1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821
|
/* Copyright (c) 2000, 2025, Oracle and/or its affiliates.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is designed to work with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have either included with
the program or referenced in the documentation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
/**
@file
@brief
Create plan for a single select.
@defgroup Query_Planner Query Planner
@{
*/
#include "sql/sql_planner.h"
#include "my_config.h"
#include <float.h>
#include <limits.h>
#include <string.h>
#include <algorithm>
#include <atomic>
#include "my_base.h" // key_part_map
#include "my_bit.h" // my_count_bits
#include "my_bitmap.h"
#include "my_compiler.h"
#include "my_dbug.h"
#include "my_double2ulonglong.h"
#include "my_macros.h"
#include "sql/enum_query_type.h"
#include "sql/field.h"
#include "sql/handler.h"
#include "sql/item.h"
#include "sql/item_cmpfunc.h"
#include "sql/join_optimizer/access_path.h"
#include "sql/key.h"
#include "sql/merge_sort.h" // merge_sort
#include "sql/nested_join.h"
#include "sql/opt_costmodel.h"
#include "sql/opt_hints.h" // hint_table_state
#include "sql/opt_trace.h" // Opt_trace_object
#include "sql/opt_trace_context.h"
#include "sql/query_options.h"
#include "sql/query_result.h"
#include "sql/range_optimizer/path_helpers.h"
#include "sql/range_optimizer/range_optimizer.h"
#include "sql/sql_bitmap.h"
#include "sql/sql_class.h" // THD
#include "sql/sql_const.h"
#include "sql/sql_lex.h"
#include "sql/sql_list.h"
#include "sql/sql_opt_exec_shared.h"
#include "sql/sql_optimizer.h" // JOIN
#include "sql/sql_select.h" // JOIN_TAB
#include "sql/sql_test.h" // print_plan
#include "sql/system_variables.h"
#include "sql/table.h"
#include "sql/window.h"
#include "sql_string.h"
using std::max;
using std::min;
/**
Number of rows in a reference table when refereed through a not unique key.
This value is only used when we don't know anything about the key
distribution.
*/
static constexpr const ha_rows MATCHING_ROWS_IN_OTHER_TABLE{10};
static double prev_record_reads(JOIN *join, uint idx, table_map found_ref);
static void trace_plan_prefix(JOIN *join, uint idx, table_map excluded_tables);
static uint max_part_bit(key_part_map bits) {
uint found;
for (found = 0; bits & 1; found++, bits >>= 1)
;
return found;
}
static uint cache_record_length(JOIN *join, uint idx) {
uint length = 0;
JOIN_TAB **pos, **end;
for (pos = join->best_ref + join->const_tables, end = join->best_ref + idx;
pos != end; pos++) {
JOIN_TAB *join_tab = *pos;
if (!join_tab->used_fieldlength) // Not calculated yet
{
/*
(1) needs_rowid: we don't know if Duplicate Weedout may be
used, length will thus be inaccurate, this is acceptable.
*/
calc_used_field_length(join_tab->table(),
false, // (1)
&join_tab->used_fieldlength);
}
length += join_tab->used_fieldlength;
}
return length;
}
Optimize_table_order::Optimize_table_order(THD *thd_arg, JOIN *join_arg,
Table_ref *sjm_nest_arg)
: thd(thd_arg),
join(join_arg),
search_depth(determine_search_depth(thd->variables.optimizer_search_depth,
join->tables - join->const_tables)),
prune_level(thd->variables.optimizer_prune_level),
cur_embedding_map(0),
emb_sjm_nest(sjm_nest_arg),
excluded_tables(
(emb_sjm_nest ? (join->all_table_map & ~emb_sjm_nest->sj_inner_tables)
: 0) |
(join->allow_outer_refs ? 0 : OUTER_REF_TABLE_BIT)),
has_sj(!(join->query_block->sj_nests.empty() || emb_sjm_nest)),
test_all_ref_keys(false),
found_plan_with_allowed_sj(false),
got_final_plan(false) {}
double find_cost_for_ref(const THD *thd, TABLE *table, unsigned keyno,
double num_rows, double worst_seeks) {
// Limit the number of matched rows
num_rows = std::min(num_rows, double(thd->variables.max_seeks_for_key));
// The costs can be calculated only if the table is materialized.
if (table->pos_in_table_list->is_derived_unfinished_materialization()) {
return worst_seeks;
}
if (table->covering_keys.is_set(keyno)) {
// We can use only index tree
const Cost_estimate index_read_cost =
table->file->index_scan_cost(keyno, 1, num_rows);
return index_read_cost.total_cost();
}
if (keyno == table->s->primary_key &&
table->file->primary_key_is_clustered()) {
const Cost_estimate table_read_cost =
table->file->read_cost(keyno, 1, num_rows);
return table_read_cost.total_cost();
}
return min(table->file->page_read_cost(keyno, num_rows), worst_seeks);
}
/**
Find the best index to do 'ref' access on for a table.
The best index chosen using the following priority list
1) A clustered primary key with equality predicates on all keyparts is
always chosen.
2) A non nullable unique index with equality predicates on
all keyparts is preferred over a non-unique index,
nullable unique index or unique index where there are some
keyparts without equality predicates.
3) Otherwise, the index with best cost estimate is chosen.
As a side-effect, bound_keyparts/read_cost/fanout is set for the first
Key_use of every considered key.
@param tab the table to be joined by the function
@param remaining_tables set of tables not included in the
partial plan yet.
@param idx the index in join->position[] where 'tab'
is added to the partial plan.
@param prefix_rowcount estimate for the number of records returned
by the partial plan
@param [out] found_condition whether or not there exists a condition
that filters away rows for this table.
Always true when the function finds a
usable 'ref' access, but also if it finds
a condition that is not usable by 'ref'
access, e.g. is there is an index covering
(a,b) and there is a condition only on 'b'.
Note that all dependent tables for the
condition in question must be in the plan
prefix for this to be 'true'. Unmodified
if no relevant condition is found.
@param [out] ref_depend_map tables the best ref access depends on.
Unmodified if no 'ref' access is found.
@param [out] used_key_parts Number of keyparts 'ref' access uses.
Unmodified if no 'ref' access is found.
@return pointer to Key_use for the index with best 'ref' access, NULL if
no 'ref' access method is found.
*/
Key_use *Optimize_table_order::find_best_ref(
const JOIN_TAB *tab, const table_map remaining_tables, const uint idx,
const double prefix_rowcount, bool *found_condition,
table_map *ref_depend_map, uint *used_key_parts) {
// Skip finding best_ref if quick object is forced by hint.
if (tab->range_scan() && get_forced_by_hint(tab->range_scan()))
return nullptr;
// Return value - will point to Key_use of the index with cheapest ref access
Key_use *best_ref = nullptr;
/*
Cost of using best_ref; used to determine if ref access on another
index is cheaper. Calculated as follows:
(cost_ref_for_one_value + row_evaluate_cost(fanout_for_ref)) *
prefix_rowcount
*/
double best_ref_cost = DBL_MAX;
// Index type, note that code below relies on this element definition order
enum idx_type { CLUSTERED_PK, UNIQUE, NOT_UNIQUE, FULLTEXT };
enum idx_type best_found_keytype = NOT_UNIQUE;
TABLE *const table = tab->table();
Opt_trace_context *const trace = &thd->opt_trace;
/*
Guessing the number of distinct values in the table; used to
make "rec_per_key"-like estimates when no statistics is
available.
*/
ha_rows distinct_keys_est = tab->records() / MATCHING_ROWS_IN_OTHER_TABLE;
// Test how we can use keys
for (Key_use *keyuse = tab->keyuse(); keyuse->table_ref == tab->table_ref;) {
// keyparts that are usable for this index given the current partial plan
key_part_map found_part = 0;
// Bitmap of keyparts where the ref access is over 'keypart=const'
key_part_map const_part = 0;
// Keyparts where ref access will not match on NULL values.
// Used for unique indexes on nullable columns to decide whether
// a specific key may match on (multiple) NULL valued rows.
key_part_map null_rejecting_part = 0;
/*
Cost of ref access on current index. Calculated as follows:
cost_ref_for_one_value * prefix_rowcount
*/
double cur_read_cost;
// Fanout for ref access using this index
double cur_fanout;
uint cur_used_keyparts = 0; // number of used keyparts
// tables 'ref' access on this index depends on
table_map table_deps = 0;
const uint key = keyuse->key;
const KEY *const keyinfo = table->key_info + key;
/*
Bitmap of keyparts in this index that have a condition
"WHERE col=... OR col IS NULL"
If 'ref' access is to be used in such cases, the JT_REF_OR_NULL
type will be used.
*/
key_part_map ref_or_null_part = 0;
DBUG_PRINT("info", ("Considering ref access on key %s", keyinfo->name));
Opt_trace_object trace_access_idx(trace);
enum idx_type cur_keytype =
(keyuse->keypart == FT_KEYPART) ? FULLTEXT : NOT_UNIQUE;
// Calculate how many key segments of the current key we can use
Key_use *const start_key = keyuse;
start_key->bound_keyparts = 0; // Initially, no ref access is possible
// For each keypart
while (keyuse->table_ref == tab->table_ref && keyuse->key == key) {
const uint keypart = keyuse->keypart;
// tables the current keypart depends on
table_map cur_keypart_table_deps = 0;
double best_distinct_prefix_rowcount = DBL_MAX;
/*
Check all ways to access the keypart. There is one keyuse
object for each equality predicate for the keypart, and this
loop estimates which equality predicate is best. Example that
would have two keyuse objects for a keypart covering
t1.col_x: "WHERE t1.col_x=4 AND t1.col_x=t2.col_y"
*/
for (; keyuse->table_ref == tab->table_ref && keyuse->key == key &&
keyuse->keypart == keypart;
++keyuse) {
/*
This keyuse cannot be used if
1) it is a key reference between a table inside a semijoin
nest and one outside of it. The same applices to
materialized subqueries
2) it is a key reference to a table that is not in the plan
prefix (i.e., a table that will be later in the join
sequence)
3) there will be two ref_or_null keyparts
("WHERE col=... OR col IS NULL"). Thus if
a) the condition for an earlier keypart is of type
ref_or_null, and
b) the condition for the current keypart is ref_or_null
4) The keyuse->value is a const-NULL-value and the key
is not null_rejecting, while the index key will require a
full TABLE_SCAN on NULL keys
(Typically a NDB HASH index on a nullable column.)
*/
if ((excluded_tables & keyuse->used_tables) || // 1)
(remaining_tables & keyuse->used_tables) || // 2)
(ref_or_null_part && // 3a)
(keyuse->optimize & KEY_OPTIMIZE_REF_OR_NULL))) // 3b)
continue;
if (!(keyuse->used_tables & ~join->const_table_map)) {
// keyuse can be const-evaluated, if needed, using the const tables.
// Note that if the key is null_rejecting, it is better to still use
// the key. RefIterator 'Late NULL filtering' eliminates the Read().
if (!keyuse->null_rejecting && // 4)
keyuse->val->is_null() &&
(table->file->index_flags(key, 0, false) &
HA_TABLE_SCAN_ON_NULL)) {
continue;
}
const_part |= keyuse->keypart_map;
}
found_part |= keyuse->keypart_map;
if (keypart != FT_KEYPART) {
const bool keyinfo_maybe_null =
keyinfo->key_part[keypart].field->is_nullable() ||
tab->table()->is_nullable();
if (keyuse->null_rejecting || !keyuse->val->is_nullable() ||
!keyinfo_maybe_null)
null_rejecting_part |= keyuse->keypart_map;
}
const double cur_distinct_prefix_rowcount =
prev_record_reads(join, idx, (table_deps | keyuse->used_tables));
if (cur_distinct_prefix_rowcount < best_distinct_prefix_rowcount) {
/*
We estimate that the currently considered usage of the
keypart will have to lookup fewer distinct key
combinations from the prefix tables.
*/
cur_keypart_table_deps = keyuse->used_tables & ~join->const_table_map;
best_distinct_prefix_rowcount = cur_distinct_prefix_rowcount;
}
if (distinct_keys_est > keyuse->ref_table_rows)
distinct_keys_est = keyuse->ref_table_rows;
/*
If there is one 'key_column IS NULL' expression, we can
use this ref_or_null optimisation of this field
*/
if (keyuse->optimize & KEY_OPTIMIZE_REF_OR_NULL)
ref_or_null_part |= keyuse->keypart_map;
}
table_deps |= cur_keypart_table_deps;
}
if (distinct_keys_est < MATCHING_ROWS_IN_OTHER_TABLE) {
// Fix for small tables
distinct_keys_est = MATCHING_ROWS_IN_OTHER_TABLE;
if (tab->records() && tab->records() < distinct_keys_est)
distinct_keys_est = tab->records();
}
// fulltext indexes require special treatment
if (cur_keytype != FULLTEXT) {
*found_condition |= (0 != found_part);
const bool all_key_parts_covered =
(found_part == LOWER_BITS(key_part_map, actual_key_parts(keyinfo)));
const bool all_key_parts_non_null =
(ref_or_null_part == 0 &&
null_rejecting_part ==
LOWER_BITS(key_part_map, actual_key_parts(keyinfo)));
/*
check for the current key type.
If we find a key with all the keyparts having equality predicates and
--> if it is a clustered primary key, current key type is set to
CLUSTERED_PK.
--> if it is non-nullable unique key, it is set as UNIQUE.
--> If none of the specified key parts may result in NULL value(s)
being matched, it is set as UNIQUE.
--> otherwise its a NOT_UNIQUE keytype.
*/
if (all_key_parts_covered && (keyinfo->flags & HA_NOSAME)) {
if (key == table->s->primary_key &&
table->file->primary_key_is_clustered())
cur_keytype = CLUSTERED_PK;
else if ((keyinfo->flags & HA_NULL_PART_KEY) == 0)
cur_keytype = UNIQUE;
else if (all_key_parts_non_null)
cur_keytype = UNIQUE;
}
if (cur_keytype == UNIQUE || cur_keytype == CLUSTERED_PK)
trace_access_idx.add_alnum("access_type", "eq_ref");
else
trace_access_idx.add_alnum("access_type", "ref");
trace_access_idx.add_utf8("index", keyinfo->name);
if (cur_keytype > best_found_keytype) {
trace_access_idx.add("chosen", false)
.add_alnum("cause", "heuristic_eqref_already_found");
if (unlikely(!test_all_ref_keys))
continue;
else {
/*
key will be rejected further down, after we compute its
bound_keyparts/read_cost/fanout.
*/
}
}
// Check if we found full key
if (all_key_parts_covered && !ref_or_null_part) /* use eq key */
{
cur_used_keyparts = (uint)~0;
if (keyinfo->flags & HA_NOSAME &&
((keyinfo->flags & HA_NULL_PART_KEY) == 0 ||
all_key_parts_non_null)) {
cur_read_cost = prev_record_reads(join, idx, table_deps) *
table->cost_model()->page_read_cost(1.0);
cur_fanout = 1.0;
} else {
if (!table_deps) { /* We found a const key */
/*
ReuseRangeEstimateForRef-1:
We get here if we've found a ref(const) (c_i are constants):
"(keypart1=c1) AND ... AND (keypartN=cN)" [ref_const_cond]
If range optimizer was able to construct a "range"
access on this index, then its condition "quick_cond" was
equivalent to ref_const_cond (*), and we can re-use E(#rows)
from the range optimizer.
Proof of (*): By properties of range and ref optimizers
quick_cond will be equal or tighter than ref_const_cond.
ref_const_cond already covers "smallest" possible interval -
a singlepoint interval over all keyparts. Therefore,
quick_cond is equivalent to ref_const_cond (if it was an
empty interval we wouldn't have got here).
*/
if (table->quick_keys.is_set(key))
cur_fanout = (double)table->quick_rows[key];
else {
// quick_range couldn't use key
cur_fanout = (double)tab->records() / distinct_keys_est;
}
} else {
// Use records per key statistics if available
if (keyinfo->has_records_per_key(actual_key_parts(keyinfo) - 1)) {
cur_fanout =
keyinfo->records_per_key(actual_key_parts(keyinfo) - 1);
} else { /* Prefer longer keys */
assert(table->s->max_key_length > 0);
cur_fanout =
((double)tab->records() / (double)distinct_keys_est *
(1.0 +
((double)(table->s->max_key_length - keyinfo->key_length) /
(double)table->s->max_key_length)));
if (cur_fanout < 2.0)
cur_fanout = 2.0; /* Can't be as good as a unique */
}
/*
ReuseRangeEstimateForRef-2: We get here if we could not reuse
E(#rows) from range optimizer. Make another try:
If range optimizer produced E(#rows) for a prefix of the ref
access we're considering, and that E(#rows) is lower then our
current estimate, make an adjustment. The criteria of when we
can make an adjustment is a special case of the criteria used
in ReuseRangeEstimateForRef-3.
*/
if (table->quick_keys.is_set(key) &&
(const_part &
(((key_part_map)1 << table->quick_key_parts[key]) - 1)) ==
(((key_part_map)1 << table->quick_key_parts[key]) - 1) &&
table->quick_n_ranges[key] == 1 &&
cur_fanout > (double)table->quick_rows[key]) {
cur_fanout = (double)table->quick_rows[key];
}
}
cur_read_cost =
prefix_rowcount *
find_cost_for_ref(thd, table, key, cur_fanout, tab->worst_seeks);
}
} else if ((found_part & 1) &&
(!(table->file->index_flags(key, 0, false) &
HA_ONLY_WHOLE_INDEX) ||
all_key_parts_covered)) {
/*
Use as many key-parts as possible and a unique key is better
than a not unique key.
Set cur_fanout to (previous record count) * (records / combination)
*/
cur_used_keyparts = max_part_bit(found_part);
/*
ReuseRangeEstimateForRef-3:
We're now considering a ref[or_null] access via
(t.keypart1=e1 AND ... AND t.keypartK=eK) [ OR
(same-as-above but with one cond replaced
with "t.keypart_i IS NULL")] (**)
Try re-using E(#rows) from "range" optimizer:
We can do so if "range" optimizer used the same intervals as
in (**). The intervals used by range optimizer may be not
available at this point (as "range" access might have chosen to
create quick select over another index), so we can't compare
them to (**). We'll make indirect judgements instead.
The sufficient conditions for re-use are:
(C1) All e_i in (**) are constants, i.e. table_deps==false. (if
this is not satisfied we have no way to know which ranges
will be actually scanned by 'ref' until we execute the
join)
(C2) max #key parts in 'range' access == K == max_key_part (this
is apparently a necessary requirement)
We also have a property that "range optimizer produces equal or
tighter set of scan intervals than ref(const) optimizer". Each
of the intervals in (**) are "tightest possible" intervals when
one limits itself to using keyparts 1..K (which we do in #2).
From here it follows that range access uses either one or
both of the (I1) and (I2) intervals:
(t.keypart1=c1 AND ... AND t.keypartK=eK) (I1)
(same-as-above but with one cond replaced
with "t.keypart_i IS NULL") (I2)
The remaining part is to exclude the situation where range
optimizer used one interval while we're considering
ref-or-null and looking for estimate for two intervals. This
is done by last limitation:
(C3) "range optimizer used (have ref_or_null?2:1) intervals"
*/
if (table->quick_keys.is_set(key) && !table_deps && //(C1)
table->quick_key_parts[key] == cur_used_keyparts && //(C2)
table->quick_n_ranges[key] ==
1 + (ref_or_null_part ? 1 : 0)) //(C3)
{
cur_fanout = (double)table->quick_rows[key];
} else {
// Check if we have statistic about the distribution
if (keyinfo->has_records_per_key(cur_used_keyparts - 1)) {
cur_fanout = keyinfo->records_per_key(cur_used_keyparts - 1);
/*
Fix for the case where the index statistics is too
optimistic:
If
(1) We're considering ref(const) and there is quick select
on the same index,
(2) and that quick select uses more keyparts (i.e. it will
scan equal/smaller interval then this ref(const))
Then use E(#rows) from quick select.
One observation is that when there are multiple
indexes with a common prefix (eg (b) and (b, c)) we
are not always selecting (b, c) even when this can
use more keyparts. Inaccuracies in statistics from
the storage engines can cause the record estimate
for the quick object for (b) to be lower than the
record estimate for the quick object for (b,c).
Q: Why do we choose to use 'ref'? Won't quick select be
cheaper in some cases ?
TODO: figure this out and adjust the plan choice if needed.
*/
if (!table_deps && table->quick_keys.is_set(key) && // (1)
table->quick_key_parts[key] > cur_used_keyparts) // (2)
{
trace_access_idx.add("chosen", false)
.add_alnum("cause", "range_uses_more_keyparts");
continue;
}
} else {
/*
Assume that the first key part matches 1% of the file
and that the whole key matches 10 (duplicates) or 1
(unique) records.
