1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140
|
/* Copyright (c) 2005, 2025, Oracle and/or its affiliates.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is designed to work with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have either included with
the program or referenced in the documentation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
/*
This file is a container for general functionality related
to partitioning. It contains functionality used by all handlers that
support partitioning, such as the partitioning handler itself and the NDB
handler. (Much of the code in this file has been split into partition_info.cc
and the header files partition_info.h + partition_element.h + sql_partition.h)
The first version supports RANGE partitioning, LIST partitioning, HASH
partitioning and composite partitioning (hereafter called subpartitioning)
where each RANGE/LIST partitioning is HASH partitioned. The hash function
can either be supplied by the user or by only a list of fields (also
called KEY partitioning), where the MySQL server will use an internal
hash function.
There are quite a few defaults that can be used as well.
The second version introduces a new variant of RANGE and LIST partitioning
which is often referred to as column lists in the code variables. This
enables a user to specify a set of columns and their concatenated value
as the partition value. By comparing the concatenation of these values
the proper partition can be chosen.
*/
#include "sql/sql_partition.h"
#include <algorithm>
#include <cassert>
#include <climits>
#include <cstring>
#include "field_types.h" // enum_field_types
#include "m_ctype.h" // system_charset_info
#include "m_string.h"
#include "my_alloc.h" // operator new
#include "my_bitmap.h"
#include "my_byteorder.h"
#include "my_compiler.h"
#include "my_dbug.h"
#include "my_io.h"
#include "my_sqlcommand.h"
#include "my_sys.h"
#include "mysql/components/services/bits/my_io_bits.h" // File
#include "mysql/components/services/bits/psi_statement_bits.h"
#include "mysql/plugin.h"
#include "mysql/psi/mysql_file.h"
#include "mysql/service_mysql_alloc.h"
#include "mysql/udf_registration_types.h"
#include "mysql_com.h"
#include "mysql_time.h"
#include "mysqld_error.h"
#include "sql/create_field.h"
#include "sql/current_thd.h"
#include "sql/debug_sync.h" // DEBUG_SYNC
#include "sql/derror.h" // ER_THD
#include "sql/enum_query_type.h"
#include "sql/field.h"
#include "sql/handler.h"
#include "sql/item.h" // enum_monotoncity_info
#include "sql/item_func.h" // Item_func
#include "sql/key.h"
#include "sql/mdl.h"
#include "sql/mysqld.h" // mysql_tmpdir
#include "sql/parse_tree_node_base.h"
#include "sql/partition_info.h" // partition_info
#include "sql/partitioning/partition_handler.h" // Partition_handler
#include "sql/psi_memory_key.h"
#include "sql/query_options.h"
#include "sql/range_optimizer/range_optimizer.h" // store_key_image_to_rec
#include "sql/sql_alter.h"
#include "sql/sql_base.h" // wait_while_table_is_used
#include "sql/sql_class.h" // THD
#include "sql/sql_const.h"
#include "sql/sql_digest_stream.h"
#include "sql/sql_error.h"
#include "sql/sql_lex.h"
#include "sql/sql_list.h"
#include "sql/sql_parse.h" // parse_sql
#include "sql/sql_show.h"
#include "sql/sql_table.h" // build_table_filename
#include "sql/system_variables.h"
#include "sql/table.h"
#include "sql/thd_raii.h"
#include "sql/thr_malloc.h" // sql_calloc
#include "sql_string.h"
using std::max;
using std::min;
/*
Partition related functions declarations and some static constants;
*/
const LEX_CSTRING partition_keywords[] = {{STRING_WITH_LEN("HASH")},
{STRING_WITH_LEN("RANGE")},
{STRING_WITH_LEN("LIST")},
{STRING_WITH_LEN("KEY")},
{STRING_WITH_LEN("MAXVALUE")},
{STRING_WITH_LEN("LINEAR ")},
{STRING_WITH_LEN(" COLUMNS")},
{STRING_WITH_LEN("ALGORITHM")}
};
static const char *part_str = "PARTITION";
static const char *sub_str = "SUB";
static const char *by_str = "BY";
static const char *space_str = " ";
static const char *equal_str = "=";
static const char *end_paren_str = ")";
static const char *begin_paren_str = "(";
static const char *comma_str = ",";
static int get_partition_id_list_col(partition_info *part_info, uint32 *part_id,
longlong *func_value);
static int get_partition_id_list(partition_info *part_info, uint32 *part_id,
longlong *func_value);
static int get_partition_id_range_col(partition_info *part_info,
uint32 *part_id, longlong *func_value);
static int get_partition_id_range(partition_info *part_info, uint32 *part_id,
longlong *func_value);
static int get_part_id_charset_func_part(partition_info *part_info,
uint32 *part_id, longlong *func_value);
static int get_part_id_charset_func_subpart(partition_info *part_info,
uint32 *part_id);
static int get_partition_id_hash_nosub(partition_info *part_info,
uint32 *part_id, longlong *func_value);
static int get_partition_id_key_nosub(partition_info *part_info,
uint32 *part_id, longlong *func_value);
static int get_partition_id_linear_hash_nosub(partition_info *part_info,
uint32 *part_id,
longlong *func_value);
static int get_partition_id_linear_key_nosub(partition_info *part_info,
uint32 *part_id,
longlong *func_value);
static int get_partition_id_with_sub(partition_info *part_info, uint32 *part_id,
longlong *func_value);
static int get_partition_id_hash_sub(partition_info *part_info,
uint32 *part_id);
static int get_partition_id_key_sub(partition_info *part_info, uint32 *part_id);
static int get_partition_id_linear_hash_sub(partition_info *part_info,
uint32 *part_id);
static int get_partition_id_linear_key_sub(partition_info *part_info,
uint32 *part_id);
static uint32 get_next_partition_via_walking(PARTITION_ITERATOR *);
static void set_up_range_analysis_info(partition_info *part_info);
static uint32 get_next_subpartition_via_walking(PARTITION_ITERATOR *);
static uint32 get_partition_id_range_for_endpoint(partition_info *part_info,
bool left_endpoint,
bool include_endpoint);
static uint32 get_next_partition_id_list(PARTITION_ITERATOR *part_iter);
static int get_part_iter_for_interval_via_mapping(
partition_info *part_info, bool is_subpart, uint32 *store_length_array,
uchar *min_value, uchar *max_value, uint min_len, uint max_len, uint flags,
PARTITION_ITERATOR *part_iter);
static int get_part_iter_for_interval_cols_via_map(
partition_info *part_info, bool is_subpart, uint32 *store_length_array,
uchar *min_value, uchar *max_value, uint min_len, uint max_len, uint flags,
PARTITION_ITERATOR *part_iter);
static int get_part_iter_for_interval_via_walking(
partition_info *part_info, bool is_subpart, uint32 *store_length_array,
uchar *min_value, uchar *max_value, uint min_len, uint max_len, uint flags,
PARTITION_ITERATOR *part_iter);
static int cmp_rec_and_tuple(part_column_list_val *val, uint32 nvals_in_rec);
static int cmp_rec_and_tuple_prune(part_column_list_val *val,
uint32 n_vals_in_rec, bool is_left_endpoint,
bool include_endpoint);
static void set_field_ptr(Field **ptr, const uchar *new_buf,
const uchar *old_buf);
static uint32 get_list_array_idx_for_endpoint(partition_info *part_info,
bool left_endpoint,
bool include_endpoint);
/*
Convert constants in VALUES definition to the character set the
corresponding field uses.
SYNOPSIS
convert_charset_partition_constant()
item Item to convert
cs Character set to convert to
RETURN VALUE
NULL Error
item New converted item
*/
Item *convert_charset_partition_constant(Item *item, const CHARSET_INFO *cs) {
THD *thd = current_thd;
Query_block *qb = thd->lex->current_query_block();
Name_resolution_context *context = nullptr;
Table_ref *save_list = nullptr;
const char *save_where = thd->where;
item = item->safe_charset_converter(thd, cs);
// Only save the table_list when a query block exists.
if (qb != nullptr) {
context = &qb->context;
save_list = context->table_list;
context->table_list = nullptr;
}
thd->where = "convert character set partition constant";
if (!item || item->fix_fields(thd, (Item **)nullptr)) item = nullptr;
thd->where = save_where;
if (qb != nullptr) {
context->table_list = save_list;
}
return item;
}
/**
A support function to check if a name is in a list of strings.
@param name String searched for
@param list_names A list of names searched in
@return True if if the name is in the list.
@retval true String found
@retval false String not found
*/
static bool is_name_in_list(const char *name, List<String> list_names) {
List_iterator<String> names_it(list_names);
uint num_names = list_names.elements;
uint i = 0;
do {
String *list_name = names_it++;
if (!(my_strcasecmp(system_charset_info, name, list_name->c_ptr())))
return true;
} while (++i < num_names);
return false;
}
/*
Set-up defaults for partitions.
SYNOPSIS
partition_default_handling()
table Table object
part_info Partition info to set up
is_create_table_ind Is this part of a table creation
normalized_path Normalized path name of table and database
RETURN VALUES
true Error
false Success
*/
static bool partition_default_handling(TABLE *table, partition_info *part_info,
bool is_create_table_ind,
const char *normalized_path) {
Partition_handler *part_handler = table->file->get_partition_handler();
DBUG_TRACE;
if (!part_handler) {
assert(0);
my_error(ER_PARTITION_CLAUSE_ON_NONPARTITIONED, MYF(0));
return true;
}
if (!is_create_table_ind) {
if (part_info->use_default_num_partitions) {
if (part_handler->get_num_parts(normalized_path, &part_info->num_parts)) {
return true;
}
} else if (part_info->is_sub_partitioned() &&
part_info->use_default_num_subpartitions) {
uint num_parts;
if (part_handler->get_num_parts(normalized_path, &num_parts)) {
return true;
}
assert(part_info->num_parts > 0);
assert((num_parts % part_info->num_parts) == 0);
part_info->num_subparts = num_parts / part_info->num_parts;
}
}
part_info->set_up_defaults_for_partitioning(part_handler, nullptr, 0U);
return false;
}
/*
A useful routine used by update_row for partition handlers to calculate
the partition ids of the old and the new record.
SYNOPSIS
get_parts_for_update()
old_data Buffer of old record
new_data Buffer of new record
rec0 Reference to table->record[0]
part_info Reference to partition information
out:old_part_id The returned partition id of old record
out:new_part_id The returned partition id of new record
RETURN VALUE
0 Success
> 0 Error code
*/
int get_parts_for_update(const uchar *old_data,
const uchar *new_data [[maybe_unused]],
const uchar *rec0, partition_info *part_info,
uint32 *old_part_id, uint32 *new_part_id,
longlong *new_func_value) {
Field **part_field_array = part_info->full_part_field_array;
int error;
longlong old_func_value;
DBUG_TRACE;
assert(new_data == rec0); // table->record[0]
set_field_ptr(part_field_array, old_data, rec0);
error = part_info->get_partition_id(part_info, old_part_id, &old_func_value);
set_field_ptr(part_field_array, rec0, old_data);
if (unlikely(error)) {
part_info->err_value = old_func_value;
return error;
}
if (unlikely((error = part_info->get_partition_id(part_info, new_part_id,
new_func_value)))) {
part_info->err_value = *new_func_value;
return error;
}
return 0;
}
/*
A useful routine used by delete_row for partition handlers to calculate
the partition id.
SYNOPSIS
get_part_for_delete()
buf Buffer of old record
rec0 Reference to table->record[0]
part_info Reference to partition information
out:part_id The returned partition id to delete from
RETURN VALUE
0 Success
> 0 Error code
DESCRIPTION
Dependent on whether buf is not record[0] we need to prepare the
fields. Then we call the function pointer get_partition_id to
calculate the partition id.
*/
int get_part_for_delete(const uchar *buf, const uchar *rec0,
partition_info *part_info, uint32 *part_id) {
int error;
longlong func_value;
DBUG_TRACE;
if (likely(buf == rec0)) {
if (unlikely((error = part_info->get_partition_id(part_info, part_id,
&func_value)))) {
part_info->err_value = func_value;
return error;
}
DBUG_PRINT("info", ("Delete from partition %d", *part_id));
} else {
Field **part_field_array = part_info->full_part_field_array;
set_field_ptr(part_field_array, buf, rec0);
error = part_info->get_partition_id(part_info, part_id, &func_value);
set_field_ptr(part_field_array, rec0, buf);
if (unlikely(error)) {
part_info->err_value = func_value;
return error;
}
DBUG_PRINT("info", ("Delete from partition %d (path2)", *part_id));
}
return 0;
}
/*
This method is used to set-up both partition and subpartitioning
field array and used for all types of partitioning.
It is part of the logic around fix_partition_func.
SYNOPSIS
set_up_field_array()
table TABLE object for which partition fields are set-up
sub_part Is the table subpartitioned as well
RETURN VALUE
true Error, some field didn't meet requirements
false Ok, partition field array set-up
DESCRIPTION
A great number of functions below here is part of the fix_partition_func
method. It is used to set up the partition structures for execution from
openfrm. It is called at the end of the openfrm when the table struct has
been set-up apart from the partition information.
It involves:
1) Setting arrays of fields for the partition functions.
2) Setting up binary search array for LIST partitioning
3) Setting up array for binary search for RANGE partitioning
4) Setting up key_map's to assist in quick evaluation whether one
can deduce anything from a given index of what partition to use
5) Checking whether a set of partitions can be derived from a range on
a field in the partition function.
As part of doing this there is also a great number of error controls.
This is actually the place where most of the things are checked for
partition information when creating a table.
Things that are checked includes
1) All fields of partition function in Primary keys and unique indexes
(if not supported)
Create an array of partition fields (NULL terminated). Before this method
is called fix_fields or find_table_in_sef has been called to set
GET_FIXED_FIELDS_FLAG on all fields that are part of the partition
function.
*/
static bool set_up_field_array(TABLE *table, bool is_sub_part) {
Field **ptr, *field, **field_array;
uint num_fields = 0;
uint size_field_array;
uint i = 0;
uint inx;
partition_info *part_info = table->part_info;
int result = false;
DBUG_TRACE;
ptr = table->field;
while ((field = *(ptr++))) {
if (field->is_flag_set(GET_FIXED_FIELDS_FLAG)) num_fields++;
}
if (num_fields > MAX_REF_PARTS) {
const char *err_str;
if (is_sub_part)
err_str = "subpartition function";
else
err_str = "partition function";
my_error(ER_TOO_MANY_PARTITION_FUNC_FIELDS_ERROR, MYF(0), err_str);
return true;
}
if (num_fields == 0) {
/*
We are using hidden key as partitioning field
*/
assert(!is_sub_part);
return result;
}
size_field_array = (num_fields + 1) * sizeof(Field *);
field_array = (Field **)sql_calloc(size_field_array);
if (unlikely(!field_array)) {
mem_alloc_error(size_field_array);
result = true;
}
ptr = table->field;
while ((field = *(ptr++))) {
if (field->is_flag_set(GET_FIXED_FIELDS_FLAG)) {
field->clear_flag(GET_FIXED_FIELDS_FLAG);
field->set_flag(FIELD_IN_PART_FUNC_FLAG);
if (likely(!result)) {
if (!is_sub_part && part_info->column_list) {
List_iterator<char> it(part_info->part_field_list);
char *field_name;
assert(num_fields == part_info->part_field_list.elements);
inx = 0;
do {
field_name = it++;
if (!my_strcasecmp(system_charset_info, field_name,
field->field_name))
break;
} while (++inx < num_fields);
if (inx == num_fields) {
/*
Should not occur since it should already been checked in either
add_column_list_values, handle_list_of_fields,
check_partition_info etc.
*/
assert(0);
my_error(ER_FIELD_NOT_FOUND_PART_ERROR, MYF(0));
result = true;
continue;
}
} else
inx = i;
field_array[inx] = field;
i++;
/*
We check that the fields are proper. It is required for each
field in a partition function to:
1) Not be a BLOB of any type
A BLOB takes too long time to evaluate so we don't want it for
performance reasons.
*/
if (field->is_flag_set(BLOB_FLAG)) {
my_error(ER_BLOB_FIELD_IN_PART_FUNC_ERROR, MYF(0));
result = true;
}
}
}
}
field_array[num_fields] = nullptr;
if (!is_sub_part) {
part_info->part_field_array = field_array;
part_info->num_part_fields = num_fields;
} else {
part_info->subpart_field_array = field_array;
part_info->num_subpart_fields = num_fields;
}
return result;
}
/*
Create a field array including all fields of both the partitioning and the
subpartitioning functions.
SYNOPSIS
create_full_part_field_array()
thd Thread handle
table TABLE object for which partition fields are set-up
part_info Reference to partitioning data structure
RETURN VALUE
true Memory allocation of field array failed
false Ok
DESCRIPTION
If there is no subpartitioning then the same array is used as for the
partitioning. Otherwise a new array is built up using the flag
FIELD_IN_PART_FUNC in the field object.
This function is called from fix_partition_func
*/
static bool create_full_part_field_array(THD *thd, TABLE *table,
partition_info *part_info) {
bool result = false;
Field **ptr;
my_bitmap_map *bitmap_buf;
DBUG_TRACE;
if (!part_info->is_sub_partitioned()) {
part_info->full_part_field_array = part_info->part_field_array;
part_info->num_full_part_fields = part_info->num_part_fields;
} else {
Field *field, **field_array;
uint num_part_fields = 0, size_field_array;
ptr = table->field;
while ((field = *(ptr++))) {
if (field->is_flag_set(FIELD_IN_PART_FUNC_FLAG)) num_part_fields++;
}
size_field_array = (num_part_fields + 1) * sizeof(Field *);
field_array = (Field **)sql_calloc(size_field_array);
if (unlikely(!field_array)) {
mem_alloc_error(size_field_array);
result = true;
goto end;
}
num_part_fields = 0;
ptr = table->field;
while ((field = *(ptr++))) {
if (field->is_flag_set(FIELD_IN_PART_FUNC_FLAG))
field_array[num_part_fields++] = field;
}
field_array[num_part_fields] = nullptr;
part_info->full_part_field_array = field_array;
part_info->num_full_part_fields = num_part_fields;
}
/*
Initialize the set of all fields used in partition and subpartition
expression. Required for testing of partition fields in write_set
when updating. We need to set all bits in read_set because the row
may need to be inserted in a different [sub]partition.
*/
if (!(bitmap_buf = (my_bitmap_map *)thd->alloc(
bitmap_buffer_size(table->s->fields)))) {
mem_alloc_error(bitmap_buffer_size(table->s->fields));
result = true;
goto end;
}
if (bitmap_init(&part_info->full_part_field_set, bitmap_buf,
table->s->fields)) {
mem_alloc_error(table->s->fields);
result = true;
goto end;
}
/*
full_part_field_array may be NULL if storage engine supports native
partitioning.
*/
if ((ptr = part_info->full_part_field_array))
for (; *ptr; ptr++)
bitmap_set_bit(&part_info->full_part_field_set, (*ptr)->field_index());
end:
return result;
}
/*
Clear flag GET_FIXED_FIELDS_FLAG in all fields of a key previously set by
set_indicator_in_key_fields (always used in pairs).
SYNOPSIS
clear_indicator_in_key_fields()
key_info Reference to find the key fields
RETURN VALUE
NONE
DESCRIPTION
These support routines is used to set/reset an indicator of all fields
in a certain key. It is used in conjunction with another support routine
that traverse all fields in the PF to find if all or some fields in the
PF is part of the key. This is used to check primary keys and unique
keys involve all fields in PF (unless supported) and to derive the
key_map's used to quickly decide whether the index can be used to
derive which partitions are needed to scan.
*/
static void clear_indicator_in_key_fields(KEY *key_info) {
KEY_PART_INFO *key_part;
uint key_parts = key_info->user_defined_key_parts, i;
for (i = 0, key_part = key_info->key_part; i < key_parts; i++, key_part++)
key_part->field->clear_flag(GET_FIXED_FIELDS_FLAG);
}
/*
Set flag GET_FIXED_FIELDS_FLAG in all fields of a key.
SYNOPSIS
set_indicator_in_key_fields
key_info Reference to find the key fields
RETURN VALUE
NONE
*/
static void set_indicator_in_key_fields(KEY *key_info) {
KEY_PART_INFO *key_part;
uint key_parts = key_info->user_defined_key_parts, i;
for (i = 0, key_part = key_info->key_part; i < key_parts; i++, key_part++)
key_part->field->set_flag(GET_FIXED_FIELDS_FLAG);
}
/*
Check if all or some fields in partition field array is part of a key
previously used to tag key fields.
SYNOPSIS
check_fields_in_PF()
ptr Partition field array
out:all_fields Is all fields of partition field array used in key
out:some_fields Is some fields of partition field array used in key
RETURN VALUE
all_fields, some_fields
*/
static void check_fields_in_PF(Field **ptr, bool *all_fields,
bool *some_fields) {
DBUG_TRACE;
*all_fields = true;
*some_fields = false;
if ((!ptr) || !(*ptr)) {
*all_fields = false;
return;
}
do {
/* Check if the field of the PF is part of the current key investigated */
if ((*ptr)->is_flag_set(GET_FIXED_FIELDS_FLAG))
*some_fields = true;
else
*all_fields = false;
} while (*(++ptr));
}
/*
Clear flag GET_FIXED_FIELDS_FLAG in all fields of the table.
This routine is used for error handling purposes.
SYNOPSIS
clear_field_flag()
table TABLE object for which partition fields are set-up
RETURN VALUE
NONE
*/
static void clear_field_flag(TABLE *table) {
Field **ptr;
DBUG_TRACE;
for (ptr = table->field; *ptr; ptr++)
(*ptr)->clear_flag(GET_FIXED_FIELDS_FLAG);
}
/*
find_field_in_table_sef finds the field given its name. All fields get
GET_FIXED_FIELDS_FLAG set.
SYNOPSIS
handle_list_of_fields()
it A list of field names for the partition function
table TABLE object for which partition fields are set-up
part_info Reference to partitioning data structure
sub_part Is the table subpartitioned as well
RETURN VALUE
true Fields in list of fields not part of table
false All fields ok and array created
DESCRIPTION
This routine sets-up the partition field array for KEY partitioning, it
also verifies that all fields in the list of fields is actually a part of
the table.
*/
static bool handle_list_of_fields(List_iterator<char> it, TABLE *table,
partition_info *part_info, bool is_sub_part) {
bool result;
char *field_name;
bool is_list_empty = true;
DBUG_TRACE;
while ((field_name = it++)) {
is_list_empty = false;
Field *field = find_field_in_table_sef(table, field_name);
if (likely(field != nullptr))
field->set_flag(GET_FIXED_FIELDS_FLAG);
else {
my_error(ER_FIELD_NOT_FOUND_PART_ERROR, MYF(0));
clear_field_flag(table);
result = true;
goto end;
}
}
if (is_list_empty && part_info->part_type == partition_type::HASH) {
uint primary_key = table->s->primary_key;
if (primary_key != MAX_KEY) {
uint num_key_parts = table->key_info[primary_key].user_defined_key_parts,
i;
/*
In the case of an empty list we use primary key as partition key.
*/
for (i = 0; i < num_key_parts; i++) {
Field *field = table->key_info[primary_key].key_part[i].field;
// BLOB/TEXT columns are not allowed in partitioning keys.
if (field->is_flag_set(BLOB_FLAG)) {
my_error(ER_BLOB_FIELD_IN_PART_FUNC_ERROR, MYF(0));
return true;
}
field->set_flag(GET_FIXED_FIELDS_FLAG);
}
} else {
if (table->s->db_type()->partition_flags &&
(table->s->db_type()->partition_flags() & HA_USE_AUTO_PARTITION)) {
/*
This engine can handle automatic partitioning and there is no
primary key. In this case we rely on that the engine handles
partitioning based on a hidden key. Thus we allocate no
array for partitioning fields.
*/
return false;
}
my_error(ER_FIELD_NOT_FOUND_PART_ERROR, MYF(0));
return true;
}
}
result = set_up_field_array(table, is_sub_part);
end:
return result;
}
/*
Support function to check if all VALUES * (expression) is of the
right sign (no signed constants when unsigned partition function)
SYNOPSIS
check_signed_flag()
part_info Partition info object
RETURN VALUES
0 No errors due to sign errors
>0 Sign error
*/
static int check_signed_flag(partition_info *part_info) {
int error = 0;
uint i = 0;
if (part_info->part_type != partition_type::HASH &&
part_info->part_expr->unsigned_flag) {
List_iterator<partition_element> part_it(part_info->partitions);
do {
partition_element *part_elem = part_it++;
if (part_elem->signed_flag) {
my_error(ER_PARTITION_CONST_DOMAIN_ERROR, MYF(0));
error = ER_PARTITION_CONST_DOMAIN_ERROR;
break;
}
} while (++i < part_info->num_parts);
}
return error;
}
/**
Initialize lex object for use in fix_fields and parsing.
