:
setting estimate to 0 or 1 row would mark the derived table as const.
The row count is bumped to the nearest higher value, so that the
query block will not be evaluated during optimization.
*/
if (best_rowcount <= 1 &&
query_block->master_query_expression()->first_query_block()->linkage ==
DERIVED_TABLE_TYPE)
best_rowcount = PLACEHOLDER_TABLE_ROW_ESTIMATE;
/*
There will be no more rows than defined in the LIMIT clause. Use it
as an estimate. If LIMIT 1 is specified, the query block will be
considered "const", with actual row count 0 or 1.
*/
best_rowcount = std::min(best_rowcount, query_expression()->select_limit_cnt);
}
mem_root_deque<Item *> *JOIN::get_current_fields() {
assert((int)current_ref_item_slice >= 0);
if (current_ref_item_slice == REF_SLICE_SAVED_BASE) return fields;
return &tmp_fields[current_ref_item_slice];
}
const Cost_model_server *JOIN::cost_model() const {
assert(thd != nullptr);
return thd->cost_model();
}
/**
@} (end of group Query_Optimizer)
*/
/**
This function is used to get the key length of Item object on
which one tmp field will be created during create_tmp_table.
This function references KEY_PART_INFO::init_from_field().
@param item A inner item of outer join
@return The length of a item to be as a key of a temp table
*/
static uint32 get_key_length_tmp_table(Item *item) {
uint32 len = 0;
item = item->real_item();
if (item->type() == Item::FIELD_ITEM)
len = ((Item_field *)item)->field->key_length();
else
len = item->max_length;
if (item->is_nullable()) len += HA_KEY_NULL_LENGTH;
// references KEY_PART_INFO::init_from_field()
enum_field_types type = item->data_type();
if (type == MYSQL_TYPE_BLOB || type == MYSQL_TYPE_VARCHAR ||
type == MYSQL_TYPE_GEOMETRY)
len += HA_KEY_BLOB_LENGTH;
return len;
}
bool evaluate_during_optimization(const Item *item, const Query_block *select) {
/*
Should only be called on items that are const_for_execution(), as those
items are the only ones that are allowed to be evaluated during optimization
in the first place.
Additionally, allow items that only access tables in JOIN::const_table_map.
This should not be necessary, but the const_for_execution() property is not
always updated correctly by update_used_tables() for certain subqueries.
*/
assert(item->const_for_execution() ||
(item->used_tables() & ~select->join->const_table_map) == 0);
// If the Item does not access any tables, it can always be evaluated.
if (item->const_item()) return true;
// Do not evaluate stored procedure in EXPLAIN
if (current_thd->lex->is_explain() &&
WalkItem(item, enum_walk::PREFIX, [](const Item *curitem) {
return curitem->has_stored_program();
}))
return false;
return !item->has_subquery() || (select->active_options() &
OPTION_NO_SUBQUERY_DURING_OPTIMIZATION) == 0;
}
/// Does this path scan any base tables in a secondary engine?
static bool ReferencesSecondaryEngineBaseTables(AccessPath *path) {
bool found = false;
WalkAccessPaths(path, /*join=*/nullptr, WalkAccessPathPolicy::ENTIRE_TREE,
[&found](const AccessPath *subpath, const JOIN *) {
TABLE *table = GetBasicTable(subpath);
if (table != nullptr && table->s->is_secondary_engine()) {
found = true;
}
return found;
});
return found;
}
bool IteratorsAreNeeded(const THD *thd, AccessPath *root_path) {
const handlerton *secondary_engine = SecondaryEngineHandlerton(thd);
// Queries running in the primary engine always need iterators.
if (secondary_engine == nullptr) {
return true;
}
// If the entire query is optimized away, we create iterators regardless of
// whether an external executor is used, since the secondary engine may decide
// not to offload the query to the external executor in this case.
if (!ReferencesSecondaryEngineBaseTables(root_path)) {
return true;
}
// Otherwise, create iterators if the secondary engine does not use an
// external executor.
return !IsBitSet(static_cast<int>(SecondaryEngineFlag::USE_EXTERNAL_EXECUTOR),
secondary_engine->secondary_engine_flags);
}
/// Constant used to signal that there is no limit in EstimateRowAccesses().
static constexpr double kNoLimit = std::numeric_limits<double>::infinity();
/**
Estimates how many rows that have to be read from the outer table of a join in
order to reach the given limit.
@param join_path The AccessPath representing the join.
@param outer The AccessPath representing the outer table in the join.
@param limit The maximum number of rows to read from the join result.
@return The number of rows to read from the outer table before reaching the
limit, or kNoLimit if the entire table is expected to be read.