Assume also that more key matches proportionally more
records
This gives the formula:
records = (x * (b-a) + a*c-b)/(c-1)
b = records matched by whole key
a = records matched by first key part (1% of all records?)
c = number of key parts in key
x = used key parts (1 <= x <= c)
*/
rec_per_key_t rec_per_key;
if (keyinfo->has_records_per_key(keyinfo->user_defined_key_parts -
1))
rec_per_key =
keyinfo->records_per_key(keyinfo->user_defined_key_parts - 1);
else
rec_per_key =
rec_per_key_t(tab->records()) / distinct_keys_est + 1;
double tmp_fanout;
if (tab->records() == 0)
tmp_fanout = 0.0;
else if (rec_per_key / tab->records() >= 0.01)
tmp_fanout = rec_per_key;
else {
const double a = tab->records() * 0.01;
if (keyinfo->user_defined_key_parts > 1)
tmp_fanout =
(cur_used_keyparts * (rec_per_key - a) +
a * keyinfo->user_defined_key_parts - rec_per_key) /
(keyinfo->user_defined_key_parts - 1);
else
tmp_fanout = a;
tmp_fanout = std::max(tmp_fanout, 1.0);
}
cur_fanout = (ulong)tmp_fanout;
}
if (ref_or_null_part) {
// We need to do two key searches to find key
cur_fanout *= 2.0;
}
/*
ReuseRangeEstimateForRef-4: We get here if we could not reuse
E(#rows) from range optimizer. Make another try:
If range optimizer produced E(#rows) for a prefix of the ref
access we're considering, and that E(#rows) is lower then our
current estimate, make the adjustment.
The decision whether we can re-use the estimate from the range
optimizer is the same as in ReuseRangeEstimateForRef-3,
applied to first table->quick_key_parts[key] key parts.
*/
if (table->quick_keys.is_set(key) &&
table->quick_key_parts[key] <= cur_used_keyparts &&
const_part & ((key_part_map)1 << table->quick_key_parts[key]) &&
table->quick_n_ranges[key] ==
1 + ((ref_or_null_part & const_part) ? 1 : 0) &&
cur_fanout > (double)table->quick_rows[key]) {
cur_fanout = (double)table->quick_rows[key];
}
}
cur_read_cost =
prefix_rowcount *
find_cost_for_ref(thd, table, key, cur_fanout, tab->worst_seeks);
} else {
// No useful predicates on the first keypart; cannot use key
trace_access_idx.add("usable", false).add("chosen", false);
continue;
}
} else {
// This is a full-text index
trace_access_idx.add_alnum("access_type", "fulltext")
.add_utf8("index", keyinfo->name);
if (best_found_keytype < NOT_UNIQUE) {
trace_access_idx.add("chosen", false)
.add_alnum("cause", "heuristic_eqref_already_found");
// Ignore test_all_ref_keys, semijoin loosescan never uses fulltext
continue;
}
// Actually it should be cur_fanout=0.0 (yes!) but 1.0 is probably safer
cur_read_cost = prev_record_reads(join, idx, table_deps) *
table->cost_model()->page_read_cost(1.0);
cur_fanout = 1.0;
}
start_key->bound_keyparts = found_part;
start_key->fanout = cur_fanout;
start_key->read_cost = cur_read_cost;
const double cur_ref_cost =
cur_read_cost +
prefix_rowcount * join->cost_model()->row_evaluate_cost(cur_fanout);
trace_access_idx.add("rows", cur_fanout).add("cost", cur_ref_cost);
/*
The current index usage is better than the best index usage found
so far if:
1) The access type for the best index and the current index is
FULLTEXT or REF, and the current index has a lower cost
2) The access type is the same for the best index and the
current index, and the current index has a lower cost
(ie, both indexes are UNIQUE)
3) The access type of the current index is better than
that of the best index (EQ_REF better than REF, Clustered PK
better than EQ_REF etc)
*/
bool new_candidate = false;
if (best_found_keytype >= NOT_UNIQUE && cur_keytype >= NOT_UNIQUE)
new_candidate = cur_ref_cost < best_ref_cost; // 1
else if (best_found_keytype == cur_keytype)
new_candidate = cur_ref_cost < best_ref_cost; // 2
else if (best_found_keytype > cur_keytype)
new_candidate = true; // 3
if (new_candidate) {
*ref_depend_map = table_deps;
*used_key_parts = cur_used_keyparts;
best_ref = start_key;
best_ref_cost = cur_ref_cost;
best_found_keytype = cur_keytype;
}
trace_access_idx.add("chosen", best_ref == start_key);
if (best_found_keytype == CLUSTERED_PK) {
trace_access_idx.add_alnum("cause", "clustered_pk_chosen_by_heuristics");
if (unlikely(!test_all_ref_keys)) break;
}
} // for each key
return best_ref;
}
/**
Calculate the cost of range/table/index scanning table 'tab'.
Returns a hybrid scan cost number: the cost of fetching rows from
the storage engine plus CPU cost during execution for evaluating the
rows (estimate) that will be filtered out by predicates relevant to
the table. The cost does not include the CPU cost during execution
for rows that are not filtered out.
This hybrid cost is needed because if join buffering is used to
reduce the number of scans, then the final cost depends on how many
times the join buffer had to be filled.
@param tab the table to be joined by the function
@param idx the index in join->position[] where 'tab'
is added to the partial plan.
@param best_ref description of the best ref access method
for 'tab'
@param prefix_rowcount estimate for the number of records returned
by the partial plan
@param found_condition whether or not there exists a condition
that filters away rows for this table.
@see find_best_ref()
@param disable_jbuf don't use join buffering if true
@param[out] rows_after_filtering fanout of the access method after taking
condition filtering into account
@param trace_access_scan The optimizer trace object info is appended to
@return Cost of fetching rows from the storage
engine plus CPU execution cost of the
rows that are estimated to be filtered out
by query conditions.
*/
double Optimize_table_order::calculate_scan_cost(
const JOIN_TAB *tab, const uint idx, const Key_use *best_ref,
const double prefix_rowcount, const bool found_condition,
const bool disable_jbuf, double *rows_after_filtering,
Opt_trace_object *trace_access_scan) {
double scan_and_filter_cost;
TABLE *const table = tab->table();
const Cost_model_server *const cost_model = join->cost_model();
*rows_after_filtering = static_cast<double>(tab->found_records);
trace_access_scan->add("rows_to_scan", tab->found_records);
/*
This block should only affect the cost of scans using join
buffering. Consider moving it to the if () block that handles join
buffering.
*/
if (thd->optimizer_switch_flag(OPTIMIZER_SWITCH_COND_FANOUT_FILTER)) {
const float const_cond_filter = calculate_condition_filter(
tab, nullptr, 0, static_cast<double>(tab->found_records), !disable_jbuf,
true, *trace_access_scan);
/*
For high found_records values, multiplication by float may
result in a higher value than the original for
const_cond_filter=1.0. Cast to double to increase precision.
*/
*rows_after_filtering = rows2double(tab->found_records) * const_cond_filter;
} else if (table->quick_condition_rows != tab->found_records)
*rows_after_filtering = static_cast<double>(table->quick_condition_rows);
else if (found_condition) {
/*
If there is a filtering condition on the table (i.e. ref
analyzer found at least one "table.keyXpartY= exprZ", where
exprZ refers only to tables preceding this table in the join
order we're now considering), and optimizer condition filtering
is turned off, then assume that 25% of the rows will be filtered
out by this condition.
This heuristic is supposed to force tables used in exprZ to be
before this table in join order.
*/
*rows_after_filtering = tab->found_records * 0.75;
}
/*
Range optimizer never proposes a RANGE if it isn't better
than FULL: so if RANGE is present, it's always preferred to FULL.
Here we estimate its cost.
*/
if (tab->range_scan()) {
trace_access_scan->add_alnum("access_type", "range");
trace_quick_description(tab->range_scan(), &thd->opt_trace);
/*
For each record we:
- read record range through 'quick'
- skip rows which does not satisfy WHERE constraints
TODO:
We take into account possible use of join cache for ALL/index
access (see first else-branch below), but we don't take it into
account here for range/index_merge access. Find out why this is so.
*/
scan_and_filter_cost =
prefix_rowcount * (tab->range_scan()->cost +
cost_model->row_evaluate_cost(
tab->found_records - *rows_after_filtering));
} else {
trace_access_scan->add_alnum("access_type", "scan");
// Cost of scanning the table once
Cost_estimate scan_cost;
if (table->force_index && !best_ref) // index scan
scan_cost = table->file->read_cost(tab->ref().key, 1,
static_cast<double>(tab->records()));
else
scan_cost = table->file->table_scan_cost(); // table scan
const double single_scan_read_cost = scan_cost.total_cost();
/* Estimate total cost of reading table. */
if (disable_jbuf) {
/*
For each record from the prefix we have to:
- read the whole table
- skip rows which does not satisfy join condition
Note that there is also the cost of evaluating rows that DO
satisfy the WHERE condition, but this is added
a) temporarily in best_access_path(), before comparing this
scan cost to the best 'ref' access method, and
b) permanently by the caller of best_access_path() (@see e.g.
best_extension_by_limited_search())
*/
scan_and_filter_cost =
prefix_rowcount *
(single_scan_read_cost + cost_model->row_evaluate_cost(
tab->records() - *rows_after_filtering));
} else {
/*
IO cost: We read the table as many times as join buffer
becomes full. (It would be more exact to round the result of
the division with floor(), but that takes 5% of time in a
20-table query plan search.)
CPU cost: For every full join buffer, attached conditions are
evaluated for each row in the scanned table. We assume that
the conditions evaluate to 'true' for 'rows_after_filtering'
number of rows. The rows that pass are then joined with the
prefix rows.
The CPU cost for the rows that do NOT satisfy the attached
conditions is considered to be part of the read cost and is
added below. The cost of joining the rows that DO satisfy the
attached conditions with all prefix rows is added in
greedy_search().
*/
const double buffer_count =
1.0 + ((double)cache_record_length(join, idx) * prefix_rowcount /
(double)thd->variables.join_buff_size);
scan_and_filter_cost =
buffer_count *
(single_scan_read_cost + cost_model->row_evaluate_cost(
tab->records() - *rows_after_filtering));
trace_access_scan->add("using_join_cache", true);
trace_access_scan->add(
"buffers_needed",
static_cast<ulonglong>(std::min(buffer_count, ULLONG_MAX_DOUBLE)));
}
}
return scan_and_filter_cost;
}
/**
If table is a lateral derived table, calculates the "cost of
materialization", which is the cost of a single materialization (available
in the DT's underlying JOIN final plan) multiplied by the number of rows
output by the last-in-plan table which DT references (available in a
POSITION structure). For example if plan is
t1 (outputs 2 rows) - t2 (outputs 20 rows) - dt
and dt's definition references only t1, we multiply by 2, not by 20.
This cost is divided by the number of times the DT will be read (20, here),
to provide a number which best_access_path() can add to best_read_cost.
*/
double Optimize_table_order::lateral_derived_cost(
const JOIN_TAB *tab, const uint idx, const double prefix_rowcount,
const Cost_model_server *cost_model) {
assert(tab->table_ref->is_derived() &&
tab->table_ref->derived_query_expression()->m_lateral_deps);
if (prefix_rowcount == 0) // no input rows: no materialization needed
return 0;
table_map deps = tab->table_ref->derived_query_expression()->m_lateral_deps;
POSITION *positions = got_final_plan ? join->best_positions : join->positions;
double derived_mat_cost = 0;
for (int j = idx; j >= (int)join->const_tables; j--) {
if (deps & join->best_ref[j]->table_ref->map()) {
// We found the last table in plan, on which 'tab' depends.
auto res = tab->table_ref->derived_query_expression()->query_result();
double inner_query_cost = res->estimated_cost;
double inner_query_rowcount = res->estimated_rowcount;
// copied and simplified from calculate_materialization_costs()
Cost_model_server::enum_tmptable_type tmp_table_type;
if (tab->table()->s->reclength * inner_query_rowcount <
thd->variables.max_heap_table_size)
tmp_table_type = Cost_model_server::MEMORY_TMPTABLE;
else
tmp_table_type = Cost_model_server::DISK_TMPTABLE;
double write_cost = cost_model->tmptable_readwrite_cost(
tmp_table_type, inner_query_rowcount, 0.0);
double mat_times = positions[j].prefix_rowcount;
double total_mat_cost = mat_times * (inner_query_cost + write_cost);
// average per read request:
derived_mat_cost = total_mat_cost / prefix_rowcount;
Opt_trace_context *const trace = &thd->opt_trace;
Opt_trace_object trace_lateral(trace);
Opt_trace_object trace_details(trace, "lateral_materialization");
trace_details.add("cost_for_one_run_of_inner_query", inner_query_cost)
.add("cost_for_writing_to_tmp_table", write_cost)
.add("count_of_runs", mat_times)
.add("total_cost", total_mat_cost)
.add("cost_per_read", derived_mat_cost);
break;
}
}
return derived_mat_cost;
}
/**
Find the best access path for an extension of a partial execution
plan and add this path to the plan.
The function finds the best access path to table 'tab' from the
passed partial plan where an access path is the general term for any
means to access the data in 'tab'. An access path may use either an
index scan, a table scan, a range scan or ref access, whichever is
cheaper. The input partial plan is passed via the array
'join->positions' of length 'idx'. The chosen access method for
'tab' and its cost is stored in 'join->positions[idx]'.
@param tab the table to be joined by the function
@param remaining_tables set of tables not included in the partial plan yet.
@param idx the index in join->position[] where 'tab' is added
to the partial plan.
@param disable_jbuf true<=> Don't use join buffering
@param prefix_rowcount estimate for the number of records returned by the
partial plan
@param[out] pos Table access plan
*/
void Optimize_table_order::best_access_path(JOIN_TAB *tab,
const table_map remaining_tables,
const uint idx, bool disable_jbuf,
const double prefix_rowcount,
POSITION *pos) {
bool found_condition = false;
bool best_uses_jbuf = false;
Opt_trace_context *const trace = &thd->opt_trace;
TABLE *const table = tab->table();
const Cost_model_server *const cost_model = join->cost_model();
float filter_effect = 1.0;
thd->m_current_query_partial_plans++;
/*
Cannot use join buffering if either
1. This is the first table in the join sequence, or
2. Join buffering is not enabled
(Only Block Nested Loop is considered in this context)
3. If first-dependency-of-remaining-lateral-table < table-we-plan-for.
Reason for 3: @see setup_join_buffering().
*/
disable_jbuf =
disable_jbuf || idx == join->const_tables || // 1
!hint_table_state(join->thd, tab->table_ref, // 2
BNL_HINT_ENUM, OPTIMIZER_SWITCH_BNL) ||
join->deps_of_remaining_lateral_derived_tables & ~remaining_tables; // 3
DBUG_TRACE;
Opt_trace_object trace_wrapper(trace, "best_access_path");
Opt_trace_array trace_paths(trace, "considered_access_paths");
// The 'ref' access method with lowest cost as found by find_best_ref()
Key_use *best_ref = nullptr;
table_map ref_depend_map = 0;
uint used_key_parts = 0;
// Look for the best ref access if the storage engine supports index access.
if (tab->keyuse() != nullptr &&
(table->file->ha_table_flags() & HA_NO_INDEX_ACCESS) == 0)
best_ref =
find_best_ref(tab, remaining_tables, idx, prefix_rowcount,
&found_condition, &ref_depend_map, &used_key_parts);
double rows_fetched = best_ref ? best_ref->fanout : DBL_MAX;
/*
Cost of executing the best access method prefix_rowcount
number of times
*/
double best_read_cost = best_ref ? best_ref->read_cost : DBL_MAX;
double derived_mat_cost =
(tab->table_ref->is_derived() &&
tab->table_ref->derived_query_expression()->m_lateral_deps)
? lateral_derived_cost(tab, idx, prefix_rowcount, cost_model)
: 0;
Opt_trace_object trace_access_scan(trace);
/*
Don't test table scan if it can't be better.
Prefer key lookup if we would use the same key for scanning.
Don't do a table scan on InnoDB tables, if we can read the used
parts of the row from any of the used index.
This is because table scans uses index and we would not win
anything by using a table scan. The only exception is INDEX_MERGE
quick select. We can not say for sure that INDEX_MERGE quick select
is always faster than ref access. So it's necessary to check if
ref access is more expensive.
We do not consider index/table scan or range access if:
1a) The best 'ref' access produces fewer records than a table scan
(or index scan, or range access), and
1b) The best 'ref' executed for all partial row combinations, is
cheaper than a single scan. The rationale for comparing
COST(ref_per_partial_row) * E(#partial_rows)
vs
COST(single_scan)
is that if join buffering is used for the scan, then scan will
not be performed E(#partial_rows) times, but
E(#partial_rows)/E(#partial_rows_fit_in_buffer). At this point
in best_access_path() we don't know this ratio, but it is
somewhere between 1 and E(#partial_rows). To avoid
overestimating the total cost of scanning, the heuristic used
here has to assume that the ratio is 1. A more fine-grained
cost comparison will be done later in this function.
(2) The best way to perform table or index scan is to use 'range' access
using index IDX. If it is a 'tight range' scan (i.e not a loose index
scan' or 'index merge'), then ref access on the same index will
perform equal or better if ref access can use the same or more number
of key parts.
(3) See above note about InnoDB.
(4) NOT ("FORCE INDEX(...)" is used for table and there is 'ref' access
path, but there is no quick select)
If the condition in the above brackets holds, then the only possible
"table scan" access method is ALL/index (there is no quick select).
Since we have a 'ref' access path, and FORCE INDEX instructs us to
choose it over ALL/index, there is no need to consider a full table
scan.
*/
if (rows_fetched < tab->found_records && // (1a)
best_read_cost <= tab->read_time) // (1b)
{
// "scan" means (full) index scan or (full) table scan.
if (tab->range_scan()) {
trace_access_scan.add_alnum("access_type", "range");
trace_quick_description(tab->range_scan(), &thd->opt_trace);
} else
trace_access_scan.add_alnum("access_type", "scan");
trace_access_scan
.add("cost",
tab->read_time + cost_model->row_evaluate_cost(
static_cast<double>(tab->found_records)))
.add("rows", tab->found_records)
.add("chosen", false)
.add_alnum("cause", "cost");
} else if (tab->range_scan() && best_ref && // (2)
used_index(tab->range_scan()) == best_ref->key && // (2)
best_ref->key != MAX_KEY &&
used_key_parts >= table->quick_key_parts[best_ref->key] && // (2)
tab->range_scan()->type != AccessPath::GROUP_INDEX_SKIP_SCAN &&
tab->range_scan()->type != AccessPath::INDEX_SKIP_SCAN) // (2)
{
trace_access_scan.add_alnum("access_type", "range");
trace_quick_description(tab->range_scan(), &thd->opt_trace);
trace_access_scan.add("chosen", false)
.add_alnum("cause", "heuristic_index_cheaper");
} else if ((table->file->ha_table_flags() & HA_TABLE_SCAN_ON_INDEX) && //(3)
!table->covering_keys.is_clear_all() && best_ref && //(3)
(!tab->range_scan() || //(3)
(tab->range_scan()->type ==
AccessPath::ROWID_INTERSECTION && //(3)
best_ref->read_cost < tab->range_scan()->cost))) //(3)
{
if (tab->range_scan()) {
trace_access_scan.add_alnum("access_type", "range");
trace_quick_description(tab->range_scan(), &thd->opt_trace);
} else
trace_access_scan.add_alnum("access_type", "scan");
trace_access_scan.add("chosen", false)
.add_alnum("cause", "covering_index_better_than_full_scan");
} else if ((table->force_index && best_ref && !tab->range_scan())) // (4)
{
trace_access_scan.add_alnum("access_type", "scan")
.add("chosen", false)
.add_alnum("cause", "force_index");
} else {
/*
None of the heuristics found that table/index/range scan is
obviously more expensive than 'ref' access. The 'ref' cost
therefore has to be compared to the cost of scanning.
*/
double rows_after_filtering;
double scan_read_cost = calculate_scan_cost(
tab, idx, best_ref, prefix_rowcount, found_condition, disable_jbuf,
&rows_after_filtering, &trace_access_scan);
/*
We estimate the cost of evaluating WHERE clause for found
records as row_evaluate_cost(prefix_rowcount * rows_after_filtering).
This cost plus scan_cost gives us total cost of using
TABLE/INDEX/RANGE SCAN.
*/
const double scan_total_cost =
scan_read_cost +
cost_model->row_evaluate_cost(prefix_rowcount * rows_after_filtering);
trace_access_scan.add("resulting_rows", rows_after_filtering);
trace_access_scan.add("cost", scan_total_cost);
if (best_ref == nullptr ||
(scan_total_cost <
best_read_cost +
cost_model->row_evaluate_cost(prefix_rowcount * rows_fetched))) {
/*
If the table has a range (tab->quick is set) make_join_query_block()
will ensure that this will be used
*/
best_read_cost = scan_read_cost;
rows_fetched = rows_after_filtering;
if (tab->found_records) {
/*
Although join buffering may be used for this table, this
filter calculation is not done to calculate the cost of join
buffering itself (that is done inside
calculate_scan_cost()). The is_join_buffering parameter is
therefore 'false'.
*/
const float full_filter = calculate_condition_filter(
tab, nullptr, ~remaining_tables & ~excluded_tables,
static_cast<double>(tab->found_records), false, false,
trace_access_scan);
filter_effect = static_cast<float>(std::min(
1.0, tab->found_records * full_filter / rows_after_filtering));
}
best_ref = nullptr;
best_uses_jbuf = !disable_jbuf;
ref_depend_map = 0;
}
trace_access_scan.add("chosen", best_ref == nullptr);
}
/*
Storage engines that track exact sizes may report an empty table
as having row count equal to 0.
If this table is an inner table of an outer join, adjust row count to 1,
so that the join planner can make a better fanout calculation for
the remaining tables of the join. (With size 0, the fanout would always
become 0, meaning that the cost of adding one more table would also
become 0, regardless of access method).
*/
if (rows_fetched == 0.0 &&
(join->query_block->outer_join & tab->table_ref->map()))
rows_fetched = 1.0;
/*
Do not calculate condition filtering unless 'ref' access is
chosen. The filtering effect for all the scan types of access
(range/index scan/table scan) has already been calculated.
