1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978
|
/* Copyright (c) 2000, 2025, Oracle and/or its affiliates.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is designed to work with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have either included with
the program or referenced in the documentation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
/**
@file
@brief
Implementation of name resolution stage
@defgroup Query_Resolver Query Resolver
@{
*/
#include "sql/sql_resolver.h"
#include <sys/types.h>
#include <algorithm>
#include <cassert>
#include <cstddef> // size_t
#include <cstdio> // snprintf
#include <cstring> // strcmp
#include <deque>
#include <functional>
#include <initializer_list>
#include <unordered_map>
#include <utility>
#include <vector>
#include "field_types.h"
#include "lex_string.h"
#include "mem_root_deque.h"
#include "my_alloc.h"
#include "my_bitmap.h"
#include "my_compiler.h"
#include "my_dbug.h"
#include "my_inttypes.h"
#include "my_sqlcommand.h"
#include "my_sys.h"
#include "my_table_map.h"
#include "mysql/components/services/bits/psi_bits.h"
#include "mysql_com.h" // NAME_LEN
#include "mysqld_error.h"
#include "prealloced_array.h" // Prealloced_array
#include "sql/aggregate_check.h" // Group_check
#include "sql/auth/auth_acls.h"
#include "sql/auth/auth_common.h" // check_single_table_access
#include "sql/check_stack.h" // check_stack_overrun
#include "sql/current_thd.h" // current_thd
#include "sql/derror.h" // ER_THD
#include "sql/enum_query_type.h"
#include "sql/error_handler.h" // View_error_handler
#include "sql/field.h"
#include "sql/item.h"
#include "sql/item_cmpfunc.h"
#include "sql/item_func.h"
#include "sql/item_row.h"
#include "sql/item_subselect.h"
#include "sql/item_sum.h" // Item_sum
#include "sql/join_optimizer/bit_utils.h"
#include "sql/join_optimizer/join_optimizer.h"
#include "sql/mdl.h" // MDL_SHARED_READ
#include "sql/mem_root_array.h"
#include "sql/nested_join.h"
#include "sql/opt_hints.h"
#include "sql/opt_trace.h" // Opt_trace_object
#include "sql/opt_trace_context.h"
#include "sql/parse_tree_nodes.h" // PT_order_expr
#include "sql/parser_yystype.h"
#include "sql/query_options.h"
#include "sql/query_result.h" // Query_result
#include "sql/range_optimizer/partition_pruning.h"
#include "sql/range_optimizer/range_optimizer.h" // prune_partitions
#include "sql/sql_base.h" // setup_fields
#include "sql/sql_class.h"
#include "sql/sql_cmd.h" // Sql_cmd
#include "sql/sql_const.h"
#include "sql/sql_derived.h" //Condition_pushdown
#include "sql/sql_error.h"
#include "sql/sql_executor.h" // is_rollup_sum_wrapper, is_rollup_group_wrapper
#include "sql/sql_lex.h"
#include "sql/sql_list.h"
#include "sql/sql_optimizer.h" // build_bitmap_for_nested_joins
#include "sql/sql_select.h"
#include "sql/sql_test.h" // print_where
#include "sql/sql_union.h" // Query_result_union
#include "sql/system_variables.h"
#include "sql/table.h"
#include "sql/thd_raii.h"
#include "sql/thr_malloc.h"
#include "sql/visible_fields.h"
#include "sql/window.h"
#include "template_utils.h"
#include "thr_lock.h" // TL_READ
using std::find;
using std::function;
static const enum_walk walk_options =
enum_walk::PREFIX | enum_walk::POSTFIX | enum_walk::SUBQUERY;
static bool simplify_const_condition(THD *thd, Item **cond,
bool remove_cond = true,
bool *ret_cond_value = nullptr);
static Item *create_rollup_switcher(THD *thd, Query_block *query_block,
Item_sum *item, int send_group_parts);
static bool fulltext_uses_rollup_column(const Query_block *query_block);
/**
Prepare query block for optimization.
Resolve table and column information.
Resolve all expressions (item trees), ie WHERE clause, join conditions,
GROUP BY clause, HAVING clause, ORDER BY clause, LIMIT clause.
Prepare all subqueries recursively as part of resolving the expressions.
Apply permanent transformations to the abstract syntax tree, such as
semi-join transformation, derived table transformation, elimination of
constant values and redundant clauses (e.g ORDER BY, GROUP BY).
@param thd thread handler
@param insert_field_list List of fields when used in INSERT, otherwise NULL
@returns false if success, true if error
@note on privilege checking for SELECT query that possibly contains view
or derived table references:
- When this function is called, it is assumed that the precheck() function
has been called. precheck() ensures that the user has some SELECT
privileges to the tables involved in the query. When resolving views
it has also been established that the user has some privileges for them.
To prepare a view for privilege checking, it is also needed to call
check_view_privileges() after views have been merged into the query.
This is not necessary for unnamed derived tables since it has already
been established that we have SELECT privileges for the underlying tables
by the precheck functions. (precheck() checks a query without resolved
views, ie. before tables are opened, so underlying tables of views
are not yet available).
- When a query block is resolved, always ensure that the user has SELECT
privileges to the columns referenced in the WHERE clause, the join
conditions, the GROUP BY clause, the HAVING clause and the ORDER BY clause.
- When resolving the outer-most query block, ensure that the user also has
SELECT privileges to the columns in the selected expressions.
- When setting up a derived table or view for materialization, ensure that
the user has SELECT privileges to the columns in the selected expressions
- Column privileges are normally checked by Item_field::fix_fields().
Exceptions are select list of derived tables/views which are checked
in Table_ref::setup_materialized_derived(), and natural/using join
conditions that are checked in mark_common_columns().
- As far as INSERT, UPDATE and DELETE statements have the same expressions
as a SELECT statement, this note applies to those statements as well.
*/
bool Query_block::prepare(THD *thd, mem_root_deque<Item *> *insert_field_list) {
DBUG_TRACE;
assert(this == thd->lex->current_query_block());
assert(join == nullptr);
assert(!thd->is_error());
// If this query block is a table value constructor, a lot of the preparation
// done in Query_block::prepare becomes irrelevant. Thus we call our own
// Query_block::prepare_values in this case.
if (is_table_value_constructor) return prepare_values(thd);
Query_expression *const unit = master_query_expression();
if (!m_table_nest.empty()) propagate_nullability(&m_table_nest, false);
/*
Determine whether it is suggested to merge immediate derived tables, based
on the placement of the query block:
- DTs belonging to outermost query block: always
- DTs belonging to first level subqueries: Yes if inside SELECT statement,
no otherwise (including UPDATE and DELETE).
This is required to support a workaround for allowing subqueries
containing the same table as is target for delete or update,
by forcing a materialization of the subquery.
- All other cases inherit status of parent query block.
*/
allow_merge_derived = outer_query_block() == nullptr ||
master_query_expression()->item == nullptr ||
(outer_query_block()->outer_query_block() == nullptr
? parent_lex->sql_command == SQLCOM_SELECT ||
parent_lex->sql_command == SQLCOM_SET_OPTION
: outer_query_block()->allow_merge_derived);
Opt_trace_context *const trace = &thd->opt_trace;
Opt_trace_object trace_wrapper_prepare(trace);
Opt_trace_object trace_prepare(trace, "join_preparation");
trace_prepare.add_select_number(select_number);
Opt_trace_array trace_steps(trace, "steps");
/*
Setup the expressions in the SELECT list.
For derived tables/views, wait with privilege checking of columns and
marking in read/write sets until we know how they are used (may be used in
UPDATE and INSERT). Exceptions:
- Always assume columns referenced in subqueries are selected.
- Always assume outer references are selected (marking is then done in
Item_outer_ref::fix_fields).