@param thd The thread object
@param table The table object
@param lex The LEX object, must be initialized and contain query_block.
@returns false if success, true if error
@details
This function is used to set up a lex object on the
stack for resolving of fields from a single table.
*/
static bool init_lex_with_single_table(THD *thd, TABLE *table, LEX *lex) {
Query_block *query_block = lex->query_block;
Name_resolution_context *context = &query_block->context;
/*
We will call the parser to create a part_info struct based on the
partition string stored in the frm file.
We will use a local lex object for this purpose. However we also
need to set the Name_resolution_object for this lex object. We
do this by using add_table_to_list where we add the table that
we're working with to the Name_resolution_context.
*/
thd->lex = lex;
auto table_ident = new (thd->mem_root) Table_ident(
thd->get_protocol(), table->s->db, table->s->table_name, true);
if (table_ident == nullptr) return true;
Table_ref *table_list =
query_block->add_table_to_list(thd, table_ident, nullptr, 0);
if (table_list == nullptr) return true;
context->resolve_in_table_list_only(table_list);
lex->use_only_table_context = true;
table->get_fields_in_item_tree = true;
table_list->table = table;
table_list->cacheable_table = false;
return false;
}
/**
End use of local lex with single table
SYNOPSIS
end_lex_with_single_table()
@param thd The thread object
@param table The table object
@param old_lex The real lex object connected to THD
DESCRIPTION
This function restores the real lex object after calling
init_lex_with_single_table and also restores some table
variables temporarily set.
*/
static void end_lex_with_single_table(THD *thd, TABLE *table, LEX *old_lex) {
LEX *lex = thd->lex;
table->get_fields_in_item_tree = false;
lex_end(lex);
thd->lex = old_lex;
}
/*
The function uses a new feature in fix_fields where the flag
GET_FIXED_FIELDS_FLAG is set for all fields in the item tree.
This field must always be reset before returning from the function
since it is used for other purposes as well.
SYNOPSIS
fix_fields_part_func()
thd The thread object
func_expr The item tree reference of the partition function
table The table object
part_info Reference to partitioning data structure
is_sub_part Is the table subpartitioned as well
is_create_table_ind Indicator of whether openfrm was called as part of
CREATE or ALTER TABLE
RETURN VALUE
true An error occurred, something was wrong with the
partition function.
false Ok, a partition field array was created
DESCRIPTION
This function is used to build an array of partition fields for the
partitioning function and subpartitioning function. The partitioning
function is an item tree that must reference at least one field in the
table. This is checked first in the parser that the function doesn't
contain non-cacheable parts (like a random function) and by checking
here that the function isn't a constant function.
Calculate the number of fields in the partition function.
Use it allocate memory for array of Field pointers.
Initialise array of field pointers. Use information set when
calling fix_fields and reset it immediately after.
The get_fields_in_item_tree activates setting of bit in flags
on the field object.
The function must be called with thd->mem_root set to the memory
allocator associated with the TABLE object. Thus, any memory allocated
during resolving and other actions have the same lifetime as the TABLE.
Notice that memory allocations made during evaluation calls is NOT
supported, thus any item class that performs memory allocations during
evaluation calls must be disallowed as partition functions.
SEE Bug #21658
*/
static bool fix_fields_part_func(THD *thd, Item *func_expr, TABLE *table,
bool is_sub_part, bool is_create_table_ind) {
partition_info *part_info = table->part_info;
bool result = true;
int error;
LEX *old_lex = thd->lex;
LEX lex;
Query_expression unit(CTX_NONE);
Query_block select(thd->mem_root, nullptr, nullptr);
lex.new_static_query(&unit, &select);
DBUG_TRACE;
if (init_lex_with_single_table(thd, table, &lex)) goto end;
{
Item_ident::Change_context ctx(&lex.query_block->context);
func_expr->walk(&Item::change_context_processor, enum_walk::POSTFIX,
(uchar *)&ctx);
}
thd->where = "partition function";
if (unlikely(func_expr->fix_fields(thd, &func_expr))) {
DBUG_PRINT("info", ("Field in partition function not part of table"));
clear_field_flag(table);
goto end;
}
if (unlikely(func_expr->const_item())) {
my_error(ER_WRONG_EXPR_IN_PARTITION_FUNC_ERROR, MYF(0));
clear_field_flag(table);
goto end;
}
/*
We don't allow creating partitions with expressions with non matching
arguments as a (sub)partitioning function,
but we want to allow such expressions when opening existing tables for
easier maintenance. This exception should be deprecated at some point
in future so that we always throw an error.
*/
if (func_expr->walk(&Item::check_valid_arguments_processor,
enum_walk::POSTFIX, nullptr)) {
if (is_create_table_ind) {
my_error(ER_WRONG_EXPR_IN_PARTITION_FUNC_ERROR, MYF(0));
goto end;
} else
push_warning(thd, Sql_condition::SL_WARNING,
ER_WRONG_EXPR_IN_PARTITION_FUNC_ERROR,
ER_THD(thd, ER_WRONG_EXPR_IN_PARTITION_FUNC_ERROR));
}
if ((!is_sub_part) && (error = check_signed_flag(part_info))) goto end;
result = set_up_field_array(table, is_sub_part);
end:
end_lex_with_single_table(thd, table, old_lex);
#if !defined(NDEBUG)
Item_ident::Change_context nul_ctx(nullptr);
func_expr->walk(&Item::change_context_processor, enum_walk::POSTFIX,
(uchar *)&nul_ctx);
#endif
return result;
}
/*
Check that the primary key contains all partition fields if defined
SYNOPSIS
check_primary_key()
table TABLE object for which partition fields are set-up
RETURN VALUES
true Not all fields in partitioning function was part
of primary key
false Ok, all fields of partitioning function were part
of primary key
DESCRIPTION
This function verifies that if there is a primary key that it contains
all the fields of the partition function.
This is a temporary limitation that will hopefully be removed after a
while.
*/
static bool check_primary_key(TABLE *table) {
uint primary_key = table->s->primary_key;
bool all_fields, some_fields;
bool result = false;
DBUG_TRACE;
if (primary_key < MAX_KEY) {
set_indicator_in_key_fields(table->key_info + primary_key);
check_fields_in_PF(table->part_info->full_part_field_array, &all_fields,
&some_fields);
clear_indicator_in_key_fields(table->key_info + primary_key);
if (unlikely(!all_fields)) {
my_error(ER_UNIQUE_KEY_NEED_ALL_FIELDS_IN_PF, MYF(0), "PRIMARY KEY");
result = true;
}
}
return result;
}
/*
Check that unique keys contains all partition fields
SYNOPSIS
check_unique_keys()
table TABLE object for which partition fields are set-up
RETURN VALUES
true Not all fields in partitioning function was part
of all unique keys
false Ok, all fields of partitioning function were part
of unique keys
DESCRIPTION
This function verifies that if there is a unique index that it contains
all the fields of the partition function.
This is a temporary limitation that will hopefully be removed after a
while.
*/
static bool check_unique_keys(TABLE *table) {
bool all_fields, some_fields;
bool result = false;
uint keys = table->s->keys;
uint i;
DBUG_TRACE;
for (i = 0; i < keys; i++) {
if (table->key_info[i].flags & HA_NOSAME) // Unique index
{
set_indicator_in_key_fields(table->key_info + i);
check_fields_in_PF(table->part_info->full_part_field_array, &all_fields,
&some_fields);
clear_indicator_in_key_fields(table->key_info + i);
if (unlikely(!all_fields)) {
my_error(ER_UNIQUE_KEY_NEED_ALL_FIELDS_IN_PF, MYF(0), "UNIQUE INDEX");
result = true;
break;
}
}
}
return result;
}
/*
An important optimisation is whether a range on a field can select a subset
of the partitions.
A prerequisite for this to happen is that the PF is a growing function OR
a shrinking function.
This can never happen for a multi-dimensional PF. Thus this can only happen
with PF with at most one field involved in the PF.
The idea is that if the function is a growing function and you know that
the field of the PF is 4 <= A <= 6 then we can convert this to a range
in the PF instead by setting the range to PF(4) <= PF(A) <= PF(6). In the
case of RANGE PARTITIONING and LIST PARTITIONING this can be used to
calculate a set of partitions rather than scanning all of them.
Thus the following prerequisites are there to check if sets of partitions
can be found.
1) Only possible for RANGE and LIST partitioning (not for subpartitioning)
2) Only possible if PF only contains 1 field
3) Possible if PF is a growing function of the field
4) Possible if PF is a shrinking function of the field
OBSERVATION:
1) IF f1(A) is a growing function AND f2(A) is a growing function THEN
f1(A) + f2(A) is a growing function
f1(A) * f2(A) is a growing function if f1(A) >= 0 and f2(A) >= 0
2) IF f1(A) is a growing function and f2(A) is a shrinking function THEN
f1(A) / f2(A) is a growing function if f1(A) >= 0 and f2(A) > 0
3) IF A is a growing function then a function f(A) that removes the
least significant portion of A is a growing function
E.g. DATE(datetime) is a growing function
MONTH(datetime) is not a growing/shrinking function
4) IF f1(A) is a growing function and f2(A) is a growing function THEN
f1(f2(A)) and f2(f1(A)) are also growing functions
5) IF f1(A) is a shrinking function and f2(A) is a growing function THEN
f1(f2(A)) is a shrinking function and f2(f1(A)) is a shrinking function
6) f1(A) = A is a growing function
7) f1(A) = A*a + b (where a and b are constants) is a growing function
By analysing the item tree of the PF we can use these deducements and
derive whether the PF is a growing function or a shrinking function or
neither of it.
If the PF is range capable then a flag is set on the table object
indicating this to notify that we can use also ranges on the field
of the PF to deduce a set of partitions if the fields of the PF were
not all fully bound.
SYNOPSIS
check_range_capable_PF()
DESCRIPTION
Support for this is not implemented yet.
*/
static void check_range_capable_PF(TABLE *) { DBUG_TRACE; }
/**
Set up partition bitmaps
@param part_info Reference to partitioning data structure
@return Operation status
@retval true Memory allocation failure
@retval false Success
Allocate memory for bitmaps of the partitioned table
and initialise it.
*/
static bool set_up_partition_bitmaps(partition_info *part_info) {
DBUG_TRACE;
assert(!part_info->bitmaps_are_initialized);
if (part_info->init_partition_bitmap(&part_info->read_partitions,
&part_info->table->mem_root))
return true;
if (part_info->init_partition_bitmap(&part_info->lock_partitions,
&part_info->table->mem_root))
return true;
part_info->bitmaps_are_initialized = true;
part_info->set_partition_bitmaps(nullptr);
return false;
}
/*
Set up partition key maps
SYNOPSIS
set_up_partition_key_maps()
table TABLE object for which partition fields are set-up
part_info Reference to partitioning data structure
RETURN VALUES
None
DESCRIPTION
This function sets up a couple of key maps to be able to quickly check
if an index ever can be used to deduce the partition fields or even
a part of the fields of the partition function.
We set up the following key_map's.
PF = Partition Function
1) All fields of the PF is set even by equal on the first fields in the
key
2) All fields of the PF is set if all fields of the key is set
3) At least one field in the PF is set if all fields is set
4) At least one field in the PF is part of the key
*/
static void set_up_partition_key_maps(TABLE *table, partition_info *part_info) {
uint keys = table->s->keys;
uint i;
bool all_fields, some_fields;
DBUG_TRACE;
part_info->all_fields_in_PF.clear_all();
part_info->all_fields_in_PPF.clear_all();
part_info->all_fields_in_SPF.clear_all();
part_info->some_fields_in_PF.clear_all();
for (i = 0; i < keys; i++) {
set_indicator_in_key_fields(table->key_info + i);
check_fields_in_PF(part_info->full_part_field_array, &all_fields,
&some_fields);
if (all_fields) part_info->all_fields_in_PF.set_bit(i);
if (some_fields) part_info->some_fields_in_PF.set_bit(i);
if (part_info->is_sub_partitioned()) {
check_fields_in_PF(part_info->part_field_array, &all_fields,
&some_fields);
if (all_fields) part_info->all_fields_in_PPF.set_bit(i);
check_fields_in_PF(part_info->subpart_field_array, &all_fields,
&some_fields);
if (all_fields) part_info->all_fields_in_SPF.set_bit(i);
}
clear_indicator_in_key_fields(table->key_info + i);
}
}
/*
Set up function pointers for partition function
SYNOPSIS
set_up_partition_func_pointers()
part_info Reference to partitioning data structure
RETURN VALUE
NONE
DESCRIPTION
Set-up all function pointers for calculation of partition id,
subpartition id and the upper part in subpartitioning. This is to speed up
execution of get_partition_id which is executed once every record to be
written and deleted and twice for updates.
*/
static void set_up_partition_func_pointers(partition_info *part_info) {
DBUG_TRACE;
if (part_info->is_sub_partitioned()) {
part_info->get_partition_id = get_partition_id_with_sub;
if (part_info->part_type == partition_type::RANGE) {
if (part_info->column_list)
part_info->get_part_partition_id = get_partition_id_range_col;
else
part_info->get_part_partition_id = get_partition_id_range;
if (part_info->list_of_subpart_fields) {
if (part_info->linear_hash_ind)
part_info->get_subpartition_id = get_partition_id_linear_key_sub;
else
part_info->get_subpartition_id = get_partition_id_key_sub;
} else {
if (part_info->linear_hash_ind)
part_info->get_subpartition_id = get_partition_id_linear_hash_sub;
else
part_info->get_subpartition_id = get_partition_id_hash_sub;
}
} else /* LIST Partitioning */
{
if (part_info->column_list)
part_info->get_part_partition_id = get_partition_id_list_col;
else
part_info->get_part_partition_id = get_partition_id_list;
if (part_info->list_of_subpart_fields) {
if (part_info->linear_hash_ind)
part_info->get_subpartition_id = get_partition_id_linear_key_sub;
else
part_info->get_subpartition_id = get_partition_id_key_sub;
} else {
if (part_info->linear_hash_ind)
part_info->get_subpartition_id = get_partition_id_linear_hash_sub;
else
part_info->get_subpartition_id = get_partition_id_hash_sub;
}
}
} else /* No subpartitioning */
{
part_info->get_part_partition_id = nullptr;
part_info->get_subpartition_id = nullptr;
if (part_info->part_type == partition_type::RANGE) {
if (part_info->column_list)
part_info->get_partition_id = get_partition_id_range_col;
else
part_info->get_partition_id = get_partition_id_range;
} else if (part_info->part_type == partition_type::LIST) {
if (part_info->column_list)
part_info->get_partition_id = get_partition_id_list_col;
else
part_info->get_partition_id = get_partition_id_list;
} else /* HASH partitioning */
{
if (part_info->list_of_part_fields) {
if (part_info->linear_hash_ind)
part_info->get_partition_id = get_partition_id_linear_key_nosub;
else
part_info->get_partition_id = get_partition_id_key_nosub;
} else {
if (part_info->linear_hash_ind)
part_info->get_partition_id = get_partition_id_linear_hash_nosub;
else
part_info->get_partition_id = get_partition_id_hash_nosub;
}
}
}
/*
We need special functions to handle character sets since they require copy
of field pointers and restore afterwards. For subpartitioned tables we do
the copy and restore individually on the part and subpart parts. For non-
subpartitioned tables we use the same functions as used for the parts part
of subpartioning.
Thus for subpartitioned tables the get_partition_id is always
get_partition_id_with_sub, even when character sets exists.
*/
if (part_info->part_charset_field_array) {
if (part_info->is_sub_partitioned()) {
assert(part_info->get_part_partition_id);
if (!part_info->column_list) {
part_info->get_part_partition_id_charset =
part_info->get_part_partition_id;
part_info->get_part_partition_id = get_part_id_charset_func_part;
}
} else {
assert(part_info->get_partition_id);
if (!part_info->column_list) {
part_info->get_part_partition_id_charset = part_info->get_partition_id;
part_info->get_part_partition_id = get_part_id_charset_func_part;
}
}
}
if (part_info->subpart_charset_field_array) {
assert(part_info->get_subpartition_id);
part_info->get_subpartition_id_charset = part_info->get_subpartition_id;
part_info->get_subpartition_id = get_part_id_charset_func_subpart;
}
}
/*
For linear hashing we need a mask which is on the form 2**n - 1 where
2**n >= num_parts. Thus if num_parts is 6 then mask is 2**3 - 1 = 8 - 1 = 7.
SYNOPSIS
set_linear_hash_mask()
part_info Reference to partitioning data structure
num_parts Number of parts in linear hash partitioning
RETURN VALUE
NONE
*/
void set_linear_hash_mask(partition_info *part_info, uint num_parts) {
uint mask;
for (mask = 1; mask < num_parts; mask <<= 1)
;
part_info->linear_hash_mask = mask - 1;
}
/*
This function calculates the partition id provided the result of the hash
function using linear hashing parameters, mask and number of partitions.
SYNOPSIS
get_part_id_from_linear_hash()
hash_value Hash value calculated by HASH function or KEY function
mask Mask calculated previously by set_linear_hash_mask
num_parts Number of partitions in HASH partitioned part
RETURN VALUE
part_id The calculated partition identity (starting at 0)
DESCRIPTION
The partition is calculated according to the theory of linear hashing.
See e.g. Linear hashing: a new tool for file and table addressing,
Reprinted from VLDB-80 in Readings Database Systems, 2nd ed, M. Stonebraker
(ed.), Morgan Kaufmann 1994.
*/
static uint32 get_part_id_from_linear_hash(longlong hash_value, uint mask,
uint num_parts) {
uint32 part_id = (uint32)(hash_value & mask);
if (part_id >= num_parts) {
uint new_mask = ((mask + 1) >> 1) - 1;
part_id = (uint32)(hash_value & new_mask);
}
return part_id;
}
/*
Check if a particular field is in need of character set
handling for partition functions.
SYNOPSIS
field_is_partition_charset()
field The field to check
RETURN VALUES
false Not in need of character set handling
true In need of character set handling
*/
bool field_is_partition_charset(Field *field) {
if (!(field->type() == MYSQL_TYPE_STRING) &&
!(field->type() == MYSQL_TYPE_VARCHAR))
return false;
{
const CHARSET_INFO *cs = field->charset();
if (!(field->type() == MYSQL_TYPE_STRING) || !(cs->state & MY_CS_BINSORT))
return true;
return false;
}
}
/*
Check that partition function doesn't contain any forbidden
character sets and collations.
SYNOPSIS
check_part_func_fields()
ptr Array of Field pointers
ok_with_charsets Will we report allowed charset
fields as ok
RETURN VALUES
false Success
true Error
DESCRIPTION
We will check in this routine that the fields of the partition functions
do not contain unallowed parts. It can also be used to check if there
are fields that require special care by calling my_strnxfrm before
calling the functions to calculate partition id.
*/
bool check_part_func_fields(Field **ptr, bool ok_with_charsets) {
Field *field;
DBUG_TRACE;
while ((field = *(ptr++))) {
/*
For CHAR/VARCHAR fields we need to take special precautions.
Binary collation with CHAR is automatically supported. Other
types need some kind of standardisation function handling
*/
if (field_is_partition_charset(field)) {
const CHARSET_INFO *cs = field->charset();
if (!ok_with_charsets || cs->mbmaxlen > 1 || cs->strxfrm_multiply > 1) {
return true;
}
}
}
return false;
}
/*
fix partition functions
SYNOPSIS
fix_partition_func()
thd The thread object
table TABLE object for which partition fields are set-up
is_create_table_ind Indicator of whether openfrm was called as part of
CREATE or ALTER TABLE
RETURN VALUE
true Error
false Success
DESCRIPTION
The name parameter contains the full table name and is used to get the
database name of the table which is used to set-up a correct
Table_ref object for use in fix_fields.
NOTES
This function is called as part of opening the table by opening the .frm
file. It is a part of CREATE TABLE to do this so it is quite permissible
that errors due to erroneous syntax isn't found until we come here.
If the user has used a non-existing field in the table is one such example
of an error that is not discovered until here.
*/
bool fix_partition_func(THD *thd, TABLE *table, bool is_create_table_ind) {
bool result = true;
partition_info *part_info = table->part_info;
enum_mark_columns save_mark_used_columns = thd->mark_used_columns;
Partition_handler *part_handler;
const Access_bitmask save_want_privilege = thd->want_privilege;
DBUG_TRACE;
if (part_info->fixed) {
return false;
}
thd->mark_used_columns = MARK_COLUMNS_NONE;
thd->want_privilege = 0;
if (!is_create_table_ind || thd->lex->sql_command != SQLCOM_CREATE_TABLE) {
if (partition_default_handling(table, part_info, is_create_table_ind,
table->s->normalized_path.str)) {
return true;
}
}
if (part_info->is_sub_partitioned()) {
assert(part_info->subpart_type == partition_type::HASH);
/*
Subpartition is defined. We need to verify that subpartitioning
function is correct.
*/
if (part_info->linear_hash_ind)
set_linear_hash_mask(part_info, part_info->num_subparts);
if (part_info->list_of_subpart_fields) {
List_iterator<char> it(part_info->subpart_field_list);
if (unlikely(handle_list_of_fields(it, table, part_info, true))) goto end;
} else {
if (unlikely(fix_fields_part_func(thd, part_info->subpart_expr, table,
true, is_create_table_ind)))
goto end;
if (unlikely(part_info->subpart_expr->result_type() != INT_RESULT)) {
part_info->report_part_expr_error(true);
goto end;
}
}
}
assert(part_info->part_type != partition_type::NONE);
/*
Partition is defined. We need to verify that partitioning
function is correct.
*/
if (part_info->part_type == partition_type::HASH) {
if (part_info->linear_hash_ind)
set_linear_hash_mask(part_info, part_info->num_parts);
if (part_info->list_of_part_fields) {
List_iterator<char> it(part_info->part_field_list);
if (unlikely(handle_list_of_fields(it, table, part_info, false)))
goto end;
} else {
if (unlikely(fix_fields_part_func(thd, part_info->part_expr, table, false,
is_create_table_ind)))
goto end;
if (unlikely(part_info->part_expr->result_type() != INT_RESULT)) {
part_info->report_part_expr_error(false);
goto end;
}
}
part_info->fixed = true;
} else {
const char *error_str;
if (part_info->column_list) {
List_iterator<char> it(part_info->part_field_list);
if (unlikely(handle_list_of_fields(it, table, part_info, false)))
goto end;
} else {
if (unlikely(fix_fields_part_func(thd, part_info->part_expr, table, false,
is_create_table_ind)))
goto end;
}
part_info->fixed = true;
if (part_info->part_type == partition_type::RANGE) {
error_str = partition_keywords[PKW_RANGE].str;
if (unlikely(part_info->check_range_constants(thd))) goto end;
} else if (part_info->part_type == partition_type::LIST) {
error_str = partition_keywords[PKW_LIST].str;
if (unlikely(part_info->check_list_constants(thd))) goto end;
} else {
assert(0);
my_error(ER_INCONSISTENT_PARTITION_INFO_ERROR, MYF(0));
goto end;
}
if (unlikely(part_info->num_parts < 1)) {
my_error(ER_PARTITIONS_MUST_BE_DEFINED_ERROR, MYF(0), error_str);
goto end;
}
if (unlikely(!part_info->column_list &&
part_info->part_expr->result_type() != INT_RESULT)) {
part_info->report_part_expr_error(false);
goto end;
}
}
if (((part_info->part_type != partition_type::HASH ||
part_info->list_of_part_fields == false) &&
!part_info->column_list &&
check_part_func_fields(part_info->part_field_array, true)) ||
(part_info->list_of_subpart_fields == false &&
part_info->is_sub_partitioned() &&
check_part_func_fields(part_info->subpart_field_array, true))) {
/*
Range/List/HASH (but not KEY) and not COLUMNS or HASH subpartitioning
with columns in the partitioning expression using unallowed charset.
*/
my_error(ER_PARTITION_FUNCTION_IS_NOT_ALLOWED, MYF(0));
goto end;
}
if (unlikely(create_full_part_field_array(thd, table, part_info))) goto end;
if (unlikely(check_primary_key(table))) goto end;
if (unlikely((!(table->s->db_type()->partition_flags &&
(table->s->db_type()->partition_flags() &
HA_CAN_PARTITION_UNIQUE))) &&
check_unique_keys(table)))
goto end;
if (unlikely(set_up_partition_bitmaps(part_info))) goto end;
if (unlikely(part_info->set_up_charset_field_preps())) {
my_error(ER_PARTITION_FUNCTION_IS_NOT_ALLOWED, MYF(0));
goto end;
}
if (unlikely(part_info->check_partition_field_length())) {
my_error(ER_PARTITION_FIELDS_TOO_LONG, MYF(0));
goto end;
}
check_range_capable_PF(table);
set_up_partition_key_maps(table, part_info);
set_up_partition_func_pointers(part_info);
set_up_range_analysis_info(part_info);
part_handler = table->file->get_partition_handler();
if (part_handler) {
part_handler->set_part_info(part_info, false);
result = false;
} else {
assert(0);
my_error(ER_PARTITION_MGMT_ON_NONPARTITIONED, MYF(0));
}
end:
thd->mark_used_columns = save_mark_used_columns;
thd->want_privilege = save_want_privilege;
DBUG_PRINT("info", ("thd->mark_used_columns: %d", thd->mark_used_columns));
return result;
}
// TODO: Change this to use streams instead, to make it possible to skip
// temporary files etc. and write directly to a string if wanted.