*/
if (best_ref)
filter_effect = calculate_condition_filter(
tab, best_ref, ~remaining_tables & ~excluded_tables, rows_fetched,
false, false, trace_access_scan);
best_read_cost += derived_mat_cost;
pos->filter_effect = filter_effect;
pos->rows_fetched = rows_fetched;
pos->read_cost = best_read_cost;
pos->key = best_ref;
pos->table = tab;
pos->ref_depend_map = ref_depend_map;
pos->loosescan_key = MAX_KEY;
pos->use_join_buffer = best_uses_jbuf;
if (!best_ref && idx == join->const_tables && table == join->sort_by_table &&
join->query_expression()->select_limit_cnt >= rows_fetched) {
trace_access_scan.add("use_tmp_table", true);
join->sort_by_table = (TABLE *)1; // Must use temporary table
}
if (!got_final_plan) {
/*
Since we have decided the table order up to 'tab', we store the
lateral dependencies of the remaining tables so that we do not
need to calculate it again.
*/
pos->set_suffix_lateral_deps(
join->deps_of_remaining_lateral_derived_tables);
}
}
float calculate_condition_filter(const JOIN_TAB *const tab,
const Key_use *const keyuse,
table_map used_tables, double fanout,
bool is_join_buffering, bool write_to_trace,
Opt_trace_object &parent_trace) {
/*
Because calculating condition filtering has a cost, it should only
be done if the filter is meaningful. It is meaningful if the query
is an EXPLAIN, if a max_join_size has been specified, or if the
filter may influence the QEP.
Note that this means that EXPLAIN FOR CONNECTION will typically
not find a calculated filtering value for the last table in a QEP
(i.e., it will be 1.0).
Calculate condition filter if
1) Condition filtering is enabled, and
2a) Condition filtering is about to be calculated for a scan that
might do join buffering. Rationale: When a table is scanned
and joined with rows in a buffer, constant predicates are
evaluated on rows in the joined table. Only rows that pass the
constant predicates are attempted joined with the prefix rows
in the buffer. The filtering effect is the estimate of how
many rows pass the constant predicate evaluation.
2b) 'tab' is not the last table that will be added to the plan.
Rationale: filtering only reduces the number of rows sent to
the next step in the join ordering and therefore has no effect
on the last table in the join order, or
2c) 'tab' is in a subselect. Rationale: for subqueries, view/table
materializations, the filtering effect is needed to
estimate the number of rows in the potentially materialized
subquery, or
2d) 'tab' is in a query_block with a semijoin nest. Rationale: the
cost of some of the duplicate elimination strategies depends
on the size of the output, or
2e) The query has either an order by or group by clause and a limit clause.
Rationale: some of the limit optimizations take the filtering effect
on the last table into account.
2f) Statement is EXPLAIN
2g) max_join_size is in effect.
Note: Even in the case of a single table query, the filtering
effect may effect the QEP because the cost of sorting fewer rows
is lower. This is currently ignored since single table
optimization performance is so important.
*/
const THD *thd = tab->join()->thd;
TABLE *const table = tab->table();
const table_map remaining_tables =
~used_tables & ~tab->table_ref->map() & tab->join()->all_table_map;
if (!(thd->optimizer_switch_flag(
OPTIMIZER_SWITCH_COND_FANOUT_FILTER) && // 1)
(is_join_buffering || // 2a
remaining_tables != 0 || // 2b
tab->join()
->query_block->master_query_expression()
->outer_query_block() != nullptr || // 2c
!tab->join()->query_block->sj_nests.empty() || // 2d
((!tab->join()->order.empty() || !tab->join()->group_list.empty()) &&
tab->join()->query_expression()->select_limit_cnt !=
HA_POS_ERROR) || // 2e
thd->lex->is_explain() || // 2f
!Overlaps(thd->variables.option_bits, OPTION_BIG_SELECTS) // 2g
)))
return COND_FILTER_ALLPASS;
// No filtering is calculated if we expect less than one row to be fetched
if (fanout < 1.0 || tab->found_records < 1.0 || tab->records() < 1.0)
return COND_FILTER_ALLPASS;
/*
cond_set has the column bit set for each column involved in a
predicate. If no bits are set, there are no predicates on this
table.
*/
if (bitmap_is_clear_all(&table->cond_set)) return COND_FILTER_ALLPASS;
/*
Use TABLE::tmp_set to keep track of fields that should not
contribute to filtering effect.
First, verify it's not used.
*/
assert(bitmap_is_clear_all(&table->tmp_set));
float filter = COND_FILTER_ALLPASS;
Opt_trace_context *const trace = &tab->join()->thd->opt_trace;
Opt_trace_disable_I_S disable_trace(trace, !write_to_trace);
Opt_trace_array filtering_effect_trace(trace, "filtering_effect");
/*
If ref/range access, the condition is already included in the
record estimate. The fields used by the ref/range access method
shall not contribute to the filtering estimate since 'filter' is
percentage of fetched rows that are filtered away.
*/
if (keyuse) {
const KEY *key = table->key_info + keyuse->key;
if (keyuse[0].keypart == FT_KEYPART) {
/*
Fulltext indexes are special because keyuse->keypart does not
contain the keypart number but a constant (FT_KEYPART)
defining that it is a fulltext index. However, since fulltext
search demands that all indexed keyparts are used, iterating
over the next 'actual_key_parts' works.
*/
for (uint i = 0; i < key->actual_key_parts; i++)
bitmap_set_bit(&table->tmp_set, key->key_part[i].field->field_index());
} else {
const Key_use *curr_ku = keyuse;
/*
'keyuse' describes the chosen ref access method for 'tab'. It
is a pointer into JOIN::keyuse_array which describes all
possible ways to perform ref access for all indexes of all
tables. E.g., keyuse for the index "t1.idx(kp1, kp2)" and
query condition
"WHERE t1.kp1=1 AND t1.kp1=t2.col AND t1.kp2=2"
will be
[keyuse(t1.kp1,1),keyuse(t1.kp1,t2.col),keyuse(t1.kp2,2)]
1) Since there may be multiple ways to ref-access any index it
is not enough to look at keyuse[0..actual_key_parts-1].
Instead, stop iterating when curr_ku no longer points to the
specified index in 'tab'.
2) In addition, there may be predicates that are relevant for
an index but that will not be used by the 'ref' access (the
keypart is not bound). This could e.g. be because the
predicate depends on a value from a table later in the join
sequence or because there is ref_or_null access:
"WHERE t1.kp1=1 AND t1.kp2=t2.col"
=> t1.kp2 not used by ref since it depends on
table later in join sequenc
"WHERE (t1.kp1=1 OR t1.kp1 IS NULL) AND t1.kp2=2"
=> t1.kp2 not used by ref since kp1 is ref_or_null
*/
while (curr_ku->table_ref == tab->table_ref && // 1)
curr_ku->key == keyuse->key && // 1)
curr_ku->keypart_map & keyuse->bound_keyparts) // 2)
{
bitmap_set_bit(&table->tmp_set,
key->key_part[curr_ku->keypart].field->field_index());
curr_ku++;
}
}
} else if (tab->range_scan())
get_fields_used(tab->range_scan(), &table->tmp_set);
/*
Early exit if the only conditions for the table refers to columns
used by the access method.
*/
if (bitmap_is_subset(&table->cond_set, &table->tmp_set)) {
assert(filter == COND_FILTER_ALLPASS);
goto cleanup;
}
/*
If the range optimizer has made row estimates for predicates that
are not used by the chosen access method, the estimate from the
range optimizer is used as filtering effect for those fields. We
do this because the range optimizer is more accurate than index
statistics.
*/
if (!table->quick_keys.is_clear_all()) {
char buf[MAX_FIELDS / 8];
my_bitmap_map *bitbuf =
static_cast<my_bitmap_map *>(static_cast<void *>(&buf));
MY_BITMAP fields_current_quick;
for (uint keyno = 0; keyno < table->s->keys; keyno++) {
if (table->quick_keys.is_set(keyno)) {
// The range optimizer made a row estimate for this index
bitmap_init(&fields_current_quick, bitbuf, table->s->fields);
const KEY *key = table->key_info + keyno;
for (uint i = 0; i < table->quick_key_parts[keyno]; i++)
bitmap_set_bit(&fields_current_quick,
key->key_part[i].field->field_index());
/*
If any of the fields used to get the rows estimate for this
index were used to get a rows estimate for another index
already contributing to 'filter', or by the access method we
ignore it.
*/
if (bitmap_is_overlapping(&table->tmp_set, &fields_current_quick))
continue;
bitmap_union(&table->tmp_set, &fields_current_quick);
const float selectivity = static_cast<float>(table->quick_rows[keyno]) /
static_cast<float>(tab->records());
// Cannot possible access more rows than there are in the table
filter *= std::min(selectivity, 1.0f);
}
}
}
/*
Filtering effect for predicates that can be gathered from the
range optimizer is now reflected in 'filter', and the fields of
those predicates are set in 'tmp_set' to avoid that a
single predicate contributes twice to 'filter'.
Only calculate the filtering effect if
1) There are query conditions, and
2) At least one of the query conditions affect a field that is not
going to be ignored in 'tab'. In other words, there has to
exist a condition on a field that is not used by the ref/range
access method.
*/
if (tab->join()->where_cond && // 1)
!bitmap_is_subset(&table->cond_set, &table->tmp_set)) // 2)
{
/*
Get filtering effect for predicates that are not already
reflected in 'filter'. The below call gets this filtering effect
based on index statistics and guesstimates.
*/
filter *= tab->join()->where_cond->get_filtering_effect(
tab->join()->thd, tab->table_ref->map(), used_tables, &table->tmp_set,
static_cast<double>(tab->records()));
}
/*
Cost calculations and picking the right join order assumes that a
positive number of output rows from each joined table. We assume
that at least one row in the table match the condition. Not all
code is able to cope with estimates of less than one row. (For
example, DupsWeedout may include extra tables in its
duplicate-eliminating range in such cases.)
*/
filter = max(filter, 1.0f / tab->records());
/*
For large tables, the restriction above may still give very small
numbers when calculating fan-out. The code below makes sure that
there is a lower limit on fan-out.
TODO: Should evaluate whether this restriction makes sense. It
can cause the estimated size of the result set to be
different for different join orders. However, some unwanted
effects on DBT-3 was observed when removing it, so keeping
it for now.
*/
if ((filter * fanout) < 0.05F) filter = 0.05F / static_cast<float>(fanout);
cleanup:
filtering_effect_trace.end();
parent_trace.add("final_filtering_effect", filter);
// Clear tmp_set so it can be used elsewhere
bitmap_clear_all(&table->tmp_set);
assert(filter >= 0.0F && filter <= 1.0F);
return filter;
}
/**
Returns a bitmap of bound semi-join equalities.
If we consider (oe1, .. oeN) IN (SELECT ie1, .. ieN) then ieK=oeK is
called sj-equality. If ieK or oeK depends only on tables available before
'tab' in this plan, then such equality is called "bound".
@param tab table
@param not_available_tables bitmap of not-available tables.
*/
static ulonglong get_bound_sj_equalities(const JOIN_TAB *tab,
table_map not_available_tables) {
ulonglong bound_sj_equalities = 0;
auto it_o = tab->emb_sj_nest->nested_join->sj_outer_exprs.begin();
auto it_i = tab->emb_sj_nest->nested_join->sj_inner_exprs.begin();
for (uint i = 0; it_o != tab->emb_sj_nest->nested_join->sj_outer_exprs.end();
++i, ++it_o, ++it_i) {
Item *outer = *it_o, *inner = *it_i;
if (!((not_available_tables)&outer->used_tables())) {
bound_sj_equalities |= 1ULL << i;
continue;
}
/*
Now we look at equality propagation, to discover that a semi-join
equality is bound, when the outer or inner expression is a field
involved in some other non-semi-join equality.
For example (propagation with inner field):
select * from t2 where (b+0,a+0) in (select a,b from t1 where a=3);
if the plan is t1-t2, 1st sj equality is bound, even though the
corresponding outer expression t2.b+0 refers to 't2' which is not yet
available.
Other example (propagation with outer field):
select * from t2 as t3, t2
where t2.filler=t3.filler and
(t2.b,t2.a,t2.filler) in (select a,b,a*3 from t1);
if the plan is t3-t1-t2, 3rd sj equality is bound.
We locate the relevant multiple equalities for the field. They are in
the COND_EQUAL of the join nest which embeds the field's table. For
example:
select * from t1 left join t1 as t2
on (t2.a= t1.a and (t2.a,t2.b) in (select a,b from t1 as t3))
here we have:
- a join nest (t2,t3) (called "wrap-nest"), which has a COND_EQUAL
containing, among others: t2.a=t1.a
- no COND_EQUAL for the WHERE clause.
If the plan is t1-t3-t2, by looking at t2.a=t1.a we can deduce that
the first semi join equality is bound.
*/
Item *item;
if (outer->type() == Item::FIELD_ITEM)
item = outer;
else if (inner->type() == Item::FIELD_ITEM)
item = inner;
else
continue;
Item_field *const item_field = static_cast<Item_field *>(item);
Item_equal *item_equal = item_field->item_equal;
if (!item_equal) {
Table_ref *const nest = item_field->table_ref->outer_join_nest();
item_equal = item_field->find_item_equal(nest ? nest->cond_equal
: tab->join()->cond_equal);
}
if (item_equal) {
/*
If the multiple equality {[optional_constant,] col1, col2...} contains
(1) a constant
(2) or a column from an available table
then the semi-join equality is bound.
*/
if (item_equal->const_arg() || // (1)
(item_equal->used_tables() & ~not_available_tables)) // (2)
bound_sj_equalities |= 1ULL << i;
}
}
return bound_sj_equalities;
}
/**
Fills a POSITION object of the driving table of a semi-join LooseScan
range, with the cheapest access path.
This function was created by copying the code from best_access_path, and
then eliminating everything which isn't related to semi-join LooseScan.
Preconditions:
1. Those checked by advance_sj_state(), ensuring that 'tab' is a valid
LooseScan candidate.
2. This function uses the members 'bound_keyparts', 'cost' and 'records' of
each Key_use; thus best_access_path () must have been called, for this
table, with the current join prefix, so that the members are up to date.
@param tab the driving table
@param remaining_tables set of tables not included in the partial plan yet.
@param idx the index in join->position[] where 'tab' is
added to the partial plan.
@param prefix_rowcount estimate for the number of records returned
by the partial plan
@param[out] pos If return code is 'true': table access path that uses
loosescan
@returns true if it found a loosescan access path for this table.
*/
bool Optimize_table_order::semijoin_loosescan_fill_driving_table_position(
const JOIN_TAB *tab, table_map remaining_tables, uint idx,
double prefix_rowcount, POSITION *pos) {
Opt_trace_context *const trace = &thd->opt_trace;
Opt_trace_object trace_wrapper(trace);
Opt_trace_object trace_ls(trace, "searching_loose_scan_index");
TABLE *const table = tab->table();
assert(remaining_tables & tab->table_ref->map());
const ulonglong bound_sj_equalities =
get_bound_sj_equalities(tab, excluded_tables | remaining_tables);
// Use of quick select is a special case. Some of its properties:
bool quick_uses_applicable_index = false;
uint quick_max_keypart = 0;
pos->read_cost = DBL_MAX;
pos->use_join_buffer = false;
/*
No join buffer, so no need to manage any
Table_map_restorer object.
As this function calculates some read cost, we have to include any lateral
materialization cost:
*/
double derived_mat_cost =
(tab->table_ref->is_derived() &&
tab->table_ref->derived_query_expression()->m_lateral_deps)
? lateral_derived_cost(tab, idx, prefix_rowcount, join->cost_model())
: 0;
Opt_trace_array trace_all_idx(trace, "indexes");
/*
For each index, we calculate how many key segments of this index
we can use.
*/
for (Key_use *keyuse = tab->keyuse(); keyuse->table_ref == tab->table_ref;) {
const uint key = keyuse->key;
Key_use *const start_key = keyuse;
Opt_trace_object trace_idx(trace);
trace_idx.add_utf8("index", table->key_info[key].name);
/*
Equalities where one comparand is in index and other comparand is a
not-yet-available expression.
*/
ulonglong handled_sj_equalities = 0;
key_part_map handled_keyparts = 0;
/*
Biggest index (starting at 0) of keyparts used for the "handled", not
"bound", equalities.
*/
uint max_keypart = 0;
// For each keypart
while (keyuse->table_ref == tab->table_ref && keyuse->key == key) {
const uint keypart = keyuse->keypart;
// For each way to access the keypart
for (; keyuse->table_ref == tab->table_ref && keyuse->key == key &&
keyuse->keypart == keypart;
++keyuse) {
/*
If this Key_use is not about a semi-join equality, or references an
excluded table, or does not reference a not-yet-available table, or
is for fulltext, or is over a prefix, then it is not a "handled sj
equality".
*/
if ((keyuse->sj_pred_no == UINT_MAX) ||
(excluded_tables & keyuse->used_tables) ||
!(remaining_tables & keyuse->used_tables) ||
(keypart == FT_KEYPART) ||
(table->key_info[key].key_part[keypart].key_part_flag &
HA_PART_KEY_SEG))
continue;
handled_sj_equalities |= 1ULL << keyuse->sj_pred_no;
handled_keyparts |= keyuse->keypart_map;
assert(max_keypart <= keypart); // see sort_keyuse()
max_keypart = keypart;
}
}
const key_part_map bound_keyparts = start_key->bound_keyparts;
/*
We can use semi-join LooseScan if duplicate elimination is going to work
for all semi-join equalities. Duplicate elimination:
- works for a bound semi-join equality, because this equality is tested
before the nested loop leaves the last inner table of this semi-join
nest.
- works for a handled semi-join equality thanks to key comparison; key
comparison works if:
* the handled key parts are over a full field (not a prefix, otherwise
two values, differing only after the prefix, would be treated as
duplicates)
* and any key part before the handled key parts, is bound (same
justification as for "works for a bound semi-join equality" above).
That gives us these requirements:
1. All IN-equalities are either bound or handled.
2. No hole in sequence of key parts.
An example where (2) matters:
SELECT * FROM ot1
WHERE a IN (SELECT it1.b FROM it1 JOIN it2 ON it1.a = it2.a).
Say the plan is it1-ot1-it2 and it1 has an index on (a,b). The semi-join
equality is handled, by the second key part (it1.b). But the first key
part is not bound (it2.a is not available). So there is a hole. If the
rows of it1 are, in index order: (X,Z),(Y,Z), then the key comparison
will let both rows pass; after joining with ot1 this will duplicate
any row of ot1 having ot1.a=Z.
We add this third requirement:
3. At least one IN-equality is handled.
In theory it is a superfluous restriction. Consider:
select * from t2 as t3, t2
where t2.b=t3.b and
(t2.b) in (select b*3 from t1 where a=10);
If the plan is t3-t1-t2, and we are looking at an index on t1.a:
bound_sj_equalities==1 (because outer expression is equal to t3.b which
is available), handled_sj_equalities==0 (no index on 'b*3'),
handled_keyparts==0, bound_keyparts==1 (t1.a=10).
We could set up 'ref' on t1.a (=10), with a "LooseScan key comparison
length" (join_tab->loosescan_key_len) of size(t1.a), and a condition on
t1 (t1->m_condition) of "t1.b*3=t3.b". After finding a match in t2
(t2->m_condition="t2.b=t3.b"), the key comparison would skip all other
rows of t1 returned by ref access. But this is a bit degenerate,
FirstMatch-like.
*/
if ((handled_sj_equalities | bound_sj_equalities) != // (1)
LOWER_BITS(
ulonglong,
tab->emb_sj_nest->nested_join->sj_inner_exprs.size())) // (1)
{
trace_idx.add("index_handles_needed_semijoin_equalities", false);
continue;
}
if (handled_keyparts == 0) // (3)
{
trace_idx.add("some_index_part_used", false);
continue;
}
if ((LOWER_BITS(key_part_map, max_keypart + 1) & // (2)
~(bound_keyparts | handled_keyparts)) != 0) // (2)
{
trace_idx.add("index_can_remove_duplicates", false);
continue;
}
// Ok, can use the strategy
if (tab->range_scan() && used_index(tab->range_scan()) == key &&
tab->range_scan()->type == AccessPath::INDEX_RANGE_SCAN) {
quick_uses_applicable_index = true;
quick_max_keypart = max_keypart;
}
if (bound_keyparts & 1) {
Opt_trace_object trace_ref(trace, "ref");
trace_ref.add("cost", start_key->read_cost);
if (start_key->read_cost < pos->read_cost) {
// @TODO use rec-per-key-based fanout calculations
pos->loosescan_key = key;
pos->read_cost = start_key->read_cost;
pos->rows_fetched = start_key->fanout;
pos->loosescan_parts = max_keypart + 1;
pos->key = start_key;
trace_ref.add("chosen", true);
}
} else if (tab->table()->covering_keys.is_set(key)) {
/*
There are no usable bound IN-equalities, e.g. we have
outer_expr IN (SELECT innertbl.key FROM ...)
and outer_expr cannot be evaluated yet, so it's actually full
index scan and not a ref access
*/
Opt_trace_object trace_cov_scan(trace, "covering_scan");
// Calculate the cost of complete loose index scan.
double rowcount = rows2double(tab->table()->file->stats.records);
// The cost is entire index scan cost
const double cost =
tab->table()->file->index_scan_cost(key, 1, rowcount).total_cost();
/*
Now find out how many different keys we will get (for now we
ignore the fact that we have "keypart_i=const" restriction for
some key components, that may make us think that loose
scan will produce more distinct records than it actually will)
*/
if (tab->table()->key_info[key].has_records_per_key(max_keypart)) {
const rec_per_key_t rpc =
tab->table()->key_info[key].records_per_key(max_keypart);
rowcount = rowcount / rpc;
}
trace_cov_scan.add("cost", cost);
// @TODO: previous version also did /2
if (cost < pos->read_cost) {
pos->loosescan_key = key;
pos->read_cost = cost;
pos->rows_fetched = rowcount;
pos->loosescan_parts = max_keypart + 1;
pos->key = nullptr;
trace_cov_scan.add("chosen", true);
}
} else
trace_idx.add("ref_possible", false).add("covering_scan_possible", false);
} // ... for (Key_use *keyuse=tab->keyuse(); etc
trace_all_idx.end();
if (quick_uses_applicable_index && idx == join->const_tables) {
Opt_trace_object trace_range(trace, "range_scan");
trace_range.add("cost", tab->range_scan()->cost);
// @TODO: this the right part restriction:
if (tab->range_scan()->cost < pos->read_cost) {
pos->loosescan_key = used_index(tab->range_scan());
pos->read_cost = tab->range_scan()->cost;
// this is ok because idx == join->const_tables
pos->rows_fetched = tab->range_scan()->num_output_rows();
pos->loosescan_parts = quick_max_keypart + 1;
pos->key = nullptr;
trace_range.add("chosen", true);
}
}
if (pos->read_cost != DBL_MAX) {
pos->read_cost += derived_mat_cost;
pos->filter_effect = calculate_condition_filter(
tab, pos->key, ~remaining_tables & ~excluded_tables, pos->rows_fetched,
false, false, trace_ls);
return true;
}
return false;
// @todo need ref_depend_map ?