Expressions must be resolved here, before tables are set up, otherwise table
function's arguments are not resolved properly.
*/
const bool check_privs = !thd->derived_tables_processing ||
master_query_expression()->item != nullptr;
thd->mark_used_columns = check_privs ? MARK_COLUMNS_READ : MARK_COLUMNS_NONE;
Access_bitmask want_privilege_saved = thd->want_privilege;
thd->want_privilege = check_privs ? SELECT_ACL : 0;
/*
Expressions in lateral join can't refer to item list, thus item list lookup
shouldn't be allowed during table/table function setup.
*/
is_item_list_lookup = false;
/* Check that all tables, fields, conds and order are ok */
if (setup_tables(thd, get_table_list(), false)) return true;
if ((derived_table_count || table_func_count) &&
resolve_placeholder_tables(thd, true))
return true;
// Wait with privilege checking until all derived tables are resolved.
if (derived_table_count && !thd->derived_tables_processing &&
check_view_privileges(thd, SELECT_ACL, SELECT_ACL))
return true;
is_item_list_lookup = true;
// Precompute and store the row types of NATURAL/USING joins.
if (leaf_table_count >= 2 &&
setup_natural_join_row_types(thd, m_current_table_nest, &context))
return true;
Mem_root_array<Item_exists_subselect *> sj_candidates_local(thd->mem_root);
set_sj_candidates(&sj_candidates_local);
/*
Item and Item_field CTORs will both increment some counters
in current_query_block(), based on the current parsing context.
We are not parsing anymore: any new Items created now are due to
query rewriting, so stop incrementing counters.
*/
assert(parsing_place == CTX_NONE);
parsing_place = CTX_NONE;
resolve_place = RESOLVE_SELECT_LIST;
if (with_wild && setup_wild(thd)) return true;
if (setup_base_ref_items(thd)) return true; /* purecov: inspected */
if (setup_fields(thd, thd->want_privilege, /*allow_sum_func=*/true,
/*split_sum_funcs=*/true, /*column_update=*/false,
insert_field_list, &fields, base_ref_items))
return true;
resolve_place = RESOLVE_NONE;
const nesting_map save_allow_sum_func = thd->lex->allow_sum_func;
const nesting_map save_deny_window_func = thd->lex->m_deny_window_func;
// Do not allow local set functions for join conditions, WHERE and GROUP BY
thd->lex->allow_sum_func &= ~((nesting_map)1 << nest_level);
thd->mark_used_columns = MARK_COLUMNS_READ;
thd->want_privilege = SELECT_ACL;
// Set up join conditions and WHERE clause
if (setup_conds(thd)) return true;
// Set up the GROUP BY clause
int all_fields_count = fields.size();
if (group_list.elements && setup_group(thd)) return true;
hidden_group_field_count = fields.size() - all_fields_count;
// Allow local set functions in HAVING and ORDER BY
thd->lex->allow_sum_func |= (nesting_map)1 << nest_level;
// Windowing is not allowed with HAVING
thd->lex->m_deny_window_func |= (nesting_map)1 << nest_level;
if (olap == ROLLUP_TYPE) {
for (Item *item : fields) {
mark_item_as_maybe_null_if_rollup_item(item);
item->update_used_tables();
}
}
// Setup the HAVING clause
if (m_having_cond) {
assert(m_having_cond->is_bool_func());
thd->where = "having clause";
having_fix_field = true;
resolve_place = RESOLVE_HAVING;
if (!m_having_cond->fixed &&
(m_having_cond->fix_fields(thd, &m_having_cond) ||
m_having_cond->check_cols(1)))
return true;
assert(m_having_cond->data_type() != MYSQL_TYPE_INVALID);
/*
Rollup may alter nullability of HAVING condition, so wait with
simplification of this condition until after rollup is resolved.
*/
having_fix_field = false;
resolve_place = RESOLVE_NONE;
}
if (olap == ROLLUP_TYPE && resolve_rollup(thd))
return true; /* purecov: inspected */
thd->lex->m_deny_window_func = save_deny_window_func;
if (m_having_cond != nullptr) {
if (olap == ROLLUP_TYPE) {
m_having_cond = resolve_rollup_item(thd, m_having_cond);
if (m_having_cond == nullptr) {
return true;
}
}
/*
Simplify the having condition if it is a const item.
Leave a TRUE condition if HAVING is always true, so that query block
is still marked as having a HAVING condition.
*/
if (m_having_cond->const_item() && !thd->lex->is_view_context_analysis() &&
!m_having_cond->walk(&Item::is_non_const_over_literals,
enum_walk::POSTFIX, nullptr) &&
simplify_const_condition(thd, &m_having_cond, false))
return true;
}
// Set up the ORDER BY clause
all_fields_count = fields.size();
if (order_list.elements) {
if (setup_order(thd, base_ref_items, get_table_list(), &fields,
order_list.first))
return true;
}
if (fulltext_uses_rollup_column(this)) {
my_error(ER_FULLTEXT_WITH_ROLLUP, MYF(0));
return true;
}
hidden_order_field_count = fields.size() - all_fields_count;
// Resolve OFFSET and LIMIT clauses
if (resolve_limits(thd)) return true;
/*
Query block is completely resolved, except for windows (see below) which
handles its own, so restore set function allowance.
*/
thd->lex->allow_sum_func = save_allow_sum_func;
/*
Permanently remove redundant parts from the query if
1) This is a subquery
2) Not normalizing a view. Removal should take place when a
query involving a view is optimized, not when the view
is created
*/
if (unit->item && // 1)
!thd->lex->is_view_context_analysis()) // 2)
{
if (remove_redundant_subquery_clauses(thd, hidden_group_field_count))
return true;
}
/*
Set up windows after setup_order() (as the query's ORDER BY may contain
window functions), and before setup_order_final() (as such function needs
to know about implicit grouping which may be induced by an aggregate
function in the window's PARTITION or ORDER clause).
*/
const size_t fields_cnt = fields.size();
if (m_windows.elements != 0 &&
Window::setup_windows1(thd, this, base_ref_items, get_table_list(),
&fields, &m_windows))
return true;
bool added_new_sum_funcs = fields.size() > fields_cnt;
if (order_list.elements) {
if (setup_order_final(thd)) return true; /* purecov: inspected */
added_new_sum_funcs = true;
}
thd->want_privilege = want_privilege_saved;
if (is_distinct() && can_skip_distinct())
remove_base_options(SELECT_DISTINCT);
/*
Printing the expanded query should happen here and not elsewhere, because
when a view is merged (when the view is opened in open_tables()), the
parent query's query_block does not yet contain a correct WHERE clause (it
misses the view's merged WHERE clause). This is corrected only just above,
in Table_ref::prep_where(), called by
setup_without_group()->setup_conds().
We also have to wait for fix_fields() on HAVING, above.
At this stage, we also have properly set up Item_ref-s.
*/
{
Opt_trace_object trace_wrapper(trace);
opt_trace_print_expanded_query(thd, this, &trace_wrapper);
}
/*
When normalizing a view (like when writing a view's body to the FRM),
subquery transformations don't apply (if they did, IN->EXISTS could not be
undone in favour of materialization, when optimizing a later statement
using the view)
*/
if (unit->item && // This is a subquery
// A real query block
// Not normalizing a view
unit->is_leaf_block(this) && !thd->lex->is_view_context_analysis()) {
// Query block represents a subquery within an IN/ANY/ALL/EXISTS predicate
if (resolve_subquery(thd)) return true;
}
// Transform eligible scalar subqueries to derived tables.
//
// Don't transform if analyzing a view: the resulting query may not be
// compilable from sqldump, (due to group by check/visibility in HAVING).