/*
The code below is support routines for the reverse parsing of the
partitioning syntax. This feature is very useful to generate syntax for
all default values to avoid all default checking when opening the frm
file. It is also used when altering the partitioning by use of various
ALTER TABLE commands. Finally it is used for SHOW CREATE TABLES.
*/
static int add_write(File fptr, const char *buf, size_t len) {
size_t ret_code =
mysql_file_write(fptr, (const uchar *)buf, len, MYF(MY_FNABP));
if (likely(ret_code == 0)) return 0;
return 1;
}
static int add_string_object(File fptr, String *string) {
return add_write(fptr, string->ptr(), string->length());
}
static int add_string(File fptr, const char *string) {
return add_write(fptr, string, strlen(string));
}
static int add_string_len(File fptr, const char *string, size_t len) {
return add_write(fptr, string, len);
}
static int add_space(File fptr) { return add_string(fptr, space_str); }
static int add_comma(File fptr) { return add_string(fptr, comma_str); }
static int add_equal(File fptr) { return add_string(fptr, equal_str); }
static int add_end_parenthesis(File fptr) {
return add_string(fptr, end_paren_str);
}
static int add_begin_parenthesis(File fptr) {
return add_string(fptr, begin_paren_str);
}
static int add_part_key_word(File fptr, const char *key_string) {
int err = add_string(fptr, key_string);
err += add_space(fptr);
return err;
}
static int add_partition(File fptr) {
char buff[22];
strxmov(buff, part_str, space_str, NullS);
return add_string(fptr, buff);
}
static int add_subpartition(File fptr) {
int err = add_string(fptr, sub_str);
return err + add_partition(fptr);
}
static int add_partition_by(File fptr) {
char buff[22];
strxmov(buff, part_str, space_str, by_str, space_str, NullS);
return add_string(fptr, buff);
}
static int add_subpartition_by(File fptr) {
int err = add_string(fptr, sub_str);
return err + add_partition_by(fptr);
}
/**
Append field list to string.
Used by KEY and COLUMNS partitioning.
@param[in] thd Thread handle.
@param[in,out] str String to append.
@param[in] field_list List of field names to append.
@return false if success, else true.
*/
static bool append_field_list(THD *thd, String *str, List<char> field_list) {
uint i, num_fields;
List_iterator<char> part_it(field_list);
num_fields = field_list.elements;
i = 0;
ulonglong save_options = thd->variables.option_bits;
thd->variables.option_bits &= ~OPTION_QUOTE_SHOW_CREATE;
while (i < num_fields) {
const char *field_str = part_it++;
append_identifier(thd, str, field_str, strlen(field_str));
if (i != (num_fields - 1)) {
if (str->append(',')) {
thd->variables.option_bits = save_options;
return true;
}
}
i++;
}
thd->variables.option_bits = save_options;
return false;
}
static int add_part_field_list(File fptr, List<char> field_list) {
int err = 0;
THD *thd = current_thd;
String str("", 0, system_charset_info);
err += add_begin_parenthesis(fptr);
if (append_field_list(thd, &str, field_list)) {
err++;
}
err += add_string_object(fptr, &str);
err += add_end_parenthesis(fptr);
return err;
}
static int add_ident_string(File fptr, const char *name) {
String name_string("", 0, system_charset_info);
append_identifier(current_thd, &name_string, name, strlen(name));
return add_string_object(fptr, &name_string);
}
static int add_name_string(File fptr, const char *name) {
int err;
THD *thd = current_thd;
ulonglong save_options = thd->variables.option_bits;
thd->variables.option_bits &= ~OPTION_QUOTE_SHOW_CREATE;
err = add_ident_string(fptr, name);
thd->variables.option_bits = save_options;
return err;
}
static int add_int(File fptr, longlong number) {
char buff[32];
llstr(number, buff);
return add_string(fptr, buff);
}
static int add_uint(File fptr, ulonglong number) {
char buff[32];
ullstr(number, buff);
return add_string(fptr, buff);
}
/*
Must escape strings in partitioned tables frm-files,
parsing it later with mysql_unpack_partition will fail otherwise.
*/
static int add_quoted_string(File fptr, const char *quotestr) {
String orgstr(quotestr, system_charset_info);
String escapedstr;
int err = add_string(fptr, "'");
err += append_escaped(&escapedstr, &orgstr);
err += add_string(fptr, escapedstr.c_ptr_safe());
return err + add_string(fptr, "'");
}
/** Truncate the partition file name from a path if it exists.
A partition file name will contain one or more '#' characters.
One of the occurrences of '#' will be either "#P#" or "#p#" depending
on whether the storage engine has converted the filename to lower case.
If we need to truncate the name, we will allocate a new string and replace
with, in case the original string was owned by something else.
@param[in] root MEM_ROOT to allocate from. If NULL alter the string
directly.
@param[in,out] path Pointer to string to check and truncate.
*/
void truncate_partition_filename(MEM_ROOT *root, const char **path) {
if (*path) {
const char *last_slash = strrchr(*path, FN_LIBCHAR);
#ifdef _WIN32
if (!last_slash) last_slash = strrchr(*path, FN_LIBCHAR2);
#endif
if (last_slash) {
/* Look for a partition-type filename */
for (const char *pound = strchr(last_slash, '#'); pound;
pound = strchr(pound + 1, '#')) {
if ((pound[1] == 'P' || pound[1] == 'p') && pound[2] == '#') {
if (root == nullptr) {
char *p = const_cast<char *>(last_slash);
*p = '\0';
} else {
*path = strmake_root(root, *path, last_slash - *path);
}
break;
}
}
}
}
}
/**
@brief Output a filepath. Similar to add_keyword_string except it
also converts \ to / on Windows and skips the partition file name at
the end if found.
@note When Mysql sends a DATA DIRECTORY from SQL for partitions it does
not use a file name, but it does for DATA DIRECTORY on a non-partitioned
table. So when the storage engine is asked for the DATA DIRECTORY string
after a restart through Handler::update_create_options(), the storage
engine may include the filename.
*/
static int add_keyword_path(File fptr, const char *keyword, const char *path) {
if (strlen(path) >= FN_REFLEN) {
my_error(ER_PATH_LENGTH, MYF(0), keyword);
return 1;
}
int err = add_string(fptr, keyword);
err += add_space(fptr);
err += add_equal(fptr);
err += add_space(fptr);
char temp_path[FN_REFLEN];
const char *temp_path_p[1];
temp_path_p[0] = temp_path;
strncpy(temp_path, path, FN_REFLEN - 1);
temp_path[FN_REFLEN - 1] = '\0';
#ifdef _WIN32
/* Convert \ to / to be able to create table on unix */
char *pos, *end;
size_t length = strlen(temp_path);
for (pos = temp_path, end = pos + length; pos < end; pos++) {
if (*pos == '\\') *pos = '/';
}
#endif
/*
If the partition file name with its "#P#" identifier
is found after the last slash, truncate that filename.
*/
truncate_partition_filename(nullptr, temp_path_p);
err += add_quoted_string(fptr, temp_path);
return err + add_space(fptr);
}
static int add_keyword_string(File fptr, const char *keyword,
bool should_use_quotes, const char *keystr) {
int err = add_string(fptr, keyword);
err += add_space(fptr);
err += add_equal(fptr);
err += add_space(fptr);
if (should_use_quotes)
err += add_quoted_string(fptr, keystr);
else
err += add_string(fptr, keystr);
return err + add_space(fptr);
}
static int add_keyword_int(File fptr, const char *keyword, longlong num) {
int err = add_string(fptr, keyword);
err += add_space(fptr);
err += add_equal(fptr);
err += add_space(fptr);
err += add_int(fptr, num);
return err + add_space(fptr);
}
static int add_engine(File fptr, handlerton *engine_type) {
const char *engine_str = ha_resolve_storage_engine_name(engine_type);
assert(engine_type != nullptr);
DBUG_PRINT("info", ("ENGINE: %s", engine_str));
int err = add_string(fptr, "ENGINE = ");
return err + add_string(fptr, engine_str);
}
static int add_partition_options(File fptr, partition_element *p_elem) {
int err = 0;
err += add_space(fptr);
if (p_elem->tablespace_name) {
err += add_string(fptr, "TABLESPACE = ");
err += add_ident_string(fptr, p_elem->tablespace_name);
err += add_space(fptr);
}
if (p_elem->nodegroup_id != UNDEF_NODEGROUP)
err += add_keyword_int(fptr, "NODEGROUP", (longlong)p_elem->nodegroup_id);
if (p_elem->part_max_rows)
err += add_keyword_int(fptr, "MAX_ROWS", (longlong)p_elem->part_max_rows);
if (p_elem->part_min_rows)
err += add_keyword_int(fptr, "MIN_ROWS", (longlong)p_elem->part_min_rows);
if (!(current_thd->variables.sql_mode & MODE_NO_DIR_IN_CREATE)) {
if (p_elem->data_file_name)
err += add_keyword_path(fptr, "DATA DIRECTORY", p_elem->data_file_name);
if (p_elem->index_file_name)
err += add_keyword_path(fptr, "INDEX DIRECTORY", p_elem->index_file_name);
}
if (p_elem->part_comment)
err += add_keyword_string(fptr, "COMMENT", true, p_elem->part_comment);
return err + add_engine(fptr, p_elem->engine_type);
}
/*
Check partition fields for result type and if they need
to check the character set.
SYNOPSIS
check_part_field()
sql_type Type provided by user
field_name Name of field, used for error handling
result_type Out value: Result type of field
need_cs_check Out value: Do we need character set check
RETURN VALUES
true Error
false Ok
*/
static int check_part_field(enum_field_types sql_type, const char *field_name,
Item_result *result_type, bool *need_cs_check) {
if (sql_type >= MYSQL_TYPE_TINY_BLOB && sql_type <= MYSQL_TYPE_BLOB) {
my_error(ER_BLOB_FIELD_IN_PART_FUNC_ERROR, MYF(0));
return true;
}
switch (sql_type) {
case MYSQL_TYPE_TINY:
case MYSQL_TYPE_SHORT:
case MYSQL_TYPE_LONG:
case MYSQL_TYPE_LONGLONG:
case MYSQL_TYPE_INT24:
*result_type = INT_RESULT;
*need_cs_check = false;
return false;
case MYSQL_TYPE_NEWDATE:
case MYSQL_TYPE_DATE:
case MYSQL_TYPE_TIME:
case MYSQL_TYPE_DATETIME:
case MYSQL_TYPE_TIME2:
case MYSQL_TYPE_DATETIME2:
*result_type = STRING_RESULT;
*need_cs_check = true;
return false;
case MYSQL_TYPE_VARCHAR:
case MYSQL_TYPE_STRING:
case MYSQL_TYPE_VAR_STRING:
*result_type = STRING_RESULT;
*need_cs_check = true;
return false;
case MYSQL_TYPE_BOOL:
case MYSQL_TYPE_NEWDECIMAL:
case MYSQL_TYPE_DECIMAL:
case MYSQL_TYPE_TIMESTAMP:
case MYSQL_TYPE_TIMESTAMP2:
case MYSQL_TYPE_NULL:
case MYSQL_TYPE_FLOAT:
case MYSQL_TYPE_DOUBLE:
case MYSQL_TYPE_BIT:
case MYSQL_TYPE_ENUM:
case MYSQL_TYPE_SET:
case MYSQL_TYPE_GEOMETRY:
case MYSQL_TYPE_INVALID:
goto error;
default:
goto error;
}
error:
my_error(ER_FIELD_TYPE_NOT_ALLOWED_AS_PARTITION_FIELD, MYF(0), field_name);
return true;
}
/*
Find the given field's Create_field object using name of field
SYNOPSIS
get_sql_field()
field_name Field name
create_fields Info from ALTER TABLE/CREATE TABLE
RETURN VALUE
sql_field Object filled in by parser about field
NULL No field found
*/
static Create_field *get_sql_field(const char *field_name,
List<Create_field> *create_fields) {
List_iterator<Create_field> it(*create_fields);
Create_field *sql_field;
DBUG_TRACE;
while ((sql_field = it++)) {
if (!(my_strcasecmp(system_charset_info, sql_field->field_name,
field_name))) {
return sql_field;
}
}
return nullptr;
}
int expr_to_string(String *val_conv, Item *item_expr, Field *field,
const char *field_name, const HA_CREATE_INFO *create_info,
List<Create_field> *create_fields) {
char buffer[MAX_KEY_LENGTH];
String str(buffer, sizeof(buffer), &my_charset_bin);
String *res;
const CHARSET_INFO *field_cs;
bool need_cs_check = false;
Item_result result_type = STRING_RESULT;
/*
This function is called at a very early stage, even before
we have prepared the sql_field objects. Thus we have to
find the proper sql_field object and get the character set
from that object.
*/
if (create_info) {
Create_field *sql_field;
if (!(sql_field = get_sql_field(field_name, create_fields))) {
my_error(ER_FIELD_NOT_FOUND_PART_ERROR, MYF(0));
return 1;
}
if (check_part_field(sql_field->sql_type, sql_field->field_name,
&result_type, &need_cs_check))
return 1;
if (need_cs_check)
field_cs = get_sql_field_charset(sql_field, create_info);
else
field_cs = nullptr;
} else {
result_type = field->result_type();
if (check_part_field(field->real_type(), field->field_name, &result_type,
&need_cs_check))
return 1;
assert(result_type == field->result_type());
if (need_cs_check)
field_cs = field->charset();
else
field_cs = nullptr;
}
if (result_type != item_expr->result_type()) {
my_error(ER_WRONG_TYPE_COLUMN_VALUE_ERROR, MYF(0));
return 1;
}
if (field_cs && field_cs != item_expr->collation.collation) {
if (!(item_expr =
convert_charset_partition_constant(item_expr, field_cs))) {
my_error(ER_PARTITION_FUNCTION_IS_NOT_ALLOWED, MYF(0));
return 1;
}
}
val_conv->set_charset(system_charset_info);
res = item_expr->val_str(&str);
if (get_cs_converted_part_value_from_string(current_thd, item_expr, res,
val_conv, field_cs, false)) {
return 1;
}
return 0;
}
static int add_column_list_values(File fptr, partition_info *part_info,
part_elem_value *list_value) {
int err = 0;
uint i;
uint num_elements = part_info->part_field_list.elements;
bool use_parenthesis = (part_info->part_type == partition_type::LIST &&
part_info->num_columns > 1U);
if (use_parenthesis) err += add_begin_parenthesis(fptr);
for (i = 0; i < num_elements; i++) {
part_column_list_val *col_val = &list_value->col_val_array[i];
if (col_val->max_value)
err += add_string(fptr, partition_keywords[PKW_MAXVALUE].str);
else if (col_val->null_value)
err += add_string(fptr, "NULL");
else {
char buffer[MAX_KEY_LENGTH];
String str(buffer, sizeof(buffer), &my_charset_bin);
Item *item_expr = col_val->item_expression;
if (!item_expr) {
/*
The values are not from the parser, but from the
dd::Partition_values table. See fill_partitioning_from_dd().
*/
assert(col_val->column_value.value_str);
err += add_string(fptr, col_val->column_value.value_str);
} else if (item_expr->null_value) {
err += add_string(fptr, "NULL");
} else {
String val_conv;
err +=
expr_to_string(&val_conv, item_expr, part_info->part_field_array[i],
nullptr, nullptr, nullptr);
err += add_string_object(fptr, &val_conv);
}
}
if (i != (num_elements - 1)) err += add_string(fptr, comma_str);
}
if (use_parenthesis) err += add_end_parenthesis(fptr);
return err;
}
static int add_partition_values(File fptr, partition_info *part_info,
partition_element *p_elem) {
int err = 0;
if (part_info->part_type == partition_type::RANGE) {
err += add_string(fptr, " VALUES LESS THAN ");
if (part_info->column_list) {
List_iterator<part_elem_value> list_val_it(p_elem->list_val_list);
part_elem_value *list_value = list_val_it++;
err += add_begin_parenthesis(fptr);
err += add_column_list_values(fptr, part_info, list_value);
err += add_end_parenthesis(fptr);
} else {
if (!p_elem->max_value) {
err += add_begin_parenthesis(fptr);
if (p_elem->signed_flag)
err += add_int(fptr, p_elem->range_value);
else
err += add_uint(fptr, p_elem->range_value);
err += add_end_parenthesis(fptr);
} else
err += add_string(fptr, partition_keywords[PKW_MAXVALUE].str);
}
} else if (part_info->part_type == partition_type::LIST) {
uint i;
List_iterator<part_elem_value> list_val_it(p_elem->list_val_list);
err += add_string(fptr, " VALUES IN ");
uint num_items = p_elem->list_val_list.elements;
err += add_begin_parenthesis(fptr);
if (p_elem->has_null_value) {
err += add_string(fptr, "NULL");
if (num_items == 0) {
err += add_end_parenthesis(fptr);
goto end;
}
err += add_comma(fptr);
}
i = 0;
do {
part_elem_value *list_value = list_val_it++;
if (part_info->column_list)
err += add_column_list_values(fptr, part_info, list_value);
else {
if (!list_value->unsigned_flag)
err += add_int(fptr, list_value->value);
else
err += add_uint(fptr, list_value->value);
}
if (i != (num_items - 1)) err += add_comma(fptr);
} while (++i < num_items);
err += add_end_parenthesis(fptr);
}
end:
return err;
}
/**
Add 'KEY' word, with optional 'ALGORTIHM = N'.
@param fptr File to write to.
@param part_info partition_info holding the used key_algorithm
@param current_comment_start NULL, or comment string encapsulating the
PARTITION BY clause.
@return Operation status.
@retval 0 Success
@retval != 0 Failure
*/
static int add_key_with_algorithm(File fptr, partition_info *part_info,
const char *current_comment_start) {
int err = 0;
err += add_part_key_word(fptr, partition_keywords[PKW_KEY].str);
/*
current_comment_start is given when called from SHOW CREATE TABLE,
Then only add ALGORITHM = 1, not the default 2 or non-set 0!
For .frm current_comment_start is NULL, then add ALGORITHM if != 0.
*/
if (part_info->key_algorithm ==
enum_key_algorithm::KEY_ALGORITHM_51 || // SHOW
(!current_comment_start && // .frm
(part_info->key_algorithm != enum_key_algorithm::KEY_ALGORITHM_NONE))) {
/* If we already are within a comment, end that comment first. */
if (current_comment_start) err += add_string(fptr, "*/ ");
err += add_string(fptr, "/*!50611 ");
err += add_part_key_word(fptr, partition_keywords[PKW_ALGORITHM].str);
err += add_equal(fptr);
err += add_space(fptr);
err += add_int(fptr, static_cast<longlong>(part_info->key_algorithm));
err += add_space(fptr);
err += add_string(fptr, "*/ ");
if (current_comment_start) {
/* Skip new line. */
if (current_comment_start[0] == '\n') current_comment_start++;
err += add_string(fptr, current_comment_start);
err += add_space(fptr);
}
}
return err;
}
static char *get_file_content(File fptr, uint *buf_length, bool use_sql_alloc) {
my_off_t buffer_length;
char *buf;
buffer_length = mysql_file_seek(fptr, 0L, MY_SEEK_END, MYF(0));
if (unlikely(buffer_length == MY_FILEPOS_ERROR)) return nullptr;
if (unlikely(mysql_file_seek(fptr, 0L, MY_SEEK_SET, MYF(0)) ==
MY_FILEPOS_ERROR))
return nullptr;
*buf_length = (uint)buffer_length;
if (use_sql_alloc)
buf = (char *)(*THR_MALLOC)->Alloc(*buf_length + 1);
else
buf = (char *)my_malloc(key_memory_partition_syntax_buffer, *buf_length + 1,
MYF(MY_WME));
if (!buf) return nullptr;
if (unlikely(
mysql_file_read(fptr, (uchar *)buf, *buf_length, MYF(MY_FNABP)))) {
if (!use_sql_alloc) my_free(buf);
buf = nullptr;
} else
buf[*buf_length] = 0;
return buf;
}
/**
Generate the partition syntax from the partition data structure.
Useful for support of generating defaults, SHOW CREATE TABLES
and easy partition management.
@param part_info The partitioning data structure
@param buf_length A pointer to the returned buffer length
@param use_sql_alloc Allocate buffer from sql_alloc if true
otherwise use my_malloc
@param show_partition_options Should we display partition options
@param print_expr Indicates whether partitioning expressions
should be re-printed to get quoting according
to current sql_mode.
@param current_comment_start NULL, or comment string encapsulating the
PARTITION BY clause.
@retval NULL - error
@note
Here we will generate the full syntax for the given command where all
defaults have been expanded. By so doing the it is also possible to
make lots of checks of correctness while at it.
This could will also be reused for SHOW CREATE TABLES and also for all
type ALTER TABLE commands focusing on changing the PARTITION structure
in any fashion.
The implementation writes the syntax to a temporary file (essentially
an abstraction of a dynamic array) and if all writes goes well it
allocates a buffer and writes the syntax into this one and returns it.
As a security precaution the file is deleted before writing into it. This
means that no other processes on the machine can open and read the file
while this processing is ongoing.
The code is optimised for minimal code size since it is not used in any
common queries.