}
bool Join_tab_compare_default::operator()(const JOIN_TAB *jt1,
const JOIN_TAB *jt2) const {
// Sorting distinct tables, so a table should not be compared with itself
assert(jt1 != jt2);
if (jt1->dependent & jt2->table_ref->map()) return false;
if (jt2->dependent & jt1->table_ref->map()) return true;
const bool jt1_keydep_jt2 = jt1->key_dependent & jt2->table_ref->map();
const bool jt2_keydep_jt1 = jt2->key_dependent & jt1->table_ref->map();
if (jt1_keydep_jt2 && !jt2_keydep_jt1) return false;
if (jt2_keydep_jt1 && !jt1_keydep_jt2) return true;
if (jt1->found_records > jt2->found_records) return false;
if (jt1->found_records < jt2->found_records) return true;
return jt1 < jt2;
}
namespace {
/**
"Less than" comparison function object used to compare two JOIN_TAB
objects that are joined using STRAIGHT JOIN. For STRAIGHT JOINs,
the join order is dictated by the relative order of the tables in the
query which is reflected in JOIN_TAB::dependent. Table size and key
dependencies are ignored here.
*/
class Join_tab_compare_straight {
public:
bool operator()(const JOIN_TAB *jt1, const JOIN_TAB *jt2) const {
// Sorting distinct tables, so a table should not be compared with itself
assert(jt1 != jt2);
/*
We don't do subquery flattening if the parent or child select has
STRAIGHT_JOIN modifier. It is complicated to implement and the semantics
is hardly useful.
*/
assert(!jt1->emb_sj_nest);
assert(!jt2->emb_sj_nest);
if (jt1->dependent & jt2->table_ref->map()) return false;
if (jt2->dependent & jt1->table_ref->map()) return true;
return jt1 < jt2;
}
};
/*
Same as Join_tab_compare_default but tables from within the given
semi-join nest go first. Used when optimizing semi-join
materialization nests.
*/
class Join_tab_compare_embedded_first {
private:
const Table_ref *emb_nest;
public:
explicit Join_tab_compare_embedded_first(const Table_ref *nest)
: emb_nest(nest) {}
bool operator()(const JOIN_TAB *jt1, const JOIN_TAB *jt2) const {
// Sorting distinct tables, so a table should not be compared with itself
assert(jt1 != jt2);
if (jt1->emb_sj_nest == emb_nest && jt2->emb_sj_nest != emb_nest)
return true;
if (jt1->emb_sj_nest != emb_nest && jt2->emb_sj_nest == emb_nest)
return false;
Join_tab_compare_default cmp;
return cmp(jt1, jt2);
}
};
} // namespace
/**
Selects and invokes a search strategy for an optimal query join order.
The function checks user-configurable parameters that control the search
strategy for an optimal plan, selects the search method and then invokes
it. Each specific optimization procedure stores the final optimal plan in
the array 'join->best_positions', and the cost of the plan in
'join->best_read'.
The function can be invoked to produce a plan for all tables in the query
(in this case, the const tables are usually filtered out), or it can be
invoked to produce a plan for a materialization of a semijoin nest.
Set a non-NULL emb_sjm_nest pointer when producing a plan for a semijoin
nest to be materialized and a NULL pointer when producing a full query plan.
@return false if successful, true if error
*/
bool Optimize_table_order::choose_table_order() {
DBUG_TRACE;
got_final_plan = false;
// Make consistent prefix cost estimates also for the const tables:
for (uint i = 0; i < join->const_tables; i++)
(join->positions + i)->set_prefix_cost(0.0, 1.0);
/* Are there any tables to optimize? */
if (join->const_tables == join->tables) {
memcpy(join->best_positions, join->positions,
sizeof(POSITION) * join->const_tables);
join->best_read = 1.0;
join->best_rowcount = 1;
got_final_plan = true;
return false;
}
join->query_block->reset_nj_counters();
const bool straight_join =
join->query_block->active_options() & SELECT_STRAIGHT_JOIN;
table_map join_tables; ///< The tables involved in order selection
if (emb_sjm_nest) {
/* We're optimizing semi-join materialization nest, so put the
tables from this semi-join as first
*/
merge_sort(join->best_ref + join->const_tables,
join->best_ref + join->tables,
Join_tab_compare_embedded_first(emb_sjm_nest));
join_tables = emb_sjm_nest->sj_inner_tables;
} else {
/*
if (SELECT_STRAIGHT_JOIN option is set)
reorder tables so dependent tables come after tables they depend
on, otherwise keep tables in the order they were specified in the query
else
Apply heuristic: pre-sort all access plans with respect to the number of
records accessed.
*/
if (straight_join)
merge_sort(join->best_ref + join->const_tables,
join->best_ref + join->tables, Join_tab_compare_straight());
else
merge_sort(join->best_ref + join->const_tables,
join->best_ref + join->tables, Join_tab_compare_default());
join_tables = join->all_table_map & ~join->const_table_map;
}
Opt_trace_object wrapper(&join->thd->opt_trace);
Opt_trace_array trace_plan(&join->thd->opt_trace,
"considered_execution_plans",
Opt_trace_context::GREEDY_SEARCH);
if (thd->optimizer_switch_flag(OPTIMIZER_SWITCH_COND_FANOUT_FILTER) &&
join->where_cond) {
for (uint idx = join->const_tables; idx < join->tables; ++idx)
bitmap_clear_all(&join->best_ref[idx]->table()->cond_set);
/*
Set column bits for all columns involved in predicates in
cond_set. Used to avoid calculating condition filtering in
best_access_path() et al. when no filtering effect is possible.
*/
join->where_cond->walk(&Item::add_field_to_cond_set_processor,
enum_walk::POSTFIX, nullptr);
}
recalculate_lateral_deps(join->const_tables);
Table_map_restorer deps_lateral(
&join->deps_of_remaining_lateral_derived_tables);
if (straight_join)
optimize_straight_join(join_tables);
else {
if (greedy_search(join_tables)) return true;
}
deps_lateral.assert_unchanged();
got_final_plan = true;
// Remaining part of this function not needed when processing semi-join nests.
if (emb_sjm_nest) return false;
// Fix semi-join strategies and perform final cost calculation.
if (fix_semijoin_strategies()) return true;
return false;
}
/**
Heuristic procedure to automatically guess a reasonable degree of
exhaustiveness for the greedy search procedure.
The procedure estimates the optimization time and selects a search depth
big enough to result in a near-optimal QEP, that doesn't take too long to
find. If the number of tables in the query exceeds some constant, then
search_depth is set to this constant.
@param search_depth Search depth value specified.
If zero, calculate a default value.
@param table_count Number of tables to be optimized (excludes const tables)
@note
This is an extremely simplistic implementation that serves as a stub for a
more advanced analysis of the join. Ideally the search depth should be
determined by learning from previous query optimizations, because it will
depend on the CPU power (and other factors).
@todo
this value should be determined dynamically, based on statistics:
uint max_tables_for_exhaustive_opt= 7;
@todo
this value could be determined by some mapping of the form:
depth : table_count -> [max_tables_for_exhaustive_opt..MAX_EXHAUSTIVE]
@return
A positive integer that specifies the search depth (and thus the
exhaustiveness) of the depth-first search algorithm used by
'greedy_search'.
*/
uint Optimize_table_order::determine_search_depth(uint search_depth,
uint table_count) {
if (search_depth > 0) return search_depth;
/* TODO: this value should be determined dynamically, based on statistics: */
const uint max_tables_for_exhaustive_opt = 7;
if (table_count <= max_tables_for_exhaustive_opt)
search_depth =
table_count + 1; // use exhaustive for small number of tables
else
/*
TODO: this value could be determined by some mapping of the form:
depth : table_count -> [max_tables_for_exhaustive_opt..MAX_EXHAUSTIVE]
*/
search_depth = max_tables_for_exhaustive_opt; // use greedy search
return search_depth;
}
/**
Select the best ways to access the tables in a query without reordering them.
Find the best access paths for each query table and compute their costs
according to their order in the array 'join->best_ref' (thus without
reordering the join tables). The function calls sequentially
'best_access_path' for each table in the query to select the best table
access method. The final optimal plan is stored in the array
'join->best_positions', and the corresponding cost in 'join->best_read'.
@param join_tables set of the tables in the query
@note
This function can be applied to:
- queries with STRAIGHT_JOIN
- internally to compute the cost of an arbitrary QEP
@par
Thus 'optimize_straight_join' can be used at any stage of the query
optimization process to finalize a QEP as it is.
*/
void Optimize_table_order::optimize_straight_join(table_map join_tables) {
uint idx = join->const_tables;
double rowcount = 1.0;
double cost = 0.0;
const Cost_model_server *const cost_model = join->cost_model();
// resolve_subquery() disables semijoin if STRAIGHT_JOIN
assert(join->query_block->sj_nests.empty());
Table_map_restorer deps_lateral(
&join->deps_of_remaining_lateral_derived_tables);
Opt_trace_context *const trace = &join->thd->opt_trace;
for (JOIN_TAB **pos = join->best_ref + idx; *pos; idx++, pos++) {
JOIN_TAB *const s = *pos;
POSITION *const position = join->positions + idx;
Opt_trace_object trace_table(trace);
if (unlikely(trace->is_started())) {
trace_plan_prefix(join, idx, excluded_tables);
trace_table.add_utf8_table(s->table_ref);
}
/*
Dependency computation (JOIN::make_join_plan()) and proper ordering
based on them (join_tab_cmp*) guarantee that this order is compatible
with execution, check it:
*/
assert(!check_interleaving_with_nj(s));
/* Find the best access method from 's' to the current partial plan */
best_access_path(s, join_tables, idx, false, rowcount, position);
// compute the cost of the new plan extended with 's'
position->set_prefix_join_cost(idx, cost_model);
position->no_semijoin(); // advance_sj_state() is not needed
rowcount = position->prefix_rowcount;
cost = position->prefix_cost;
trace_table.add("condition_filtering_pct", position->filter_effect * 100)
.add("rows_for_plan", rowcount)
.add("cost_for_plan", cost);
join_tables &= ~(s->table_ref->map());
recalculate_lateral_deps_incrementally(idx + 1);
}
if (join->sort_by_table &&
join->sort_by_table != join->positions[join->const_tables].table->table())
cost += rowcount; // We have to make a temp table
memcpy(join->best_positions, join->positions, sizeof(POSITION) * idx);
/**
* If many plans have identical cost, which one will be used
* depends on how compiler optimizes floating-point calculations.
* this fix adds repeatability to the optimizer.
* (Similar code in best_extension_by_li...)
*/
join->best_read = cost - 0.001;
join->best_rowcount = (ha_rows)rowcount;
}
/**
Check whether a semijoin materialization strategy is allowed for
the current (semi)join table order.
@param join Join object
@param remaining_tables Tables that have not yet been added to the join plan
@param tab Join_tab of the table being considered
@param idx Index in join->position[] with Join_tab "tab"
@retval SJ_OPT_NONE - Materialization not applicable
@retval SJ_OPT_MATERIALIZE_LOOKUP - Materialization with lookup applicable
@retval SJ_OPT_MATERIALIZE_SCAN - Materialization with scan applicable
@details
The function checks applicability of both MaterializeLookup and
MaterializeScan strategies.
No checking is made until "tab" is pointing to the last inner table
of a semijoin nest that can be executed using materialization -
for all other cases SJ_OPT_NONE is returned.
MaterializeLookup and MaterializeScan are both applicable in the following
two cases:
1. There are no correlated outer tables, or
2. There are correlated outer tables within the prefix only.
In this case, MaterializeLookup is returned based on a heuristic decision.
*/
static int semijoin_order_allows_materialization(const JOIN *join,
table_map remaining_tables,
const JOIN_TAB *tab,
uint idx) {
assert(!(remaining_tables & tab->table_ref->map()));
/*
Check if
1. We're in a semi-join nest that can be run with SJ-materialization
2. All the tables from the subquery are in the prefix
*/
const Table_ref *emb_sj_nest = tab->emb_sj_nest;
if (!emb_sj_nest || !emb_sj_nest->nested_join->sjm.positions ||
(remaining_tables & emb_sj_nest->sj_inner_tables))
return SJ_OPT_NONE;
/*
Walk back and check if all immediately preceding tables are from
this semi-join.
*/
const uint n_tables = my_count_bits(emb_sj_nest->sj_inner_tables);
for (uint i = 1; i < n_tables; i++) {
if (join->positions[idx - i].table->emb_sj_nest != emb_sj_nest)
return SJ_OPT_NONE;
}
/*
Must use MaterializeScan strategy if there are outer correlated tables
among the remaining tables, otherwise, if possible, use MaterializeLookup.
*/
if ((remaining_tables & emb_sj_nest->nested_join->sj_depends_on) ||
!emb_sj_nest->nested_join->sjm.lookup_allowed) {
if (emb_sj_nest->nested_join->sjm.scan_allowed)
return SJ_OPT_MATERIALIZE_SCAN;
return SJ_OPT_NONE;
}
return SJ_OPT_MATERIALIZE_LOOKUP;
}
/**
Find a good, possibly optimal, query execution plan (QEP) by a greedy search.
The search procedure uses a hybrid greedy/exhaustive search with controlled
exhaustiveness. The search is performed in N = card(remaining_tables)
steps. Each step evaluates how promising is each of the unoptimized tables,
selects the most promising table, and extends the current partial QEP with
that table. Currently the most 'promising' table is the one with least
expensive extension.\
There are two extreme cases:
-# When (card(remaining_tables) < search_depth), the estimate finds the
best complete continuation of the partial QEP. This continuation can be
used directly as a result of the search.
-# When (search_depth == 1) the 'best_extension_by_limited_search'
considers the extension of the current QEP with each of the remaining
unoptimized tables.
All other cases are in-between these two extremes. Thus the parameter
'search_depth' controls the exhaustiveness of the search. The higher the
value, the longer the optimizaton time and possibly the better the
resulting plan. The lower the value, the fewer alternative plans are
estimated, but the more likely to get a bad QEP.
All intermediate and final results of the procedure are stored in 'join':
- join->positions : modified for every partial QEP that is explored
- join->best_positions: modified for the current best complete QEP
- join->best_read : modified for the current best complete QEP
- join->best_ref : might be partially reordered
The final optimal plan is stored in 'join->best_positions', and its
corresponding cost in 'join->best_read'.
@note
The following pseudocode describes the algorithm of 'greedy_search':
@code
procedure greedy_search
input: remaining_tables
output: pplan;
{
pplan = <>;
do {
(t, a) = best_extension(pplan, remaining_tables);
pplan = concat(pplan, (t, a));
remaining_tables = remaining_tables - t;
} while (remaining_tables != {})
return pplan;
}
@endcode
where 'best_extension' is a placeholder for a procedure that selects the
most "promising" of all tables in 'remaining_tables'.
Currently this estimate is performed by calling
'best_extension_by_limited_search' to evaluate all extensions of the
current QEP of size 'search_depth', thus the complexity of 'greedy_search'
mainly depends on that of 'best_extension_by_limited_search'.
@par
If 'best_extension()' == 'best_extension_by_limited_search()', then the
worst-case complexity of this algorithm is <=
O(N*N^search_depth/search_depth). When serch_depth >= N, then the
complexity of greedy_search is O(N!).
'N' is the number of 'non eq_ref' tables + 'eq_ref groups' which normally
are considerable less than total numbers of tables in the query.
@par
In the future, 'greedy_search' might be extended to support other
implementations of 'best_extension'.
@par
@c search_depth from Optimize_table_order controls the exhaustiveness
of the search, and @c prune_level controls the pruning heuristics that
should be applied during search.
@param remaining_tables set of tables not included into the partial plan yet
@return false if successful, true if error
*/
bool Optimize_table_order::greedy_search(table_map remaining_tables) {
uint idx = join->const_tables; // index into 'join->best_ref'
uint best_idx;
POSITION best_pos;
JOIN_TAB *best_table; // the next plan node to be added to the curr QEP
DBUG_TRACE;
/* Number of tables that we are optimizing */
const uint n_tables = my_count_bits(remaining_tables);
/* Number of tables remaining to be optimized */
uint size_remain = n_tables;
Table_map_restorer deps_lateral(
&join->deps_of_remaining_lateral_derived_tables);
// We should start with the lateral dependencies of all non-const JOIN_TABs.
assert(!join->has_lateral ||
(join->deps_of_remaining_lateral_derived_tables ==
join->calculate_deps_of_remaining_lateral_derived_tables(
~excluded_tables, join->const_tables)));
do {
/* Find the extension of the current QEP with the lowest cost */
join->best_read = DBL_MAX;
join->best_rowcount = HA_POS_ERROR;
found_plan_with_allowed_sj = false;
if (best_extension_by_limited_search(remaining_tables, idx, search_depth))
return true;
/*
'best_read < DBL_MAX' means that optimizer managed to find
some plan and updated 'best_positions' array accordingly.
*/
assert(join->best_read < DBL_MAX);
if (size_remain <= search_depth || use_best_so_far) {
/*
'join->best_positions' contains a complete optimal extension of the
current partial QEP.
*/
DBUG_EXECUTE(
"opt",
print_plan(join, n_tables,
idx ? join->best_positions[idx - 1].prefix_rowcount : 1.0,
idx ? join->best_positions[idx - 1].prefix_cost : 0.0,
idx ? join->best_positions[idx - 1].prefix_cost : 0.0,
"optimal"););
return false;
}
/* select the first table in the optimal extension as most promising */
best_pos = join->best_positions[idx];
best_table = best_pos.table;
/*
Each subsequent loop of 'best_extension_by_limited_search' uses
'join->positions' for cost estimates, therefore we have to update its
value.
*/
join->positions[idx] = best_pos;
/*
Search depth is smaller than the number of remaining tables to join.
- Update the interleaving state after extending the current partial plan
with a new table. We are doing this here because
best_extension_by_limited_search reverts the interleaving state to the
one of the non-extended partial plan on exit.
- The semi join state is entirely in POSITION, so it is transferred fine
when we copy POSITION objects (no special handling needed).
- After we have chosen the final plan covering all tables, the nested
join state will not be reverted back to its initial state because we
don't "pop" tables already present in the partial plan.
*/
bool is_interleave_error [[maybe_unused]] =
check_interleaving_with_nj(best_table);
/* This has been already checked by best_extension_by_limited_search */
assert(!is_interleave_error);
/* find the position of 'best_table' in 'join->best_ref' */
best_idx = idx;
JOIN_TAB *pos = join->best_ref[best_idx];
while (pos && best_table != pos) pos = join->best_ref[++best_idx];
assert((pos != nullptr)); // should always find 'best_table'
/*
Maintain '#rows-sorted' order of 'best_ref[]':
- Shift 'best_ref[]' to make first position free.
- Insert 'best_table' at the first free position in the array of joins.
*/
memmove(join->best_ref + idx + 1, join->best_ref + idx,
sizeof(JOIN_TAB *) * (best_idx - idx));
join->best_ref[idx] = best_table;
remaining_tables &= ~(best_table->table_ref->map());
DBUG_EXECUTE("opt",
print_plan(join, idx, join->positions[idx].prefix_rowcount,
join->positions[idx].prefix_cost,
join->positions[idx].prefix_cost, "extended"););
recalculate_lateral_deps_incrementally(idx + 1);
--size_remain;
++idx;
} while (true);
}
/**
Calculate a cost of given partial join order
@param join Join to use. @c positions holds the partial join
order
@param n_tables Number of tables in the partial join order
@param [out] cost_arg Store read time here
@param [out] rowcount_arg Store record count here
This is needed for semi-join materialization code. The idea is that
we detect sj-materialization after we've put all sj-inner tables into
the join prefix
prefix-tables semi-join-inner-tables tN
^--we're here
and we'll need to get the cost of prefix-tables prefix again.