//
// Don't transform if the switch subquery_to_derived is false.
//
// Note that the transformation must precede m_having_cond->split_sum_func2
// below since substitutions may be made in the HAVING clause which would not
// otherwise get done.
if (!(thd->lex->context_analysis_only & CONTEXT_ANALYSIS_ONLY_VIEW) &&
(thd->optimizer_switch_flag(OPTIMIZER_SWITCH_SUBQUERY_TO_DERIVED) ||
(parent_lex->m_sql_cmd != nullptr &&
thd->secondary_engine_optimization() ==
Secondary_engine_optimization::SECONDARY)) &&
transform_scalar_subqueries_to_join_with_derived(thd))
return true; /* purecov: inspected */
/* Preserve the original table map for later reference. */
original_tables_map = all_tables_map();
/*
If GROUPING function is present in having condition -
1. Set that the evaluation of this condition depends on rollup
result.
2. Add a reference to the condition so that result is stored
after evaluation.
*/
if (m_having_cond && (m_having_cond->has_aggregation() ||
m_having_cond->has_grouping_func())) {
m_having_cond->split_sum_func2(thd, base_ref_items, &fields, &m_having_cond,
true);
added_new_sum_funcs = true;
}
if (inner_sum_func_list) {
Item_sum *end = inner_sum_func_list;
Item_sum *item_sum = end;
do {
item_sum = item_sum->next_sum;
item_sum->split_sum_func2(thd, base_ref_items, &fields, nullptr, false);
added_new_sum_funcs = true;
} while (item_sum != end);
}
if (added_new_sum_funcs && olap == ROLLUP_TYPE) {
uint send_group_parts = group_list_size();
for (auto it = fields.begin(); it != fields.end(); ++it) {
Item *item = *it;
if (item->type() == Item::SUM_FUNC_ITEM && !item->const_item()) {
Item_sum *item_sum = down_cast<Item_sum *>(item);
if (item_sum->aggr_query_block == this &&
!item_sum->is_rollup_sum_wrapper()) {
// split_sum_func2 created a new aggregate function item,
// so we need to update it for rollup.
Item *new_item =
create_rollup_switcher(thd, this, item_sum, send_group_parts);
if (new_item == nullptr) return true;
*it = new_item;
}
}
}
}
if (group_list.elements) {
/*
Because HEAP tables can't index BIT fields we need to use an
additional hidden field for grouping because later it will be
converted to a LONG field. Original field will remain of the
BIT type and will be returned to a client.
*/
for (ORDER *ord = group_list.first; ord; ord = ord->next) {
if ((*ord->item)->type() == Item::FIELD_ITEM &&
(*ord->item)->data_type() == MYSQL_TYPE_BIT) {
Item_field *field = new Item_field(thd, *(Item_field **)ord->item);
ord->item = add_hidden_item(field);
}
}
}
// Setup full-text functions after resolving HAVING
if (has_ft_funcs()) {
// The full-text search function cannot be called after aggregation, as it
// needs the underlying scan to be positioned on the correct row. Therefore,
// lift calls to the full-text search MATCH function to the SELECT list (as
// hidden items), so the results can be materialized before or during
// aggregation.
if (lift_fulltext_from_having_to_select_list(thd)) {
return true;
}
if (setup_ftfuncs(thd, this)) return true;
}
if (query_result() && query_result()->prepare(thd, fields, unit)) return true;
if (has_sj_candidates() && flatten_subqueries(thd)) return true;
set_sj_candidates(nullptr);
/*
When reaching the top-most query block, or the next-to-top query block for
the SQL command SET and for SP instructions (indicated with SQLCOM_END),
apply local transformations to this query block and all underlying query
blocks.
*/
if (!thd->lex->is_view_context_analysis() &&
(outer_query_block() == nullptr ||
((parent_lex->sql_command == SQLCOM_SET_OPTION ||
parent_lex->sql_command == SQLCOM_END ||
parent_lex->sql_command == SQLCOM_LOAD) &&
outer_query_block()->outer_query_block() == nullptr)) &&
!skip_local_transforms) {
/*
This code is invoked in the following cases:
- if this is not a create view statement as transformations are
not required when creating a view.
- if this is an outer-most query block of a SELECT or multi-table
UPDATE/DELETE statement. Notice that for a UNION, this applies to
all query blocks. It also applies to a fake_query_block object.
- if this is one of highest-level subqueries, if the statement is
something else; like subq-i in:
UPDATE t1 SET col1=(subq-1), col2=(subq-2);
- If this is a subquery in a SET command,
or scalar subqueries used in SP expressions like sp_instr_freturn
(undicated by SQLCOM_END).
@todo: Refactor SET so that this is not needed.
- If this is a subquery in a LOAD command.
- INSERT may in some cases alter the sequence of preparation calls, by
setting the skip_local_transforms flag before calling prepare().
Local transforms are applied after query block merging.
This means that we avoid unnecessary invocations, as local transforms
would otherwise have been performed first before query block merging and
then another time after query block merging.
Thus, apply_local_transforms() may run only after the top query
is finished with query block merging. That's why
apply_local_transforms() is initiated only by the top query, and then
recurses into subqueries.
*/
if (apply_local_transforms(thd, true)) return true;
}
// Eliminate unused window definitions, redundant sorts etc.
if (!m_windows.is_empty()) Window::eliminate_unused_objects(&m_windows);
// Replace group by field references inside window functions with references
// in the presence of ROLLUP.
if (olap == ROLLUP_TYPE && resolve_rollup_wfs(thd))
return true; /* purecov: inspected */
assert(!thd->is_error());
return false;
}
/*
Push conditions if possible to all the materialized derived tables.
Keep pushing as far down as possible making the call to this function
recursively.
@param thd thread handler
@returns false if success, true if error
Since this is called at the end after applying local transformations,
call this function while traversing the query block hierarchy top-down.
*/
bool Query_block::push_conditions_to_derived_tables(THD *thd) {
if (materialized_derived_table_count > 0)
for (Table_ref *tl = leaf_tables; tl; tl = tl->next_leaf) {
if (tl->is_view_or_derived() && tl->uses_materialization() &&
where_cond() && tl->can_push_condition_to_derived(thd)) {
Item **where = where_cond_ref();
Opt_trace_context *const trace = &thd->opt_trace;
Condition_pushdown cp(*where, tl, thd, trace);
// Make condition for the derived table
if (cp.make_cond_for_derived()) return true;
// The remaining condition that could not be pushed stays in this
// WHERE clause.
*where = cp.get_remainder_cond();
}
}
/*
Push conditions if possible to derived tables which were not merged. By
running top-down, the resulting pushed down condition can be pushed down
even more, in the case where a derived table contains an inner derived
table.
*/
for (Query_expression *unit = first_inner_query_expression(); unit;
unit = unit->next_query_expression()) {
for (Query_block *sl = unit->first_query_block(); sl;
sl = sl->next_query_block()) {
if (sl->push_conditions_to_derived_tables(thd)) return true;
}
}
return false;
}
/**
Prepare a table value constructor query block for optimization.
In the case of a table value constructor Query_block, we return the result of
this function from Query_block::prepare, instead of doing the standard prepare
routine.
For a table value constructor block, most preparation of a standard
Query_block becomes irrelevant (in particular INTO, FROM, WHERE, GROUP, HAVING
and WINDOW). We therefore substitute the standard resolving routine with this
one, which is simply responsible for resolving the expressions contained in
VALUES, as well as the query result.
@param thd thread handler
@returns false if success, true if error
*/
bool Query_block::prepare_values(THD *thd) {
Query_expression *const unit = master_query_expression();
if (resolve_table_value_constructor_values(thd)) return true;
// Setup the HAVING clause, duplicating code from Query_block::prepare. This
// is strictly necessary in the case of PREPARE statements, where
// resolve_subquery may rewrite its Query_block to use m_having_cond.