*/
char *generate_partition_syntax(partition_info *part_info, uint *buf_length,
bool use_sql_alloc, bool show_partition_options,
bool print_expr,
const char *current_comment_start) {
uint i, j, tot_num_parts, num_subparts;
partition_element *part_elem;
int err = 0;
List_iterator<partition_element> part_it(part_info->partitions);
File fptr;
char *buf = nullptr; // Return buffer
DBUG_TRACE;
if (!(fptr = mysql_tmpfile("psy"))) {
return nullptr;
}
err += add_space(fptr);
err += add_partition_by(fptr);
switch (part_info->part_type) {
case partition_type::RANGE:
err += add_part_key_word(fptr, partition_keywords[PKW_RANGE].str);
break;
case partition_type::LIST:
err += add_part_key_word(fptr, partition_keywords[PKW_LIST].str);
break;
case partition_type::HASH:
if (part_info->linear_hash_ind)
err += add_string(fptr, partition_keywords[PKW_LINEAR].str);
if (part_info->list_of_part_fields) {
err += add_key_with_algorithm(fptr, part_info, current_comment_start);
err += add_part_field_list(fptr, part_info->part_field_list);
} else
err += add_part_key_word(fptr, partition_keywords[PKW_HASH].str);
break;
default:
assert(0);
/* We really shouldn't get here, no use in continuing from here */
my_error(ER_OUT_OF_RESOURCES, MYF(ME_FATALERROR));
return nullptr;
}
if (part_info->part_func_len) {
err += add_begin_parenthesis(fptr);
if (print_expr) {
// Default on-stack buffer which allows to avoid malloc() in most cases.
char expr_buff[256];
String tmp(expr_buff, sizeof(expr_buff), system_charset_info);
tmp.length(0);
// No point in including schema and table name for identifiers
// since any columns must be in this table.
part_info->part_expr->print(
current_thd, &tmp,
enum_query_type(QT_TO_SYSTEM_CHARSET | QT_NO_DB | QT_NO_TABLE));
err += add_string_len(fptr, tmp.ptr(), tmp.length());
} else {
err += add_string_len(fptr, part_info->part_func_string,
part_info->part_func_len);
}
err += add_end_parenthesis(fptr);
} else if (part_info->column_list) {
err += add_string(fptr, partition_keywords[PKW_COLUMNS].str);
err += add_part_field_list(fptr, part_info->part_field_list);
}
if ((!part_info->use_default_num_partitions) &&
part_info->use_default_partitions) {
err += add_string(fptr, "\n");
err += add_string(fptr, "PARTITIONS ");
err += add_int(fptr, part_info->num_parts);
}
if (part_info->is_sub_partitioned()) {
err += add_string(fptr, "\n");
err += add_subpartition_by(fptr);
/* Must be hash partitioning for subpartitioning */
if (part_info->linear_hash_ind)
err += add_string(fptr, partition_keywords[PKW_LINEAR].str);
if (part_info->list_of_subpart_fields) {
err += add_key_with_algorithm(fptr, part_info, current_comment_start);
err += add_part_field_list(fptr, part_info->subpart_field_list);
} else
err += add_part_key_word(fptr, partition_keywords[PKW_HASH].str);
if (part_info->subpart_func_len) {
err += add_begin_parenthesis(fptr);
if (print_expr) {
// Default on-stack buffer which allows to avoid malloc() in most cases.
char expr_buff[256];
String tmp(expr_buff, sizeof(expr_buff), system_charset_info);
tmp.length(0);
// No point in including schema and table name for identifiers
// since any columns must be in this table.
part_info->subpart_expr->print(
current_thd, &tmp,
enum_query_type(QT_TO_SYSTEM_CHARSET | QT_NO_DB | QT_NO_TABLE));
err += add_string_len(fptr, tmp.ptr(), tmp.length());
} else {
err += add_string_len(fptr, part_info->subpart_func_string,
part_info->subpart_func_len);
}
err += add_end_parenthesis(fptr);
}
if ((!part_info->use_default_num_subpartitions) &&
part_info->use_default_subpartitions) {
err += add_string(fptr, "\n");
err += add_string(fptr, "SUBPARTITIONS ");
err += add_int(fptr, part_info->num_subparts);
}
}
tot_num_parts = part_info->partitions.elements;
num_subparts = part_info->num_subparts;
if (!part_info->use_default_partitions) {
bool first = true;
err += add_string(fptr, "\n");
err += add_begin_parenthesis(fptr);
i = 0;
do {
part_elem = part_it++;
if (part_elem->part_state != PART_TO_BE_DROPPED &&
part_elem->part_state != PART_REORGED_DROPPED) {
if (!first) {
err += add_comma(fptr);
err += add_string(fptr, "\n");
err += add_space(fptr);
}
first = false;
err += add_partition(fptr);
err += add_name_string(fptr, part_elem->partition_name);
err += add_partition_values(fptr, part_info, part_elem);
if (!part_info->is_sub_partitioned() ||
part_info->use_default_subpartitions) {
if (show_partition_options)
err += add_partition_options(fptr, part_elem);
} else {
err += add_string(fptr, "\n");
err += add_space(fptr);
err += add_begin_parenthesis(fptr);
List_iterator<partition_element> sub_it(part_elem->subpartitions);
partition_element *sub_elem;
j = 0;
do {
sub_elem = sub_it++;
err += add_subpartition(fptr);
err += add_name_string(fptr, sub_elem->partition_name);
if (show_partition_options)
err += add_partition_options(fptr, sub_elem);
if (j != (num_subparts - 1)) {
err += add_comma(fptr);
err += add_string(fptr, "\n");
err += add_space(fptr);
err += add_space(fptr);
} else
err += add_end_parenthesis(fptr);
} while (++j < num_subparts);
}
}
if (i == (tot_num_parts - 1)) err += add_end_parenthesis(fptr);
} while (++i < tot_num_parts);
}
if (err) goto close_file;
buf = get_file_content(fptr, buf_length, use_sql_alloc);
close_file:
if (buf == nullptr) {
my_error(ER_INTERNAL_ERROR, MYF(0), "Failed to generate partition syntax");
}
mysql_file_close(fptr, MYF(0));
return buf;
}
/*
Check if partition key fields are modified and if it can be handled by the
underlying storage engine.
SYNOPSIS
partition_key_modified
table TABLE object for which partition fields are set-up
fields Bitmap representing fields to be modified
RETURN VALUES
true Need special handling of UPDATE
false Normal UPDATE handling is ok
*/
bool partition_key_modified(TABLE *table, const MY_BITMAP *fields) {
Field **fld;
partition_info *part_info = table->part_info;
DBUG_TRACE;
if (!part_info) return false;
if (table->s->db_type()->partition_flags &&
(table->s->db_type()->partition_flags() & HA_CAN_UPDATE_PARTITION_KEY))
return false;
for (fld = part_info->full_part_field_array; *fld; fld++)
if (bitmap_is_set(fields, (*fld)->field_index())) return true;
return false;
}
/*
A function to handle correct handling of NULL values in partition
functions.
SYNOPSIS
part_val_int()
item_expr The item expression to evaluate
out:result The value of the partition function,
LLONG_MIN if any null value in function
RETURN VALUES
true Error in val_int()
false ok
*/
static inline int part_val_int(Item *item_expr, longlong *result) {
*result = item_expr->val_int();
if (item_expr->null_value) {
if (current_thd->is_error()) return true;
*result = LLONG_MIN;
}
return false;
}
/*
The next set of functions are used to calculate the partition identity.
A handler sets up a variable that corresponds to one of these functions
to be able to quickly call it whenever the partition id needs to calculated
based on the record in table->record[0] (or set up to fake that).
There are 4 functions for hash partitioning and 2 for RANGE/LIST partitions.
In addition there are 4 variants for RANGE subpartitioning and 4 variants
for LIST subpartitioning thus in total there are 14 variants of this
function.
We have a set of support functions for these 14 variants. There are 4
variants of hash functions and there is a function for each. The KEY
partitioning uses the function calculate_key_hash_value to calculate the hash
value based on an array of fields. The linear hash variants uses the
method get_part_id_from_linear_hash to get the partition id using the
hash value and some parameters calculated from the number of partitions.
*/
/*
A simple support function to calculate part_id given local part and
sub part.
SYNOPSIS
get_part_id_for_sub()
loc_part_id Local partition id
sub_part_id Subpartition id
num_subparts Number of subparts
*/
inline static uint32 get_part_id_for_sub(uint32 loc_part_id, uint32 sub_part_id,
uint num_subparts) {
return (uint32)((loc_part_id * num_subparts) + sub_part_id);
}
/*
Calculate part_id for (SUB)PARTITION BY HASH
SYNOPSIS
get_part_id_hash()
num_parts Number of hash partitions
part_expr Item tree of hash function
out:part_id The returned partition id
out:func_value Value of hash function
RETURN VALUE
!= 0 Error code
false Success
*/
static int get_part_id_hash(uint num_parts, Item *part_expr, uint32 *part_id,
longlong *func_value) {
longlong int_hash_id;
DBUG_TRACE;
if (part_val_int(part_expr, func_value)) return HA_ERR_NO_PARTITION_FOUND;
int_hash_id = *func_value % num_parts;
*part_id = int_hash_id < 0 ? (uint32)-int_hash_id : (uint32)int_hash_id;
return false;
}
/*
Calculate part_id for (SUB)PARTITION BY LINEAR HASH
SYNOPSIS
get_part_id_linear_hash()
part_info A reference to the partition_info struct where all the
desired information is given
num_parts Number of hash partitions
part_expr Item tree of hash function
out:part_id The returned partition id
out:func_value Value of hash function
RETURN VALUE
!= 0 Error code
0 OK
*/
static int get_part_id_linear_hash(partition_info *part_info, uint num_parts,
Item *part_expr, uint32 *part_id,
longlong *func_value) {
DBUG_TRACE;
if (part_val_int(part_expr, func_value)) return HA_ERR_NO_PARTITION_FOUND;
*part_id = get_part_id_from_linear_hash(
*func_value, part_info->linear_hash_mask, num_parts);
return false;
}
/**
Calculate part_id for (SUB)PARTITION BY KEY
@param file Handler to storage engine
@param field_array Array of fields for PARTTION KEY
@param num_parts Number of KEY partitions
@param [out] func_value Returns calculated hash value
@return Calculated partition id
*/
inline static uint32 get_part_id_key(handler *file, Field **field_array,
uint num_parts, longlong *func_value) {
DBUG_TRACE;
*func_value = file->calculate_key_hash_value(field_array);
return (uint32)(*func_value % num_parts);
}
/*
Calculate part_id for (SUB)PARTITION BY LINEAR KEY
SYNOPSIS
get_part_id_linear_key()
part_info A reference to the partition_info struct where all the
desired information is given
field_array Array of fields for PARTTION KEY
num_parts Number of KEY partitions
RETURN VALUE
Calculated partition id
*/
inline static uint32 get_part_id_linear_key(partition_info *part_info,
Field **field_array, uint num_parts,
longlong *func_value) {
DBUG_TRACE;
*func_value = part_info->table->file->calculate_key_hash_value(field_array);
return get_part_id_from_linear_hash(*func_value, part_info->linear_hash_mask,
num_parts);
}
/*
Copy to field buffers and set up field pointers
SYNOPSIS
copy_to_part_field_buffers()
ptr Array of fields to copy
field_bufs Array of field buffers to copy to
restore_ptr Array of pointers to restore to
RETURN VALUES
NONE
DESCRIPTION
This routine is used to take the data from field pointer, convert
it to a standard format and store this format in a field buffer
allocated for this purpose. Next the field pointers are moved to
point to the field buffers. There is a separate to restore the
field pointers after this call.
*/
static void copy_to_part_field_buffers(Field **ptr, uchar **field_bufs,
uchar **restore_ptr) {
Field *field;
while ((field = *(ptr++))) {
*restore_ptr = field->field_ptr();
restore_ptr++;
if (!field->is_null()) {
const CHARSET_INFO *cs = field->charset();
uint max_len = field->pack_length();
uint data_len = field->data_length();
uchar *field_buf = *field_bufs;
/*
We only use the field buffer for VARCHAR and CHAR strings
which isn't of a binary collation. We also only use the
field buffer for fields which are not currently NULL.
The field buffer will store a normalised string. We use
the strnxfrm method to normalise the string.
*/
if (field->type() == MYSQL_TYPE_VARCHAR) {
uint len_bytes = field->get_length_bytes();
my_strnxfrm(cs, field_buf + len_bytes, max_len, field->data_ptr(),
data_len);
if (len_bytes == 1)
*field_buf = (uchar)data_len;
else
int2store(field_buf, data_len);
} else {
my_strnxfrm(cs, field_buf, max_len, field->field_ptr(), max_len);
}
field->set_field_ptr(field_buf);
}
field_bufs++;
}
}
/*
Restore field pointers
SYNOPSIS
restore_part_field_pointers()
ptr Array of fields to restore
restore_ptr Array of field pointers to restore to
RETURN VALUES
*/
static void restore_part_field_pointers(Field **ptr, uchar **restore_ptr) {
Field *field;
while ((field = *(ptr++))) {
field->set_field_ptr(*restore_ptr);
restore_ptr++;
}
}
/*
This function is used to calculate the partition id where all partition
fields have been prepared to point to a record where the partition field
values are bound.
SYNOPSIS
get_partition_id()
part_info A reference to the partition_info struct where all the
desired information is given
out:part_id The partition id is returned through this pointer
out:func_value Value of partition function (longlong)
RETURN VALUE
part_id Partition id of partition that would contain
row with given values of PF-fields
HA_ERR_NO_PARTITION_FOUND The fields of the partition function didn't
fit into any partition and thus the values of
the PF-fields are not allowed.
DESCRIPTION
A routine used from write_row, update_row and delete_row from any
handler supporting partitioning. It is also a support routine for
get_partition_set used to find the set of partitions needed to scan
for a certain index scan or full table scan.
It is actually 9 different variants of this function which are called
through a function pointer.
get_partition_id_list
get_partition_id_list_col
get_partition_id_range
get_partition_id_range_col
get_partition_id_hash_nosub
get_partition_id_key_nosub
get_partition_id_linear_hash_nosub
get_partition_id_linear_key_nosub
get_partition_id_with_sub
*/
/*
This function is used to calculate the main partition to use in the case of
subpartitioning and we don't know enough to get the partition identity in
total.
SYNOPSIS
get_part_partition_id()
part_info A reference to the partition_info struct where all the
desired information is given
out:part_id The partition id is returned through this pointer
out:func_value The value calculated by partition function
RETURN VALUE
HA_ERR_NO_PARTITION_FOUND The fields of the partition function didn't
fit into any partition and thus the values of
the PF-fields are not allowed.
0 OK
DESCRIPTION
It is actually 8 different variants of this function which are called
through a function pointer.
get_partition_id_list
get_partition_id_list_col
get_partition_id_range
get_partition_id_range_col
get_partition_id_hash_nosub
get_partition_id_key_nosub
get_partition_id_linear_hash_nosub
get_partition_id_linear_key_nosub
*/
static int get_part_id_charset_func_part(partition_info *part_info,
uint32 *part_id,
longlong *func_value) {
int res;
DBUG_TRACE;
copy_to_part_field_buffers(part_info->part_charset_field_array,
part_info->part_field_buffers,
part_info->restore_part_field_ptrs);
res =
part_info->get_part_partition_id_charset(part_info, part_id, func_value);
restore_part_field_pointers(part_info->part_charset_field_array,
part_info->restore_part_field_ptrs);
return res;
}
static int get_part_id_charset_func_subpart(partition_info *part_info,
uint32 *part_id) {
int res;
DBUG_TRACE;
copy_to_part_field_buffers(part_info->subpart_charset_field_array,
part_info->subpart_field_buffers,
part_info->restore_subpart_field_ptrs);
res = part_info->get_subpartition_id_charset(part_info, part_id);
restore_part_field_pointers(part_info->subpart_charset_field_array,
part_info->restore_subpart_field_ptrs);
return res;
}
static int get_partition_id_list_col(partition_info *part_info, uint32 *part_id,
longlong *) {
part_column_list_val *list_col_array = part_info->list_col_array;
uint num_columns = part_info->part_field_list.elements;
int list_index, cmp;
int min_list_index = 0;
int max_list_index = part_info->num_list_values - 1;
DBUG_TRACE;
while (max_list_index >= min_list_index) {
list_index = (max_list_index + min_list_index) >> 1;
cmp = cmp_rec_and_tuple(list_col_array + list_index * num_columns,
num_columns);
if (cmp > 0)
min_list_index = list_index + 1;
else if (cmp < 0) {
if (!list_index) goto notfound;
max_list_index = list_index - 1;
} else {
*part_id = (uint32)list_col_array[list_index * num_columns].partition_id;
return 0;
}
}
notfound:
*part_id = 0;
return HA_ERR_NO_PARTITION_FOUND;
}
static int get_partition_id_list(partition_info *part_info, uint32 *part_id,
longlong *func_value) {
LIST_PART_ENTRY *list_array = part_info->list_array;
int list_index;
int min_list_index = 0;
int max_list_index = part_info->num_list_values - 1;
longlong part_func_value;
int error = part_val_int(part_info->part_expr, &part_func_value);
longlong list_value;
bool unsigned_flag = part_info->part_expr->unsigned_flag;
DBUG_TRACE;
if (error) goto notfound;
if (part_info->part_expr->null_value) {
if (part_info->has_null_value) {
*part_id = part_info->has_null_part_id;
return 0;
}
goto notfound;
}
*func_value = part_func_value;
if (unsigned_flag) part_func_value -= 0x8000000000000000ULL;
while (max_list_index >= min_list_index) {
list_index = (max_list_index + min_list_index) >> 1;
list_value = list_array[list_index].list_value;
if (list_value < part_func_value)
min_list_index = list_index + 1;
else if (list_value > part_func_value) {
if (!list_index) goto notfound;
max_list_index = list_index - 1;
} else {
*part_id = (uint32)list_array[list_index].partition_id;
return 0;
}
}
notfound:
*part_id = 0;
return HA_ERR_NO_PARTITION_FOUND;
}
static uint32 get_partition_id_cols_list_for_endpoint(partition_info *part_info,
bool left_endpoint,
bool include_endpoint,
uint32 nparts) {
part_column_list_val *list_col_array = part_info->list_col_array;
uint num_columns = part_info->part_field_list.elements;
uint list_index;
uint min_list_index = 0;
int cmp;
/* Notice that max_list_index = last_index + 1 here! */
uint max_list_index = part_info->num_list_values;
DBUG_TRACE;
/* Find the matching partition (including taking endpoint into account). */
do {
/* Midpoint, adjusted down, so it can never be >= max_list_index. */
list_index = (max_list_index + min_list_index) >> 1;
cmp = cmp_rec_and_tuple_prune(list_col_array + list_index * num_columns,
nparts, left_endpoint, include_endpoint);
if (cmp > 0) {
min_list_index = list_index + 1;
} else {
max_list_index = list_index;
if (cmp == 0) break;
}
} while (max_list_index > min_list_index);
list_index = max_list_index;
/* Given value must be LESS THAN or EQUAL to the found partition. */
assert(
list_index == part_info->num_list_values ||
(0 >= cmp_rec_and_tuple_prune(list_col_array + list_index * num_columns,
nparts, left_endpoint, include_endpoint)));
/* Given value must be GREATER THAN the previous partition. */
assert(list_index == 0 ||
(0 < cmp_rec_and_tuple_prune(
list_col_array + (list_index - 1) * num_columns, nparts,
left_endpoint, include_endpoint)));
/* Include the right endpoint if not already passed end of array. */
if (!left_endpoint && include_endpoint && cmp == 0 &&
list_index < part_info->num_list_values)
list_index++;
return list_index;
}
/**
Find the sub-array part_info->list_array that corresponds to given interval.
@param part_info Partitioning info (partitioning type must be LIST)
@param left_endpoint true - the interval is [a; +inf) or (a; +inf)
false - the interval is (-inf; a] or (-inf; a)
@param include_endpoint true iff the interval includes the endpoint
This function finds the sub-array of part_info->list_array where values of
list_array[idx].list_value are contained within the specified interval.
list_array is ordered by list_value, so
1. For [a; +inf) or (a; +inf)-type intervals (left_endpoint==true), the
sought sub-array starts at some index idx and continues till array end.
The function returns first number idx, such that
list_array[idx].list_value is contained within the passed interval.
2. For (-inf; a] or (-inf; a)-type intervals (left_endpoint==false), the
sought sub-array starts at array start and continues till some last
index idx.
The function returns first number idx, such that
list_array[idx].list_value is NOT contained within the passed interval.
If all array elements are contained, part_info->num_list_values is
returned.
@note The caller will call this function and then will run along the
sub-array of list_array to collect partition ids. If the number of list
values is significantly higher then number of partitions, this could be slow
and we could invent some other approach. The "run over list array" part is
already wrapped in a get_next()-like function.
@return The index of corresponding sub-array of part_info->list_array.
*/
static uint32 get_list_array_idx_for_endpoint_charset(partition_info *part_info,
bool left_endpoint,
bool include_endpoint) {
uint32 res;
copy_to_part_field_buffers(part_info->part_field_array,
part_info->part_field_buffers,
part_info->restore_part_field_ptrs);
res = get_list_array_idx_for_endpoint(part_info, left_endpoint,
include_endpoint);
restore_part_field_pointers(part_info->part_field_array,
part_info->restore_part_field_ptrs);
return res;
}
static uint32 get_list_array_idx_for_endpoint(partition_info *part_info,
bool left_endpoint,
bool include_endpoint) {
LIST_PART_ENTRY *list_array = part_info->list_array;
uint list_index;
uint min_list_index = 0, max_list_index = part_info->num_list_values - 1;
longlong list_value;
/* Get the partitioning function value for the endpoint */
longlong part_func_value =
part_info->part_expr->val_int_endpoint(left_endpoint, &include_endpoint);
bool unsigned_flag = part_info->part_expr->unsigned_flag;
DBUG_TRACE;
if (part_info->part_expr->null_value) {
/*
Special handling for MONOTONIC functions that can return NULL for
values that are comparable. I.e.
'2000-00-00' can be compared to '2000-01-01' but TO_DAYS('2000-00-00')
returns NULL which cannot be compared used <, >, <=, >= etc.
Otherwise, just return the the first index (lowest value).
*/
enum_monotonicity_info monotonic;
monotonic = part_info->part_expr->get_monotonicity_info();
if (monotonic != MONOTONIC_INCREASING_NOT_NULL &&
monotonic != MONOTONIC_STRICT_INCREASING_NOT_NULL) {
/* F(col) can not return NULL, return index with lowest value */
return 0;
}
}
if (unsigned_flag) part_func_value -= 0x8000000000000000ULL;
assert(part_info->num_list_values);
do {
list_index = (max_list_index + min_list_index) >> 1;
list_value = list_array[list_index].list_value;
if (list_value < part_func_value)
min_list_index = list_index + 1;
else if (list_value > part_func_value) {
if (!list_index) goto notfound;
max_list_index = list_index - 1;
} else {
return list_index + ((left_endpoint ^ include_endpoint) ? 1 : 0);
}
} while (max_list_index >= min_list_index);
notfound:
if (list_value < part_func_value) list_index++;
return list_index;
}
static int get_partition_id_range_col(partition_info *part_info,
uint32 *part_id, longlong *) {
part_column_list_val *range_col_array = part_info->range_col_array;
uint num_columns = part_info->part_field_list.elements;
uint max_partition = part_info->num_parts - 1;
uint min_part_id = 0;
uint max_part_id = max_partition;
uint loc_part_id;
DBUG_TRACE;
while (max_part_id > min_part_id) {
loc_part_id = (max_part_id + min_part_id + 1) >> 1;
if (cmp_rec_and_tuple(range_col_array + loc_part_id * num_columns,
num_columns) >= 0)
min_part_id = loc_part_id + 1;
else
max_part_id = loc_part_id - 1;
}
loc_part_id = max_part_id;
if (loc_part_id != max_partition)
if (cmp_rec_and_tuple(range_col_array + loc_part_id * num_columns,
num_columns) >= 0)
loc_part_id++;
*part_id = (uint32)loc_part_id;
if (loc_part_id == max_partition &&
(cmp_rec_and_tuple(range_col_array + loc_part_id * num_columns,
num_columns) >= 0))
return HA_ERR_NO_PARTITION_FOUND;
DBUG_PRINT("exit", ("partition: %d", *part_id));
return 0;
}
int get_partition_id_range(partition_info *part_info, uint32 *part_id,
longlong *func_value) {
longlong *range_array = part_info->range_int_array;
uint max_partition = part_info->num_parts - 1;
uint min_part_id = 0;
uint max_part_id = max_partition;
uint loc_part_id;
longlong part_func_value;
int error = part_val_int(part_info->part_expr, &part_func_value);
bool unsigned_flag = part_info->part_expr->unsigned_flag;
DBUG_TRACE;
if (error) return HA_ERR_NO_PARTITION_FOUND;
if (part_info->part_expr->null_value) {
*part_id = 0;
return 0;
}
*func_value = part_func_value;
if (unsigned_flag) part_func_value -= 0x8000000000000000ULL;
/* Search for the partition containing part_func_value */
while (max_part_id > min_part_id) {
loc_part_id = (max_part_id + min_part_id) / 2;
if (range_array[loc_part_id] <= part_func_value)
min_part_id = loc_part_id + 1;
else
max_part_id = loc_part_id;
}
loc_part_id = max_part_id;
*part_id = (uint32)loc_part_id;
if (loc_part_id == max_partition &&
part_func_value >= range_array[loc_part_id] &&
!part_info->defined_max_value)
return HA_ERR_NO_PARTITION_FOUND;
DBUG_PRINT("exit", ("partition: %d", *part_id));
return 0;
}
/*
Find the sub-array of part_info->range_int_array that covers given interval
SYNOPSIS
get_partition_id_range_for_endpoint()
part_info Partitioning info (partitioning type must be RANGE)
left_endpoint true - the interval is [a; +inf) or (a; +inf)
false - the interval is (-inf; a] or (-inf; a).
include_endpoint true <=> the endpoint itself is included in the
interval
DESCRIPTION
This function finds the sub-array of part_info->range_int_array where the
elements have non-empty intersections with the given interval.
A range_int_array element at index idx represents the interval
[range_int_array[idx-1], range_int_array[idx]),
intervals are disjoint and ordered by their right bound, so
1. For [a; +inf) or (a; +inf)-type intervals (left_endpoint==true), the
sought sub-array starts at some index idx and continues till array end.
The function returns first number idx, such that the interval
represented by range_int_array[idx] has non empty intersection with
the passed interval.
2. For (-inf; a] or (-inf; a)-type intervals (left_endpoint==false), the
sought sub-array starts at array start and continues till some last
index idx.
The function returns first number idx, such that the interval
represented by range_int_array[idx] has EMPTY intersection with the
passed interval.
If the interval represented by the last array element has non-empty
intersection with the passed interval, part_info->num_parts is
returned.
RETURN
The edge of corresponding part_info->range_int_array sub-array.