*/
void get_partial_join_cost(JOIN *join, uint n_tables, double *cost_arg,
double *rowcount_arg) {
double rowcount = 1.0;
double cost = 0.0;
const Cost_model_server *const cost_model = join->cost_model();
for (uint i = join->const_tables; i < n_tables + join->const_tables; i++) {
POSITION *const pos = join->best_positions + i;
if (pos->rows_fetched > 0.0) {
rowcount *= pos->rows_fetched;
cost += pos->read_cost + cost_model->row_evaluate_cost(rowcount);
rowcount *= pos->filter_effect;
}
}
*cost_arg = cost;
*rowcount_arg = rowcount;
}
/**
Cost calculation of another (partial-)QEP has been completed.
If this is our 'best' plan explored so far, we record this
query plan and its cost.
@param idx length of the partial QEP in 'join->positions';
also corresponds to the current depth of the search tree;
also an index in the array 'join->best_ref';
@param trace_obj trace object where information is to be added
@return false if successful, true if error
*/
bool Optimize_table_order::consider_plan(uint idx,
Opt_trace_object *trace_obj) {
double cost = join->positions[idx].prefix_cost;
double sort_cost = 0;
double windowing_cost = 0;
/*
We may have to make a temp table, note that this is only a
heuristic since we cannot know for sure at this point.
Hence it may be too pessimistic.
@todo Windowing that uses sorting may force a sort cost both prior
to windowing (i.e. GROUP BY) and after (i.e. ORDER BY or DISTINCT).
In such cases we should add the cost twice here, but currently this is
tweaked in Explain_join::shallow_explain. If would be preferable to do it
here.
*/
if (join->sort_by_table &&
join->sort_by_table !=
join->positions[join->const_tables].table->table()) {
sort_cost = join->positions[idx].prefix_rowcount;
cost += sort_cost;
trace_obj->add("sort_cost", sort_cost).add("new_cost_for_plan", cost);
}
/*
Check if the plan uses a disabled strategy. (This may happen if this join
order does not support any of the enabled strategies.) Currently
DuplicateWeedout is the only strategy for which this may happen.
If we have found a previous plan with only allowed strategies,
we only choose the current plan if it is both cheaper and does not use
disabled strategies. If all previous plans use a disabled strategy,
we choose the current plan if it is either cheaper or does not use a
disabled strategy.
*/
bool plan_uses_allowed_sj = true;
if (has_sj)
for (uint i = join->const_tables; i <= idx && plan_uses_allowed_sj; i++)
if (join->positions[i].sj_strategy == SJ_OPT_DUPS_WEEDOUT) {
uint first = join->positions[i].first_dupsweedout_table;
for (uint j = first; j <= i; j++) {
Table_ref *emb_sj_nest = join->positions[j].table->emb_sj_nest;
if (emb_sj_nest && !(emb_sj_nest->nested_join->sj_enabled_strategies &
OPTIMIZER_SWITCH_DUPSWEEDOUT))
plan_uses_allowed_sj = false;
}
}
bool cheaper = cost < join->best_read;
bool chosen = found_plan_with_allowed_sj ? (plan_uses_allowed_sj && cheaper)
: (plan_uses_allowed_sj || cheaper);
/*
If the statement is executed on a secondary engine, and the secondary engine
has implemented a custom cost comparison function, ask the secondary engine
to compare the cost. The secondary engine is only consulted when a complete
join order is considered.
*/
if (idx + 1 == join->tables) { // this is a complete join order
const handlerton *secondary_engine = SecondaryEngineHandlerton(thd);
if (secondary_engine != nullptr &&
secondary_engine->compare_secondary_engine_cost != nullptr) {
double secondary_engine_cost;
if (secondary_engine->compare_secondary_engine_cost(
thd, *join, cost, &use_best_so_far, &cheaper,
&secondary_engine_cost))
return true;
chosen = cheaper;
trace_obj->add("secondary_engine_cost", secondary_engine_cost);
// If this is the first plan seen, it must be chosen.
assert(join->best_read != DBL_MAX || chosen);
}
}
trace_obj->add("chosen", chosen);
if (chosen) {
if (!cheaper)
trace_obj->add_alnum("cause", "previous_plan_used_disabled_strategy");
memcpy((uchar *)join->best_positions, (uchar *)join->positions,
sizeof(POSITION) * (idx + 1));
if (join->m_windows_sort) {
windowing_cost = Window::compute_cost(
join->positions[idx].prefix_rowcount, join->m_windows);
cost += windowing_cost;
trace_obj->add("windowing_sort_cost", windowing_cost)
.add("new_cost_for_plan", cost);
}
/*
If many plans have identical cost, which one will be used
depends on how compiler optimizes floating-point calculations.
this fix adds repeatability to the optimizer.
(Similar code in best_extension_by_li...)
*/
join->best_read = cost - 0.001;
join->best_rowcount = static_cast<ha_rows>(
std::min(join->positions[idx].prefix_rowcount, ULLONG_MAX_DOUBLE));
join->sort_cost = sort_cost;
join->windowing_cost = windowing_cost;
found_plan_with_allowed_sj = plan_uses_allowed_sj;
} else if (cheaper)
trace_obj->add_alnum("cause", "plan_uses_disabled_strategy");
DBUG_EXECUTE("opt",
print_plan(join, idx + 1, join->positions[idx].prefix_rowcount,
cost, cost, "full_plan"););
return false;
}
/**
Find a good, possibly optimal, query execution plan (QEP) by a possibly
exhaustive search.
The procedure searches for the optimal ordering of the query tables in set
'remaining_tables' of size N, and the corresponding optimal access paths to
each table. The choice of a table order and an access path for each table
constitutes a query execution plan (QEP) that fully specifies how to
execute the query.
The maximal size of the found plan is controlled by the parameter
'search_depth'. When search_depth == N, the resulting plan is complete and
can be used directly as a QEP. If search_depth < N, the found plan consists
of only some of the query tables. Such "partial" optimal plans are useful
only as input to query optimization procedures, and cannot be used directly
to execute a query.
The algorithm begins with an empty partial plan stored in 'join->positions'
and a set of N tables - 'remaining_tables'. Each step of the algorithm
evaluates the cost of the partial plan extended by all access plans for
each of the relations in 'remaining_tables', expands the current partial
plan with the access plan that results in lowest cost of the expanded
partial plan, and removes the corresponding relation from
'remaining_tables'. The algorithm continues until it either constructs a
complete optimal plan, or constructs an optimal plartial plan with size =
search_depth.
The final optimal plan is stored in 'join->best_positions'. The
corresponding cost of the optimal plan is in 'join->best_read'.
@note
The procedure uses a recursive depth-first search where the depth of the
recursion (and thus the exhaustiveness of the search) is controlled by the
parameter 'search_depth'.
@note
The pseudocode below describes the algorithm of
'best_extension_by_limited_search'. The worst-case complexity of this
algorithm is O(N*N^search_depth/search_depth). When serch_depth >= N, then
the complexity of greedy_search is O(N!).
@note
@c best_extension_by_limited_search() and @c
eq_ref_extension_by_limited_search() are closely related to each other and
intentionally implemented using the same pattern wherever possible. If a
change/bug fix is done to either of these also consider if it is relevant for
the other.
@code
procedure best_extension_by_limited_search(
pplan in, // in, partial plan of tables-joined-so-far
pplan_cost, // in, cost of pplan
remaining_tables, // in, set of tables not referenced in pplan
best_plan_so_far, // in/out, best plan found so far
best_plan_so_far_cost,// in/out, cost of best_plan_so_far
search_depth) // in, maximum size of the plans being considered
{
for each table T from remaining_tables
{
// Calculate the cost of using table T as above
cost = complex-series-of-calculations;
// Add the cost to the cost so far.
pplan_cost+= cost;
if (pplan_cost >= best_plan_so_far_cost)
// pplan_cost already too great, stop search
continue;
pplan= expand pplan by best_access_method;
remaining_tables= remaining_tables - table T;
if (remaining_tables is not an empty set
and
search_depth > 1)
{
if (table T is EQ_REF-joined)
eq_ref_eq_ref_extension_by_limited_search(
pplan, pplan_cost,
remaining_tables,
best_plan_so_far,
best_plan_so_far_cost,
search_depth - 1);
else
best_extension_by_limited_search(pplan, pplan_cost,
remaining_tables,
best_plan_so_far,
best_plan_so_far_cost,
search_depth - 1);
}
else
{
best_plan_so_far_cost= pplan_cost;
best_plan_so_far= pplan;
}
}
}
@endcode
@note
The arguments pplan, plan_cost, best_plan_so_far and best_plan_so_far_cost
are actually found in the POSITION object.
@note
When 'best_extension_by_limited_search' is called for the first time,
'join->best_read' must be set to the largest possible value (e.g. DBL_MAX).
The actual implementation provides a way to optionally use pruning
heuristic (controlled by the parameter 'prune_level') to reduce the search
space by skipping some partial plans.
@note
The parameter 'search_depth' provides control over the recursion
depth, and thus the size of the resulting optimal plan.
@param remaining_tables set of tables not included into the partial plan yet
@param idx length of the partial QEP in 'join->positions';
since a depth-first search is used, also corresponds
to the current depth of the search tree;
also an index in the array 'join->best_ref';
@param current_search_depth maximum depth of recursion and thus size of the
found optimal plan
(0 < current_search_depth <= join->tables+1).
@return false if successful, true if error
*/
bool Optimize_table_order::best_extension_by_limited_search(
table_map remaining_tables, uint idx, uint current_search_depth) {
DBUG_TRACE;
DBUG_EXECUTE_IF("bug13820776_2", thd->killed = THD::KILL_QUERY;);
if (thd->killed) // Abort
return true;
const Cost_model_server *const cost_model = join->cost_model();
Opt_trace_context *const trace = &thd->opt_trace;
/*
'join' is a partial plan with lower cost than the best plan so far,
so continue expanding it further with the tables in 'remaining_tables'.
*/
double best_rowcount = DBL_MAX;
double best_cost = DBL_MAX;
DBUG_EXECUTE("opt",
print_plan(join, idx,
idx ? join->positions[idx - 1].prefix_rowcount : 1.0,
idx ? join->positions[idx - 1].prefix_cost : 0.0,
idx ? join->positions[idx - 1].prefix_cost : 0.0,
"part_plan"););
/*
'eq_ref_extended' are the 'remaining_tables' which has already been
involved in an partial query plan extension if this QEP. These
will not be considered in further EQ_REF extensions based
on current (partial) QEP.
*/
table_map eq_ref_extended(0);
JOIN_TAB *saved_refs[MAX_TABLES];
// Save 'best_ref[]' as we has to restore before return.
memcpy(saved_refs, join->best_ref + idx,
sizeof(JOIN_TAB *) * (join->tables - idx));
Table_map_restorer deps_lateral(
&join->deps_of_remaining_lateral_derived_tables);
for (JOIN_TAB **pos = join->best_ref + idx; *pos && !use_best_so_far; pos++) {
JOIN_TAB *const s = *pos;
const table_map real_table_bit = s->table_ref->map();
/*
Don't move swap inside conditional code: All items should
be uncond. swapped to maintain '#rows-ordered' best_ref[].
This is critical for early pruning of bad plans.
*/
std::swap(join->best_ref[idx], *pos);
if ((remaining_tables & real_table_bit) &&
!(eq_ref_extended & real_table_bit) &&
!(remaining_tables & s->dependent) &&
(!idx || !check_interleaving_with_nj(s))) {
Opt_trace_object trace_one_table(trace);
if (unlikely(trace->is_started())) {
trace_plan_prefix(join, idx, excluded_tables);
trace_one_table.add_utf8_table(s->table_ref);
}
POSITION *const position = join->positions + idx;
// If optimizing a sj-mat nest, tables in this plan must be in nest:
assert(emb_sjm_nest == nullptr || emb_sjm_nest == s->emb_sj_nest);
deps_lateral.restore(); // as we "popped" the previously-tried table
/* Find the best access method from 's' to the current partial plan */
best_access_path(s, remaining_tables, idx, false,
idx ? (position - 1)->prefix_rowcount : 1.0, position);
// Compute the cost of extending the plan with 's'
position->set_prefix_join_cost(idx, cost_model);
trace_one_table
.add("condition_filtering_pct", position->filter_effect * 100)
.add("rows_for_plan", position->prefix_rowcount)
.add("cost_for_plan", position->prefix_cost);
if (has_sj) {
/*
Even if there are no semijoins, advance_sj_state() has a significant
cost (takes 9% of time in a 20-table plan search), hence the if()
above, which is also more efficient than the same if() inside
advance_sj_state() would be.
Besides, never call advance_sj_state() when calculating the plan
for a materialized semi-join nest.
*/
advance_sj_state(remaining_tables, s, idx);
} else
position->no_semijoin();
/*
Expand only partial plans with lower cost than the best QEP so far.
However, if the best plan so far uses a disabled semi-join strategy,
we continue the search since this partial plan may support other
semi-join strategies.
*/
if (position->prefix_cost >= join->best_read &&
found_plan_with_allowed_sj) {
DBUG_EXECUTE("opt",
print_plan(join, idx + 1, position->prefix_rowcount,
position->read_cost, position->prefix_cost,
"prune_by_cost"););
trace_one_table.add("pruned_by_cost", true);
backout_nj_state(remaining_tables, s);
continue;
}
/*
Prune some less promising partial plans. This heuristic may miss
the optimal QEPs, thus it results in a non-exhaustive search.
*/
if (prune_level == 1) {
if (best_rowcount > position->prefix_rowcount ||
best_cost > position->prefix_cost ||
(idx == join->const_tables && // 's' is the first table in the QEP
s->table() == join->sort_by_table)) {
if (best_rowcount >= position->prefix_rowcount &&
best_cost >= position->prefix_cost &&
/* TODO: What is the reasoning behind this condition? */
(!(s->key_dependent & remaining_tables) ||
position->rows_fetched < 2.0)) {
best_rowcount = position->prefix_rowcount;
best_cost = position->prefix_cost;
}
} else if (found_plan_with_allowed_sj) {
DBUG_EXECUTE("opt",
print_plan(join, idx + 1, position->prefix_rowcount,
position->read_cost, position->prefix_cost,
"pruned_by_heuristic"););
trace_one_table.add("pruned_by_heuristic", true);
backout_nj_state(remaining_tables, s);
continue;
}
}
recalculate_lateral_deps_incrementally(idx + 1);
const table_map remaining_tables_after =
(remaining_tables & ~real_table_bit);
if ((current_search_depth > 1) && remaining_tables_after) {
/*
Explore more extensions of plan:
If possible, use heuristic to avoid a full expansion of partial QEP.
Evaluate a simplified EQ_REF extension of QEP if:
1) Pruning is enabled.
2) and, There are tables joined by (EQ_)REF key.
3) and, There is a 1::1 relation between those tables
*/
if (prune_level == 1 && // 1)
position->key != nullptr && // 2)
position->rows_fetched <= 1.0) // 3)
{
/*
Join in this 'position' is an EQ_REF-joined table, append more
EQ_REFs. We do this only for the first EQ_REF we encounter which
will then include other EQ_REFs from 'remaining_tables' and inform
about which tables was 'eq_ref_extended'. These are later 'pruned'
as they was processed here.
*/
if (eq_ref_extended == (table_map)0) {
/* Try an EQ_REF-joined expansion of the partial plan */
Opt_trace_array trace_rest(trace, "rest_of_plan");
eq_ref_extended =
real_table_bit |
eq_ref_extension_by_limited_search(
remaining_tables_after, idx + 1, current_search_depth - 1);
if (eq_ref_extended == ~(table_map)0) return true; // Failed
backout_nj_state(remaining_tables, s);
if (eq_ref_extended == remaining_tables) goto done;
continue;
} else // Skip, as described above
{
DBUG_EXECUTE("opt",
print_plan(join, idx + 1, position->prefix_rowcount,
position->read_cost, position->prefix_cost,
"pruned_by_eq_ref_heuristic"););
trace_one_table.add("pruned_by_eq_ref_heuristic", true);
backout_nj_state(remaining_tables, s);
continue;
}
} // if (prunable...)
/* Fallthrough: Explore more best extensions of plan */
Opt_trace_array trace_rest(trace, "rest_of_plan");
if (best_extension_by_limited_search(remaining_tables_after, idx + 1,
current_search_depth - 1))
return true;
} else // if ((current_search_depth > 1) && ...
{
if (consider_plan(idx, &trace_one_table)) return true;
/*
If plan is complete, there should be no "open" outer join nest, and
all semi join nests should be handled by a strategy:
*/
assert((remaining_tables_after != 0) ||
((cur_embedding_map == 0) &&
(join->positions[idx].dups_producing_tables == 0) &&
(join->deps_of_remaining_lateral_derived_tables == 0)));
}
backout_nj_state(remaining_tables, s);
}
}
done:
// Restore previous #rows sorted best_ref[]
memcpy(join->best_ref + idx, saved_refs,
sizeof(JOIN_TAB *) * (join->tables - idx));
return false;
}
/**
Helper function that compares two doubles and accept these as
"almost equal" if they are within 10 percent of each other.
Handling of exact 0.0 values: if one of the values are exactly 0.0, the
other value must also be exactly 0.0 to be considered to be equal.
@param left First double number to compare
@param right Second double number to compare
@return true if the two numbers are almost equal, false otherwise.
*/
static inline bool almost_equal(double left, double right) {
const double boundary = 0.1; // 10 percent limit
return ((left >= right * (1.0 - boundary)) &&
(left <= right * (1.0 + boundary)));
}
/**
Heuristic utility used by best_extension_by_limited_search().
Adds EQ_REF-joined tables to the partial plan without
extensive 'greedy' cost calculation.
When a table is joined by an unique key there is a
1::1 relation between the rows being joined. Assuming we
have multiple such 1::1 (star-)joined relations in a
sequence, without other join types in between. Then all of
these 'eq_ref-joins' will be estimated to return the exact
same number of rows and having identical 'cost' (or 'read_time').
This leads to that we can append such a contiguous sequence
of eq_ref-joins to a partial plan in any order without
affecting the total cost of the query plan. Exploring the
different permutations of these eq_refs in the 'greedy'
optimizations will simply be a waste of precious CPU cycles.
Once we have appended a single eq_ref-join to a partial
plan, we may use eq_ref_extension_by_limited_search() to search
'remaining_tables' for more eq_refs which will form a contiguous
set of eq_refs in the QEP.
Effectively, this chain of eq_refs will be handled as a single
entity wrt. the full 'greedy' exploration of the possible
join plans. This will reduce the 'N' in the O(N!) complexity
of the full greedy search.
The algorithm start by already having a eq_ref joined table
in position[idx-1] when called. It then search for more
eq_ref-joinable 'remaining_tables' which are added directly
to the partial QEP without further cost analysis. The algorithm
continues until it either has constructed a complete plan,
constructed a partial plan with size = search_depth, or could not
find more eq_refs to append.
In the later case the algorithm continues into
'best_extension_by_limited_search' which does a 'greedy'
search for the next table to add - Possibly with later
eq_ref_extensions.
The final optimal plan is stored in 'join->best_positions'. The
corresponding cost of the optimal plan is in 'join->best_read'.
@note
@c best_extension_by_limited_search() and @c
eq_ref_extension_by_limited_search() are closely related to each other and
intentionally implemented using the same pattern wherever possible. If a
change/bug fix is done to either of these also consider if it is relevant for
the other.
@code
procedure eq_ref_extension_by_limited_search(
pplan in, // in, partial plan of tables-joined-so-far
pplan_cost, // in, cost of pplan
remaining_tables, // in, set of tables not referenced in pplan
best_plan_so_far, // in/out, best plan found so far
best_plan_so_far_cost,// in/out, cost of best_plan_so_far
search_depth) // in, maximum size of the plans being considered
{
if find 'eq_ref' table T from remaining_tables
{
// Calculate the cost of using table T as above
cost = complex-series-of-calculations;
// Add the cost to the cost so far.
pplan_cost+= cost;
if (pplan_cost >= best_plan_so_far_cost)
// pplan_cost already too great, stop search
continue;
pplan= expand pplan by best_access_method;
remaining_tables= remaining_tables - table T;
eq_ref_extension_by_limited_search(pplan, pplan_cost,
remaining_tables,
best_plan_so_far,
best_plan_so_far_cost,
search_depth - 1);
}
else
{
best_extension_by_limited_search(pplan, pplan_cost,
remaining_tables,
best_plan_so_far,
best_plan_so_far_cost,
search_depth - 1);
}
}
@endcode
@note
The parameter 'search_depth' provides control over the recursion
depth, and thus the size of the resulting optimal plan.
@param remaining_tables set of tables not included into the partial plan yet
@param idx length of the partial QEP in 'join->positions';
since a depth-first search is used, also corresponds
to the current depth of the search tree;
also an index in the array 'join->best_ref';
@param current_search_depth
maximum depth of recursion and thus size of the
found optimal plan
(0 < current_search_depth <= join->tables+1).
@retval
'table_map' Map of those tables appended to the EQ_REF-joined
sequence
@retval
~(table_map)0 Fatal error
*/
table_map Optimize_table_order::eq_ref_extension_by_limited_search(
table_map remaining_tables, uint idx, uint current_search_depth) {
DBUG_TRACE;
if (remaining_tables == 0) return 0;
/*
The section below adds 'eq_ref' joinable tables to the QEP in the order
they are found in the 'remaining_tables' set.
See above description for why we can add these without greedy
cost analysis.