//
// For example, a query like `SELECT * FROM t WHERE (a, b) IN (VALUES ROW(1,
// 10))` may be rewritten such that the Query_block within the IN subquery has
// a HAVING clause with an Item_cond_and. This must be taken into account
// during the second preparation that is done when the prepared statement is
// _executed_; we now have to resolve m_having_cond properly.
//
// Note that this duplicated code should be removed in the future. TODO: for
// wl#9384, which refactors DML statement preparation to be done only once.
if (m_having_cond) {
assert(m_having_cond->is_bool_func());
thd->where = "having clause";
having_fix_field = true;
resolve_place = RESOLVE_HAVING;
if (!m_having_cond->fixed &&
(m_having_cond->fix_fields(thd, &m_having_cond) ||
m_having_cond->check_cols(1)))
return true; /* purecov: inspected */
assert(!m_having_cond->const_item());
having_fix_field = false;
resolve_place = RESOLVE_NONE;
}
/*
A table value constructor may have a defined ordering, thus calling
setup_order() is needed, however calling setup_order_final() is
not necessary since this construct cannot be aggregated.
*/
if (is_ordered() && setup_order(thd, base_ref_items, get_table_list(),
&fields, order_list.first)) {
return true;
}
// Again, duplicating checks that are also done in Query_block::prepare for
// resolving subqueries. This should, like the resolving of m_having_clause
// above, be refactored such that there is less duplication of code from
// Query_block::prepare.
if (unit->item && // This is a subquery
// A real query block
// Not normalizing a view
(unit->is_simple() || this != unit->query_term()->query_block()) &&
!thd->lex->is_view_context_analysis()) {
// Query block represents a subquery within an IN/ANY/ALL/EXISTS predicate
if (resolve_subquery(thd)) return true;
}
if (query_result() && query_result()->prepare(thd, fields, unit))
return true; /* purecov: inspected */
if (resolve_limits(thd)) return true;
return false;
}
/**
Apply local transformations, such as join nest simplification. 'Local' means
that each transformation happens on one single query block.
Also perform partition pruning, which is most effective after transformations
have been done.
This function also does condition pushdown to derived tables after all
the local transformations are applied although condition pushdown is
strictly not a local transform.
@param thd thread handler
@param prune if true, then prune partitions based on const conditions
@returns false if success, true if error
Since this is called after flattening of query blocks, call this function
while traversing the query block hierarchy top-down.
*/
bool Query_block::apply_local_transforms(THD *thd, bool prune) {
DBUG_TRACE;
assert(first_execution);
assert(thd->lex->current_query_block() == this);
/*
If query block contains one or more merged derived tables/views,
walk through lists of columns in select lists and remove unused columns.
*/
if (derived_table_count != 0) {
delete_unused_merged_columns(&m_table_nest);
}
for (Query_expression *unit = first_inner_query_expression(); unit;
unit = unit->next_query_expression()) {
for (auto qt : unit->query_terms<>()) {
thd->lex->set_current_query_block(qt->query_block());
if (qt->query_block()->apply_local_transforms(thd, true)) return true;
}
}
thd->lex->set_current_query_block(this);
// Convert all outer joins to inner joins if possible
if (simplify_joins(thd, &m_table_nest, true, false, &m_where_cond))
return true;
if (record_join_nest_info(&m_table_nest)) return true;
build_bitmap_for_nested_joins(&m_table_nest, 0);
/*
Here are the reasons why we do the following check here (i.e. late).
* setup_fields () may have done split_sum_func () on aggregate items of
the SELECT list, so for reliable comparison of the ORDER BY list with
the SELECT list, we need to wait until split_sum_func() is done with
the ORDER BY list.
* we get resolved expressions "most of the time", which is always a good
thing. Some outer references may not be resolved, though.
* we need nested_join::used_tables, and this member is set in
simplify_joins()
* simplify_joins() does outer-join-to-inner conversion, which increases
opportunities for functional dependencies (weak-to-strong, which is
unusable, becomes strong-to-strong).
* check_only_full_group_by() is dependent on processing done by
simplify_joins() (for example it uses the value of
Query_block::outer_join).
The drawback is that the checks are after resolve_subquery(), so can
meet strange "internally added" items.
Note that when we are creating a view, simplify_joins() doesn't run so
check_only_full_group_by() cannot run, any error will be raised only
when the view is later used (SELECTed...)
*/
if ((is_distinct() || is_grouped()) &&
(thd->variables.sql_mode & MODE_ONLY_FULL_GROUP_BY) &&
check_only_full_group_by(thd))
return true;
/*
Prune partitions for all query blocks after query block merging, if
pruning is wanted.
*/
if (partitioned_table_count && prune) {
for (Table_ref *tbl = leaf_tables; tbl; tbl = tbl->next_leaf) {
/*
This will only prune constant conditions, which will be used for
lock pruning.
*/
if (prune_partitions(thd, tbl->table, this,
tbl->join_cond() ? tbl->join_cond() : m_where_cond))
return true; /* purecov: inspected */
if (tbl->table->all_partitions_pruned_away &&
!tbl->is_inner_table_of_outer_join())
set_empty_query();
}
}
/*
Pushing conditions down to derived tables must be done after validity
checks of grouped queries done above; indeed, by replacing columns
with expressions, inside equalities of WHERE, pushdown makes the checks
impossible.
The said validity checks must be done after simplify_joins() has been
done on all query blocks. While pushdown must be done on the outer
most query block first, then on subqueries.
These circular dependencies explain why:
- pushdown is done after all local transformations have been applied.
- a pushed-down condition cannot help to convert LEFT JOIN to inner join
inside a derived table's definition.
*/
if (outer_query_block() == nullptr && push_conditions_to_derived_tables(thd))
return true;
return false;
}
/**
Update used tables information for a JOIN expression
*/
static void update_used_tables_for_join(mem_root_deque<Table_ref *> *tables) {
for (Table_ref *table_ref : *tables) {
if (table_ref->join_cond() != nullptr)
table_ref->join_cond()->update_used_tables();
if (table_ref->nested_join != nullptr)
update_used_tables_for_join(&table_ref->nested_join->m_tables);
}
}
/**
Update used tables information for all local expressions.
*/
void Query_block::update_used_tables() {
for (Item *item : visible_fields()) {
item->update_used_tables();
}
if (m_current_table_nest != nullptr)
update_used_tables_for_join(m_current_table_nest);
if (where_cond() != nullptr) where_cond()->update_used_tables();
for (ORDER *group = group_list.first; group; group = group->next)
(*group->item)->update_used_tables();
if (having_cond() != nullptr) having_cond()->update_used_tables();
for (ORDER *order = order_list.first; order; order = order->next)
(*order->item)->update_used_tables();
List_iterator<Window> wi(m_windows);
Window *w;
while ((w = wi++)) {
for (ORDER *wp = w->first_partition_by(); wp != nullptr; wp = wp->next)
(*wp->item)->update_used_tables();
for (ORDER *wo = w->first_order_by(); wo != nullptr; wo = wo->next)
(*wo->item)->update_used_tables();
}
}
/**
Resolve OFFSET and LIMIT clauses for a query block.
@param thd Thread handler
@returns false if success, true if error
OFFSET and LIMIT clauses may be attached to query blocks that make up
a query expression. OFFSET and LIMIT clauses that apply to a whole
query expression are attached to the fake_query_block, hence we can use
this interface to resolve them as well.
OFFSET and LIMIT may be unsigned integer literal values or parameters.
If parameters, ensure that the type is unsigned integer.