*/
static uint32 get_partition_id_range_for_endpoint_charset(
partition_info *part_info, bool left_endpoint, bool include_endpoint) {
uint32 res;
copy_to_part_field_buffers(part_info->part_field_array,
part_info->part_field_buffers,
part_info->restore_part_field_ptrs);
res = get_partition_id_range_for_endpoint(part_info, left_endpoint,
include_endpoint);
restore_part_field_pointers(part_info->part_field_array,
part_info->restore_part_field_ptrs);
return res;
}
static uint32 get_partition_id_range_for_endpoint(partition_info *part_info,
bool left_endpoint,
bool include_endpoint) {
longlong *range_array = part_info->range_int_array;
longlong part_end_val;
uint max_partition = part_info->num_parts - 1;
uint min_part_id = 0, max_part_id = max_partition, loc_part_id;
/* Get the partitioning function value for the endpoint */
longlong part_func_value =
part_info->part_expr->val_int_endpoint(left_endpoint, &include_endpoint);
bool unsigned_flag = part_info->part_expr->unsigned_flag;
DBUG_TRACE;
if (part_info->part_expr->null_value) {
/*
Special handling for MONOTONIC functions that can return NULL for
values that are comparable. I.e.
'2000-00-00' can be compared to '2000-01-01' but TO_DAYS('2000-00-00')
returns NULL which cannot be compared used <, >, <=, >= etc.
Otherwise, just return the first partition
(may be included if not left endpoint)
*/
enum_monotonicity_info monotonic;
monotonic = part_info->part_expr->get_monotonicity_info();
if (monotonic != MONOTONIC_INCREASING_NOT_NULL &&
monotonic != MONOTONIC_STRICT_INCREASING_NOT_NULL) {
/* F(col) can not return NULL, return partition with lowest value */
if (!left_endpoint && include_endpoint) return 1;
return 0;
}
}
if (unsigned_flag) part_func_value -= 0x8000000000000000ULL;
if (left_endpoint && !include_endpoint) part_func_value++;
/*
Search for the partition containing part_func_value
(including the right endpoint).
*/
while (max_part_id > min_part_id) {
loc_part_id = (max_part_id + min_part_id) / 2;
if (range_array[loc_part_id] < part_func_value)
min_part_id = loc_part_id + 1;
else
max_part_id = loc_part_id;
}
loc_part_id = max_part_id;
/* Adjust for endpoints */
part_end_val = range_array[loc_part_id];
if (left_endpoint) {
assert(part_func_value > part_end_val
? (loc_part_id == max_partition && !part_info->defined_max_value)
: 1);
/*
In case of PARTITION p VALUES LESS THAN MAXVALUE
the maximum value is in the current (last) partition.
If value is equal or greater than the endpoint,
the range starts from the next partition.
*/
if (part_func_value >= part_end_val &&
(loc_part_id < max_partition || !part_info->defined_max_value))
loc_part_id++;
} else {
/* if 'WHERE <= X' and partition is LESS THAN (X) include next partition */
if (include_endpoint && loc_part_id < max_partition &&
part_func_value == part_end_val)
loc_part_id++;
/* Right endpoint, set end after correct partition */
loc_part_id++;
}
return loc_part_id;
}
static int get_partition_id_hash_nosub(partition_info *part_info,
uint32 *part_id, longlong *func_value) {
return get_part_id_hash(part_info->num_parts, part_info->part_expr, part_id,
func_value);
}
static int get_partition_id_linear_hash_nosub(partition_info *part_info,
uint32 *part_id,
longlong *func_value) {
return get_part_id_linear_hash(part_info, part_info->num_parts,
part_info->part_expr, part_id, func_value);
}
static int get_partition_id_key_nosub(partition_info *part_info,
uint32 *part_id, longlong *func_value) {
*part_id =
get_part_id_key(part_info->table->file, part_info->part_field_array,
part_info->num_parts, func_value);
return 0;
}
static int get_partition_id_linear_key_nosub(partition_info *part_info,
uint32 *part_id,
longlong *func_value) {
*part_id = get_part_id_linear_key(part_info, part_info->part_field_array,
part_info->num_parts, func_value);
return 0;
}
static int get_partition_id_with_sub(partition_info *part_info, uint32 *part_id,
longlong *func_value) {
uint32 loc_part_id, sub_part_id;
uint num_subparts;
int error;
DBUG_TRACE;
if (unlikely((error = part_info->get_part_partition_id(
part_info, &loc_part_id, func_value)))) {
return error;
}
num_subparts = part_info->num_subparts;
if (unlikely(
(error = part_info->get_subpartition_id(part_info, &sub_part_id)))) {
return error;
}
*part_id = get_part_id_for_sub(loc_part_id, sub_part_id, num_subparts);
return 0;
}
/*
This function is used to calculate the subpartition id
SYNOPSIS
get_subpartition_id()
part_info A reference to the partition_info struct where all the
desired information is given
RETURN VALUE
part_id The subpartition identity
DESCRIPTION
A routine used in some SELECT's when only partial knowledge of the
partitions is known.
It is actually 4 different variants of this function which are called
through a function pointer.
get_partition_id_hash_sub
get_partition_id_key_sub
get_partition_id_linear_hash_sub
get_partition_id_linear_key_sub
*/
static int get_partition_id_hash_sub(partition_info *part_info,
uint32 *part_id) {
longlong func_value;
return get_part_id_hash(part_info->num_subparts, part_info->subpart_expr,
part_id, &func_value);
}
static int get_partition_id_linear_hash_sub(partition_info *part_info,
uint32 *part_id) {
longlong func_value;
return get_part_id_linear_hash(part_info, part_info->num_subparts,
part_info->subpart_expr, part_id, &func_value);
}
static int get_partition_id_key_sub(partition_info *part_info,
uint32 *part_id) {
longlong func_value;
*part_id =
get_part_id_key(part_info->table->file, part_info->subpart_field_array,
part_info->num_subparts, &func_value);
return false;
}
static int get_partition_id_linear_key_sub(partition_info *part_info,
uint32 *part_id) {
longlong func_value;
*part_id = get_part_id_linear_key(part_info, part_info->subpart_field_array,
part_info->num_subparts, &func_value);
return false;
}
/*
Set an indicator on all partition fields that are set by the key
SYNOPSIS
set_PF_fields_in_key()
key_info Information about the index
key_length Length of key
RETURN VALUE
true Found partition field set by key
false No partition field set by key
*/
static bool set_PF_fields_in_key(KEY *key_info, uint key_length) {
KEY_PART_INFO *key_part;
bool found_part_field = false;
DBUG_TRACE;
for (key_part = key_info->key_part; (int)key_length > 0; key_part++) {
if (key_part->null_bit) key_length--;
if (key_part->type == HA_KEYTYPE_BIT) {
if (((Field_bit *)key_part->field)->bit_len) key_length--;
}
if (key_part->key_part_flag & (HA_BLOB_PART + HA_VAR_LENGTH_PART)) {
key_length -= HA_KEY_BLOB_LENGTH;
}
if (key_length < key_part->length) break;
key_length -= key_part->length;
if (key_part->field->is_flag_set(FIELD_IN_PART_FUNC_FLAG)) {
found_part_field = true;
key_part->field->set_flag(GET_FIXED_FIELDS_FLAG);
}
}
return found_part_field;
}
/*
We have found that at least one partition field was set by a key, now
check if a partition function has all its fields bound or not.
SYNOPSIS
check_part_func_bound()
ptr Array of fields NULL terminated (partition fields)
RETURN VALUE
true All fields in partition function are set
false Not all fields in partition function are set
*/
static bool check_part_func_bound(Field **ptr) {
bool result = true;
DBUG_TRACE;
for (; *ptr; ptr++) {
if (!(*ptr)->is_flag_set(GET_FIXED_FIELDS_FLAG)) {
result = false;
break;
}
}
return result;
}
/*
Get the id of the subpartitioning part by using the key buffer of the
index scan.
SYNOPSIS
get_sub_part_id_from_key()
table The table object
buf A buffer that can be used to evaluate the partition function
key_info The index object
key_spec A key_range containing key and key length
out:part_id The returned partition id
RETURN VALUES
true All fields in partition function are set
false Not all fields in partition function are set
DESCRIPTION
Use key buffer to set-up record in buf, move field pointers and
get the partition identity and restore field pointers afterwards.
*/
static int get_sub_part_id_from_key(const TABLE *table, uchar *buf,
KEY *key_info, const key_range *key_spec,
uint32 *part_id) {
uchar *rec0 = table->record[0];
partition_info *part_info = table->part_info;
int res;
DBUG_TRACE;
key_restore(buf, key_spec->key, key_info, key_spec->length);
if (likely(rec0 == buf)) {
res = part_info->get_subpartition_id(part_info, part_id);
} else {
Field **part_field_array = part_info->subpart_field_array;
set_field_ptr(part_field_array, buf, rec0);
res = part_info->get_subpartition_id(part_info, part_id);
set_field_ptr(part_field_array, rec0, buf);
}
return res;
}
/*
Get the id of the partitioning part by using the key buffer of the
index scan.
SYNOPSIS
get_part_id_from_key()
table The table object
buf A buffer that can be used to evaluate the partition function
key_info The index object
key_spec A key_range containing key and key length
out:part_id Partition to use
RETURN VALUES
true Partition to use not found
false Ok, part_id indicates partition to use
DESCRIPTION
Use key buffer to set-up record in buf, move field pointers and
get the partition identity and restore field pointers afterwards.
*/
static bool get_part_id_from_key(const TABLE *table, uchar *buf, KEY *key_info,
const key_range *key_spec, uint32 *part_id) {
bool result;
uchar *rec0 = table->record[0];
partition_info *part_info = table->part_info;
longlong func_value;
DBUG_TRACE;
key_restore(buf, key_spec->key, key_info, key_spec->length);
if (likely(rec0 == buf)) {
result = part_info->get_part_partition_id(part_info, part_id, &func_value);
} else {
Field **part_field_array = part_info->part_field_array;
set_field_ptr(part_field_array, buf, rec0);
result = part_info->get_part_partition_id(part_info, part_id, &func_value);
set_field_ptr(part_field_array, rec0, buf);
}
return result;
}
/*
Get the partitioning id of the full PF by using the key buffer of the
index scan.
SYNOPSIS
get_full_part_id_from_key()
table The table object
buf A buffer that is used to evaluate the partition function
key_info The index object
key_spec A key_range containing key and key length
out:part_spec A partition id containing start part and end part
RETURN VALUES
part_spec
No partitions to scan is indicated by end_part > start_part when returning
DESCRIPTION
Use key buffer to set-up record in buf, move field pointers if needed and
get the partition identity and restore field pointers afterwards.
*/
void get_full_part_id_from_key(const TABLE *table, uchar *buf, KEY *key_info,
const key_range *key_spec,
part_id_range *part_spec) {
bool result;
partition_info *part_info = table->part_info;
uchar *rec0 = table->record[0];
longlong func_value;
DBUG_TRACE;
key_restore(buf, key_spec->key, key_info, key_spec->length);
if (likely(rec0 == buf)) {
result = part_info->get_partition_id(part_info, &part_spec->start_part,
&func_value);
} else {
Field **part_field_array = part_info->full_part_field_array;
set_field_ptr(part_field_array, buf, rec0);
result = part_info->get_partition_id(part_info, &part_spec->start_part,
&func_value);
set_field_ptr(part_field_array, rec0, buf);
}
part_spec->end_part = part_spec->start_part;
if (unlikely(result)) part_spec->start_part++;
}
/**
@brief Verify that all rows in a table is in the given partition
@param table Table which contains the data that will be checked if
it is matching the partition definition.
@param part_table Partitioned table containing the partition to check.
@param part_id Which partition to match with.
@return Operation status
@retval true Not all rows match the given partition
@retval false OK
*/
bool verify_data_with_partition(TABLE *table, TABLE *part_table,
uint32 part_id) {
uint32 found_part_id;
longlong func_value; /* Unused */
handler *file;
int error;
uchar *old_rec;
partition_info *part_info;
DBUG_TRACE;
assert(table && table->file && part_table && part_table->part_info &&
part_table->file);
/*
Verify all table rows.
First implementation uses full scan + evaluates partition functions for
every row. TODO: add optimization to use index if possible, see WL#5397.
1) Open both tables (already done) and set the row buffers to use
the same buffer (to avoid copy).
2) Init rnd on table.
3) loop over all rows.
3.1) verify that partition_id on the row is correct. Break if error.
*/
file = table->file;
part_info = part_table->part_info;
bitmap_union(table->read_set, &part_info->full_part_field_set);
old_rec = part_table->record[0];
part_table->record[0] = table->record[0];
set_field_ptr(part_info->full_part_field_array, table->record[0], old_rec);
if ((error = file->ha_rnd_init(true))) {
file->print_error(error, MYF(0));
goto err;
}
do {
if ((error = file->ha_rnd_next(table->record[0]))) {
if (error == HA_ERR_RECORD_DELETED) continue;
if (error == HA_ERR_END_OF_FILE)
error = 0;
else
file->print_error(error, MYF(0));
break;
}
if ((error = part_info->get_partition_id(part_info, &found_part_id,
&func_value))) {
part_info->err_value = func_value;
part_table->file->print_error(error, MYF(0));
break;
}
DEBUG_SYNC(current_thd, "swap_partition_first_row_read");
if (found_part_id != part_id) {
my_error(ER_ROW_DOES_NOT_MATCH_PARTITION, MYF(0));
error = 1;
break;
}
} while (true);
(void)file->ha_rnd_end();
err:
set_field_ptr(part_info->full_part_field_array, old_rec, table->record[0]);
part_table->record[0] = old_rec;
return error != 0;
}
/*
Prune the set of partitions to use in query
SYNOPSIS
prune_partition_set()
table The table object
out:part_spec Contains start part, end part
DESCRIPTION
This function is called to prune the range of partitions to scan by
checking the read_partitions bitmap.
If start_part > end_part at return it means no partition needs to be
scanned. If start_part == end_part it always means a single partition
needs to be scanned.
RETURN VALUE
part_spec
*/
void prune_partition_set(const TABLE *table, part_id_range *part_spec) {
int last_partition = -1;
uint i = part_spec->start_part;
partition_info *part_info = table->part_info;
DBUG_TRACE;
if (i)
i = bitmap_get_next_set(&part_info->read_partitions, i - 1);
else
i = bitmap_get_first_set(&part_info->read_partitions);
part_spec->start_part = i;
/* TODO: Only check next bit, no need to prune end if >= 2 partitions. */
for (; i <= part_spec->end_part;
i = bitmap_get_next_set(&part_info->read_partitions, i)) {
DBUG_PRINT("info", ("Partition %d is set", i));
if (last_partition == -1)
/* First partition found in set and pruned bitmap */
part_spec->start_part = i;
last_partition = i;
}
if (last_partition == -1) /* No partition found in pruned bitmap */
part_spec->start_part = part_spec->end_part + 1;
else // if (last_partition != -1)
part_spec->end_part = last_partition;
}
/*
Get the set of partitions to use in query.
SYNOPSIS
get_partition_set()
table The table object
buf A buffer that can be used to evaluate the partition function
index The index of the key used, if MAX_KEY no index used
key_spec A key_range containing key and key length
out:part_spec Contains start part, end part and indicator if bitmap is
used for which partitions to scan
DESCRIPTION
This function is called to discover which partitions to use in an index
scan or a full table scan.
It returns a range of partitions to scan. If there are holes in this
range with partitions that are not needed to scan a bit array is used
to signal which partitions to use and which not to use.
If start_part > end_part at return it means no partition needs to be
scanned. If start_part == end_part it always means a single partition
needs to be scanned.
RETURN VALUE
part_spec
*/
void get_partition_set(const TABLE *table, uchar *buf, const uint index,
const key_range *key_spec, part_id_range *part_spec) {
partition_info *part_info = table->part_info;
uint num_parts = part_info->get_tot_partitions();
uint i, part_id;
uint sub_part = num_parts;
uint32 part_part = num_parts;
KEY *key_info = nullptr;
bool found_part_field = false;
DBUG_TRACE;
part_spec->start_part = 0;
part_spec->end_part = num_parts - 1;
if ((index < MAX_KEY) && key_spec &&
key_spec->flag == (uint)HA_READ_KEY_EXACT &&
part_info->some_fields_in_PF.is_set(index)) {
key_info = table->key_info + index;
/*
The index can potentially provide at least one PF-field (field in the
partition function). Thus it is interesting to continue our probe.
*/
if (key_spec->length == key_info->key_length) {
/*
The entire key is set so we can check whether we can immediately
derive either the complete PF or if we can derive either
the top PF or the subpartitioning PF. This can be established by
checking precalculated bits on each index.
*/
if (part_info->all_fields_in_PF.is_set(index)) {
/*
We can derive the exact partition to use, no more than this one
is needed.
*/
get_full_part_id_from_key(table, buf, key_info, key_spec, part_spec);
/*
Check if range can be adjusted by looking in read_partitions
*/
prune_partition_set(table, part_spec);
return;
}
if (part_info->is_sub_partitioned()) {
if (part_info->all_fields_in_SPF.is_set(index)) {
if (get_sub_part_id_from_key(table, buf, key_info, key_spec,
&sub_part)) {
part_spec->start_part = num_parts;
return;
}
} else if (part_info->all_fields_in_PPF.is_set(index)) {
if (get_part_id_from_key(table, buf, key_info, key_spec,
&part_part)) {
/*
The value of the RANGE or LIST partitioning was outside of
allowed values. Thus it is certain that the result of this
scan will be empty.
*/
part_spec->start_part = num_parts;
return;
}
}
}
} else {
/*
Set an indicator on all partition fields that are bound.
If at least one PF-field was bound it pays off to check whether
the PF or PPF or SPF has been bound.
(PF = Partition Function, SPF = Subpartition Function and
PPF = Partition Function part of subpartitioning)
*/
if ((found_part_field =
set_PF_fields_in_key(key_info, key_spec->length))) {
if (check_part_func_bound(part_info->full_part_field_array)) {
/*
We were able to bind all fields in the partition function even
by using only a part of the key. Calculate the partition to use.
*/
get_full_part_id_from_key(table, buf, key_info, key_spec, part_spec);
clear_indicator_in_key_fields(key_info);
/*
Check if range can be adjusted by looking in read_partitions
*/
prune_partition_set(table, part_spec);
return;
}
if (part_info->is_sub_partitioned()) {
if (check_part_func_bound(part_info->subpart_field_array)) {
if (get_sub_part_id_from_key(table, buf, key_info, key_spec,
&sub_part)) {
part_spec->start_part = num_parts;
clear_indicator_in_key_fields(key_info);
return;
}
} else if (check_part_func_bound(part_info->part_field_array)) {
if (get_part_id_from_key(table, buf, key_info, key_spec,
&part_part)) {
part_spec->start_part = num_parts;
clear_indicator_in_key_fields(key_info);
return;
}
}
}
}
}
}
{
/*
The next step is to analyse the table condition to see whether any
information about which partitions to scan can be derived from there.
Currently not implemented.
*/
}
/*
If we come here we have found a range of sorts we have either discovered
nothing or we have discovered a range of partitions with possible holes
in it. We need a bitvector to further the work here.
*/
if (!(part_part == num_parts && sub_part == num_parts)) {
/*
We can only arrive here if we are using subpartitioning.
*/
if (part_part != num_parts) {
/*
We know the top partition and need to scan all underlying
subpartitions. This is a range without holes.
*/
assert(sub_part == num_parts);
part_spec->start_part = part_part * part_info->num_subparts;
part_spec->end_part = part_spec->start_part + part_info->num_subparts - 1;
} else {
assert(sub_part != num_parts);
part_spec->start_part = sub_part;
part_spec->end_part =
sub_part + (part_info->num_subparts * (part_info->num_parts - 1));
for (i = 0, part_id = sub_part; i < part_info->num_parts;
i++, part_id += part_info->num_subparts)
; // Set bit part_id in bit array
}
}
if (found_part_field) clear_indicator_in_key_fields(key_info);
/*
Check if range can be adjusted by looking in read_partitions
*/
prune_partition_set(table, part_spec);
}
/*
If the table is partitioned we will read the partition info into the
.frm file here.
-------------------------------
| Fileinfo 64 bytes |
-------------------------------
| Formnames 7 bytes |
-------------------------------
| Not used 4021 bytes |
-------------------------------
| Keyinfo + record |
-------------------------------
| Padded to next multiple |
| of IO_SIZE |
-------------------------------
| Forminfo 288 bytes |
-------------------------------
| Screen buffer, to make |
|field names readable |
-------------------------------
| Packed field info |
|17 + 1 + strlen(field_name) |
| + 1 end of file character |
-------------------------------
| Partition info |
-------------------------------
We provide the length of partition length in Fileinfo[55-58].
Read the partition syntax from the frm file and parse it to get the
data structures of the partitioning.
SYNOPSIS
mysql_unpack_partition()
thd Thread object
part_buf Partition info from frm file
part_info_len Length of partition syntax
table Table object of partitioned table
create_table_ind Is it called from CREATE TABLE
default_db_type What is the default engine of the table
work_part_info_used Flag is raised if we don't create new
part_info, but used thd->work_part_info
RETURN VALUE
true Error
false Success
DESCRIPTION
Read the partition syntax from the current position in the frm file.
Initiate a LEX object, save the list of item tree objects to free after
the query is done. Set-up partition info object such that parser knows
it is called from internally. Call parser to create data structures
(best possible recreation of item trees and so forth since there is no
serialisation of these objects other than in parseable text format).
We need to save the text of the partition functions since it is not
possible to retrace this given an item tree.
*/
bool mysql_unpack_partition(THD *thd, char *part_buf, uint part_info_len,
TABLE *table, bool is_create_table_ind,
handlerton *default_db_type,
bool *work_part_info_used) {
bool result = true;
partition_info *part_info;
const CHARSET_INFO *old_character_set_client =
thd->variables.character_set_client;
LEX *old_lex = thd->lex;
LEX lex;
Query_expression unit(CTX_NONE);
Query_block select(thd->mem_root, nullptr, nullptr);
lex.new_static_query(&unit, &select);
sql_digest_state *parent_digest = thd->m_digest;
PSI_statement_locker *parent_locker = thd->m_statement_psi;
Partition_handler *part_handler;
DBUG_TRACE;
thd->variables.character_set_client = system_charset_info;
// This isn't strictly needed, but here for consistency.
Sql_mode_parse_guard parse_guard(thd);
Partition_expr_parser_state parser_state;
if (parser_state.init(thd, part_buf, part_info_len)) goto end;
if (init_lex_with_single_table(thd, table, &lex)) goto end;
/*
All Items created is put into a free list on the THD object. This list
is used to free all Item objects after completing a query. We don't
want that to happen with the Item tree created as part of the partition
info. This should be attached to the table object and remain so until
the table object is released.
Thus we move away the current list temporarily and start a new list that
we then save in the partition info structure.
*/
*work_part_info_used = false;
DBUG_PRINT("info", ("Parse: %s", part_buf));
thd->m_digest = nullptr;
thd->m_statement_psi = nullptr;
if (parse_sql(thd, &parser_state, nullptr) ||
parser_state.result->fix_parser_data(thd)) {
thd->free_items();
thd->m_digest = parent_digest;
thd->m_statement_psi = parent_locker;
goto end;
}
part_info = parser_state.result;
thd->m_digest = parent_digest;
thd->m_statement_psi = parent_locker;
/*
The parsed syntax residing in the frm file can still contain defaults.
The reason is that the frm file is sometimes saved outside of this
MySQL Server and used in backup and restore of clusters or partitioned
tables. It is not certain that the restore will restore exactly the
same default partitioning.
The easiest manner of handling this is to simply continue using the
part_info we already built up during mysql_create_table if we are
in the process of creating a table. If the table already exists we
need to discover the number of partitions for the default parts. Since
the handler object hasn't been created here yet we need to postpone this
to the fix_partition_func method.
*/
DBUG_PRINT("info", ("Successful parse"));
DBUG_PRINT("info",
("default engine = %s, default_db_type = %s",
ha_resolve_storage_engine_name(part_info->default_engine_type),
ha_resolve_storage_engine_name(default_db_type)));
if (is_create_table_ind && old_lex->sql_command == SQLCOM_CREATE_TABLE) {
/*
When we come here we are doing a create table. In this case we
have already done some preparatory work on the old part_info
object. We don't really need this new partition_info object.
Thus we go back to the old partition info object.
We need to free any memory objects allocated on item_free_list
by the parser since we are keeping the old info from the first
parser call in CREATE TABLE.
This table object can not be used any more. However, since
this is CREATE TABLE, we know that it will be destroyed by the
caller, and rely on that.
*/
thd->free_items();
part_info = thd->work_part_info;
*work_part_info_used = true;
}
table->part_info = part_info;
part_info->table = table;
part_handler = table->file->get_partition_handler();
assert(part_handler != nullptr);
part_handler->set_part_info(part_info, true);
if (!part_info->default_engine_type)
part_info->default_engine_type = default_db_type;
assert(part_info->default_engine_type == default_db_type);
assert(part_info->default_engine_type->db_type != DB_TYPE_UNKNOWN);
{
/*
This code part allocates memory for the serialised item information for
the partition functions. In most cases this is not needed but if the
table is used for SHOW CREATE TABLES or ALTER TABLE that modifies
partition information it is needed and the info is lost if we don't
save it here so unfortunately we have to do it here even if in most
cases it is not needed. This is a consequence of that item trees are
not serialisable.