*/
Opt_trace_context *const trace = &thd->opt_trace;
table_map eq_ref_ext(0);
JOIN_TAB *s;
JOIN_TAB *saved_refs[MAX_TABLES];
// Save 'best_ref[]' as we has to restore before return.
memcpy(saved_refs, join->best_ref + idx,
sizeof(JOIN_TAB *) * (join->tables - idx));
Table_map_restorer deps_lateral(
&join->deps_of_remaining_lateral_derived_tables);
for (JOIN_TAB **pos = join->best_ref + idx; (s = *pos); pos++) {
const table_map real_table_bit = s->table_ref->map();
/*
Don't move swap inside conditional code: All items
should be swapped to maintain '#rows' ordered tables.
This is critical for early pruning of bad plans.
*/
std::swap(join->best_ref[idx], *pos);
/*
Consider table for 'eq_ref' heuristic if:
1) It might use a keyref for best_access_path
2) and, Table remains to be handled.
3) and, It is independent of those not yet in partial plan.
4) and, It is key dependent on at least one already handled table
5) and, It passed the interleaving check.
*/
if (s->keyuse() && // 1)
(remaining_tables & real_table_bit) && // 2)
!(remaining_tables & s->dependent) && // 3)
(~remaining_tables & s->key_dependent) && // 4)
(!idx || !check_interleaving_with_nj(s))) // 5)
{
Opt_trace_object trace_one_table(trace);
if (unlikely(trace->is_started())) {
trace_plan_prefix(join, idx, excluded_tables);
trace_one_table.add_utf8_table(s->table_ref);
}
POSITION *const position = join->positions + idx;
assert(emb_sjm_nest == nullptr || emb_sjm_nest == s->emb_sj_nest);
deps_lateral.restore();
/* Find the best access method from 's' to the current partial plan */
best_access_path(s, remaining_tables, idx, false,
idx ? (position - 1)->prefix_rowcount : 1.0, position);
/*
EQ_REF prune logic is based on that all joins
in the ref_extension has the same #rows and cost.
-> The total cost of the QEP is independent of the order
of joins within this 'ref_extension'.
Expand QEP with all 'identical' REFs in
'join->positions' order.
Note that due to index statistics from the storage engines
is a floating point number and might not be exact, the
rows and cost estimates for eq_ref on two tables might not
be the exact same number.
@todo This test could likely be re-implemented to use
information about whether the index is unique or not.
*/
const bool added_to_eq_ref_extension =
position->key &&
almost_equal(position->read_cost, (position - 1)->read_cost) &&
almost_equal(position->rows_fetched, (position - 1)->rows_fetched);
trace_one_table.add("added_to_eq_ref_extension",
added_to_eq_ref_extension);
if (added_to_eq_ref_extension) {
// Add the cost of extending the plan with 's'
position->set_prefix_join_cost(idx, join->cost_model());
trace_one_table
.add("condition_filtering_pct", position->filter_effect * 100)
.add("rows_for_plan", position->prefix_rowcount)
.add("cost_for_plan", position->prefix_cost);
if (has_sj) {
/*
Even if there are no semijoins, advance_sj_state() has a
significant cost (takes 9% of time in a 20-table plan search),
hence the if() above, which is also more efficient than the
same if() inside advance_sj_state() would be.
*/
advance_sj_state(remaining_tables, s, idx);
} else
position->no_semijoin();
// Expand only partial plans with lower cost than the best QEP so far
if (position->prefix_cost >= join->best_read) {
DBUG_EXECUTE("opt",
print_plan(join, idx + 1, position->prefix_rowcount,
position->read_cost, position->prefix_cost,
"prune_by_cost"););
trace_one_table.add("pruned_by_cost", true);
backout_nj_state(remaining_tables, s);
continue;
}
recalculate_lateral_deps_incrementally(idx + 1);
eq_ref_ext = real_table_bit;
const table_map remaining_tables_after =
(remaining_tables & ~real_table_bit);
if ((current_search_depth > 1) && remaining_tables_after) {
DBUG_EXECUTE("opt",
print_plan(join, idx + 1, position->prefix_rowcount,
position->read_cost, position->prefix_cost,
"EQ_REF_extension"););
/* Recursively EQ_REF-extend the current partial plan */
Opt_trace_array trace_rest(trace, "rest_of_plan");
eq_ref_ext |= eq_ref_extension_by_limited_search(
remaining_tables_after, idx + 1, current_search_depth - 1);
} else {
if (consider_plan(idx, &trace_one_table)) return ~(table_map)0;
assert((remaining_tables_after != 0) ||
((cur_embedding_map == 0) &&
(join->positions[idx].dups_producing_tables == 0) &&
(join->deps_of_remaining_lateral_derived_tables == 0)));
}
backout_nj_state(remaining_tables, s);
memcpy(join->best_ref + idx, saved_refs,
sizeof(JOIN_TAB *) * (join->tables - idx));
return eq_ref_ext;
} // if (added_to_eq_ref_extension)
backout_nj_state(remaining_tables, s);
} // if (... !check_interleaving_with_nj() ...)
} // for (JOIN_TAB **pos= ...)
memcpy(join->best_ref + idx, saved_refs,
sizeof(JOIN_TAB *) * (join->tables - idx));
deps_lateral.restore();
/*
'eq_ref' heuristic didn't find a table to be appended to
the query plan. We need to use the greedy search
for finding the next table to be added.
*/
assert(!eq_ref_ext);
if (best_extension_by_limited_search(remaining_tables, idx,
current_search_depth))
return ~(table_map)0;
return eq_ref_ext;
}
/*
Get the number of different row combinations for subset of partial join
SYNOPSIS
prev_record_reads()
join The join structure
idx Number of tables in the partial join order (i.e. the
partial join order is in join->positions[0..idx-1])
found_ref Bitmap of tables for which we need to find # of distinct
row combinations.
DESCRIPTION
Given a partial join order (in join->positions[0..idx-1]) and a subset of
tables within that join order (specified in found_ref), find out how many
distinct row combinations of subset tables will be in the result of the
partial join order.
This is used as follows: Suppose we have a table accessed with a ref-based
method. The ref access depends on current rows of tables in found_ref.
We want to count # of different ref accesses. We assume two ref accesses
will be different if at least one of access parameters is different.
Example: consider a query
SELECT * FROM t1, t2, t3 WHERE t1.key=c1 AND t2.key=c2 AND t3.key=t1.field
and a join order:
t1, ref access on t1.key=c1
t2, ref access on t2.key=c2
t3, ref access on t3.key=t1.field
For t1: n_ref_scans = 1, n_distinct_ref_scans = 1
For t2: n_ref_scans = fanout(t1), n_distinct_ref_scans=1
For t3: n_ref_scans = fanout(t1)*fanout(t2)
n_distinct_ref_scans = #fanout(t1)
Here "fanout(tx)" is the number of rows read by the access method
of tx minus rows filtered out by condition filtering
(pos->filter_effect).
The reason for having this function (at least the latest version of it)
is that we need to account for buffering in join execution.
An edge-case example: if we have a non-first table in join accessed via
ref(const) or ref(param) where there is a small number of different
values of param, then the access will likely hit the disk cache and will
not require any disk seeks.
The proper solution would be to assume an LRU disk cache of some size,
calculate probability of cache hits, etc. For now we just count
identical ref accesses as one.
RETURN
Expected number of row combinations
*/
static double prev_record_reads(JOIN *join, uint idx, table_map found_ref) {
double found = 1.0;
POSITION *pos_end = join->positions - 1;
for (POSITION *pos = join->positions + idx - 1; pos != pos_end; pos--) {
const double fanout = pos->rows_fetched * pos->filter_effect;
if (pos->table->table_ref->map() & found_ref) {
found_ref |= pos->ref_depend_map;
/*
For the case of "t1 LEFT JOIN t2 ON ..." where t2 is a const table
with no matching row we will get position[t2].rows_fetched==0.
Actually the size of output is one null-complemented row, therefore
we will use value of 1 whenever we get rows_fetched==0.
Note
- the above case can't occur if inner part of outer join has more
than one table: table with no matches will not be marked as const.
- Ideally we should add 1 to rows_fetched for every possible null-
complemented row. We're not doing it because: 1. it will require
non-trivial code and add overhead. 2. The value of rows_fetched
is an inprecise estimate and adding 1 (or, in the worst case,
#max_nested_outer_joins=64-1) will not make it any more precise.
*/
if (pos->rows_fetched > DBL_EPSILON) found *= fanout;
} else if (fanout < 1.0) {
/*
With condition filtering it is possible that a table has a
lower fanout than 1.0. If so, calculate the fanout of this
table into the found rows estimate so the produced number is
not too pessimistic. Otherwise, the expected number of row
combinations returned by this function may be higher than the
prefix_rowcount for the table. See BUG#18352936
*/
found *= fanout;
}
}
return found;
}
/**
@brief Fix semi-join strategies for the picked join order
@return false if success, true if error
@details
Fix semi-join strategies for the picked join order. This is a step that
needs to be done right after we have fixed the join order. What we do
here is switch join's semi-join strategy description from backward-based
to forwards based.
When join optimization is in progress, we re-consider semi-join
strategies after we've added another table. Here's an illustration.
Suppose the join optimization is underway:
1) ot1 it1 it2
sjX -- looking at (ot1, it1, it2) join prefix, we decide
to use semi-join strategy sjX.
2) ot1 it1 it2 ot2
sjX sjY -- Having added table ot2, we now may consider
another semi-join strategy and decide to use a
different strategy sjY. Note that the record
of sjX has remained under it2. That is
necessary because we need to be able to get
back to (ot1, it1, it2) join prefix.
what makes things even worse is that there are cases where the choice
of sjY changes the way we should access it2.
3) [ot1 it1 it2 ot2 ot3]
sjX sjY -- This means that after join optimization is
finished, semi-join info should be read
right-to-left (while nearly all plan refinement
functions, EXPLAIN, etc proceed from left to
right)
This function does the needed reversal, making it possible to read the
join and semi-join order from left to right.
*/
bool Optimize_table_order::fix_semijoin_strategies() {
table_map remaining_tables = 0;
table_map handled_tables = 0;
DBUG_TRACE;
if (join->query_block->sj_nests.empty()) return false;
Opt_trace_context *const trace = &thd->opt_trace;
for (uint tableno = join->tables - 1; tableno != join->const_tables - 1;
tableno--) {
POSITION *const pos = join->best_positions + tableno;
if ((handled_tables & pos->table->table_ref->map()) ||
pos->sj_strategy == SJ_OPT_NONE) {
remaining_tables |= pos->table->table_ref->map();
continue;
}
uint first = 0;
if (pos->sj_strategy == SJ_OPT_MATERIALIZE_LOOKUP) {
Table_ref *const sjm_nest = pos->table->emb_sj_nest;
const uint table_count = my_count_bits(sjm_nest->sj_inner_tables);
/*
This memcpy() copies a partial QEP produced by
optimize_semijoin_nests_for_materialization() (source) into the final
top-level QEP (target), in order to re-use the source plan for
to-be-materialized inner tables.
It is however possible that the source QEP had picked
some semijoin strategy (noted SJY), different from
materialization. The target QEP rules (it has seen more tables), but
this memcpy() is going to copy the source stale strategy SJY,
wrongly. Which is why sj_strategy of each table of the
duplicate-generating range then becomes temporarily unreliable. It is
fixed for the first table of that range right after the memcpy(), and
fixed for the rest of that range at the end of this iteration by
setting it to SJ_OPT_NONE). But until then, pos->sj_strategy should
not be read.
*/
memcpy(pos - table_count + 1, sjm_nest->nested_join->sjm.positions,
sizeof(POSITION) * table_count);
first = tableno - table_count + 1;
join->best_positions[first].n_sj_tables = table_count;
join->best_positions[first].sj_strategy = SJ_OPT_MATERIALIZE_LOOKUP;
Opt_trace_object trace_final_strategy(trace);
trace_final_strategy.add_alnum("final_semijoin_strategy",
"MaterializeLookup");
} else if (pos->sj_strategy == SJ_OPT_MATERIALIZE_SCAN) {
const uint last_inner = pos->sjm_scan_last_inner;
Table_ref *const sjm_nest =
(join->best_positions + last_inner)->table->emb_sj_nest;
const uint table_count = my_count_bits(sjm_nest->sj_inner_tables);
first = last_inner - table_count + 1;
assert((join->best_positions + first)->table->emb_sj_nest == sjm_nest);
memcpy(join->best_positions + first, // stale semijoin strategy here too
sjm_nest->nested_join->sjm.positions,
sizeof(POSITION) * table_count);
join->best_positions[first].sj_strategy = SJ_OPT_MATERIALIZE_SCAN;
join->best_positions[first].n_sj_tables = table_count;
Opt_trace_object trace_final_strategy(trace);
trace_final_strategy.add_alnum("final_semijoin_strategy",
"MaterializeScan");
// Recalculate final access paths for this semi-join strategy
double rowcount, cost;
semijoin_mat_scan_access_paths(last_inner, tableno, remaining_tables,
sjm_nest, &rowcount, &cost);
} else if (pos->sj_strategy == SJ_OPT_FIRST_MATCH) {
first = pos->first_firstmatch_table;
Opt_trace_object trace_final_strategy(trace);
trace_final_strategy.add_alnum("final_semijoin_strategy", "FirstMatch");
// Recalculate final access paths for this semi-join strategy
double rowcount, cost;
(void)semijoin_firstmatch_loosescan_access_paths(
first, tableno, remaining_tables, false, &rowcount, &cost);
if (pos->table->emb_sj_nest->is_aj_nest()) {
/*
Antijoin doesn't use the execution logic of FirstMatch. So we
won't set it up; and we won't either have the incompatibilities of
FirstMatch with outer join. Declare that we don't use it:
*/
pos->sj_strategy = SJ_OPT_NONE;
} else {
join->best_positions[first].sj_strategy = SJ_OPT_FIRST_MATCH;
join->best_positions[first].n_sj_tables = tableno - first + 1;
}
} else if (pos->sj_strategy == SJ_OPT_LOOSE_SCAN) {
first = pos->first_loosescan_table;
Opt_trace_object trace_final_strategy(trace);
trace_final_strategy.add_alnum("final_semijoin_strategy", "LooseScan");
// Recalculate final access paths for this semi-join strategy
double rowcount, cost;
(void)semijoin_firstmatch_loosescan_access_paths(
first, tableno, remaining_tables, true, &rowcount, &cost);
POSITION *const first_pos = join->best_positions + first;
first_pos->sj_strategy = SJ_OPT_LOOSE_SCAN;
first_pos->n_sj_tables =
my_count_bits(first_pos->table->emb_sj_nest->sj_inner_tables);
} else if (pos->sj_strategy == SJ_OPT_DUPS_WEEDOUT) {
/*
Duplicate Weedout starting at pos->first_dupsweedout_table, ending at
this table.
*/
first = pos->first_dupsweedout_table;
join->best_positions[first].sj_strategy = SJ_OPT_DUPS_WEEDOUT;
join->best_positions[first].n_sj_tables = tableno - first + 1;
Opt_trace_object trace_final_strategy(trace);
trace_final_strategy.add_alnum("final_semijoin_strategy",
"DuplicateWeedout");
}
for (uint i = first; i <= tableno; i++) {
/*
Eliminate stale strategies. See comment in the
SJ_OPT_MATERIALIZE_LOOKUP case above.
*/
if (i != first) join->best_positions[i].sj_strategy = SJ_OPT_NONE;
handled_tables |= join->best_positions[i].table->table_ref->map();
}
remaining_tables |= pos->table->table_ref->map();
}
assert(remaining_tables == (join->all_table_map & ~join->const_table_map));
return false;
}
/**
Check interleaving with an inner tables of an outer join for
extension table.
Check if table tab can be added to current partial join order, and
if yes, record that it has been added. This recording can be rolled back
with backout_nj_state().
The function assumes that both current partial join order and its
extension with tab are valid wrt table dependencies.
@verbatim
IMPLEMENTATION
LIMITATIONS ON JOIN ORDER
The nested [outer] joins executioner algorithm imposes these
limitations on join order:
1. "Outer tables first" - any "outer" table must be before any
corresponding "inner" table.
2. "No interleaving" - tables inside a nested join must form a
continuous sequence in join order (i.e. the sequence must not be interrupted
by tables that are outside of this nested join).
#1 is checked elsewhere, this function checks #2 provided that #1 has
been already checked.
WHY NEED NON-INTERLEAVING
Consider an example:
select * from t0 join t1 left join (t2 join t3) on cond1
The join order "t1 t2 t0 t3" is invalid:
table t0 is outside of the nested join, so WHERE condition for t0 is
attached directly to t0 (without triggers, and it may be used to access
t0). Applying WHERE(t0) to (t2,t0,t3) record is invalid as we may miss
combinations of (t1, t2, t3) that satisfy condition cond1, and produce
a null-complemented (t1, t2.NULLs, t3.NULLs) row, which should not have been
produced.
If table t0 is not between t2 and t3, the problem doesn't exist:
If t0 is located after (t2,t3), WHERE(t0) is applied after nested join
processing has finished.
If t0 is located before (t2,t3), predicates like WHERE_cond(t0, t2)
are wrapped into condition triggers, which takes care of correct nested join
processing.
HOW IT IS IMPLEMENTED
The limitations on join order can be rephrased as follows: for valid
join order one must be able to:
1. write down the used tables in the join order on one line.
2. for each nested join, put one '(' and one ')' on the said line
3. write "LEFT JOIN" and "ON (...)" where appropriate
4. get a query equivalent to the query we're trying to execute.
Calls to check_interleaving_with_nj() are equivalent to writing the
above described line from left to right.
A single check_interleaving_with_nj(A,B) call is equivalent to writing
table B and appropriate brackets on condition that table A and
appropriate brackets is the last what was written. Graphically the
transition is as follows:
+---- current position
|
... last_tab ))) | ( tab ) )..) | ...
X Y Z |
+- need to move to this
position.
Notes about the position:
The caller guarantees that there is no more then one X-bracket by
checking "!(remaining_tables & s->dependent)" before calling this
function. X-bracket may have a pair in Y-bracket.
When "writing" we store/update this auxiliary info about the current
position:
1. cur_embedding_map - bitmap of pairs of brackets (aka nested
joins) we've opened but didn't close.
2. {each NESTED_JOIN structure not simplified away}->counter - number
of this nested join's children that have already been added to to
the partial join order.
@endverbatim
@param tab Table we're going to extend the current partial join with
@retval
false Join order extended, nested joins info about current join
order (see NOTE section) updated.
@retval
true Requested join order extension not allowed.
*/
bool Optimize_table_order::check_interleaving_with_nj(JOIN_TAB *tab) {
if (cur_embedding_map & ~tab->embedding_map) {
/*
tab is outside of the "pair of brackets" we're currently in.
Cannot add it.
*/
return true;
}
const Table_ref *next_emb = tab->table_ref->embedding;
/*
Do update counters for "pairs of brackets" that we've left (marked as
X,Y,Z in the above picture)
*/
for (; next_emb != emb_sjm_nest; next_emb = next_emb->embedding) {
// Ignore join nests that are not outer joins.
if (!next_emb->join_cond_optim()) continue;
next_emb->nested_join->nj_counter++;
cur_embedding_map |= next_emb->nested_join->nj_map;
if (next_emb->nested_join->nj_total != next_emb->nested_join->nj_counter)
break;
/*
We're currently at Y or Z-bracket as depicted in the above picture.
Mark that we've left it and continue walking up the brackets hierarchy.
*/
cur_embedding_map &= ~next_emb->nested_join->nj_map;
}
return false;
}
/**
Find best access paths for semi-join FirstMatch or LooseScan strategy
and calculate rowcount and cost based on these.
@param first_tab The first tab to calculate access paths for,
this is always a semi-join inner table.
@param last_tab The last tab to calculate access paths for,
always a semi-join inner table for FirstMatch,
may be inner or outer for LooseScan.
@param remaining_tables Bitmap of tables that are not in the
[0...last_tab] join prefix
@param loosescan If true, use LooseScan strategy, otherwise FirstMatch
@param[out] newcount New output row count
@param[out] newcost New join prefix cost
@return True if strategy selection successful, false otherwise.
@details
Calculate best access paths for the tables of a semi-join FirstMatch or
LooseScan strategy, given the order of tables provided in join->positions
(or join->best_positions when calculating the cost of a final plan).
Calculate estimated cost and rowcount for this plan.
Given a join prefix [0; ... first_tab-1], change the access to the tables
in the range [first_tab; last_tab] according to the constraints set by the
relevant semi-join strategy. Those constraints are:
- For the LooseScan strategy, join buffering can be used for the outer
tables following the last inner table.
- For the FirstMatch strategy, join buffering can be used if there is a
single inner table in the semi-join nest.
For FirstMatch, the handled range of tables may be a mix of inner tables
and non-dependent outer tables. The first and last table in the handled
range are always inner tables.
For LooseScan, the handled range can be a mix of inner tables and
dependent and non-dependent outer tables. The first table is always an
inner table.
Depending on member 'got_final_plan', the function uses and updates access
path data in join->best_positions, otherwise uses join->positions
and updates a local buffer.