*/
bool Query_block::resolve_limits(THD *thd) {
if (offset_limit != nullptr) {
if (offset_limit->fix_fields(thd, nullptr))
return true; /* purecov: inspected */
if (offset_limit->data_type() == MYSQL_TYPE_INVALID) {
if (offset_limit->propagate_type(
thd, Type_properties(MYSQL_TYPE_LONGLONG, true)))
return true;
offset_limit->pin_data_type();
}
}
if (select_limit != nullptr) {
if (select_limit->fix_fields(thd, nullptr))
return true; /* purecov: inspected */
if (select_limit->data_type() == MYSQL_TYPE_INVALID) {
if (select_limit->propagate_type(
thd, Type_properties(MYSQL_TYPE_LONGLONG, true)))
return true;
select_limit->pin_data_type();
}
}
return false;
}
/**
Try to replace a const condition with a simple constant.
A true condition is replaced with an empty item pointer if remove_cond
is true. Else it is replaced with the constant TRUE.
A false condition is replaced with the constant FALSE.
@param thd Thread handler
@param[in,out] cond Address of condition, may be substituted with a literal
@param remove_cond If true removes a "true" condition. Else replaces
it with a constant TRUE.
@param ret_cond_value Store the result of the evaluated const condition
@returns false if success, true if error
*/
static bool simplify_const_condition(THD *thd, Item **cond, bool remove_cond,
bool *ret_cond_value) {
assert((*cond)->const_item());
bool cond_value;
/* Push ignore / strict error handler */
Ignore_error_handler ignore_handler;
Strict_error_handler strict_handler;
if (thd->lex->is_ignore())
thd->push_internal_handler(&ignore_handler);
else if (thd->is_strict_mode())
thd->push_internal_handler(&strict_handler);
bool err = eval_const_cond(thd, *cond, &cond_value);
/* Pop ignore / strict error handler */
if (thd->lex->is_ignore() || thd->is_strict_mode())
thd->pop_internal_handler();
if (err) return true;
DBUG_EXECUTE("where",
print_where(thd, *cond, "simplify_const_cond", QT_ORDINARY););
if (cond_value) {
if (remove_cond)
*cond = nullptr;
else {
Prepared_stmt_arena_holder ps_arena_holder(thd);
*cond = new (thd->mem_root) Item_func_true();
if (*cond == nullptr) return true;
}
} else if ((*cond)->type() != Item::INT_ITEM) {
Prepared_stmt_arena_holder ps_arena_holder(thd);
*cond = new (thd->mem_root) Item_func_false();
if (*cond == nullptr) return true;
}
if (ret_cond_value) *ret_cond_value = cond_value;
return false;
}
/**
Check if the subquery predicate can be executed via materialization.
@param thd THD
@param query_block Query_block of the subquery
@param outer Parent Query_block (outer to subquery)
@return true if subquery allows materialization, false otherwise.
*/
bool Item_in_subselect::subquery_allows_materialization(
THD *thd, Query_block *query_block, const Query_block *outer) {
const uint elements = unit->first_query_block()->num_visible_fields();
DBUG_TRACE;
assert(elements >= 1);
assert(left_expr->cols() == elements);
OPT_TRACE_TRANSFORM(&thd->opt_trace, trace_wrapper, trace_mat,
query_block->select_number, "IN (SELECT)",
"materialization");
const char *cause = nullptr;
if (substype() != Item_subselect::IN_SUBS) {
// Subq-mat cannot handle 'outer_expr > {ANY|ALL}(subq)'...
cause = "not an IN predicate";
} else if (m_subquery_used_tables & RAND_TABLE_BIT) {
// Subquery with a random function cannot be materalized.
// But random function in left expression is OK
cause = "non-deterministic";
} else if (!query_block->is_simple_query_block()) {
// Subquery must be a simple query specification clause (not a set operation
// or a parenthesized query expression).
cause = "in set operation or a parenthesized query expression";
} else if (!query_block->master_query_expression()
->first_query_block()
->leaf_tables) {
// Subquery has no tables, hence no point in materializing.
cause = "no inner tables";
} else if (!outer->join) {
/*
Maybe this is a subquery of a single table UPDATE/DELETE (TODO:
handle this by switching to multi-table UPDATE/DELETE).
*/
cause = "parent query has no JOIN";
} else if (!outer->leaf_tables) {
// The upper query is SELECT ... FROM DUAL. No gain in materializing.
cause = "no tables in outer query";
} else if (dependent_before_in2exists()) {
/*
Subquery should not be correlated; the correlation due to predicates
injected by IN->EXISTS does not count as we will remove them if we
choose materialization.
TODO:
This is an overly restrictive condition. It can be extended to:
(Subquery is non-correlated ||
Subquery is correlated to any query outer to IN predicate ||
(Subquery is correlated to the immediate outer query &&
Subquery !contains {GROUP BY, ORDER BY [LIMIT],
aggregate functions}) && subquery predicate is not under "NOT IN"))
*/
cause = "correlated";
} else {
/*
Check that involved expression types allow materialization.
This is a temporary fix for BUG#36752; see bug report for
description of restrictions we need to put on the compared expressions.
*/
assert(left_expr->fixed);
// @see comment in Item_subselect::element_index()
bool has_nullables = left_expr->is_nullable();
uint i = 0;
for (Item *const inner_item : unit->first_query_block()->visible_fields()) {
Item *const outer_item = left_expr->element_index(i++);
if (!types_allow_materialization(outer_item, inner_item)) {
cause = "type mismatch";
break;
}
if (inner_item->is_blob_field()) // 6
{
cause = "inner blob";
break;
}
has_nullables |= inner_item->is_nullable();
}
if (!cause) {
trace_mat.add("has_nullable_expressions", has_nullables);
/*
Subquery materialization cannot handle NULLs partial matching
properly, yet. If the outer or inner values are NULL, the
subselect_hash_sj_engine may reply FALSE when it should reply UNKNOWN.
So, we must limit it to those three cases:
- when FALSE and UNKNOWN are equivalent answers. I.e. this is a a
top-level predicate (this implies it is not negated).
- when outer and inner values cannot be NULL.
- when there is a single inner column (because for this we have a
limited implementation of NULLs partial matching).
*/
trace_mat.add("treat_UNKNOWN_as_FALSE", abort_on_null);
if (!abort_on_null && has_nullables && (elements > 1))
cause = "cannot_handle_partial_matches";
else {
trace_mat.add("possible", true);
return true;
}
}
}
assert(cause != nullptr);
trace_mat.add("possible", false).add_alnum("cause", cause);
return false;
}
/**
Make list of leaf tables of join table tree
@param list pointer to pointer on list first element
Must be set to NULL before first (recursive) call
@param tables table list
@returns pointer on pointer to next_leaf of last element
*/
static Table_ref **make_leaf_tables(Table_ref **list, Table_ref *tables) {
for (Table_ref *table = tables; table; table = table->next_local) {
// A mergeable view is not allowed to have a table pointer.
assert(!(table->is_view() && table->is_merged() && table->table));
if (table->merge_underlying_list) {
assert(table->is_merged());
list = make_leaf_tables(list, table->merge_underlying_list);
} else {
*list = table;
list = &table->next_leaf;
}
}
return list;
}
/**
Check privileges for the view tables merged into a query block.
@param thd Thread context.
@param want_privilege_first Privileges requested for the first leaf.
@param want_privilege_next Privileges requested for the remaining leaves.
@note Beware that it can't properly check privileges in cases when
table being changed is not the first table in the list of leaf
tables (for example, for multi-UPDATE).
@note The inner loop is slightly inefficient. A view will have its privileges
checked once for every base table that it refers to.
@returns false if success, true if error.