*/
static double GetRowsNeededFromOuterTable(const AccessPath *join_path,
const AccessPath *outer,
double limit) {
const double input_rows = outer->num_output_rows();
const double output_rows = join_path->num_output_rows();
if (input_rows > 0 && output_rows > 0) {
const double fanout = output_rows / input_rows;
return ceil(limit / fanout);
}
return kNoLimit;
}
/**
Estimates the number of row accesses that will be performed by a nested loop
join.
Nested loop join reads the outer table once, and the inner table once per row
in the outer table. If there is a limit on the query, it might not need to
read all rows in the outer table.
@param join_path The AccessPath representing the nested loop join.
@param num_evaluations The number of times the join will be executed.
@param limit The maximum number of rows to read from the join result.
@return An estimate of the number of row accesses.
*/
static double EstimateRowAccessesInNestedLoopJoin(const AccessPath *join_path,
const AccessPath *outer,
const AccessPath *inner,
double num_evaluations,
double limit) {
const double limit_on_outer =
GetRowsNeededFromOuterTable(join_path, outer, limit);
return EstimateRowAccesses(outer, num_evaluations, limit_on_outer) +
EstimateRowAccesses(
inner,
num_evaluations * min(limit_on_outer, outer->num_output_rows()),
kNoLimit);
}
/**
Estimates the number of row accesses performed by the subqueries contained in
an item. The returned estimate is pessimistic, as it assumes the contained
subqueries are evaluated each time the item is evaluated. If the item for
example is an Item_cond_or, say, x=y OR (SELECT ...), the subquery is not
evaluated if x=y is true, but the estimate does not take the selectivity of
x=y into account.
@param item The item to check.
@param num_evaluations The number of times the item is evaluated.
@return An estimate of the number of row accesses.
*/
static double EstimateRowAccessesInItem(Item *item, double num_evaluations) {
double rows = 0.0;
WalkItem(item, enum_walk::PREFIX, [num_evaluations, &rows](Item *subitem) {
if (subitem->type() == Item::SUBSELECT_ITEM) {
Item_subselect *subselect = down_cast<Item_subselect *>(subitem);
Query_block *query_block = subselect->unit->first_query_block();
AccessPath *path;
if (subselect->unit->root_access_path() != nullptr) {
path = subselect->unit->root_access_path();
} else {
path = subselect->unit->item->root_access_path();
}
// In some cases, for old optimizer, when subtitem is a
// Item_singlerow_subselect, its Query_expression::root_access_path has
// not been set, and Item_singlerow_subselect::root_access_path() always
// returns nullptr, so we need to check:
if (path != nullptr) {
rows += EstimateRowAccesses(
path, query_block->is_cacheable() ? 1.0 : num_evaluations,
kNoLimit);
}
}
return false;
});
return rows;
}
double EstimateRowAccesses(const AccessPath *path, double num_evaluations,
double limit) {
assert(limit >= 0.0);
double rows = 0.0;
WalkAccessPaths(
path, /*join=*/nullptr, WalkAccessPathPolicy::ENTIRE_TREE,
[num_evaluations, limit, &rows](const AccessPath *subpath, const JOIN *) {
// Count rows accessed in base tables.
if (const TABLE *table = GetBasicTable(subpath);
table != nullptr && table->s != nullptr &&
table->s->tmp_table != INTERNAL_TMP_TABLE &&
table->pos_in_table_list != nullptr &&
table->pos_in_table_list->is_base_table()) {
double num_output_rows = subpath->num_output_rows();
// Workaround for the old optimizer only: test_if_skip_sort_order()
// sets the cardinality of index scans to the same as the query
// block's limit, if there is one, so the estimate in the access path
// may be too low. Get the cardinality from the handler's statistics
// instead.
if (subpath->type == AccessPath::INDEX_SCAN &&
!current_thd->lex->using_hypergraph_optimizer()) {
num_output_rows = table->file->stats.records;
}
// Workaround for HeatWave. All access paths in HeatWave currently
// have num_output_rows set to zero. Get the handler's estimate
// instead.
if (num_output_rows == 0 && table->s->is_secondary_engine()) {
assert(subpath->type == AccessPath::TABLE_SCAN);
num_output_rows = table->file->stats.records;
}
assert(num_output_rows >= 0);
rows += num_evaluations * min(limit, num_output_rows);
return true; // Done with this subtree.