*/
bool Optimize_table_order::semijoin_firstmatch_loosescan_access_paths(
uint first_tab, uint last_tab, table_map remaining_tables, bool loosescan,
double *newcount, double *newcost) {
DBUG_TRACE;
double cost; // Contains running estimate of calculated cost.
double rowcount; // Rowcount of join prefix (ie before first_tab).
double outer_fanout = 1.0; // Fanout contributed by outer tables in range.
double inner_fanout = 1.0; // Fanout contributed by inner tables in range.
const Cost_model_server *const cost_model = join->cost_model();
Opt_trace_context *const trace = &thd->opt_trace;
Opt_trace_object recalculate(trace, "recalculate_access_paths_and_cost");
Opt_trace_array trace_tables(trace, "tables");
POSITION *const positions =
got_final_plan ? join->best_positions : join->positions;
if (first_tab == join->const_tables) {
cost = 0.0;
rowcount = 1.0;
} else {
cost = positions[first_tab - 1].prefix_cost;
rowcount = positions[first_tab - 1].prefix_rowcount;
}
uint table_count = 0;
uint no_jbuf_before;
for (uint i = first_tab; i <= last_tab; i++) {
remaining_tables |= positions[i].table->table_ref->map();
if (positions[i].table->emb_sj_nest) table_count++;
}
// Join buffering is enabled/disabled based on how blocked nested loop (BNL)
// worked. However, with hash joins replacing BNL in the executor now, we have
// opportunity to enable join buffering for some more cases. For now, we
// enable it only for secondary engine in case of FirstMatch (since secondary
// engine is currently able to interpret plans generated using FirstMatch
// strategy only). More details in setup_join_buffering().
if (loosescan) {
// LooseScan: May use join buffering for all tables after last inner table.
for (no_jbuf_before = last_tab; no_jbuf_before > first_tab;
no_jbuf_before--) {
if (positions[no_jbuf_before].table->emb_sj_nest != nullptr)
break; // Encountered the last inner table.
}
no_jbuf_before++;
} else {
// FirstMatch: May use join buffering if there is only one inner table.
// Restriction is lifted for secondary engine.
if (table_count > 1 &&
!(thd->lex->m_sql_cmd != nullptr &&
thd->lex->m_sql_cmd->using_secondary_storage_engine())) {
no_jbuf_before = last_tab + 1;
} else {
no_jbuf_before = first_tab;
}
}
Table_map_restorer deps_lateral(
&join->deps_of_remaining_lateral_derived_tables);
// recalculate, as we go back in the range of "unoptimized" tables:
recalculate_lateral_deps(first_tab);
for (uint i = first_tab; i <= last_tab; i++) {
JOIN_TAB *const tab = positions[i].table;
POSITION regular_pos;
POSITION *const dst_pos = got_final_plan ? positions + i : ®ular_pos;
POSITION *pos; // Position for later calculations
/*
We always need a new calculation for the first inner table in
the LooseScan strategy.
*/
const bool is_ls_driving_tab = (i == first_tab) && loosescan;
if (is_ls_driving_tab || positions[i].use_join_buffer) {
Opt_trace_object trace_one_table(trace);
trace_one_table.add_utf8_table(tab->table_ref);
/*
Find the best access method with specified join buffering strategy.
If this is a loosescan driving table,
semijoin_loosescan_fill_driving_table_position will consider all keys,
so best_access_path() should fill bound_keyparts/read_cost/fanout for
all keys => test_all_ref_keys==true.
*/
assert(!test_all_ref_keys);
test_all_ref_keys = is_ls_driving_tab;
double prefix_rowcount = rowcount * inner_fanout * outer_fanout;
best_access_path(tab, remaining_tables, i, i < no_jbuf_before,
prefix_rowcount, dst_pos);
test_all_ref_keys = false;
if (is_ls_driving_tab) // Use loose scan position
{
if (semijoin_loosescan_fill_driving_table_position(
tab, remaining_tables, i, prefix_rowcount, dst_pos)) {
dst_pos->table = tab;
const double rows = rowcount * dst_pos->rows_fetched;
dst_pos->set_prefix_cost(
cost + dst_pos->read_cost + cost_model->row_evaluate_cost(rows),
rows * dst_pos->filter_effect);
} else {
assert(!got_final_plan);
return false;
}
}
pos = dst_pos;
} else
pos = positions + i; // Use result from prior calculation
/*
Terminate search if best_access_path found no possible plan.
Otherwise we will be getting infinite cost when summing up below.
*/
if (pos->read_cost == DBL_MAX) {
assert(loosescan && !got_final_plan);
return false;
}
remaining_tables &= ~tab->table_ref->map();
cost += pos->read_cost +
cost_model->row_evaluate_cost(rowcount * inner_fanout *
outer_fanout * pos->rows_fetched);
if (tab->emb_sj_nest)
inner_fanout *= pos->rows_fetched * pos->filter_effect;
else
outer_fanout *= pos->rows_fetched * pos->filter_effect;
recalculate_lateral_deps_incrementally(i + 1);
}
*newcount = rowcount * outer_fanout;
*newcost = cost;
return true;
}
/**
Find best access paths for semi-join MaterializeScan strategy
and calculate rowcount and cost based on these.
@param last_inner_tab The last tab in the set of inner tables
@param last_outer_tab The last tab in the set of outer tables
@param remaining_tables Bitmap of tables that are not in the join prefix
including the inner and outer tables processed here.
@param sjm_nest Pointer to semi-join nest for inner tables
@param[out] newcount New output row count
@param[out] newcost New join prefix cost
@details
Calculate best access paths for the outer tables of the MaterializeScan
semi-join strategy. All outer tables may use join buffering.
The prefix row count is adjusted with the estimated number of rows in
the materialized tables, before taking into consideration the rows
contributed by the outer tables.
*/
void Optimize_table_order::semijoin_mat_scan_access_paths(
uint last_inner_tab, uint last_outer_tab, table_map remaining_tables,
Table_ref *sjm_nest, double *newcount, double *newcost) {
DBUG_TRACE;
const Cost_model_server *const cost_model = join->cost_model();
Opt_trace_context *const trace = &thd->opt_trace;
Opt_trace_object recalculate(trace, "recalculate_access_paths_and_cost");
Opt_trace_array trace_tables(trace, "tables");
double cost; // Calculated running cost of operation
double rowcount; // Rowcount of join prefix (ie before first_inner).
POSITION *const positions =
got_final_plan ? join->best_positions : join->positions;
const uint inner_count = my_count_bits(sjm_nest->sj_inner_tables);
// Get the prefix cost.
const uint first_inner = last_inner_tab + 1 - inner_count;
if (first_inner == join->const_tables) {
rowcount = 1.0;
cost = 0.0;
} else {
rowcount = positions[first_inner - 1].prefix_rowcount;
cost = positions[first_inner - 1].prefix_cost;
}
// Add materialization cost.
cost += sjm_nest->nested_join->sjm.materialization_cost.total_cost() +
rowcount * sjm_nest->nested_join->sjm.scan_cost.total_cost();
for (uint i = last_inner_tab + 1; i <= last_outer_tab; i++)
remaining_tables |= positions[i].table->table_ref->map();
/*
Materialization removes duplicates from the materialized table, so
number of rows to scan is probably less than the number of rows
from a full join, on which the access paths of outer tables are currently
based. Rerun best_access_path to adjust for reduced rowcount.
*/
const double inner_fanout = sjm_nest->nested_join->sjm.expected_rowcount;
double outer_fanout = 1.0;
Table_map_restorer deps_lateral(
&join->deps_of_remaining_lateral_derived_tables);
// recalculate, as we go back in the range of "unoptimized" tables:
recalculate_lateral_deps(last_inner_tab + 1);
for (uint i = last_inner_tab + 1; i <= last_outer_tab; i++) {
Opt_trace_object trace_one_table(trace);
JOIN_TAB *const tab = positions[i].table;
trace_one_table.add_utf8_table(tab->table_ref);
POSITION regular_pos;
POSITION *const dst_pos = got_final_plan ? positions + i : ®ular_pos;
best_access_path(tab, remaining_tables, i, false,
rowcount * inner_fanout * outer_fanout, dst_pos);
remaining_tables &= ~tab->table_ref->map();
outer_fanout *= dst_pos->rows_fetched;
cost += dst_pos->read_cost + cost_model->row_evaluate_cost(
rowcount * inner_fanout * outer_fanout);
outer_fanout *= dst_pos->filter_effect;
recalculate_lateral_deps_incrementally(i + 1);
}
*newcount = rowcount * outer_fanout;
*newcost = cost;
}
/**
Find best access paths for semi-join MaterializeLookup strategy.
and calculate rowcount and cost based on these.
@param last_inner Index of the last inner table
@param sjm_nest Pointer to semi-join nest for inner tables
@param[out] newcount New output row count
@param[out] newcost New join prefix cost
@details
All outer tables may use join buffering, so there is no need to recalculate
access paths nor costs for these.
Add cost of materialization and scanning the materialized table to the
costs of accessing the outer tables.
*/
void Optimize_table_order::semijoin_mat_lookup_access_paths(uint last_inner,
Table_ref *sjm_nest,
double *newcount,
double *newcost) {
DBUG_TRACE;
const uint inner_count = my_count_bits(sjm_nest->sj_inner_tables);
double rowcount, cost;
const uint first_inner = last_inner + 1 - inner_count;
if (first_inner == join->const_tables) {
cost = 0.0;
rowcount = 1.0;
} else {
cost = join->positions[first_inner - 1].prefix_cost;
rowcount = join->positions[first_inner - 1].prefix_rowcount;
}
cost += sjm_nest->nested_join->sjm.materialization_cost.total_cost() +
rowcount * sjm_nest->nested_join->sjm.lookup_cost.total_cost();
*newcount = rowcount;
*newcost = cost;
}
/**
Find best access paths for semi-join DuplicateWeedout strategy
and calculate rowcount and cost based on these.
@param first_tab The first tab to calculate access paths for
@param last_tab The last tab to calculate access paths for
@param[out] newcount New output row count
@param[out] newcost New join prefix cost
@details
Notice that new best access paths need not be calculated.
The proper access path information is already in join->positions,
because DuplicateWeedout can handle any join buffering strategy.
The only action performed by this function is to calculate
output rowcount, and an updated cost estimate.
The cost estimate is based on performing a join over the involved
tables, but we must also add the cost of creating and populating
the temporary table used for duplicate removal, and the cost of
doing lookups against this table.
*/
void Optimize_table_order::semijoin_dupsweedout_access_paths(uint first_tab,
uint last_tab,
double *newcount,
double *newcost) {
DBUG_TRACE;
const Cost_model_server *const cost_model = join->cost_model();
double cost, rowcount;
double inner_fanout = 1.0;
double outer_fanout = 1.0;
double max_outer_fanout = 1.0;
uint rowsize; // Row size of the temporary table
if (first_tab == join->const_tables) {
cost = 0.0;
rowcount = 1.0;
rowsize = 0;
} else {
cost = join->positions[first_tab - 1].prefix_cost;
rowcount = join->positions[first_tab - 1].prefix_rowcount;
rowsize = 8; // This is not true but we'll make it so
}
/**
Some times, some outer fanout is "absorbed" into the inner fanout.
In this case, we should make a better estimate for outer_fanout that
is used to calculate the output rowcount.
If we have inner table(s) before an outer table, there are
dependencies between these tables. The fanout for the outer table is
not a good estimate for the final number of rows from the weedout
execution, therefore we convert some of the inner fanout into an outer
fanout, limited to the number of possible rows in the outer table.
*/
for (uint j = first_tab; j <= last_tab; j++) {
const POSITION *const p = join->positions + j;
cost += p->read_cost +
cost_model->row_evaluate_cost(rowcount * inner_fanout *
outer_fanout * p->rows_fetched);
if (p->table->emb_sj_nest)
inner_fanout *= p->rows_fetched * p->filter_effect;
else {
/*
max_outer_fanout is the cardinality of the cross product
of the outer tables.
@note: We do not consider dependencies between these tables here.
*/
double total_records = p->table->table()->file->stats.records;
max_outer_fanout *= total_records * p->filter_effect;
if (inner_fanout > 1.0) {
// Absorb inner fanout into the outer fanout
outer_fanout *= inner_fanout * p->rows_fetched * p->filter_effect;
inner_fanout = 1;
} else
outer_fanout *= p->rows_fetched * p->filter_effect;
rowsize += p->table->table()->file->ref_length;
}
}
if (max_outer_fanout < outer_fanout) {
/*
The calculated fanout for the outer tables is bigger than
the cardinality of the cross product of the outer tables.
Adjust outer fanout to the max value, but also adjust
inner fanout so that inner_fanout * outer_fanout is still
the same (dups weedout runs a complete join internally).
*/
if (max_outer_fanout > 0.0) inner_fanout *= outer_fanout / max_outer_fanout;
outer_fanout = max_outer_fanout;
}
/*
Add the cost of temptable use. The table will have outer_fanout rows,
and we will make
- rowcount * outer_fanout writes
- rowcount * inner_fanout * outer_fanout lookups.
*/
Cost_model_server::enum_tmptable_type tmp_table_type;
if (outer_fanout * rowsize < thd->variables.max_heap_table_size)
tmp_table_type = Cost_model_server::MEMORY_TMPTABLE;
else
tmp_table_type = Cost_model_server::DISK_TMPTABLE;
cost += cost_model->tmptable_create_cost(tmp_table_type);
cost += cost_model->tmptable_readwrite_cost(
tmp_table_type, rowcount * outer_fanout,
rowcount * inner_fanout * outer_fanout);
*newcount = rowcount * outer_fanout;
*newcost = cost;
}
/**
Do semi-join optimization step after we've added a new tab to join prefix
This function cannot work with nested SJ nests, for two reasons:
(a) QEP_TAB::emb_sj_nest points to the most inner SJ nest, and this
function looks only at it, so misses to do any SJ strategy choice for
outer nests
(b) POSITION has only one set of SJ-info (e.g. first_firstmatch_table): so
planning for two nested nests would require more info than we have.
And indeed, SJ nests cannot be nested, because:
(c) a SJ nest is not nested in another SJ or anti SJ nest (it would have been
dissolved into the outer nest by simplify_joins()).
(d) an anti SJ nest is not nested inside another SJ or anti SJ nest (this case
is blocked by resolve_subquery()).
@param remaining_tables Tables not in the join prefix
@param new_join_tab Join tab that we are adding to the join prefix
@param idx Index in join->position storing this join tab
(i.e. number of tables in the prefix)
@details
Update semi-join optimization state after we've added another tab (table
and access method) to the join prefix.
The state is maintained in join->positions[#prefix_size]. Each of the
available strategies has its own state variables.
for each semi-join strategy
{
update strategy's state variables;
if (join prefix has all the tables that are needed to consider
using this strategy for the semi-join(s))
{
calculate cost of using the strategy
if ((this is the first strategy to handle the semi-join nest(s) ||
the cost is less than other strategies))
{
// Pick this strategy
pos->sj_strategy= ..
..
}
}
}
Most of the new state is saved in join->positions[idx] (and hence no undo
is necessary).
See setup_semijoin_dups_elimination() for a description of what kinds of
join prefixes each strategy can handle.
A note on access path, rowcount and cost estimates:
- best_extension_by_limited_search() performs *initial calculations*
of access paths, rowcount and cost based on the operation being
an inner join or an outer join operation. These estimates are saved
in join->positions.
- advance_sj_state() performs *intermediate calculations* based on the
same table information, but for the supported semi-join strategies.
The access path part of these calculations are not saved anywhere,
but the rowcount and cost of the best semi-join strategy are saved
in join->positions.
- Because the semi-join access path information was not saved previously,
fix_semijoin_strategies() must perform *final calculations* of
access paths, rowcount and cost when saving the selected table order
in join->best_positions. The results of the final calculations will be
the same as the results of the "best" intermediate calculations.
*/
void Optimize_table_order::advance_sj_state(table_map remaining_tables,
const JOIN_TAB *new_join_tab,
uint idx) {
Opt_trace_context *const trace = &thd->opt_trace;
Table_ref *const emb_sj_nest = new_join_tab->emb_sj_nest;
POSITION *const pos = join->positions + idx;
double best_cost = pos->prefix_cost;
double best_rowcount = pos->prefix_rowcount;
uint sj_strategy = SJ_OPT_NONE; // Initially: No chosen strategy
/*
Semi-join nests cannot be nested, hence we never need to advance the
semi-join state of a materialized semi-join query.
In fact, doing this may cause undesirable effects because all tables
within a semi-join nest have emb_sj_nest != NULL, which triggers several
of the actions inside this function.
*/
assert(emb_sjm_nest == nullptr);
// remaining_tables include the current one:
assert(remaining_tables & new_join_tab->table_ref->map());
// Save it:
const table_map remaining_tables_incl = remaining_tables;
// And add the current table to the join prefix:
remaining_tables &= ~new_join_tab->table_ref->map();
DBUG_TRACE;
Opt_trace_array trace_choices(trace, "semijoin_strategy_choice");
/* Initialize the state or copy it from prev. tables */
pos->cur_embedding_map = cur_embedding_map;
if (idx == join->const_tables) {
pos->dups_producing_tables = 0;
pos->first_firstmatch_table = MAX_TABLES;
pos->first_loosescan_table = MAX_TABLES;
pos->dupsweedout_tables = 0;
pos->sjm_scan_need_tables = 0;
pos->sjm_scan_last_inner = 0;
} else {
pos->dups_producing_tables = pos[-1].dups_producing_tables;
// FirstMatch
pos->first_firstmatch_table = pos[-1].first_firstmatch_table;
pos->first_firstmatch_rtbl = pos[-1].first_firstmatch_rtbl;
pos->firstmatch_need_tables = pos[-1].firstmatch_need_tables;
// LooseScan
pos->first_loosescan_table = (pos[-1].sj_strategy == SJ_OPT_LOOSE_SCAN)
? MAX_TABLES
: pos[-1].first_loosescan_table;
pos->loosescan_need_tables = pos[-1].loosescan_need_tables;
// MaterializeScan
pos->sjm_scan_need_tables = (pos[-1].sj_strategy == SJ_OPT_MATERIALIZE_SCAN)
? 0
: pos[-1].sjm_scan_need_tables;
pos->sjm_scan_last_inner = pos[-1].sjm_scan_last_inner;
// Duplicate Weedout
pos->dupsweedout_tables = pos[-1].dupsweedout_tables;
pos->first_dupsweedout_table = pos[-1].first_dupsweedout_table;
}
table_map handled_by_fm_or_ls = 0;
/*
FirstMatch Strategy
===================
FirstMatch requires that all dependent outer tables are in the join prefix.
(see "FirstMatch strategy" above setup_semijoin_dups_elimination()).
The execution strategy will handle multiple semi-join nests correctly,
and the optimizer will pick execution strategy according to these rules:
- If tables from multiple semi-join nests are intertwined, they will
be processed as one FirstMatch evaluation.
- If tables from each semi-join nest are grouped together, each semi-join
nest is processed as one FirstMatch evaluation.
Example: Let's say we have an outer table ot and two semi-join nests with
two tables each: it11 and it12, and it21 and it22.
Intertwined tables: ot - FM(it11 - it21 - it12 - it22)
Grouped tables: ot - FM(it11 - it12) - FM(it21 - it22)
*/
if (pos->first_firstmatch_table != MAX_TABLES) {
const Table_ref *first_emb_sj_nest =
join->positions[pos->first_firstmatch_table].table->emb_sj_nest;
if (emb_sj_nest != first_emb_sj_nest) {
// Can't handle interleaving between tables from the
// semi-join that FirstMatch is handling and any other tables.
pos->first_firstmatch_table = MAX_TABLES;
}
}
if (emb_sj_nest && emb_sj_nest->nested_join->sj_enabled_strategies &
OPTIMIZER_SWITCH_FIRSTMATCH) {
const table_map outer_corr_tables = emb_sj_nest->nested_join->sj_depends_on;
const table_map sj_inner_tables = emb_sj_nest->sj_inner_tables;
/*
Enter condition:
1. The next join tab belongs to semi-join nest
(verified for the encompassing code block above).
2. We're not in a duplicate producer range yet
3. All outer tables that
- the subquery is correlated with, or
- referred to from the outer_expr
are in the join prefix
*/
if (pos->dups_producing_tables == 0 && // (2)
!(remaining_tables & outer_corr_tables)) // (3)
{
/* Start tracking potential FirstMatch range */
pos->first_firstmatch_table = idx;
pos->firstmatch_need_tables = 0;
pos->first_firstmatch_rtbl = remaining_tables;
// All inner tables should still be part of remaining_tables_inc
assert(sj_inner_tables == (remaining_tables_incl & sj_inner_tables));
}
if (pos->first_firstmatch_table != MAX_TABLES) {
/* Record that we need all of this semi-join's inner tables */
pos->firstmatch_need_tables |= sj_inner_tables;
if (outer_corr_tables & pos->first_firstmatch_rtbl) {
/*
Trying to add an sj-inner table whose sj-nest has an outer correlated
table that was not in the prefix. This means FirstMatch can't be used.
*/
pos->first_firstmatch_table = MAX_TABLES;
} else if (!(pos->firstmatch_need_tables & remaining_tables)) {
// Got a complete FirstMatch range.
// We cannot FirstMatch to a different embedding nest,
// e.g., for B LEFT JOIN (C SEMIJOIN D ON B.X=D.Y) and table order
// B-D-C we cannot jump from D to B. This would cause non-hierarchical
// joins. So we check that the jump won't leave from a still-open
// nest: cur_embedding_map at the last table of this firstmatch range
// must be included in cur_embedding_map at the target of the jump.
nested_join_map cur_embedding_map_at_jump_target =
pos->first_firstmatch_table > join->const_tables
? join->positions[pos->first_firstmatch_table - 1]
.cur_embedding_map
: 0;
if ((cur_embedding_map_at_jump_target & cur_embedding_map) !=
cur_embedding_map) {
pos->first_firstmatch_table = MAX_TABLES;
} else {
// Calculate access paths and cost
double cost, rowcount;
/* We use the same FirstLetterUpcase as in EXPLAIN */
Opt_trace_object trace_one_strategy(trace);
trace_one_strategy.add_alnum("strategy", "FirstMatch");
(void)semijoin_firstmatch_loosescan_access_paths(
pos->first_firstmatch_table, idx, remaining_tables, false,
&rowcount, &cost);
/*
We don't yet know what are the other strategies, so pick FirstMatch.