*/
bool Query_block::check_view_privileges(THD *thd,
Access_bitmask want_privilege_first,
Access_bitmask want_privilege_next) {
Access_bitmask want_privilege = want_privilege_first;
Internal_error_handler_holder<View_error_handler, Table_ref> view_handler(
thd, true, leaf_tables);
for (Table_ref *tl = leaf_tables; tl; tl = tl->next_leaf) {
for (Table_ref *ref = tl; ref->referencing_view;
ref = ref->referencing_view) {
if (check_single_table_access(thd, want_privilege, ref, false))
return true;
}
want_privilege = want_privilege_next;
}
return false;
}
/**
Set up table leaves in the query block based on list of tables.
@param thd Thread handler
@param tables List of tables to handle
@param select_insert It is SELECT ... INSERT command
@note
Check also that the 'used keys' and 'ignored keys' exists and set up the
table structure accordingly.
Create a list of leaf tables.
This function has to be called for all tables that are used by items,
as otherwise table->map is not set and all Item_field will be regarded
as const items.
@returns False on success, true on error
*/
bool Query_block::setup_tables(THD *thd, Table_ref *tables,
bool select_insert) {
DBUG_TRACE;
assert((select_insert && !tables->next_name_resolution_table) || !tables ||
(context.table_list && context.first_name_resolution_table));
leaf_tables = nullptr;
(void)make_leaf_tables(&leaf_tables, tables);
Table_ref *first_query_block_table = nullptr;
if (select_insert) {
// "insert_table" is needed for remap_tables().
thd->lex->insert_table = leaf_tables->top_table();
// Get first table in SELECT part
first_query_block_table = thd->lex->insert_table->next_local;
// Then, find the first leaf table
if (first_query_block_table)
first_query_block_table = first_query_block_table->first_leaf_table();
}
uint tableno = 0;
leaf_table_count = 0;
partitioned_table_count = 0;
for (Table_ref *tr = leaf_tables; tr; tr = tr->next_leaf, tableno++) {
TABLE *const table = tr->table;
if (tr == first_query_block_table) {
/*
For INSERT ... SELECT command, restart numbering from zero for first
leaf table from SELECT part of query.
*/
first_query_block_table = nullptr;
tableno = 0;
}
if (tableno >= MAX_TABLES) {
my_error(ER_TOO_MANY_TABLES, MYF(0), static_cast<int>(MAX_TABLES));
return true;
}
tr->set_tableno(tableno);
leaf_table_count++; // Count the input tables of the query
if (opt_hints_qb && // QB hints initialized
!tr->opt_hints_table) // Table hints are not adjusted yet
{
tr->opt_hints_table = opt_hints_qb->adjust_table_hints(tr);
}
if (table == nullptr) continue;
assert(table->pos_in_table_list == tr);
if (!tr->opt_hints_table ||
// Ignore old index hint processing if new style hints are specified.
!tr->opt_hints_table->update_index_hint_maps(thd, tr->table)) {
if (tr->process_index_hints(thd, table)) return true;
}
if (table->part_info) // Count number of partitioned tables
partitioned_table_count++;
}
/*
@todo - consider calling this from SELECT::prepare() instead.
It might save the test on select_insert to prevent check_unresolved()
from being called twice for INSERT ... SELECT.
*/
if (opt_hints_qb && !select_insert) opt_hints_qb->check_unresolved(thd);
return false;
}
/**
Re-map table numbers for all tables in a query block.
@param thd Thread handler
@note
This function needs to be called after setup_tables() has been called,
and after a query block for a subquery has been merged into a parent
quary block.
*/
void Query_block::remap_tables(THD *thd) {
LEX *const lex = thd->lex;
Table_ref *first_query_block_table = nullptr;
if (lex->insert_table && lex->insert_table == leaf_tables->top_table()) {
/*
For INSERT ... SELECT command, restart numbering from zero for first
leaf table from SELECT part of query.
*/
// Get first table in SELECT part
first_query_block_table = lex->insert_table->next_local;
// Then, recurse down to get first leaf table
if (first_query_block_table)
first_query_block_table = first_query_block_table->first_leaf_table();
}
uint tableno = 0;
for (Table_ref *tl = leaf_tables; tl; tl = tl->next_leaf) {
// Reset table number after having reached first table after insert table
if (first_query_block_table == tl) tableno = 0;
tl->set_tableno(tableno++);
}
}
/**
@brief Resolve derived table, view or table function references in query block
@param thd Pointer to THD.
@param apply_semijoin if true, apply semi-join transform when possible
@return false if success, true if error
*/
bool Query_block::resolve_placeholder_tables(THD *thd, bool apply_semijoin) {
DBUG_TRACE;
assert(derived_table_count > 0 || table_func_count > 0);
// Prepare derived tables and views that belong to this query block.
for (Table_ref *tl = get_table_list(); tl; tl = tl->next_local) {
if (!tl->is_view_or_derived() && !tl->is_table_function()) continue;
// scalar to derived: derived tables may have been merged already:
// WL#6570 transform_grouped_to_derived() calls setup_tables() and
// resolve_placeholder_tables().
if (tl->is_merged() || tl->uses_materialization()) {
continue;
}
assert(!tl->is_merged() && !tl->uses_materialization());
if (tl->resolve_derived(thd, apply_semijoin)) return true;
/*
Merge the derived tables that do not require materialization into
the current query block, if possible.
Merging is only done once and must not be repeated for prepared execs.
*/
if (!thd->lex->is_view_context_analysis()) {
if (tl->is_mergeable() && merge_derived(thd, tl))
return true; /* purecov: inspected */
}
if (tl->is_merged()) continue;
// Prepare remaining derived tables for materialization
if (tl->is_table_function()) {
if (tl->setup_table_function(thd)) {
return true;
}
} else if (tl->table == nullptr && tl->setup_materialized_derived(thd)) {
return true;
}
materialized_derived_table_count++;
}
return false;
}
/**
Check if the offset and limit are valid for a semijoin. A semijoin
can be used only if OFFSET is 0 and select LIMIT is not 0.
@retval false if OFFSET and LIMIT does not permit a semijoin,
@retval true otherwise.
*/
bool Query_block::is_row_count_valid_for_semi_join() {
if (offset_limit != nullptr &&
(!offset_limit->const_item() || offset_limit->val_int() != 0))
return false;
if (select_limit != nullptr &&
(!select_limit->const_item() || select_limit->val_int() == 0))
return false;
return true;
}
/**
@brief Resolve predicate involving subquery
@param thd Pointer to THD.
@retval false Success.
@retval true Error.
@details
Perform early unconditional subquery transformations:
- Convert subquery predicate into semi-join, or
- Mark the subquery for execution using materialization, or
- Perform IN->EXISTS transformation, or
- Perform more/less ALL/ANY -> MIN/MAX rewrite
- Substitute trivial scalar-context subquery with its value
@todo for PS, make the whole block execute only on the first execution
*/
bool Query_block::resolve_subquery(THD *thd) {
DBUG_TRACE;
bool choice_made = false; // becomes true when subquery strategy is chosen
bool deterministic = true;
Query_block *const outer = outer_query_block();
/*
@todo for PS, make the whole block execute only on the first execution.
resolve_subquery() is only invoked in the first execution for subqueries
that are transformed to semijoin, but for other subqueries, this function
is called for every execution. One solution is perhaps to define
exec_method in class Item_subselect and exit immediately if unequal to
SubqueryExecMethod::EXEC_UNSPECIFIED.
*/
Item_subselect *subq_predicate = master_query_expression()->item;
assert(subq_predicate != nullptr);
/**
@note
In this case: IN (SELECT ... UNION SELECT ...), Query_block::prepare() is
called for each of the two UNION members, and in those two calls,
subq_predicate is the same, not sure this is desired (double work?).