*/
size_t part_func_len = part_info->part_func_len;
size_t subpart_func_len = part_info->subpart_func_len;
char *part_func_string = nullptr;
char *subpart_func_string = nullptr;
/*
TODO: Verify that it really should be allocated on the thd?
Or simply remove it and use part_expr->print() instead?
*/
if ((part_func_len &&
!((part_func_string = (char *)thd->alloc(part_func_len)))) ||
(subpart_func_len &&
!((subpart_func_string = (char *)thd->alloc(subpart_func_len))))) {
mem_alloc_error(part_func_len);
thd->free_items();
goto end;
}
if (part_func_len)
memcpy(part_func_string, part_info->part_func_string, part_func_len);
if (subpart_func_len)
memcpy(subpart_func_string, part_info->subpart_func_string,
subpart_func_len);
part_info->part_func_string = part_func_string;
part_info->subpart_func_string = subpart_func_string;
}
result = false;
end:
end_lex_with_single_table(thd, table, old_lex);
thd->variables.character_set_client = old_character_set_client;
return result;
}
/*
Set engine type on all partition element objects
SYNOPSIS
set_engine_all_partitions()
part_info Partition info
engine_type Handlerton reference of engine
RETURN VALUES
NONE
*/
static void set_engine_all_partitions(partition_info *part_info,
handlerton *engine_type) {
uint i = 0;
List_iterator<partition_element> part_it(part_info->partitions);
do {
partition_element *part_elem = part_it++;
part_elem->engine_type = engine_type;
if (part_info->is_sub_partitioned()) {
List_iterator<partition_element> sub_it(part_elem->subpartitions);
uint j = 0;
do {
partition_element *sub_elem = sub_it++;
sub_elem->engine_type = engine_type;
} while (++j < part_info->num_subparts);
}
} while (++i < part_info->num_parts);
}
/*
We need to check if engine used by all partitions can handle
partitioning natively.
SYNOPSIS
check_native_partitioned()
create_info Create info in CREATE TABLE
out:ret_val Return value
part_info Partition info
thd Thread object
RETURN VALUES
Value returned in bool ret_value
true Native partitioning supported by engine
false Need to use partition handler
Return value from function
true Error
false Success
*/
static bool check_native_partitioned(HA_CREATE_INFO *create_info, bool *ret_val,
partition_info *part_info, THD *thd) {
bool table_engine_set;
handlerton *engine_type = part_info->default_engine_type;
handlerton *old_engine_type = engine_type;
DBUG_TRACE;
if (create_info->used_fields & HA_CREATE_USED_ENGINE) {
table_engine_set = true;
engine_type = create_info->db_type;
} else {
table_engine_set = false;
if (thd->lex->sql_command != SQLCOM_CREATE_TABLE) {
table_engine_set = true;
}
}
DBUG_PRINT("info",
("engine_type = %s, table_engine_set = %u",
ha_resolve_storage_engine_name(engine_type), table_engine_set));
if (part_info->check_engine_mix(engine_type, table_engine_set)) goto error;
/*
All engines are of the same type. Check if this engine supports
native partitioning.
*/
if (!engine_type) engine_type = old_engine_type;
DBUG_PRINT("info",
("engine_type = %s", ha_resolve_storage_engine_name(engine_type)));
if (engine_type->partition_flags) {
create_info->db_type = engine_type;
DBUG_PRINT("info", ("Changed to native partitioning"));
*ret_val = true;
}
return false;
error:
/*
Mixed engines not yet supported but when supported it will need
the partition handler
*/
my_error(ER_MIX_HANDLER_ERROR, MYF(0));
*ret_val = false;
return true;
}
/**
Set part_state for all partitions to given state.
@param tab_part_info partition_info holding all partitions.
@param part_state Which state to set for the named partitions.
*/
void set_all_part_state(partition_info *tab_part_info,
enum partition_state part_state) {
uint part_count = 0;
List_iterator<partition_element> part_it(tab_part_info->partitions);
do {
partition_element *part_elem = part_it++;
part_elem->part_state = part_state;
if (tab_part_info->is_sub_partitioned()) {
List_iterator<partition_element> sub_it(part_elem->subpartitions);
partition_element *sub_elem;
while ((sub_elem = sub_it++)) {
sub_elem->part_state = part_state;
}
}
} while (++part_count < tab_part_info->num_parts);
}
/**
Sets which partitions to be used in the command.
@param alter_info Alter_info pointer holding partition names and flags.
@param tab_part_info partition_info holding all partitions.
@param part_state Which state to set for the named partitions.
@param include_subpartitions Also include subpartitions in the search.
@return Operation status
@retval false Success
@retval true Failure
*/
bool set_part_state(Alter_info *alter_info, partition_info *tab_part_info,
enum partition_state part_state,
bool include_subpartitions) {
uint part_count = 0;
uint num_parts_found = 0;
List_iterator<partition_element> part_it(tab_part_info->partitions);
do {
partition_element *part_elem = part_it++;
if ((alter_info->flags & Alter_info::ALTER_ALL_PARTITION) ||
(is_name_in_list(part_elem->partition_name,
alter_info->partition_names))) {
/*
Mark the partition.
I.e mark the partition as a partition to be "changed" by
analyzing/optimizing/rebuilding/checking/repairing/...
*/
num_parts_found++;
part_elem->part_state = part_state;
DBUG_PRINT("info", ("Setting part_state to %u for partition %s",
part_state, part_elem->partition_name));
} else if (include_subpartitions && tab_part_info->is_sub_partitioned()) {
List_iterator<partition_element> sub_it(part_elem->subpartitions);
partition_element *sub_elem;
while ((sub_elem = sub_it++)) {
if (is_name_in_list(sub_elem->partition_name,
alter_info->partition_names)) {
num_parts_found++;
sub_elem->part_state = part_state;
DBUG_PRINT("info", ("Setting part_state to %u for subpartition %s",
part_state, sub_elem->partition_name));
} else
sub_elem->part_state = PART_NORMAL;
}
part_elem->part_state = PART_NORMAL;
} else
part_elem->part_state = PART_NORMAL;
} while (++part_count < tab_part_info->num_parts);
if (num_parts_found != alter_info->partition_names.elements &&
!(alter_info->flags & Alter_info::ALTER_ALL_PARTITION)) {
/* Not all given partitions found, revert and return failure */
set_all_part_state(tab_part_info, PART_NORMAL);
return true;
}
return false;
}
/**
@brief Check if partition is exchangeable with table by checking table options
@param table_create_info Table options from table.
@param part_elem All the info of the partition.
@retval false if they are equal, otherwise true.
@note Any difference that would cause a change in the frm file is prohibited.
Such options as data_file_name, index_file_name, min_rows, max_rows etc. are
not allowed to differ. But comment is allowed to differ.
*/
bool compare_partition_options(HA_CREATE_INFO *table_create_info,
partition_element *part_elem) {
#define MAX_COMPARE_PARTITION_OPTION_ERRORS 5
const char *option_diffs[MAX_COMPARE_PARTITION_OPTION_ERRORS + 1];
int i, errors = 0;
DBUG_TRACE;
// TODO: Add test for EXCHANGE PARTITION with TABLESPACES!
// Then if all works, simply remove the check for TABLESPACE (and eventually
// DATA/INDEX DIRECTORY too).
/*
Note that there are not yet any engine supporting tablespace together
with partitioning. TODO: when there are, add compare.
*/
if (part_elem->tablespace_name || table_create_info->tablespace)
option_diffs[errors++] = "TABLESPACE";
if (part_elem->part_max_rows != table_create_info->max_rows)
option_diffs[errors++] = "MAX_ROWS";
if (part_elem->part_min_rows != table_create_info->min_rows)
option_diffs[errors++] = "MIN_ROWS";
if (part_elem->index_file_name || table_create_info->index_file_name)
option_diffs[errors++] = "INDEX DIRECTORY";
for (i = 0; i < errors; i++)
my_error(ER_PARTITION_EXCHANGE_DIFFERENT_OPTION, MYF(0), option_diffs[i]);
return errors != 0;
}
/*
Prepare for ALTER TABLE of partition structure
@param[in] thd Thread object
@param[in] table Table object
@param[in,out] alter_info Alter information
@param[in,out] create_info Create info for CREATE TABLE
@param[in] alter_ctx ALTER TABLE runtime context
@param[out] partition_changed Boolean indicating whether partition changed
@param[out] new_part_info New partition_info object if in-place alter
which requires mark-up in partition_info is
possible.
@return Operation status
@retval true Error
@retval false Success
@note
This method handles all preparations for ALTER TABLE for partitioned
tables.
We need to handle both partition management command such as Add Partition
and others here as well as an ALTER TABLE that completely changes the
partitioning and yet others that don't change anything at all. We start
by checking the partition management variants and then check the general
change patterns.
*/
uint prep_alter_part_table(THD *thd, TABLE *table, Alter_info *alter_info,
HA_CREATE_INFO *create_info,
Alter_table_ctx *alter_ctx [[maybe_unused]],
bool *partition_changed,
partition_info **new_part_info) {
DBUG_TRACE;
assert(new_part_info);
/* Remove partitioning on a not partitioned table is not possible */
if (!table->part_info &&
(alter_info->flags & Alter_info::ALTER_REMOVE_PARTITIONING)) {
my_error(ER_PARTITION_MGMT_ON_NONPARTITIONED, MYF(0));
return true;
}
if (thd->work_part_info &&
!(thd->work_part_info = thd->lex->part_info->get_clone(thd, true)))
return true;
/* ALTER_ADMIN_PARTITION is handled in mysql_admin_table */
assert(!(alter_info->flags & Alter_info::ALTER_ADMIN_PARTITION));
if (alter_info->flags &
(Alter_info::ALTER_ADD_PARTITION | Alter_info::ALTER_DROP_PARTITION |
Alter_info::ALTER_COALESCE_PARTITION |
Alter_info::ALTER_REORGANIZE_PARTITION | Alter_info::ALTER_TABLE_REORG |
Alter_info::ALTER_REBUILD_PARTITION)) {
partition_info *tab_part_info;
partition_info *alt_part_info = thd->work_part_info;
uint flags = 0;
bool is_last_partition_reorged = false;
part_elem_value *tab_max_elem_val = nullptr;
part_elem_value *alt_max_elem_val = nullptr;
longlong tab_max_range = 0, alt_max_range = 0;
Partition_handler *part_handler = table->file->get_partition_handler();
if (!table->part_info) {
my_error(ER_PARTITION_MGMT_ON_NONPARTITIONED, MYF(0));
return true;
}
if (!part_handler) {
assert(0);
my_error(ER_PARTITION_MGMT_ON_NONPARTITIONED, MYF(0));
return true;
}
/*
Open our intermediate table, we will operate on a temporary instance
of the original table, to be able to skip copying all partitions.
Open it as a copy of the original table, and modify its partition_info
object to allow in-place ALTER implementation to perform the changes.
*/
assert(thd->mdl_context.owns_equal_or_stronger_lock(
MDL_key::TABLE, alter_ctx->db, alter_ctx->table_name,
MDL_INTENTION_EXCLUSIVE));
/*
We will operate on a cached instance of the original table,
to be able to skip copying all non-changed partitions
while allowing concurrent access.
We create a new partition_info object which will carry
the new state of the partitions. It will only be temporary
attached to the handler when needed and then detached afterwards
(through handler::set_part_info()). That way it will not get reused
by next statement, even if the table object is reused due to LOCK TABLE.
*/
tab_part_info = table->part_info->get_full_clone(thd);
if (!tab_part_info) {
mem_alloc_error(sizeof(partition_info));
return true;
}
if (alter_info->flags & Alter_info::ALTER_TABLE_REORG) {
uint new_part_no, curr_part_no;
/*
'ALTER TABLE t REORG PARTITION' only allowed with auto partition
if default partitioning is used.
*/
if (tab_part_info->part_type != partition_type::HASH ||
((table->s->db_type()->partition_flags() & HA_USE_AUTO_PARTITION) &&
!tab_part_info->use_default_num_partitions) ||
((!(table->s->db_type()->partition_flags() &
HA_USE_AUTO_PARTITION)) &&
tab_part_info->use_default_num_partitions)) {
my_error(ER_REORG_NO_PARAM_ERROR, MYF(0));
goto err;
}
new_part_no = part_handler->get_default_num_partitions(create_info);
curr_part_no = tab_part_info->num_parts;
if (new_part_no == curr_part_no) {
/*
No change is needed, we will have the same number of partitions
after the change as before. Thus we can reply ok immediately
without any changes at all.
*/
flags = part_handler->alter_flags(alter_info->flags);
if (flags & HA_INPLACE_CHANGE_PARTITION) {
*new_part_info = tab_part_info;
/* Force table re-open for consistency with the main case. */
table->invalidate_dict();
}
thd->work_part_info = tab_part_info;
return false;
}
if (new_part_no > curr_part_no) {
/*
We will add more partitions, we use the ADD PARTITION without
setting the flag for no default number of partitions
*/
alter_info->flags |= Alter_info::ALTER_ADD_PARTITION;
thd->work_part_info->num_parts = new_part_no - curr_part_no;
} else {
/*
We will remove hash partitions, we use the COALESCE PARTITION
without setting the flag for no default number of partitions
*/
alter_info->flags |= Alter_info::ALTER_COALESCE_PARTITION;
alter_info->num_parts = curr_part_no - new_part_no;
}
}
if (!(flags = part_handler->alter_flags(alter_info->flags))) {
my_error(ER_PARTITION_FUNCTION_FAILURE, MYF(0));
goto err;
}
if (flags & HA_INPLACE_CHANGE_PARTITION) {
/*
"Inplace" change of partitioning is supported in this
case. We will change TABLE::part_info (as this is how we pass
information to storage engine in this case), so the table
must be reopened.
*/
*new_part_info = tab_part_info;
table->invalidate_dict();
}
DBUG_PRINT("info", ("*fast_alter_table flags: 0x%x", flags));
if ((alter_info->flags & Alter_info::ALTER_ADD_PARTITION) ||
(alter_info->flags & Alter_info::ALTER_REORGANIZE_PARTITION)) {
if (thd->work_part_info->part_type != tab_part_info->part_type) {
if (thd->work_part_info->part_type == partition_type::NONE) {
if (tab_part_info->part_type == partition_type::RANGE) {
my_error(ER_PARTITIONS_MUST_BE_DEFINED_ERROR, MYF(0), "RANGE");
goto err;
} else if (tab_part_info->part_type == partition_type::LIST) {
my_error(ER_PARTITIONS_MUST_BE_DEFINED_ERROR, MYF(0), "LIST");
goto err;
}
/*
Hash partitions can be altered without parser finds out about
that it is HASH partitioned. So no error here.
*/
} else {
if (thd->work_part_info->part_type == partition_type::RANGE) {
my_error(ER_PARTITION_WRONG_VALUES_ERROR, MYF(0), "RANGE",
"LESS THAN");
} else if (thd->work_part_info->part_type == partition_type::LIST) {
assert(thd->work_part_info->part_type == partition_type::LIST);
my_error(ER_PARTITION_WRONG_VALUES_ERROR, MYF(0), "LIST", "IN");
} else if (tab_part_info->part_type == partition_type::RANGE) {
my_error(ER_PARTITION_REQUIRES_VALUES_ERROR, MYF(0), "RANGE",
"LESS THAN");
} else {
assert(tab_part_info->part_type == partition_type::LIST);
my_error(ER_PARTITION_REQUIRES_VALUES_ERROR, MYF(0), "LIST", "IN");
}
goto err;
}
}
if ((tab_part_info->column_list &&
alt_part_info->num_columns != tab_part_info->num_columns) ||
(!tab_part_info->column_list &&
(tab_part_info->part_type == partition_type::RANGE ||
tab_part_info->part_type == partition_type::LIST) &&
alt_part_info->num_columns != 1U) ||
(!tab_part_info->column_list &&
tab_part_info->part_type == partition_type::HASH &&
alt_part_info->num_columns != 0)) {
my_error(ER_PARTITION_COLUMN_LIST_ERROR, MYF(0));
goto err;
}
alt_part_info->column_list = tab_part_info->column_list;
if (alt_part_info->fix_parser_data(thd)) {
goto err;
}
}
if (alter_info->flags & Alter_info::ALTER_ADD_PARTITION) {
/*
We start by moving the new partitions to the list of temporary
partitions. We will then check that the new partitions fit in the
partitioning scheme as currently set-up.
Partitions are always added at the end in ADD PARTITION.
*/
uint num_new_partitions = alt_part_info->num_parts;
uint num_orig_partitions = tab_part_info->num_parts;
uint check_total_partitions = num_new_partitions + num_orig_partitions;
uint new_total_partitions = check_total_partitions;
/*
We allow quite a lot of values to be supplied by defaults, however we
must know the number of new partitions in this case.
*/
if (thd->lex->no_write_to_binlog &&
tab_part_info->part_type != partition_type::HASH) {
my_error(ER_NO_BINLOG_ERROR, MYF(0));
goto err;
}
if (tab_part_info->defined_max_value) {
my_error(ER_PARTITION_MAXVALUE_ERROR, MYF(0));
goto err;
}
if (num_new_partitions == 0) {
my_error(ER_ADD_PARTITION_NO_NEW_PARTITION, MYF(0));
goto err;
}
if (tab_part_info->is_sub_partitioned()) {
if (alt_part_info->num_subparts == 0)
alt_part_info->num_subparts = tab_part_info->num_subparts;
else if (alt_part_info->num_subparts != tab_part_info->num_subparts) {
my_error(ER_ADD_PARTITION_SUBPART_ERROR, MYF(0));
goto err;
}
check_total_partitions =
new_total_partitions * alt_part_info->num_subparts;
}
if (check_total_partitions > MAX_PARTITIONS) {
my_error(ER_TOO_MANY_PARTITIONS_ERROR, MYF(0));
goto err;
}
alt_part_info->part_type = tab_part_info->part_type;
alt_part_info->subpart_type = tab_part_info->subpart_type;
if (alt_part_info->set_up_defaults_for_partitioning(
part_handler, nullptr, tab_part_info->num_parts)) {
goto err;
}
/*
Handling of on-line cases:
ADD PARTITION for RANGE/LIST PARTITIONING:
------------------------------------------
For range and list partitions add partition is simply adding a
new empty partition to the table. If the handler support this we
will use the simple method of doing this. The figure below shows
an example of this and the states involved in making this change.
Existing partitions New added
partitions
------ ------ ------ ------ | ------ ------
| | | | | | | | | | | | |
| p0 | | p1 | | p2 | | p3 | | | p4 | | p5 |
------ ------ ------ ------ | ------ ------
PART_NORMAL PART_NORMAL PART_NORMAL PART_NORMAL PART_TO_BE_ADDED*2
PART_NORMAL PART_NORMAL PART_NORMAL PART_NORMAL PART_IS_ADDED*2
The first line is the states before adding the new partitions and the
second line is after the new partitions are added. All the partitions are
in the partitions list, no partitions are placed in the temp_partitions
list.
ADD PARTITION for HASH PARTITIONING
-----------------------------------
This little figure tries to show the various partitions involved when
adding two new partitions to a linear hash based partitioned table with
four partitions to start with, which lists are used and the states they
pass through. Adding partitions to a normal hash based is similar except
that it is always all the existing partitions that are reorganised not
only a subset of them.
Existing partitions New added
partitions
------ ------ ------ ------ | ------ ------
| | | | | | | | | | | | |
| p0 | | p1 | | p2 | | p3 | | | p4 | | p5 |
------ ------ ------ ------ | ------ ------
PART_CHANGED PART_CHANGED PART_NORMAL PART_NORMAL PART_TO_BE_ADDED
PART_IS_CHANGED*2 PART_NORMAL PART_NORMAL PART_IS_ADDED
PART_NORMAL PART_NORMAL PART_NORMAL PART_NORMAL PART_IS_ADDED
Reorganised existing partitions
------ ------
| | | |
| p0'| | p1'|
------ ------
p0 - p5 will be in the partitions list of partitions.
p0' and p1' will actually not exist as separate objects, there presence
can be deduced from the state of the partition and also the names of those
partitions can be deduced this way.
After adding the partitions and copying the partition data to p0', p1',
p4 and p5 from p0 and p1 the states change to adapt for the new situation
where p0 and p1 is dropped and replaced by p0' and p1' and the new p4 and
p5 are in the table again.
The first line above shows the states of the partitions before we start
adding and copying partitions, the second after completing the adding
and copying and finally the third line after also dropping the partitions
that are reorganised.
*/
if (*new_part_info && tab_part_info->part_type == partition_type::HASH) {
uint part_no = 0, start_part = 1, start_sec_part = 1;
uint end_part = 0, end_sec_part = 0;
uint upper_2n = tab_part_info->linear_hash_mask + 1;
uint lower_2n = upper_2n >> 1;
bool all_parts = true;
if (tab_part_info->linear_hash_ind && num_new_partitions < upper_2n) {
/*
An analysis of which parts needs reorganisation shows that it is
divided into two intervals. The first interval is those parts
that are reorganised up until upper_2n - 1. From upper_2n and
onwards it starts again from partition 0 and goes on until
it reaches p(upper_2n - 1). If the last new partition reaches
beyond upper_2n - 1 then the first interval will end with
p(lower_2n - 1) and start with p(num_orig_partitions - lower_2n).
If lower_2n partitions are added then p0 to p(lower_2n - 1) will
be reorganised which means that the two interval becomes one
interval at this point. Thus only when adding less than
lower_2n partitions and going beyond a total of upper_2n we
actually get two intervals.
To exemplify this assume we have 6 partitions to start with and
add 1, 2, 3, 5, 6, 7, 8, 9 partitions.
The first to add after p5 is p6 = 110 in bit numbers. Thus we
can see that 10 = p2 will be partition to reorganise if only one
partition.
If 2 partitions are added we reorganise [p2, p3]. Those two
cases are covered by the second if part below.
If 3 partitions are added we reorganise [p2, p3] U [p0,p0]. This
part is covered by the else part below.
If 5 partitions are added we get [p2,p3] U [p0, p2] = [p0, p3].
This is covered by the first if part where we need the max check
to here use lower_2n - 1.
If 7 partitions are added we get [p2,p3] U [p0, p4] = [p0, p4].
This is covered by the first if part but here we use the first
calculated end_part.
Finally with 9 new partitions we would also reorganise p6 if we
used the method below but we cannot reorganise more partitions
than what we had from the start and thus we simply set all_parts
to true. In this case we don't get into this if-part at all.
*/
all_parts = false;
if (num_new_partitions >= lower_2n) {
/*
In this case there is only one interval since the two intervals
overlap and this starts from zero to last_part_no - upper_2n
*/
start_part = 0;
end_part = new_total_partitions - (upper_2n + 1);
end_part = max(lower_2n - 1, end_part);
} else if (new_total_partitions <= upper_2n) {
/*
Also in this case there is only one interval since we are not
going over a 2**n boundary
*/
start_part = num_orig_partitions - lower_2n;
end_part = start_part + (num_new_partitions - 1);
} else {
/* We have two non-overlapping intervals since we are not
passing a 2**n border and we have not at least lower_2n
new parts that would ensure that the intervals become
overlapping.
*/
start_part = num_orig_partitions - lower_2n;
end_part = upper_2n - 1;
start_sec_part = 0;
end_sec_part = new_total_partitions - (upper_2n + 1);
}
}
List_iterator<partition_element> tab_it(tab_part_info->partitions);
part_no = 0;
do {
partition_element *p_elem = tab_it++;
if (all_parts || (part_no >= start_part && part_no <= end_part) ||
(part_no >= start_sec_part && part_no <= end_sec_part)) {
p_elem->part_state = PART_CHANGED;
}
} while (++part_no < num_orig_partitions);
}
/*
Need to concatenate the lists here to make it possible to check the
partition info for correctness using check_partition_info.
For on-line add partition we set the state of this partition to
PART_TO_BE_ADDED to ensure that it is known that it is not yet
usable (becomes usable when partition is created and the switch of
partition configuration is made.
*/
{
List_iterator<partition_element> alt_it(alt_part_info->partitions);
uint part_count = 0;
do {
partition_element *part_elem = alt_it++;
if (*new_part_info) part_elem->part_state = PART_TO_BE_ADDED;
if (tab_part_info->partitions.push_back(part_elem)) {
mem_alloc_error(1);
goto err;
}
} while (++part_count < num_new_partitions);
tab_part_info->num_parts += num_new_partitions;
}
/*
If we specify partitions explicitly we don't use defaults anymore.
Using ADD PARTITION also means that we don't have the default number
of partitions anymore. We use this code also for Table reorganisations
and here we don't set any default flags to false.