We ought to save the alternate POSITIONs produced by
semijoin_firstmatch_loosescan_access_paths() but the problem is that
providing save space uses too much space.
Instead, we will re-calculate the alternate POSITIONs after we've
picked the best QEP.
*/
sj_strategy = SJ_OPT_FIRST_MATCH;
best_cost = cost;
best_rowcount = rowcount;
trace_one_strategy.add("cost", best_cost).add("rows", best_rowcount);
handled_by_fm_or_ls = pos->firstmatch_need_tables;
trace_one_strategy.add("chosen", true);
}
}
}
}
/*
LooseScan Strategy
==================
LooseScan requires that all dependent outer tables are not in the join
prefix. (see "LooseScan strategy" above setup_semijoin_dups_elimination()).
The tables must come in a rather strictly defined order:
1. The LooseScan driving table (which is a subquery inner table).
2. The remaining tables from the same semi-join nest as the above table.
3. The outer dependent tables, possibly mixed with outer non-dependent
tables.
Notice that any other semi-joined tables must be outside this table range.
*/
{
if (pos->first_loosescan_table != MAX_TABLES) {
const Table_ref *first_emb_sj_nest =
join->positions[pos->first_loosescan_table].table->emb_sj_nest;
if (first_emb_sj_nest->sj_inner_tables & remaining_tables_incl) {
// Stage 2: Accept remaining tables from the semi-join nest:
if (emb_sj_nest != first_emb_sj_nest) {
/*
LooseScan strategy can't handle interleaving between tables from
the semi-join that LooseScan is handling and any other tables.
*/
pos->first_loosescan_table = MAX_TABLES;
} else {
/*
NestedLoopSemiJoinWithDuplicateRemovalIterator takes a
single-table iterator as left argument, and inner-joins
it with the set of other SJ-inner tables. E.g. it doesn't work for
A SEMI JOIN (B LEFT JOIN C) with B as LooseScan table. So:
- if we're now at the second SJ-inner table (1) , and
- this table belongs to a join nest which is outer-joined to
the first SJ-inner table (2), or is directly outer-joined to the
first SJ-inner table (3),
- then both tables are not inner-joined together and LooseScan is
impossible.
*/
if (idx == pos->first_loosescan_table + 1 && // (1)
((pos->table->table_ref->outer_join_nest() !=
join->positions[pos->first_loosescan_table]
.table->table_ref->outer_join_nest()) // (2)
|| pos->table->table_ref->outer_join)) // (3)
pos->first_loosescan_table = MAX_TABLES;
}
} else {
// Stage 3: Accept outer dependent and non-dependent tables:
assert(emb_sj_nest != first_emb_sj_nest);
if (emb_sj_nest != nullptr) pos->first_loosescan_table = MAX_TABLES;
}
}
/*
We may consider the LooseScan strategy if
1a. The next table is an SJ-inner table, and
1b. LooseScan is enabled for this SJ nest, and
2. We have no more than 64 IN expressions (must fit in bitmap), and
3. It is the first table from that semijoin, and
4. We're not within a semi-join range, except
new_join_tab->emb_sj_nest (which we've just entered, see #3), and
5. All non-IN-equality correlation references from this sj-nest are
bound, and
6. But some of the IN-equalities aren't (so this can't be handled by
FirstMatch strategy), and
7. There are equalities (including maybe semi-join ones) which can be
handled with an index of this table, and
8. Not a derived table/view. (a temporary restriction)
*/
if (emb_sj_nest && // (1a)
emb_sj_nest->nested_join->sj_enabled_strategies &
OPTIMIZER_SWITCH_LOOSE_SCAN && // (1b)
emb_sj_nest->nested_join->sj_inner_exprs.size() <= 64 && // (2)
((remaining_tables_incl & emb_sj_nest->sj_inner_tables) == // (3)
emb_sj_nest->sj_inner_tables) && // (3)
pos->dups_producing_tables == 0 && // (4)
!(remaining_tables_incl &
emb_sj_nest->nested_join->sj_corr_tables) && // (5)
(remaining_tables_incl &
emb_sj_nest->nested_join->sj_depends_on) && // (6)
new_join_tab->keyuse() != nullptr && // (7)
!new_join_tab->table_ref->uses_materialization()) // (8)
{
// start considering using LooseScan strategy
pos->first_loosescan_table = idx;
pos->loosescan_need_tables = emb_sj_nest->sj_inner_tables |
emb_sj_nest->nested_join->sj_depends_on;
}
if ((pos->first_loosescan_table != MAX_TABLES) &&
!(remaining_tables & pos->loosescan_need_tables)) {
/*
Ok we have all LooseScan sj-nest's inner tables and outer correlated
tables into the prefix.
*/
// Got a complete LooseScan range. Calculate access paths and cost
double cost, rowcount;
Opt_trace_object trace_one_strategy(trace);
trace_one_strategy.add_alnum("strategy", "LooseScan");
/*
The same problem as with FirstMatch - we need to save POSITIONs
somewhere but reserving space for all cases would require too
much space. We will re-calculate POSITION structures later on.
If this function returns 'false', it means LS is impossible (didn't
find a suitable index, etc).
*/
if (semijoin_firstmatch_loosescan_access_paths(pos->first_loosescan_table,
idx, remaining_tables,
true, &rowcount, &cost)) {
/*
We don't yet have any other strategies that could handle this
semi-join nest (the other options are Duplicate Elimination or
Materialization, which need at least the same set of tables in
the join prefix to be considered) so unconditionally pick the
LooseScan.
*/
sj_strategy = SJ_OPT_LOOSE_SCAN;
best_cost = cost;
best_rowcount = rowcount;
trace_one_strategy.add("cost", best_cost).add("rows", best_rowcount);
handled_by_fm_or_ls = join->positions[pos->first_loosescan_table]
.table->emb_sj_nest->sj_inner_tables;
}
trace_one_strategy.add("chosen", sj_strategy == SJ_OPT_LOOSE_SCAN);
}
}
if (emb_sj_nest) pos->dups_producing_tables |= emb_sj_nest->sj_inner_tables;
pos->dups_producing_tables &= ~handled_by_fm_or_ls;
/* MaterializeLookup and MaterializeScan strategy handler */
const int sjm_strategy = semijoin_order_allows_materialization(
join, remaining_tables, new_join_tab, idx);
if (sjm_strategy == SJ_OPT_MATERIALIZE_SCAN) {
/*
We cannot evaluate this option now. This is because we cannot
account for fanout of sj-inner tables yet:
ntX SJM-SCAN(it1 ... itN) | ot1 ... otN |
^(1) ^(2)
we're now at position (1). SJM temptable in general has multiple
records, so at point (1) we'll get the fanout from sj-inner tables (ie
there will be multiple record combinations).
The final join result will not contain any semi-join produced
fanout, i.e. tables within SJM-SCAN(...) will not contribute to
the cardinality of the join output. Extra fanout produced by
SJM-SCAN(...) will be 'absorbed' into fanout produced by ot1 ... otN.
The simple way to model this is to remove SJM-SCAN(...) fanout once
we reach the point #2.
*/
if (pos->sjm_scan_need_tables && emb_sj_nest != nullptr &&
emb_sj_nest !=
join->positions[pos->sjm_scan_last_inner].table->emb_sj_nest)
/*
Prevent that inner tables of different semijoin nests are
interleaved for MatScan.
*/
pos->sjm_scan_need_tables = 0;
else {
pos->sjm_scan_need_tables = emb_sj_nest->sj_inner_tables |
emb_sj_nest->nested_join->sj_depends_on;
pos->sjm_scan_last_inner = idx;
Opt_trace_object(trace)
.add_alnum("strategy", "MaterializeScan")
.add_alnum("choice", "deferred");
}
} else if (sjm_strategy == SJ_OPT_MATERIALIZE_LOOKUP) {
// Calculate access paths and cost for MaterializeLookup strategy
double cost, rowcount;
semijoin_mat_lookup_access_paths(idx, emb_sj_nest, &rowcount, &cost);
Opt_trace_object trace_one_strategy(trace);
trace_one_strategy.add_alnum("strategy", "MaterializeLookup")
.add("cost", cost)
.add("rows", rowcount)
.add("duplicate_tables_left", pos->dups_producing_tables != 0);
if (cost < best_cost || pos->dups_producing_tables) {
/*
NOTE: When we pick to use SJM[-Scan] we don't memcpy its POSITION
elements to join->positions as that makes it hard to return things
back when making one step back in join optimization. That's done
after the QEP has been chosen.
*/
sj_strategy = SJ_OPT_MATERIALIZE_LOOKUP;
best_cost = cost;
best_rowcount = rowcount;
pos->dups_producing_tables &= ~emb_sj_nest->sj_inner_tables;
}
trace_one_strategy.add("chosen", sj_strategy == SJ_OPT_MATERIALIZE_LOOKUP);
}
/* MaterializeScan second phase check */
/*
The optimizer does not support that we have inner tables from more
than one semi-join nest within the table range.
*/
if (pos->sjm_scan_need_tables && emb_sj_nest != nullptr &&
emb_sj_nest !=
join->positions[pos->sjm_scan_last_inner].table->emb_sj_nest)
pos->sjm_scan_need_tables = 0;
if (pos->sjm_scan_need_tables && /* Have SJM-Scan prefix */
!(pos->sjm_scan_need_tables & remaining_tables)) {
Table_ref *const sjm_nest =
join->positions[pos->sjm_scan_last_inner].table->emb_sj_nest;
double cost, rowcount;
Opt_trace_object trace_one_strategy(trace);
trace_one_strategy.add_alnum("strategy", "MaterializeScan");
semijoin_mat_scan_access_paths(pos->sjm_scan_last_inner, idx,
remaining_tables, sjm_nest, &rowcount,
&cost);
trace_one_strategy.add("cost", cost)
.add("rows", rowcount)
.add("duplicate_tables_left", pos->dups_producing_tables != 0);
/*
Use the strategy if
* it is cheaper then what we've had, or
* we haven't picked any other semi-join strategy yet
In the second case, we pick this strategy unconditionally because
comparing cost without semi-join duplicate removal with cost with
duplicate removal is not an apples-to-apples comparison.
*/
if (cost < best_cost || pos->dups_producing_tables) {
sj_strategy = SJ_OPT_MATERIALIZE_SCAN;
best_cost = cost;
best_rowcount = rowcount;
pos->dups_producing_tables &= ~sjm_nest->sj_inner_tables;
}
trace_one_strategy.add("chosen", sj_strategy == SJ_OPT_MATERIALIZE_SCAN);
}
/* Duplicate Weedout strategy handler */
{
/*
Duplicate weedout can be applied after all ON-correlated and
correlated
*/
if (emb_sj_nest) {
if (!pos->dupsweedout_tables) pos->first_dupsweedout_table = idx;
pos->dupsweedout_tables |= emb_sj_nest->sj_inner_tables |
emb_sj_nest->nested_join->sj_depends_on;
}
if (pos->dupsweedout_tables &&
!(remaining_tables & pos->dupsweedout_tables)) {
Opt_trace_object trace_one_strategy(trace);
trace_one_strategy.add_alnum("strategy", "DuplicatesWeedout");
/*
Ok, reached a state where we could put a dups weedout point.
Walk back and calculate
- the join cost (this is needed as the accumulated cost may assume
some other duplicate elimination method)
- extra fanout that will be removed by duplicate elimination
- duplicate elimination cost
There are two cases:
1. We have other strategy/ies to remove all of the duplicates.
2. We don't.
We need to calculate the cost in case #2 also because we need to make
choice between this join order and others.
*/
double rowcount, cost;
semijoin_dupsweedout_access_paths(pos->first_dupsweedout_table, idx,
&rowcount, &cost);
/*
Use the strategy if
* it is cheaper then what we've had, and strategy is enabled, or
* we haven't picked any other semi-join strategy yet
The second part is necessary because this strategy is the last one
to consider (it needs "the most" tables in the prefix) and we can't
leave duplicate-producing tables not handled by any strategy.
*/
trace_one_strategy.add("cost", cost)
.add("rows", rowcount)
.add("duplicate_tables_left", pos->dups_producing_tables != 0);
if ((cost < best_cost &&
join->positions[pos->first_dupsweedout_table]
.table->emb_sj_nest->nested_join->sj_enabled_strategies &
OPTIMIZER_SWITCH_DUPSWEEDOUT) ||
pos->dups_producing_tables) {
sj_strategy = SJ_OPT_DUPS_WEEDOUT;
best_cost = cost;
best_rowcount = rowcount;
/*
Note, dupsweedout_tables contains inner and outer tables, even though
"dups_producing_tables" are always inner table. Ok for this use.
*/
pos->dups_producing_tables &= ~pos->dupsweedout_tables;
}
trace_one_strategy.add("chosen", sj_strategy == SJ_OPT_DUPS_WEEDOUT);
}
}
pos->sj_strategy = sj_strategy;
/*
If a semi-join strategy is chosen, update cost and rowcount in positions
as well. These values may be used as prefix cost and rowcount for later
semi-join calculations, e.g for plans like "ot1 - it1 - it2 - ot2",
where we have two semi-join nests containing it1 and it2, respectively,
and we have a dependency between ot1 and it1, and between ot2 and it2.
When looking at a semi-join plan for "it2 - ot2", the correct prefix cost
(located in the join_tab for it1) must be filled in properly.
Tables in a semijoin range, except the last in range, won't have their
prefix_costs changed below; this is normal: when we process them, this is
a regular join so regular costs calculated in best_ext...() are ok;
duplicates elimination happens only at the last table in range, so it
makes sense to correct prefix_costs of that last table.
*/
if (sj_strategy != SJ_OPT_NONE)
pos->set_prefix_cost(best_cost, best_rowcount);
}
/**
Nested joins perspective: Remove the last table from the join order.
@details
Remove the last table from the partial join order and update the nested
joins counters and cur_embedding_map. It is ok to call this
function for the first table in join order (for which
check_interleaving_with_nj has not been called)
This function rolls back changes done by:
- check_interleaving_with_nj(): removes the last table from the partial join
order and update the nested joins counters and cur_embedding_map. It
is ok to call this for the first table in join order (for which
check_interleaving_with_nj() has not been called).
The algorithm is the reciprocal of check_interleaving_with_nj(), hence
parent join nest nodes are updated only when the last table in its child
node is removed. The ASCII graphic below will clarify.
%A table nesting such as <tt> t1 x [ ( t2 x t3 ) x ( t4 x t5 ) ] </tt>is
represented by the below join nest tree.
@verbatim
NJ1
_/ / \
_/ / NJ2
_/ / / \
/ / / \
t1 x [ (t2 x t3) x (t4 x t5) ]
@endverbatim
At the point in time when check_interleaving_with_nj() adds the table t5 to
the query execution plan, QEP, it also directs the node named NJ2 to mark
the table as covered. NJ2 does so by incrementing its @c counter
member. Since all of NJ2's tables are now covered by the QEP, the algorithm
proceeds up the tree to NJ1, incrementing its counter as well. All join
nests are now completely covered by the QEP.
backout_nj_state() does the above in reverse. As seen above, the node
NJ1 contains the nodes t2, t3, and NJ2. Its counter being equal to 3 means
that the plan covers t2, t3, and NJ2, @e and that the sub-plan (t4 x t5)
completely covers NJ2. The removal of t5 from the partial plan will first
decrement NJ2's counter to 1. It will then detect that NJ2 went from being
completely to partially covered, and hence the algorithm must continue
upwards to NJ1 and decrement its counter to 2. A subsequent removal of t4
will however not influence NJ1 since it did not un-cover the last table in
NJ2.
@param remaining_tables remaining tables to optimize, must contain 'tab'
@param tab join table to remove, assumed to be the last in
current partial join order.
*/
void Optimize_table_order::backout_nj_state(const table_map remaining_tables
[[maybe_unused]],
const JOIN_TAB *tab) {
assert(remaining_tables & tab->table_ref->map());
/* Restore the nested join state */
Table_ref *last_emb = tab->table_ref->embedding;
for (; last_emb != emb_sjm_nest; last_emb = last_emb->embedding) {
// Ignore join nests that are not outer joins.
if (!last_emb->join_cond_optim()) continue;
NESTED_JOIN *const nest = last_emb->nested_join;
assert(nest->nj_counter > 0);
cur_embedding_map |= nest->nj_map;
bool was_fully_covered = nest->nj_total == nest->nj_counter;
if (--nest->nj_counter == 0) cur_embedding_map &= ~nest->nj_map;
if (!was_fully_covered) break;
}
}
/**
Calculate the lateral dependencies of the suffix of JOIN_TABs from tab_no
to join->tables-1 in the final join plan, i.e. the plan contained in
join->best_positions. This function is only called from asserts that verify
the values cached in join->best_positions[table_no].m_suffix_lateral_deps.
@param tab_no index of the first table in the suffix for which we calculate
the dependencies.
@return the set of lateral dependencies.
@see JOIN::calculate_deps_of_remaining_lateral_derived_tables()
*/
table_map Optimize_table_order::calculate_lateral_deps_of_final_plan(
uint tab_no) const {
assert(tab_no <= join->tables);
assert(got_final_plan);
assert(!plan_has_duplicate_tabs());
table_map deps = 0;
for (uint i = tab_no; i < join->tables; i++) {
const JOIN_TAB &tab = *join->best_positions[i].table;
if (tab.table_ref->map() & ~excluded_tables) {
deps |= get_lateral_deps(tab);
}
}
return deps;
}
/**
Set join->deps_of_remaining_lateral_derived_tables to the
set of lateral dependencies of the tables in the suffix
of the join plan from 'tab_no' and on.
@param first_tab_no index (in the join order) of the first JOIN_TAB
in the suffix.
*/
void Optimize_table_order::recalculate_lateral_deps(uint first_tab_no) {
assert(first_tab_no <= join->tables);
assert(!plan_has_duplicate_tabs());
if (join->has_lateral) {
if (first_tab_no == join->tables) {
join->deps_of_remaining_lateral_derived_tables = 0;
} else if (got_final_plan) {
join->deps_of_remaining_lateral_derived_tables =
join->best_positions[first_tab_no].get_suffix_lateral_deps();
assert(join->deps_of_remaining_lateral_derived_tables ==
calculate_lateral_deps_of_final_plan(first_tab_no));
} else {
join->deps_of_remaining_lateral_derived_tables =
join->calculate_deps_of_remaining_lateral_derived_tables(
~excluded_tables, first_tab_no);
}
}
}
/**
Update join->deps_of_remaining_lateral_derived_tables after adding
JOIN_TAB first_tab_no-1 to the plan.
Precondition: deps_of_remaining_lateral_derived_tables must contain
the dependencies of the plan suffix from first_tab_no-1 and on.
@param first_tab_no index (in the join order) of the first JOIN_TAB
in the suffix.
This method intends to be faster than recalculate_lateral_deps(),
as it only calculates the increment change of adding on more table.
But it requires the precondition above to be fulfilled.
*/
void Optimize_table_order::recalculate_lateral_deps_incrementally(
uint first_tab_no) {
assert(first_tab_no > 0 && first_tab_no <= join->tables);
assert(!plan_has_duplicate_tabs());
if (join->has_lateral) {
/*
This function requires join->deps_of_remaining_lateral_derived_tables
to contain the dependencies of the lateral derived tables from
join->best_ref[next_idx-1] and on. The assert below checks that this
precondition holds.
*/
assert(got_final_plan ||
join->deps_of_remaining_lateral_derived_tables ==
join->calculate_deps_of_remaining_lateral_derived_tables(
~excluded_tables, first_tab_no - 1));
if (first_tab_no == join->tables) {
join->deps_of_remaining_lateral_derived_tables = 0;
/*
We have just added join->best_ref[first_tab_no - 1] to the plan; if it
is not lateral, the map doesn't change, no need to recalculate it.
*/
} else if (got_final_plan ||
get_lateral_deps(*join->best_ref[first_tab_no - 1]) != 0) {
recalculate_lateral_deps(first_tab_no);
}
}
}
/**
Check if any Table_ref appears twice in the plan (which is an error).
@return 'true' if there are any duplicates.
*/
bool Optimize_table_order::plan_has_duplicate_tabs() const {
table_map plan{0};
for (uint i = 0; i < join->tables; i++) {
Table_ref *const tab_ref = got_final_plan
? join->best_positions[i].table->table_ref
: join->best_ref[i]->table_ref;
if (tab_ref != nullptr) {
if ((plan & tab_ref->map()) != 0) {
return true;
}
plan |= tab_ref->map();
}
}
return false;
}
/**
Helper function to write the current plan's prefix to the optimizer trace.
*/
static void trace_plan_prefix(JOIN *join, uint idx, table_map excluded_tables) {
THD *const thd = join->thd;
Opt_trace_array plan_prefix(&thd->opt_trace, "plan_prefix");
for (uint i = 0; i < idx; i++) {
Table_ref *const tr = join->positions[i].table->table_ref;
if (!(tr->map() & excluded_tables)) {
StringBuffer<32> str;
tr->print(
thd, &str,
enum_query_type(QT_TO_SYSTEM_CHARSET | QT_SHOW_SELECT_NUMBER |
QT_NO_DEFAULT_DB | QT_DERIVED_TABLE_ONLY_ALIAS));
plan_prefix.add_utf8(str.ptr(), str.length());
}
}
}
/**
@} (end of group Query_Planner)
*/
|