}
switch (subpath->type) {
case AccessPath::LIMIT_OFFSET: {
const auto ¶m = subpath->limit_offset();
rows += EstimateRowAccesses(
param.child, num_evaluations,
min(limit, static_cast<double>(param.limit)));
return true;
}
case AccessPath::AGGREGATE: {
// Assume that aggregation needs to read the entire input,
// regardless of limit. This might be too pessimistic for explicitly
// grouped queries, but let's be conservative for now.
rows += EstimateRowAccesses(subpath->aggregate().child,
num_evaluations, kNoLimit);
return true;
}
case AccessPath::TEMPTABLE_AGGREGATE: {
// Temptable aggregation needs to read the entire input.
rows += EstimateRowAccesses(
subpath->temptable_aggregate().subquery_path, num_evaluations,
kNoLimit);
return true;
}
case AccessPath::MATERIALIZE: {
// Materialize once per query or once per evaluation.
const double num_materializations =
subpath->materialize().param->rematerialize ? num_evaluations
: 1.0;
for (const MaterializePathParameters::QueryBlock &query_block :
subpath->materialize().param->query_blocks) {
rows += EstimateRowAccesses(query_block.subquery_path,
num_materializations, kNoLimit);
}
return true;
}
case AccessPath::APPEND: {
// UNION ALL can stop reading from children once the limit is
// reached.
double limit_on_next_child = limit;
for (AppendPathParameters child : *subpath->append().children) {
if (limit_on_next_child <= 0) break;
rows += EstimateRowAccesses(child.path, num_evaluations,
limit_on_next_child);
limit_on_next_child -= child.path->num_output_rows();
}
return true;
}
case AccessPath::NESTED_LOOP_JOIN: {
rows += EstimateRowAccessesInNestedLoopJoin(
subpath, subpath->nested_loop_join().outer,
subpath->nested_loop_join().inner, num_evaluations, limit);
return true;
}
case AccessPath::NESTED_LOOP_SEMIJOIN_WITH_DUPLICATE_REMOVAL: {
rows += EstimateRowAccessesInNestedLoopJoin(
subpath,
subpath->nested_loop_semijoin_with_duplicate_removal().outer,
subpath->nested_loop_semijoin_with_duplicate_removal().inner,
num_evaluations, limit);
return true;
}
case AccessPath::BKA_JOIN: {
// BKA join reads each side once.
const auto ¶m = subpath->bka_join();
rows += EstimateRowAccesses(param.outer, num_evaluations, kNoLimit);
rows += EstimateRowAccesses(param.inner, num_evaluations, kNoLimit);
return true;
}
case AccessPath::HASH_JOIN: {
// Hash join reads each side once. If there is a LIMIT clause, it
// might not need to read all rows from the outer table.
const auto ¶m = subpath->hash_join();
rows += EstimateRowAccesses(
param.outer, num_evaluations,
GetRowsNeededFromOuterTable(subpath, param.outer, limit));
rows += EstimateRowAccesses(param.inner, num_evaluations, kNoLimit);
// Subqueries in the non-equijoin conditions may access rows.
for (Item *item : param.join_predicate->expr->join_conditions) {
rows += EstimateRowAccessesInItem(
item, num_evaluations * subpath->num_output_rows());
}
return true;
}
case AccessPath::FILTER: {
// Filters may access rows in subqueries. Count them.
const auto ¶m = subpath->filter();
const double input_rows = param.child->num_output_rows();
const double output_rows = subpath->num_output_rows();
const double rows_needed_from_child =
(input_rows > 0 && output_rows > 0)
? limit / (output_rows / input_rows)
: kNoLimit;
rows += EstimateRowAccessesInItem(
param.condition,
num_evaluations * min(param.child->num_output_rows(),
rows_needed_from_child));
rows += EstimateRowAccesses(param.child, num_evaluations,
rows_needed_from_child);
return true;
}
case AccessPath::SORT: {
// SORT needs to read the entire input, regardless of LIMIT.
rows += EstimateRowAccesses(subpath->sort().child, num_evaluations,
kNoLimit);
return true;
}
default:
return false; // Keep traversing.
}
});
return rows;
}
bool IsHashEquijoinCondition(const Item_eq_base *item, table_map left_side,
table_map right_side) {
// We are not able to create hash join conditions from row values consisting
// of multiple columns, so let them be added as extra conditions instead.
if (item->get_comparator()->get_child_comparator_count() > 1) {
return false;
}
table_map left_arg_tables = item->get_arg(0)->used_tables();
table_map right_arg_tables = item->get_arg(1)->used_tables();
// The equality is commutative. If the left side of the equality doesn't
// reference any table on the left side of the join, swap left and right to
// see if it's satisfied the other way around.
if (!Overlaps(left_arg_tables, left_side)) {
std::swap(left_arg_tables, right_arg_tables);
}
// One side of the equality should reference tables on one side of the join,
// and the other side of the equality should reference the other side of the
// join.
return Overlaps(left_arg_tables, left_side) &&
!Overlaps(left_arg_tables, right_side) &&
Overlaps(right_arg_tables, right_side) &&
!Overlaps(right_arg_tables, left_side);
}
|