*/
if (!(alter_info->flags & Alter_info::ALTER_TABLE_REORG)) {
if (!alt_part_info->use_default_partitions) {
DBUG_PRINT("info", ("part_info: %p", tab_part_info));
tab_part_info->use_default_partitions = false;
}
tab_part_info->use_default_num_partitions = false;
tab_part_info->is_auto_partitioned = false;
}
} else if (alter_info->flags & Alter_info::ALTER_DROP_PARTITION) {
/*
Drop a partition from a range partition and list partitioning is
always safe and can be made more or less immediate. It is necessary
however to ensure that the partition to be removed is safely removed
and that REPAIR TABLE can remove the partition if for some reason the
command to drop the partition failed in the middle.
*/
uint part_count = 0;
uint num_parts_dropped = alter_info->partition_names.elements;
uint num_parts_found = 0;
List_iterator<partition_element> part_it(tab_part_info->partitions);
tab_part_info->is_auto_partitioned = false;
if (!(tab_part_info->part_type == partition_type::RANGE ||
tab_part_info->part_type == partition_type::LIST)) {
my_error(ER_ONLY_ON_RANGE_LIST_PARTITION, MYF(0), "DROP");
goto err;
}
if (num_parts_dropped >= tab_part_info->num_parts) {
my_error(ER_DROP_LAST_PARTITION, MYF(0));
goto err;
}
do {
partition_element *part_elem = part_it++;
if (is_name_in_list(part_elem->partition_name,
alter_info->partition_names)) {
/*
Set state to indicate that the partition is to be dropped.
*/
num_parts_found++;
part_elem->part_state = PART_TO_BE_DROPPED;
}
} while (++part_count < tab_part_info->num_parts);
if (num_parts_found != num_parts_dropped) {
my_error(ER_DROP_PARTITION_NON_EXISTENT, MYF(0), "DROP");
goto err;
}
tab_part_info->num_parts -= num_parts_dropped;
} else if (alter_info->flags & Alter_info::ALTER_REBUILD_PARTITION) {
set_engine_all_partitions(tab_part_info,
tab_part_info->default_engine_type);
if (set_part_state(alter_info, tab_part_info, PART_CHANGED, false)) {
my_error(ER_DROP_PARTITION_NON_EXISTENT, MYF(0), "REBUILD");
goto err;
}
if (!(*new_part_info)) {
table->file->print_error(HA_ERR_WRONG_COMMAND, MYF(0));
goto err;
}
} else if (alter_info->flags & Alter_info::ALTER_COALESCE_PARTITION) {
uint num_parts_coalesced = alter_info->num_parts;
uint num_parts_remain = tab_part_info->num_parts - num_parts_coalesced;
List_iterator<partition_element> part_it(tab_part_info->partitions);
if (tab_part_info->part_type != partition_type::HASH) {
my_error(ER_COALESCE_ONLY_ON_HASH_PARTITION, MYF(0));
goto err;
}
if (num_parts_coalesced == 0) {
my_error(ER_COALESCE_PARTITION_NO_PARTITION, MYF(0));
goto err;
}
if (num_parts_coalesced >= tab_part_info->num_parts) {
my_error(ER_DROP_LAST_PARTITION, MYF(0));
goto err;
}
/*
Online handling:
COALESCE PARTITION:
-------------------
The figure below shows the manner in which partitions are handled when
performing an on-line coalesce partition and which states they go through
at start, after adding and copying partitions and finally after dropping
the partitions to drop. The figure shows an example using four partitions
to start with, using linear hash and coalescing one partition (always the
last partition).
Using linear hash then all remaining partitions will have a new
reorganised part.
Existing partitions Coalesced partition
------ ------ ------ | ------
| | | | | | | | |
| p0 | | p1 | | p2 | | | p3 |
------ ------ ------ | ------
PART_NORMAL PART_CHANGED PART_NORMAL PART_REORGED_DROPPED
PART_NORMAL PART_IS_CHANGED PART_NORMAL PART_TO_BE_DROPPED
PART_NORMAL PART_NORMAL PART_NORMAL PART_IS_DROPPED
Reorganised existing partitions
------
| |
| p1'|
------
p0 - p3 is in the partitions list.
The p1' partition will actually not be in any list it is deduced from the
state of p1.
*/
{
uint part_count = 0, start_part = 1, start_sec_part = 1;
uint end_part = 0, end_sec_part = 0;
bool all_parts = true;
if (*new_part_info && tab_part_info->linear_hash_ind) {
uint upper_2n = tab_part_info->linear_hash_mask + 1;
uint lower_2n = upper_2n >> 1;
all_parts = false;
if (num_parts_coalesced >= lower_2n) {
all_parts = true;
} else if (num_parts_remain >= lower_2n) {
end_part = tab_part_info->num_parts - (lower_2n + 1);
start_part = num_parts_remain - lower_2n;
} else {
start_part = 0;
end_part = tab_part_info->num_parts - (lower_2n + 1);
end_sec_part = (lower_2n >> 1) - 1;
start_sec_part = end_sec_part - (lower_2n - (num_parts_remain + 1));
}
}
do {
partition_element *p_elem = part_it++;
if (*new_part_info &&
(all_parts ||
(part_count >= start_part && part_count <= end_part) ||
(part_count >= start_sec_part && part_count <= end_sec_part)))
p_elem->part_state = PART_CHANGED;
if (++part_count > num_parts_remain) {
if (*new_part_info)
p_elem->part_state = PART_REORGED_DROPPED;
else
part_it.remove();
}
} while (part_count < tab_part_info->num_parts);
tab_part_info->num_parts = num_parts_remain;
}
if (!(alter_info->flags & Alter_info::ALTER_TABLE_REORG)) {
tab_part_info->use_default_num_partitions = false;
tab_part_info->is_auto_partitioned = false;
}
} else if (alter_info->flags & Alter_info::ALTER_REORGANIZE_PARTITION) {
/*
Reorganise partitions takes a number of partitions that are next
to each other (at least for RANGE PARTITIONS) and then uses those
to create a set of new partitions. So data is copied from those
partitions into the new set of partitions. Those new partitions
can have more values in the LIST value specifications or less both
are allowed. The ranges can be different but since they are
changing a set of consecutive partitions they must cover the same
range as those changed from.
This command can be used on RANGE and LIST partitions.
*/
uint num_parts_reorged = alter_info->partition_names.elements;
uint num_parts_new = thd->work_part_info->partitions.elements;
uint check_total_partitions;
tab_part_info->is_auto_partitioned = false;
if (num_parts_reorged > tab_part_info->num_parts) {
my_error(ER_REORG_PARTITION_NOT_EXIST, MYF(0));
goto err;
}
if (!(tab_part_info->part_type == partition_type::RANGE ||
tab_part_info->part_type == partition_type::LIST) &&
(num_parts_new != num_parts_reorged)) {
my_error(ER_REORG_HASH_ONLY_ON_SAME_NO, MYF(0));
goto err;
}
if (tab_part_info->is_sub_partitioned() && alt_part_info->num_subparts &&
alt_part_info->num_subparts != tab_part_info->num_subparts) {
my_error(ER_PARTITION_WRONG_NO_SUBPART_ERROR, MYF(0));
goto err;
}
check_total_partitions = tab_part_info->num_parts + num_parts_new;
check_total_partitions -= num_parts_reorged;
if (check_total_partitions > MAX_PARTITIONS) {
my_error(ER_TOO_MANY_PARTITIONS_ERROR, MYF(0));
goto err;
}
alt_part_info->part_type = tab_part_info->part_type;
alt_part_info->subpart_type = tab_part_info->subpart_type;
alt_part_info->num_subparts = tab_part_info->num_subparts;
assert(!alt_part_info->use_default_partitions);
/* We specified partitions explicitly so don't use defaults anymore. */
tab_part_info->use_default_partitions = false;
if (alt_part_info->set_up_defaults_for_partitioning(part_handler, nullptr,
0)) {
goto err;
}
/*
Online handling:
REORGANIZE PARTITION:
---------------------
The figure exemplifies the handling of partitions, their state changes and
how they are organised. It exemplifies four partitions where two of the
partitions are reorganised (p1 and p2) into two new partitions (p4 and
p5). The reason of this change could be to change range limits, change
list values or for hash partitions simply reorganise the partition which
could also involve moving them to new disks or new node groups (MySQL
Cluster).
Existing partitions
------ ------ ------ ------
| | | | | | | |
| p0 | | p1 | | p2 | | p3 |
------ ------ ------ ------
PART_NORMAL PART_TO_BE_REORGED PART_NORMAL
PART_NORMAL PART_TO_BE_DROPPED PART_NORMAL
PART_NORMAL PART_IS_DROPPED PART_NORMAL
Reorganised new partitions (replacing p1 and p2)
------ ------
| | | |
| p4 | | p5 |
------ ------
PART_TO_BE_ADDED
PART_IS_ADDED
PART_IS_ADDED
All unchanged partitions and the new partitions are in the partitions list
in the order they will have when the change is completed. The reorganised
partitions are placed in the temp_partitions list. PART_IS_ADDED is only a
temporary state not written in the frm file. It is used to ensure we write
the generated partition syntax in a correct manner.
*/
{
List_iterator<partition_element> tab_it(tab_part_info->partitions);
uint part_count = 0;
bool found_first = false;
bool found_last = false;
uint drop_count = 0;
do {
partition_element *part_elem = tab_it++;
is_last_partition_reorged = false;
if (is_name_in_list(part_elem->partition_name,
alter_info->partition_names)) {
is_last_partition_reorged = true;
drop_count++;
if (tab_part_info->column_list) {
List_iterator<part_elem_value> p(part_elem->list_val_list);
tab_max_elem_val = p++;
} else
tab_max_range = part_elem->range_value;
if (*new_part_info &&
tab_part_info->temp_partitions.push_back(part_elem)) {
mem_alloc_error(1);
goto err;
}
if (*new_part_info) part_elem->part_state = PART_TO_BE_REORGED;
if (!found_first) {
uint alt_part_count = 0;
partition_element *alt_part_elem;
List_iterator<partition_element> alt_it(
alt_part_info->partitions);
found_first = true;
do {
alt_part_elem = alt_it++;
if (tab_part_info->column_list) {
List_iterator<part_elem_value> p(
alt_part_elem->list_val_list);
alt_max_elem_val = p++;
} else
alt_max_range = alt_part_elem->range_value;
if (*new_part_info)
alt_part_elem->part_state = PART_TO_BE_ADDED;
if (alt_part_count == 0)
tab_it.replace(alt_part_elem);
else
tab_it.after(alt_part_elem);
} while (++alt_part_count < num_parts_new);
} else if (found_last) {
my_error(ER_CONSECUTIVE_REORG_PARTITIONS, MYF(0));
goto err;
} else
tab_it.remove();
} else {
if (found_first) found_last = true;
}
} while (++part_count < tab_part_info->num_parts);
if (drop_count != num_parts_reorged) {
my_error(ER_DROP_PARTITION_NON_EXISTENT, MYF(0), "REORGANIZE");
goto err;
}
tab_part_info->num_parts = check_total_partitions;
}
} else {
assert(false);
}
*partition_changed = true;
thd->work_part_info = tab_part_info;
if (alter_info->flags & Alter_info::ALTER_ADD_PARTITION ||
alter_info->flags & Alter_info::ALTER_REORGANIZE_PARTITION) {
if (tab_part_info->use_default_subpartitions &&
!alt_part_info->use_default_subpartitions) {
tab_part_info->use_default_subpartitions = false;
tab_part_info->use_default_num_subpartitions = false;
}
if (tab_part_info->check_partition_info(thd, (handlerton **)nullptr,
table->file, nullptr, true)) {
goto err;
}
/*
The check below needs to be performed after check_partition_info
since this function "fixes" the item trees of the new partitions
to reorganize into
*/
if (alter_info->flags == Alter_info::ALTER_REORGANIZE_PARTITION &&
tab_part_info->part_type == partition_type::RANGE) {
bool is_error;
if (is_last_partition_reorged) {
if (tab_part_info->column_list) {
is_error = tab_part_info->compare_column_values(
alt_max_elem_val->col_val_array,
tab_max_elem_val->col_val_array); // a < b.
} else {
is_error = alt_max_range < tab_max_range;
}
} else {
if (tab_part_info->column_list) {
is_error = tab_part_info->compare_column_values(
alt_max_elem_val->col_val_array,
tab_max_elem_val->col_val_array) ||
tab_part_info->compare_column_values(
tab_max_elem_val->col_val_array,
alt_max_elem_val->col_val_array); // a != b.
} else {
is_error = alt_max_range != tab_max_range;
}
}
if (is_error) {
/*
For range partitioning the total resulting range before and
after the change must be the same except in one case. This is
when the last partition is reorganised, in this case it is
acceptable to increase the total range.
The reason is that it is not allowed to have "holes" in the
middle of the ranges and thus we should not allow to reorganise
to create "holes".
*/
my_error(ER_REORG_OUTSIDE_RANGE, MYF(0));
goto err;
}
}
}
} else {
/*
When thd->lex->part_info has a reference to a partition_info the
ALTER TABLE contained a definition of a partitioning.
Case I:
If there was a partition before and there is a new one defined.
We use the new partitioning. The new partitioning is already
defined in the correct variable so no work is needed to
accomplish this.
We do however need to update partition_changed to ensure that not
only the frm file is changed in the ALTER TABLE command.
Case IIa:
There was a partitioning before and there is no new one defined.
Also the user has not specified to remove partitioning explicitly.
We use the old partitioning also for the new table. We do this
by assigning the partition_info from the table loaded in
open_table to the partition_info struct used by mysql_create_table
later in this method.
Case IIb:
There was a partitioning before and there is no new one defined.
The user has specified explicitly to remove partitioning
Since the user has specified explicitly to remove partitioning
we override the old partitioning info and create a new table using
the specified engine.
In this case the partition also is changed.
Case III:
There was no partitioning before altering the table, there is
partitioning defined in the altered table. Use the new partitioning.
No work needed since the partitioning info is already in the
correct variable.
In this case we discover one case where the new partitioning is using
the same partition function as the default (PARTITION BY KEY or
PARTITION BY LINEAR KEY with the list of fields equal to the primary
key fields OR PARTITION BY [LINEAR] KEY() for tables without primary
key)
Also here partition has changed and thus a new table must be
created.
Case IV:
There was no partitioning before and no partitioning defined.
Obviously no work needed.
*/
partition_info *tab_part_info = table->part_info;
if (tab_part_info) {
/*
The table must be reopened, this is necessary to avoid situations
where a failing ALTER leaves behind a TABLE object which has its
partitioning information updated by the SE, as InnoDB is doing in
update_create_info().
*/
table->invalidate_dict();
if (alter_info->flags & Alter_info::ALTER_REMOVE_PARTITIONING) {
DBUG_PRINT("info", ("Remove partitioning"));
if (!(create_info->used_fields & HA_CREATE_USED_ENGINE)) {
DBUG_PRINT("info", ("No explicit engine used"));
create_info->db_type = tab_part_info->default_engine_type;
}
DBUG_PRINT("info",
("New engine type: %s",
ha_resolve_storage_engine_name(create_info->db_type)));
thd->work_part_info = nullptr;
*partition_changed = true;
} else if (!thd->work_part_info) {
/*
Retain partitioning but possibly with a new storage engine
beneath.
Create a copy of TABLE::part_info to be able to modify it freely.
*/
if (!(tab_part_info = tab_part_info->get_clone(thd))) return true;
thd->work_part_info = tab_part_info;
if (create_info->used_fields & HA_CREATE_USED_ENGINE &&
create_info->db_type != tab_part_info->default_engine_type) {
/*
Make sure change of engine happens to all partitions.
*/
DBUG_PRINT("info", ("partition changed"));
if (tab_part_info->is_auto_partitioned) {
/*
If the user originally didn't specify partitioning to be
used we can remove it now.
*/
thd->work_part_info = nullptr;
} else {
/*
Ensure that all partitions have the proper engine set-up
*/
set_engine_all_partitions(thd->work_part_info,
create_info->db_type);
}
*partition_changed = true;
}
}
}
if (thd->work_part_info) {
partition_info *part_info = thd->work_part_info;
bool is_native_partitioned = false;
/*
Need to cater for engine types that can handle partition without
using the partition handler.
*/
if (part_info != tab_part_info) {
if (part_info->fix_parser_data(thd)) {
goto err;
}
/*
Compare the old and new part_info. If only key_algorithm
change is done, don't consider it as changed partitioning (to avoid
rebuild). This is to handle KEY (numeric_cols) partitioned tables
created in 5.1. For more info, see bug#14521864.
*/
if (alter_info->flags != Alter_info::ALTER_PARTITION ||
!table->part_info ||
alter_info->requested_algorithm !=
Alter_info::ALTER_TABLE_ALGORITHM_INPLACE ||
!table->part_info->has_same_partitioning(part_info)) {
DBUG_PRINT("info", ("partition changed"));
*partition_changed = true;
}
}
/*
Set up partition default_engine_type either from the create_info
or from the previous table
*/
if (create_info->used_fields & HA_CREATE_USED_ENGINE)
part_info->default_engine_type = create_info->db_type;
else {
if (tab_part_info)
part_info->default_engine_type = tab_part_info->default_engine_type;
else
part_info->default_engine_type = create_info->db_type;
}
if (check_native_partitioned(create_info, &is_native_partitioned,
part_info, thd)) {
goto err;
}
if (!is_native_partitioned) {
my_error(ER_CHECK_NOT_IMPLEMENTED, MYF(0), "native partitioning");
goto err;
}
}
}
return false;
err:
*new_part_info = nullptr;
return true;
}
/*
Prepare for calling val_int on partition function by setting fields to
point to the record where the values of the PF-fields are stored.
SYNOPSIS
set_field_ptr()
ptr Array of fields to change ptr
new_buf New record pointer
old_buf Old record pointer
DESCRIPTION
Set ptr in field objects of field array to refer to new_buf record
instead of previously old_buf. Used before calling val_int and after
it is used to restore pointers to table->record[0].
This routine is placed outside of partition code since it can be useful
also for other programs.
*/
static void set_field_ptr(Field **ptr, const uchar *new_buf,
const uchar *old_buf) {
ptrdiff_t diff = (new_buf - old_buf);
DBUG_TRACE;
do {
(*ptr)->move_field_offset(diff);
} while (*(++ptr));
}
/**
Append all fields in read_set to string
@param[in,out] str String to append to.
@param[in] row Row to append.
@param[in] table Table containing read_set and fields for the row.
*/
void append_row_to_str(String &str, const uchar *row, TABLE *table) {
Field **fields, **field_ptr;
const uchar *rec;
uint num_fields = bitmap_bits_set(table->read_set);
uint curr_field_index = 0;
bool is_rec0 = !row || row == table->record[0];
if (!row)
rec = table->record[0];
else
rec = row;
/* Create a new array of all read fields. */
fields = static_cast<Field **>(my_malloc(
key_memory_errmsgs_handler, sizeof(void *) * (num_fields + 1), MYF(0)));
if (!fields) return;
fields[num_fields] = nullptr;
for (field_ptr = table->field; *field_ptr; field_ptr++) {
if (!bitmap_is_set(table->read_set, (*field_ptr)->field_index())) continue;
fields[curr_field_index++] = *field_ptr;
}
if (!is_rec0) set_field_ptr(fields, rec, table->record[0]);
for (field_ptr = fields; *field_ptr; field_ptr++) {
Field *field = *field_ptr;
str.append(" ");
str.append(field->field_name);
str.append(":");
field_unpack(&str, field, 0, false);
}
if (!is_rec0) set_field_ptr(fields, table->record[0], rec);
my_free(fields);
}
/*
SYNOPSIS
mem_alloc_error()
size Size of memory attempted to allocate
None
RETURN VALUES
None
DESCRIPTION
A routine to use for all the many places in the code where memory
allocation error can happen, a tremendous amount of them, needs
simple routine that signals this error.
*/
void mem_alloc_error(size_t size) {
my_error(ER_OUTOFMEMORY, MYF(ME_FATALERROR), static_cast<int>(size));
}
/**
Return comma-separated list of used partitions in the provided given string.
@param part_info Partitioning info
@param[out] parts The resulting list of string to fill
Generate a list of used partitions (from bits in part_info->read_partitions
bitmap), and store it into the provided String object.
@note
The produced string must not be longer then MAX_PARTITIONS * (1 + FN_LEN).
In case of UPDATE, only the partitions read is given, not the partitions
that was written or locked.
*/
bool make_used_partitions_str(partition_info *part_info,
List<const char> *parts) {
parts->clear();
partition_element *pe;
uint partition_id = 0;
List_iterator<partition_element> it(part_info->partitions);
StringBuffer<FN_LEN> part_str(system_charset_info);
if (part_info->is_sub_partitioned()) {
partition_element *head_pe;
while ((head_pe = it++)) {
List_iterator<partition_element> it2(head_pe->subpartitions);
while ((pe = it2++)) {
if (bitmap_is_set(&part_info->read_partitions, partition_id)) {
part_str.length(0);
if ((part_str.append(head_pe->partition_name,
strlen(head_pe->partition_name),
system_charset_info)) ||
part_str.append('_') ||
part_str.append(pe->partition_name, strlen(pe->partition_name),
system_charset_info) ||
parts->push_back(part_str.dup(current_thd->mem_root)))
return true;
}
partition_id++;
}
}
} else {
while ((pe = it++)) {
if (bitmap_is_set(&part_info->read_partitions, partition_id)) {
part_str.length(0);
if (part_str.append(pe->partition_name, strlen(pe->partition_name),
system_charset_info) ||
parts->push_back(part_str.dup(current_thd->mem_root)))
return true;
}
partition_id++;
}
}
return false;
}
/****************************************************************************
* Partition interval analysis support
***************************************************************************/
/*
Setup partition_info::* members related to partitioning range analysis
SYNOPSIS
set_up_partition_func_pointers()
part_info Partitioning info structure
DESCRIPTION
Assuming that passed partition_info structure already has correct values
for members that specify [sub]partitioning type, table fields, and
functions, set up partition_info::* members that are related to
Partitioning Interval Analysis (see get_partitions_in_range_iter for its
definition)
IMPLEMENTATION
There are three available interval analyzer functions:
(1) get_part_iter_for_interval_via_mapping
(2) get_part_iter_for_interval_cols_via_map
(3) get_part_iter_for_interval_via_walking
They all have limited applicability:
(1) is applicable for "PARTITION BY <RANGE|LIST>(func(t.field))", where
func is a monotonic function.
(2) is applicable for "PARTITION BY <RANGE|LIST> COLUMNS (field_list)
(3) is applicable for
"[SUB]PARTITION BY <any-partitioning-type>(any_func(t.integer_field))"
If both (1) and (3) are applicable, (1) is preferred over (3).
This function sets part_info::get_part_iter_for_interval according to
this criteria, and also sets some auxiliary fields that the function
uses.
*/
static void set_up_range_analysis_info(partition_info *part_info) {
/* Set the catch-all default */
part_info->get_part_iter_for_interval = nullptr;
part_info->get_subpart_iter_for_interval = nullptr;
/*
Check if get_part_iter_for_interval_via_mapping() can be used for
partitioning
*/
switch (part_info->part_type) {
case partition_type::RANGE:
case partition_type::LIST:
if (!part_info->column_list) {
if (part_info->part_expr->get_monotonicity_info() != NON_MONOTONIC) {
part_info->get_part_iter_for_interval =
get_part_iter_for_interval_via_mapping;
goto setup_subparts;
}
} else {
part_info->get_part_iter_for_interval =
get_part_iter_for_interval_cols_via_map;
goto setup_subparts;
}
default:;
}
/*
Check if get_part_iter_for_interval_via_walking() can be used for
partitioning
*/
if (part_info->num_part_fields == 1) {
Field *field = part_info->part_field_array[0];
switch (field->type()) {
case MYSQL_TYPE_TINY:
case MYSQL_TYPE_SHORT:
case MYSQL_TYPE_INT24:
case MYSQL_TYPE_LONG:
case MYSQL_TYPE_LONGLONG:
part_info->get_part_iter_for_interval =
get_part_iter_for_interval_via_walking;
break;
default:;
}
}
setup_subparts:
/*
Check if get_part_iter_for_interval_via_walking() can be used for
subpartitioning
*/
if (part_info->num_subpart_fields == 1) {
Field *field = part_info->subpart_field_array[0];
switch (field->type()) {
case MYSQL_TYPE_TINY:
case MYSQL_TYPE_SHORT:
case MYSQL_TYPE_LONG:
case MYSQL_TYPE_LONGLONG:
part_info->get_subpart_iter_for_interval =
get_part_iter_for_interval_via_walking;
break;
default:;
}
}
}
/*
This function takes a memory of packed fields in opt-range format
and stores it in record format. To avoid having to worry about how
the length of fields are calculated in opt-range format we send
an array of lengths used for each field in store_length_array.