*/
// Predicate for possible semi-join candidates (IN and EXISTS)
Item_exists_subselect *const predicate =
subq_predicate->substype() == Item_subselect::EXISTS_SUBS ||
subq_predicate->substype() == Item_subselect::IN_SUBS
? down_cast<Item_exists_subselect *>(subq_predicate)
: nullptr;
// Predicate for IN subquery predicate
Item_in_subselect *const in_predicate =
subq_predicate->substype() == Item_subselect::IN_SUBS
? down_cast<Item_in_subselect *>(subq_predicate)
: nullptr;
if (in_predicate != nullptr) {
thd->lex->set_current_query_block(outer);
char const *save_where = thd->where;
thd->where = "IN/ALL/ANY subquery";
Condition_context CCT(outer);
bool result =
!in_predicate->left_expr->fixed &&
in_predicate->left_expr->fix_fields(thd, &in_predicate->left_expr);
thd->lex->set_current_query_block(this);
thd->where = save_where;
if (result) return true;
/*
Check if the left and right expressions have the same # of
columns, i.e. we don't have a case like
(oe1, oe2) IN (SELECT ie1, ie2, ie3 ...)
TODO why do we have this duplicated in IN->EXISTS transformers?
psergey-todo: fix these: grep for duplicated_subselect_card_check
*/
if (num_visible_fields() != in_predicate->left_expr->cols()) {
my_error(ER_OPERAND_COLUMNS, MYF(0), in_predicate->left_expr->cols());
return true;
}
if (in_predicate->left_expr->is_non_deterministic()) deterministic = false;
}
// (a) A certain secondary engine doesn't support antijoin transforms
// (b) For NOT EXISTS (non-correlated subquery), or
// <constant> NOT IN (non-correlated subquery): it is more efficient to
// evaluate it once for all during optimization:
// - if it is false, we may be able to skip reading the outer table,
// - if it is true, we'll avoid reading the inner table many times.
// So we leave it as a subquery.
// todo: revisit this when (a) becomes false, or when the cost optimizer
// is made to prefer hash antijoin over nested loop antijoin for the cases of
// (b) (hash antijoin has efficient handling of them).
const bool cannot_do_antijoin =
(thd->lex->m_sql_cmd != nullptr && // (a)
thd->secondary_engine_optimization() ==
Secondary_engine_optimization::SECONDARY) ||
((in_predicate == nullptr ||
in_predicate->left_expr->const_item()) && // (b)
(master_query_expression()->uncacheable & UNCACHEABLE_DEPENDENT) == 0);
const bool try_convert_to_derived =
(thd->optimizer_switch_flag(OPTIMIZER_SWITCH_SUBQUERY_TO_DERIVED) ||
// a certain secondary engine doesn't support subqueries
(thd->lex->m_sql_cmd != nullptr &&
thd->secondary_engine_optimization() ==
Secondary_engine_optimization::SECONDARY));
DBUG_PRINT("info", ("Checking if subq can be converted to semi-join"));
const bool no_aggregates = !is_grouped() && !with_sum_func &&
having_cond() == nullptr && !has_windows();
/*
Check if we're in subquery that is a candidate for flattening into a
semi-join (which is done in flatten_subqueries()). The requirements are:
0. Semi-join is enabled (cf. hints)
1. Subquery predicate is an IN/=ANY or EXISTS predicate
2. Subquery is a simple query block (not a set operation or a
parenthesized query expression).
3. Subquery is not grouped (explicitly or implicitly)
3x: outer aggregated expression are not accepted
4. Subquery does not use HAVING
5. Subquery does not use windowing functions
6. Subquery predicate is (a) in an ON/WHERE clause,
and (b) at the AND-top-level of that clause. Note for 6a:
Semijoin transformations of subqueries in ON cause the
join nests to no longer be acceptable as a join tree, which
disturbs the hypergraph optimizer, so we disable them
for that case (6x). However, we enable them when secondary
engine optimization is ON because it is easy to reject a
possible wrong plan when its not supporting nested loop
joins.
7. Parent query block accepts semijoins (i.e we are not in a subquery of
a single table UPDATE/DELETE (TODO: We should handle this at some
point by switching to multi-table UPDATE/DELETE)
8. We're not in a confluent table-less subquery, like "SELECT 1".
9. No execution method was already chosen (by a prepared statement)
10. Parent query block is not a confluent table-less query block.
11. Neither parent nor child query block has straight join.
12. Parent query block does not prohibit semi-join.
13. LHS of IN predicate is deterministic
14. The surrounding truth test, and the nullability of expressions,
are compatible with the conversion.
15. Antijoins are supported, or it's not an antijoin (it's a semijoin).
16. OFFSET starts from the first row and LIMIT is not 0.
*/
SecondaryEngineFlags engine_flags = 0;
if (const handlerton *secondary_engine = SecondaryEngineHandlerton(thd);
secondary_engine != nullptr) {
engine_flags = secondary_engine->secondary_engine_flags;
}
if (semijoin_enabled(thd) && // 0
predicate != nullptr && // 1
is_simple_query_block() && // 2
no_aggregates && // 3,3x,4,5
(outer->resolve_place == Query_block::RESOLVE_CONDITION || // 6a
(outer->resolve_place == Query_block::RESOLVE_JOIN_NEST && // 6a
(!thd->lex->using_hypergraph_optimizer() ||
(thd->secondary_engine_optimization() ==
Secondary_engine_optimization::SECONDARY &&
!Overlaps(
engine_flags,
MakeSecondaryEngineFlags(
SecondaryEngineFlag::SUPPORTS_NESTED_LOOP_JOIN)))))) && // 6x
outer->condition_context == enum_condition_context::ANDS && // 6b
outer->sj_candidates && // 7
leaf_table_count > 0 && // 8
predicate->strategy == // 9
Subquery_strategy::UNSPECIFIED && // 9
outer->leaf_table_count > 0 && // 10
!((active_options() | outer->active_options()) & // 11
SELECT_STRAIGHT_JOIN) && // 11
!(outer->active_options() & SELECT_NO_SEMI_JOIN) && // 12
deterministic && // 13
predicate->choose_semijoin_or_antijoin() && // 14
(!cannot_do_antijoin || !predicate->can_do_aj) && // 15
is_row_count_valid_for_semi_join()) { // 16
DBUG_PRINT("info", ("Subquery is semi-join conversion candidate"));
/* Notify in the subquery predicate where it belongs in the query graph */
predicate->embedding_join_nest = outer->resolve_nest;
/* Register the subquery for further processing in flatten_subqueries() */
predicate->strategy = Subquery_strategy::CANDIDATE_FOR_SEMIJOIN;
outer->sj_candidates->push_back(predicate);
choice_made = true;
}
/*
If semijoin failed, try a transformation to a derived table:
FROM ot WHERE ot.x IN (SELECT y FROM it1, it2)
=>
FROM ot LEFT JOIN (SELECT DISTINCT y FROM it1, it2) AS derived
ON ot.x=derived.y
WHERE derived.y IS NOT NULL.
Applicability constraints have numbers which are the same as in the list of
the previous block. Reasons may be different though.
1. Subquery predicate is an IN/=ANY or EXISTS predicate
2. Subquery is a simple query block (not a set operation or a
parenthesized query expression). This is because a certain secondary
engine has no support for setop DISTINCT.
3. If this is [NOT] EXISTS, there is no aggregation; see
transform_table_subquery_to_join_with_derived()
6. Subquery predicate is
6a. in WHERE clause (we have not implemented the transformation for the
ON clause)
6b. linked to the root of that clause with ANDs or ORs.