SYNOPSIS
store_tuple_to_record()
pfield Field array
store_length_array Array of field lengths
value Memory where fields are stored
value_end End of memory
RETURN VALUE
nparts Number of fields assigned
*/
static uint32 store_tuple_to_record(Field **pfield, uint32 *store_length_array,
uchar *value, uchar *value_end) {
/* This function is inspired by store_key_image_rec. */
uint32 nparts = 0;
uchar *loc_value;
while (value < value_end) {
loc_value = value;
if ((*pfield)->is_nullable()) {
if (*loc_value)
(*pfield)->set_null();
else
(*pfield)->set_notnull();
loc_value++;
}
uint len = (*pfield)->pack_length();
(*pfield)->set_key_image(loc_value, len);
value += *store_length_array;
store_length_array++;
nparts++;
pfield++;
}
return nparts;
}
/**
RANGE(columns) partitioning: compare partition value bound and probe tuple.
@param val Partition column values.
@param nvals_in_rec Number of (prefix) fields to compare.
@return Less than/Equal to/Greater than 0 if the record is L/E/G than val.
@note The partition value bound is always a full tuple (but may include the
MAXVALUE special value). The probe tuple may be a prefix of partitioning
tuple.
*/
static int cmp_rec_and_tuple(part_column_list_val *val, uint32 nvals_in_rec) {
partition_info *part_info = val->part_info;
Field **field = part_info->part_field_array;
Field **fields_end = field + nvals_in_rec;
int res;
for (; field != fields_end; field++, val++) {
if (val->max_value) return -1;
if ((*field)->is_null()) {
if (val->null_value) continue;
return -1;
}
if (val->null_value) return +1;
res = (*field)->cmp(val->column_value.field_image);
if (res) return res;
}
return 0;
}
/**
Compare record and columns partition tuple including endpoint handling.
@param val Columns partition tuple
@param n_vals_in_rec Number of columns to compare
@param is_left_endpoint True if left endpoint (part_tuple < rec or
part_tuple <= rec)
@param include_endpoint If endpoint is included (part_tuple <= rec or
rec <= part_tuple)
@return Less than/Equal to/Greater than 0 if the record is L/E/G than
the partition tuple.
@see get_list_array_idx_for_endpoint() and
get_partition_id_range_for_endpoint().
*/
static int cmp_rec_and_tuple_prune(part_column_list_val *val,
uint32 n_vals_in_rec, bool is_left_endpoint,
bool include_endpoint) {
int cmp;
Field **field;
if ((cmp = cmp_rec_and_tuple(val, n_vals_in_rec))) return cmp;
field = val->part_info->part_field_array + n_vals_in_rec;
if (!(*field)) {
/* Full match. Only equal if including endpoint. */
if (include_endpoint) return 0;
if (is_left_endpoint)
return +4; /* Start of range, part_tuple < rec, return higher. */
return -4; /* End of range, rec < part_tupe, return lesser. */
}
/*
The prefix is equal and there are more partition columns to compare.
If including left endpoint or not including right endpoint
then the record is considered lesser compared to the partition.
i.e:
part(10, x) <= rec(10, unknown) and rec(10, unknown) < part(10, x)
part <= rec -> lesser (i.e. this or previous partitions)
rec < part -> lesser (i.e. this or previous partitions)
*/
if (is_left_endpoint == include_endpoint) return -2;
/*
If right endpoint and the first additional partition value
is MAXVALUE, then the record is lesser.
*/
if (!is_left_endpoint && (val + n_vals_in_rec)->max_value) return -3;
/*
Otherwise the record is considered greater.
rec <= part -> greater (i.e. does not match this partition, seek higher).
part < rec -> greater (i.e. does not match this partition, seek higher).
*/
return 2;
}
typedef uint32 (*get_endpoint_func)(partition_info *, bool left_endpoint,
bool include_endpoint);
typedef uint32 (*get_col_endpoint_func)(partition_info *, bool left_endpoint,
bool include_endpoint,
uint32 num_parts);
/**
Get partition for RANGE COLUMNS endpoint.
@param part_info Partitioning metadata.
@param is_left_endpoint True if left endpoint (const <=/< cols)
@param include_endpoint True if range includes the endpoint (<=/>=)
@param nparts Total number of partitions
@return Partition id of matching partition.
@see get_partition_id_cols_list_for_endpoint and
get_partition_id_range_for_endpoint.
*/
static uint32 get_partition_id_cols_range_for_endpoint(
partition_info *part_info, bool is_left_endpoint, bool include_endpoint,
uint32 nparts) {
uint min_part_id = 0, max_part_id = part_info->num_parts, loc_part_id;
part_column_list_val *range_col_array = part_info->range_col_array;
uint num_columns = part_info->part_field_list.elements;
DBUG_TRACE;
/* Find the matching partition (including taking endpoint into account). */
do {
/* Midpoint, adjusted down, so it can never be > last partition. */
loc_part_id = (max_part_id + min_part_id) >> 1;
if (0 <=
cmp_rec_and_tuple_prune(range_col_array + loc_part_id * num_columns,
nparts, is_left_endpoint, include_endpoint))
min_part_id = loc_part_id + 1;
else
max_part_id = loc_part_id;
} while (max_part_id > min_part_id);
loc_part_id = max_part_id;
/* Given value must be LESS THAN the found partition. */
assert(loc_part_id == part_info->num_parts ||
(0 >
cmp_rec_and_tuple_prune(range_col_array + loc_part_id * num_columns,
nparts, is_left_endpoint, include_endpoint)));
/* Given value must be GREATER THAN or EQUAL to the previous partition. */
assert(loc_part_id == 0 ||
(0 <= cmp_rec_and_tuple_prune(
range_col_array + (loc_part_id - 1) * num_columns, nparts,
is_left_endpoint, include_endpoint)));
if (!is_left_endpoint) {
/* Set the end after this partition if not already after the last. */
if (loc_part_id < part_info->num_parts) loc_part_id++;
}
return loc_part_id;
}
static int get_part_iter_for_interval_cols_via_map(
partition_info *part_info, bool, uint32 *store_length_array,
uchar *min_value, uchar *max_value, uint min_len, uint max_len, uint flags,
PARTITION_ITERATOR *part_iter) {
uint32 nparts;
get_col_endpoint_func get_col_endpoint;
DBUG_TRACE;
if (part_info->part_type == partition_type::RANGE) {
get_col_endpoint = get_partition_id_cols_range_for_endpoint;
part_iter->get_next = get_next_partition_id_range;
} else if (part_info->part_type == partition_type::LIST) {
get_col_endpoint = get_partition_id_cols_list_for_endpoint;
part_iter->get_next = get_next_partition_id_list;
part_iter->part_info = part_info;
assert(part_info->num_list_values);
} else {
assert(0);
get_col_endpoint = nullptr;
}
if (flags & NO_MIN_RANGE)
part_iter->part_nums.start = part_iter->part_nums.cur = 0;
else {
// Copy from min_value to record
nparts =
store_tuple_to_record(part_info->part_field_array, store_length_array,
min_value, min_value + min_len);
part_iter->part_nums.start = part_iter->part_nums.cur =
get_col_endpoint(part_info, true, !(flags & NEAR_MIN), nparts);
}
if (flags & NO_MAX_RANGE) {
if (part_info->part_type == partition_type::RANGE)
part_iter->part_nums.end = part_info->num_parts;
else /* LIST_PARTITION */
{
assert(part_info->part_type == partition_type::LIST);
part_iter->part_nums.end = part_info->num_list_values;
}
} else {
// Copy from max_value to record
nparts =
store_tuple_to_record(part_info->part_field_array, store_length_array,
max_value, max_value + max_len);
part_iter->part_nums.end =
get_col_endpoint(part_info, false, !(flags & NEAR_MAX), nparts);
}
if (part_iter->part_nums.start == part_iter->part_nums.end) return 0;
return 1;
}
/**
Partitioning Interval Analysis: Initialize the iterator for "mapping" case
@param part_info Partition info
@param is_subpart true - act for subpartitioning
false - act for partitioning
@param store_length_array Ignored.
@param min_value minimum field value, in opt_range key format.
@param max_value minimum field value, in opt_range key format.
@param min_len Ignored.
@param max_len Ignored.
@param flags Some combination of NEAR_MIN, NEAR_MAX, NO_MIN_RANGE,
NO_MAX_RANGE.
@param part_iter Iterator structure to be initialized
@details Initialize partition set iterator to walk over the interval in
ordered-array-of-partitions (for RANGE partitioning) or
ordered-array-of-list-constants (for LIST partitioning) space.
This function is used when partitioning is done by
<RANGE|LIST>(ascending_func(t.field)), and we can map an interval in
t.field space into a sub-array of partition_info::range_int_array or
partition_info::list_array (see get_partition_id_range_for_endpoint,
get_list_array_idx_for_endpoint for details).
The function performs this interval mapping, and sets the iterator to
traverse the sub-array and return appropriate partitions.
@return Status of iterator
@retval 0 No matching partitions (iterator not initialized)
@retval 1 Ok, iterator initialized for traversal of matching partitions.
@retval -1 All partitions would match (iterator not initialized)
*/
static int get_part_iter_for_interval_via_mapping(
partition_info *part_info, bool is_subpart [[maybe_unused]],
uint32 *store_length_array, /* ignored */
uchar *min_value, uchar *max_value, uint min_len,
uint max_len, /* ignored */
uint flags, PARTITION_ITERATOR *part_iter) {
Field *field = part_info->part_field_array[0];
uint32 max_endpoint_val = 0;
get_endpoint_func get_endpoint = nullptr;
bool can_match_multiple_values; /* is not '=' */
uint field_len = field->pack_length_in_rec();
MYSQL_TIME start_date;
bool check_zero_dates = false;
bool zero_in_start_date = true;
DBUG_TRACE;
assert(!is_subpart);
(void)store_length_array;
(void)min_len;
(void)max_len;
part_iter->ret_null_part = part_iter->ret_null_part_orig = false;
if (part_info->part_type == partition_type::RANGE) {
if (part_info->part_charset_field_array)
get_endpoint = get_partition_id_range_for_endpoint_charset;
else
get_endpoint = get_partition_id_range_for_endpoint;
max_endpoint_val = part_info->num_parts;
part_iter->get_next = get_next_partition_id_range;
} else if (part_info->part_type == partition_type::LIST) {
if (part_info->part_charset_field_array)
get_endpoint = get_list_array_idx_for_endpoint_charset;
else
get_endpoint = get_list_array_idx_for_endpoint;
max_endpoint_val = part_info->num_list_values;
part_iter->get_next = get_next_partition_id_list;
part_iter->part_info = part_info;
if (max_endpoint_val == 0) {
/*
We handle this special case without optimisations since it is
of little practical value but causes a great number of complex
checks later in the code.
*/
part_iter->part_nums.start = part_iter->part_nums.end = 0;
part_iter->part_nums.cur = 0;
part_iter->ret_null_part = part_iter->ret_null_part_orig = true;
return -1;
}
} else
MY_ASSERT_UNREACHABLE();
can_match_multiple_values = (flags || !min_value || !max_value ||
memcmp(min_value, max_value, field_len));
if (can_match_multiple_values &&
(part_info->part_type == partition_type::RANGE ||
part_info->has_null_value)) {
/* Range scan on RANGE or LIST partitioned table */
enum_monotonicity_info monotonic;
monotonic = part_info->part_expr->get_monotonicity_info();
if (monotonic == MONOTONIC_INCREASING_NOT_NULL ||
monotonic == MONOTONIC_STRICT_INCREASING_NOT_NULL) {
/* col is NOT NULL, but F(col) can return NULL, add NULL partition */
part_iter->ret_null_part = part_iter->ret_null_part_orig = true;
check_zero_dates = true;
}
}
/*
Find minimum: Do special handling if the interval has left bound in form
" NULL <= X ":
*/
if (field->is_nullable() && part_info->has_null_value &&
!(flags & (NO_MIN_RANGE | NEAR_MIN)) && *min_value) {
part_iter->ret_null_part = part_iter->ret_null_part_orig = true;
part_iter->part_nums.start = part_iter->part_nums.cur = 0;
if (!(flags & NO_MAX_RANGE) && *max_value) {
/* The right bound is X <= NULL, i.e. it is a "X IS NULL" interval */
part_iter->part_nums.end = 0;
return 1;
}
} else {
if (flags & NO_MIN_RANGE)
part_iter->part_nums.start = part_iter->part_nums.cur = 0;
else {
/*
Store the interval edge in the record buffer, and call the
function that maps the edge in table-field space to an edge
in ordered-set-of-partitions (for RANGE partitioning) or
index-in-ordered-array-of-list-constants (for LIST) space.
*/
store_key_image_to_rec(field, min_value, field_len);
bool include_endp = !(flags & NEAR_MIN);
part_iter->part_nums.start = get_endpoint(part_info, true, include_endp);
if (!can_match_multiple_values && part_info->part_expr->null_value) {
/* col = x and F(x) = NULL -> only search NULL partition */
part_iter->part_nums.cur = part_iter->part_nums.start = 0;
part_iter->part_nums.end = 0;
part_iter->ret_null_part = part_iter->ret_null_part_orig = true;
return 1;
}
part_iter->part_nums.cur = part_iter->part_nums.start;
if (check_zero_dates && !part_info->part_expr->null_value) {
if (!(flags & NO_MAX_RANGE) && (field->type() == MYSQL_TYPE_DATE ||
field->type() == MYSQL_TYPE_DATETIME)) {
/* Monotonic, but return NULL for dates with zeros in month/day. */
zero_in_start_date = field->get_date(&start_date, 0);
DBUG_PRINT("info",
("zero start %u %04d-%02d-%02d", zero_in_start_date,
start_date.year, start_date.month, start_date.day));
}
}
if (part_iter->part_nums.start == max_endpoint_val)
return 0; /* No partitions */
}
}
/* Find maximum, do the same as above but for right interval bound */
if (flags & NO_MAX_RANGE)
part_iter->part_nums.end = max_endpoint_val;
else {
store_key_image_to_rec(field, max_value, field_len);
bool include_endp = !(flags & NEAR_MAX);
part_iter->part_nums.end = get_endpoint(part_info, false, include_endp);
if (check_zero_dates && !zero_in_start_date &&
!part_info->part_expr->null_value) {
MYSQL_TIME end_date;
bool zero_in_end_date = field->get_date(&end_date, 0);
/*
This is an optimization for TO_DAYS()/TO_SECONDS() to avoid scanning
the NULL partition for ranges that cannot include a date with 0 as
month/day.
*/
DBUG_PRINT("info", ("zero end %u %04d-%02d-%02d", zero_in_end_date,
end_date.year, end_date.month, end_date.day));
assert(!memcmp(((Item_func *)part_info->part_expr)->func_name(),
"to_days", 7) ||
!memcmp(((Item_func *)part_info->part_expr)->func_name(),
"to_seconds", 10));
if (!zero_in_end_date && start_date.month == end_date.month &&
start_date.year == end_date.year)
part_iter->ret_null_part = part_iter->ret_null_part_orig = false;
}
if (part_iter->part_nums.start >= part_iter->part_nums.end &&
!part_iter->ret_null_part)
return 0; /* No partitions */
}
return 1; /* Ok, iterator initialized */
}
/* See get_part_iter_for_interval_via_walking for definition of what this is */
#define MAX_RANGE_TO_WALK 32
/*
Partitioning Interval Analysis: Initialize iterator to walk field interval
SYNOPSIS
get_part_iter_for_interval_via_walking()
part_info Partition info
is_subpart true - act for subpartitioning
false - act for partitioning
min_value minimum field value, in opt_range key format.
max_value minimum field value, in opt_range key format.
flags Some combination of NEAR_MIN, NEAR_MAX, NO_MIN_RANGE,
NO_MAX_RANGE.
part_iter Iterator structure to be initialized
DESCRIPTION
Initialize partition set iterator to walk over interval in integer field
space. That is, for "const1 <=? t.field <=? const2" interval, initialize
the iterator to return a set of [sub]partitions obtained with the
following procedure:
get partition id for t.field = const1, return it
get partition id for t.field = const1+1, return it
... t.field = const1+2, ...
... ... ...
... t.field = const2 ...
IMPLEMENTATION
See get_partitions_in_range_iter for general description of interval
analysis. We support walking over the following intervals:
"t.field IS NULL"
"c1 <=? t.field <=? c2", where c1 and c2 are finite.
Intervals with +inf/-inf, and [NULL, c1] interval can be processed but
that is more tricky and I don't have time to do it right now.
RETURN
0 - No matching partitions, iterator not initialized
1 - Some partitions would match, iterator initialized for traversing them
-1 - All partitions would match, iterator not initialized
*/
static int get_part_iter_for_interval_via_walking(
partition_info *part_info, bool is_subpart,
uint32 *store_length_array, /* ignored */
uchar *min_value, uchar *max_value, uint min_len,
uint max_len, /* ignored */
uint flags, PARTITION_ITERATOR *part_iter) {
Field *field;
uint total_parts;
partition_iter_func get_next_func;
DBUG_TRACE;
(void)store_length_array;
(void)min_len;
(void)max_len;
part_iter->ret_null_part = part_iter->ret_null_part_orig = false;
if (is_subpart) {
field = part_info->subpart_field_array[0];
total_parts = part_info->num_subparts;
get_next_func = get_next_subpartition_via_walking;
} else {
field = part_info->part_field_array[0];
total_parts = part_info->num_parts;
get_next_func = get_next_partition_via_walking;
}
/* Handle the "t.field IS NULL" interval, it is a special case */
if (field->is_nullable() && !(flags & (NO_MIN_RANGE | NO_MAX_RANGE)) &&
*min_value && *max_value) {
/*
We don't have a part_iter->get_next() function that would find which
partition "t.field IS NULL" belongs to, so find partition that contains
NULL right here, and return an iterator over singleton set.
*/
uint32 part_id;
field->set_null();
if (is_subpart) {
if (!part_info->get_subpartition_id(part_info, &part_id)) {
init_single_partition_iterator(part_id, part_iter);
return 1; /* Ok, iterator initialized */
}
} else {
longlong dummy;
int res =
part_info->is_sub_partitioned()
? part_info->get_part_partition_id(part_info, &part_id, &dummy)
: part_info->get_partition_id(part_info, &part_id, &dummy);
if (!res) {
init_single_partition_iterator(part_id, part_iter);
return 1; /* Ok, iterator initialized */
}
}
return 0; /* No partitions match */
}
if ((field->is_nullable() &&
((!(flags & NO_MIN_RANGE) && *min_value) || // NULL <? X
(!(flags & NO_MAX_RANGE) && *max_value))) || // X <? NULL
(flags & (NO_MIN_RANGE | NO_MAX_RANGE))) // -inf at any bound
{
return -1; /* Can't handle this interval, have to use all partitions */
}
/* Get integers for left and right interval bound */
ulonglong a, b;
uint len = field->pack_length_in_rec();
store_key_image_to_rec(field, min_value, len);
a = field->val_int();
store_key_image_to_rec(field, max_value, len);
b = field->val_int();
/*
Handle a special case where the distance between interval bounds is
exactly 4G-1. This interval is too big for range walking, and if it is an
(x,y]-type interval then the following "b +=..." code will convert it to
an empty interval by "wrapping around" a + 4G-1 + 1 = a.
*/
if (b - a == ~0ULL) return -1;
if (flags & NEAR_MIN) ++a;
if (!(flags & NEAR_MAX)) ++b;
ulonglong n_values = b - a;
/*
Will it pay off to enumerate all values in the [a..b] range and evaluate
the partitioning function for every value? It depends on
1. whether we'll be able to infer that some partitions are not used
2. if time savings from not scanning these partitions will be greater
than time spent in enumeration.
We will assume that the cost of accessing one extra partition is greater
than the cost of evaluating the partitioning function O(#partitions).
This means we should jump at any chance to eliminate a partition, which
gives us this logic:
Do the enumeration if
- the number of values to enumerate is comparable to the number of
partitions, or
- there are not many values to enumerate.
*/
if ((n_values > 2 * total_parts) && n_values > MAX_RANGE_TO_WALK) return -1;
part_iter->field_vals.start = part_iter->field_vals.cur = a;
part_iter->field_vals.end = b;
part_iter->part_info = part_info;
part_iter->get_next = get_next_func;
return 1;
}
/*
PARTITION_ITERATOR::get_next implementation: enumerate partitions in range
SYNOPSIS
get_next_partition_id_range()
part_iter Partition set iterator structure
DESCRIPTION
This is implementation of PARTITION_ITERATOR::get_next() that returns
[sub]partition ids in [min_partition_id, max_partition_id] range.
The function conforms to partition_iter_func type.
RETURN
partition id
NOT_A_PARTITION_ID if there are no more partitions
*/
uint32 get_next_partition_id_range(PARTITION_ITERATOR *part_iter) {
if (part_iter->part_nums.cur >= part_iter->part_nums.end) {
if (part_iter->ret_null_part) {
part_iter->ret_null_part = false;
return 0; /* NULL always in first range partition */
}
part_iter->part_nums.cur = part_iter->part_nums.start;
part_iter->ret_null_part = part_iter->ret_null_part_orig;
return NOT_A_PARTITION_ID;
} else
return part_iter->part_nums.cur++;
}
/*
PARTITION_ITERATOR::get_next implementation for LIST partitioning
SYNOPSIS
get_next_partition_id_list()
part_iter Partition set iterator structure
DESCRIPTION
This implementation of PARTITION_ITERATOR::get_next() is special for
LIST partitioning: it enumerates partition ids in
part_info->list_array[i] (list_col_array[i*cols] for COLUMNS LIST
partitioning) where i runs over [min_idx, max_idx] interval.
The function conforms to partition_iter_func type.
RETURN
partition id
NOT_A_PARTITION_ID if there are no more partitions
*/
static uint32 get_next_partition_id_list(PARTITION_ITERATOR *part_iter) {
if (part_iter->part_nums.cur >= part_iter->part_nums.end) {
if (part_iter->ret_null_part) {
part_iter->ret_null_part = false;
return part_iter->part_info->has_null_part_id;
}
part_iter->part_nums.cur = part_iter->part_nums.start;
part_iter->ret_null_part = part_iter->ret_null_part_orig;
return NOT_A_PARTITION_ID;
} else {
partition_info *part_info = part_iter->part_info;
uint32 num_part = part_iter->part_nums.cur++;
if (part_info->column_list) {
uint num_columns = part_info->part_field_list.elements;
return part_info->list_col_array[num_part * num_columns].partition_id;
}
return part_info->list_array[num_part].partition_id;
}
}
/*
PARTITION_ITERATOR::get_next implementation: walk over field-space interval
SYNOPSIS
get_next_partition_via_walking()
part_iter Partitioning iterator
DESCRIPTION
This implementation of PARTITION_ITERATOR::get_next() returns ids of
partitions that contain records with partitioning field value within
[start_val, end_val] interval.
The function conforms to partition_iter_func type.
RETURN
partition id
NOT_A_PARTITION_ID if there are no more partitioning.
*/
static uint32 get_next_partition_via_walking(PARTITION_ITERATOR *part_iter) {
uint32 part_id;
Field *field = part_iter->part_info->part_field_array[0];
while (part_iter->field_vals.cur != part_iter->field_vals.end) {
longlong dummy;
field->store(part_iter->field_vals.cur++,
field->is_flag_set(UNSIGNED_FLAG));
if ((part_iter->part_info->is_sub_partitioned() &&
!part_iter->part_info->get_part_partition_id(part_iter->part_info,
&part_id, &dummy)) ||
!part_iter->part_info->get_partition_id(part_iter->part_info, &part_id,
&dummy))
return part_id;
}
part_iter->field_vals.cur = part_iter->field_vals.start;
return NOT_A_PARTITION_ID;
}
/* Same as get_next_partition_via_walking, but for subpartitions */
static uint32 get_next_subpartition_via_walking(PARTITION_ITERATOR *part_iter) {
Field *field = part_iter->part_info->subpart_field_array[0];
uint32 res;
if (part_iter->field_vals.cur == part_iter->field_vals.end) {
part_iter->field_vals.cur = part_iter->field_vals.start;
return NOT_A_PARTITION_ID;
}
field->store(part_iter->field_vals.cur++, field->is_flag_set(UNSIGNED_FLAG));
if (part_iter->part_info->get_subpartition_id(part_iter->part_info, &res))
return NOT_A_PARTITION_ID;
return res;
}
uint get_partition_field_store_length(Field *field) {
uint store_length;
store_length = field->key_length();
if (field->is_nullable()) store_length += HA_KEY_NULL_LENGTH;
if (field->real_type() == MYSQL_TYPE_VARCHAR)
store_length += HA_KEY_BLOB_LENGTH;
return store_length;
}
|