7. Parent query block accepts semijoins (i.e we are not in a subquery of
a single table UPDATE/DELETE (TODO: We should handle this at some
point by switching to multi-table UPDATE/DELETE)
9. No execution method was already chosen (by a prepared statement)
10. Parent select has tables, as we'll link to them with LEFT JOIN
12. Parent query block does not prohibit semi-join.
13. LHS of IN predicate is deterministic
14. The surrounding truth test, and the nullability of expressions,
are compatible with the conversion.
16. The left argument isn't a row (multi-column) subquery; it would lead
to creating conditions like WHERE (outer_subq) =
ROW(derived.col1,derived.col2), which would complicate code.
17. Certain other subquery transformations, incompatible with this one,
have not been done.
*/
if (!choice_made && try_convert_to_derived && predicate != nullptr && // 1
is_simple_query_block() && // 2
(in_predicate != nullptr || no_aggregates) && // 3
outer->resolve_place == Query_block::RESOLVE_CONDITION && // 6a
outer->condition_context != enum_condition_context::NEITHER && // 6b
outer->sj_candidates && // 7
predicate->strategy == // 9
Subquery_strategy::UNSPECIFIED && // 9
outer->leaf_table_count && // 10
!(outer->active_options() & SELECT_NO_SEMI_JOIN) && // 12
deterministic && // 13
predicate->choose_semijoin_or_antijoin() && // 14
!(in_predicate != nullptr && // 16
in_predicate->left_expr->type() == Item::SUBSELECT_ITEM &&
in_predicate->left_expr->cols() > 1) &&
!thd->lex->m_subquery_to_derived_is_impossible) { // 17
assert(outer->resolve_nest == nullptr);
/* Register the subquery for further processing in flatten_subqueries() */
outer->sj_candidates->push_back(predicate);
predicate->strategy = Subquery_strategy::CANDIDATE_FOR_DERIVED_TABLE;
predicate->outer_condition_context = outer->condition_context;
choice_made = true;
}
if (!choice_made) {
return subq_predicate->select_transformer(thd, this);
}
return false;
}
/**
Expand all '*' in list of expressions with the matching column references
Function should not be called with no wild cards in select list
@param thd thread handler
@returns false if OK, true if error
*/
bool Query_block::setup_wild(THD *thd) {
DBUG_TRACE;
assert(with_wild > 0);
// PS/SP uses arena so that changes are made permanently.
Prepared_stmt_arena_holder ps_arena_holder(thd);
for (auto it = fields.begin(); with_wild > 0 && it != fields.end(); ++it) {
Item *item = *it;
if (item->hidden) continue;
Item_field *item_field;
if (item->type() == Item::FIELD_ITEM &&
(item_field = down_cast<Item_field *>(item)) &&
item_field->is_asterisk()) {
assert(item_field->field == nullptr);
const bool any_privileges = item_field->any_privileges;
Item_subselect *subsel = master_query_expression()->item;
/*
In case of EXISTS(SELECT * ... HAVING ...), don't use this
transformation. The columns in HAVING will need to resolve to the
select list. Replacing * with 1 effectively eliminates this
possibility.
*/
if (subsel && subsel->substype() == Item_subselect::EXISTS_SUBS &&
!having_cond()) {
/*
It is EXISTS(SELECT * ...) and we can replace * by any constant.
Item_int do not need fix_fields() because it is basic constant.
*/
*it = new Item_int(NAME_STRING("Not_used"), 1,
MY_INT64_NUM_DECIMAL_DIGITS);
} else {
assert(item_field->context == &this->context);
if (insert_fields(thd, this, item_field->db_name,
item_field->table_name, &fields, &it, any_privileges))
return true;
}
with_wild--;
}
}
return false;
}
/**
Resolve WHERE condition and join conditions
@param thd thread handler
@returns false if success, true if error
*/
bool Query_block::setup_conds(THD *thd) {
DBUG_TRACE;
/*
it_is_update set to true when tables of primary Query_block (Query_block
which belong to LEX, i.e. most up SELECT) will be updated by
INSERT/UPDATE/LOAD
NOTE: using this condition helps to prevent call of prepare_check_option()
from subquery of VIEW, because tables of subquery belongs to VIEW
(see condition before prepare_check_option() call)
*/
const bool it_is_update = (this == thd->lex->query_block) &&
thd->lex->which_check_option_applicable();
const bool save_is_item_list_lookup = is_item_list_lookup;
is_item_list_lookup = false;
DBUG_PRINT("info", ("thd->mark_used_columns: %d", thd->mark_used_columns));
if (m_where_cond) {
assert(m_where_cond->is_bool_func());
resolve_place = Query_block::RESOLVE_CONDITION;
thd->where = "where clause";
if ((!m_where_cond->fixed &&
m_where_cond->fix_fields(thd, &m_where_cond)) ||
m_where_cond->check_cols(1))
return true;
assert(m_where_cond->data_type() != MYSQL_TYPE_INVALID);
// Simplify the where condition if it's a const item
if (m_where_cond->const_item() && !thd->lex->is_view_context_analysis() &&
!m_where_cond->walk(&Item::is_non_const_over_literals,
enum_walk::POSTFIX, nullptr) &&
simplify_const_condition(thd, &m_where_cond))
return true;
resolve_place = Query_block::RESOLVE_NONE;
}
// Resolve all join condition clauses
if (!m_table_nest.empty() &&
setup_join_cond(thd, &m_table_nest, it_is_update))
return true;
is_item_list_lookup = save_is_item_list_lookup;
assert(thd->lex->current_query_block() == this);
assert(!thd->is_error());
return false;
}
/**
Resolve join conditions for a join nest
@param thd thread handler
@param tables List of tables with join conditions
@param in_update True if used in update command that may have CHECK OPTION
@returns false if success, true if error
*/
bool Query_block::setup_join_cond(THD *thd, mem_root_deque<Table_ref *> *tables,
bool in_update) {
DBUG_TRACE;
for (Table_ref *tr : *tables) {
// Traverse join conditions recursively
if (tr->nested_join != nullptr &&
setup_join_cond(thd, &tr->nested_join->m_tables, in_update))
return true;
Item **ref = tr->join_cond_ref();
Item *join_cond = tr->join_cond();
bool remove_cond = false;
if (join_cond) {
assert(join_cond->is_bool_func());
resolve_place = Query_block::RESOLVE_JOIN_NEST;
resolve_nest = tr;
thd->where = "on clause";
if ((!join_cond->fixed && join_cond->fix_fields(thd, ref)) ||
join_cond->check_cols(1))
return true;
cond_count++;
assert(tr->join_cond()->data_type() != MYSQL_TYPE_INVALID);
if ((*ref)->const_item() && !thd->lex->is_view_context_analysis() &&
!(*ref)->walk(&Item::is_non_const_over_literals, enum_walk::POSTFIX,
nullptr) &&
simplify_const_condition(thd, ref, remove_cond))
return true;
resolve_place = Query_block::RESOLVE_NONE;
resolve_nest = nullptr;
}
if (in_update) {
// Process CHECK OPTION
Table_ref *view = tr->top_table();
if (view->is_view() && view->is_merged()) {
if (view->prepare_check_option(thd))
return true; /* purecov: inspected */
tr->check_option = view->check_option;
}
}
}
return false;
}
/**
Set NESTED_JOIN::counter=0 in all nested joins in passed list.
@param join_list Pass NULL. Non-NULL is reserved for recursive inner calls,
then it is a list of nested joins to process, and may also contain base
tables which will be ignored.
*/
void Query_block::reset_nj_counters(mem_root_deque<Table_ref *> *join_list) {
DBUG_TRACE;
if (join_list == nullptr) join_list = &m_table_nest;
for (Table_ref *table : *join_list) {
NESTED_JOIN *nested_join;
if ((nested_join = table->nested_join)) {
nested_join->nj_counter = 0;
reset_nj_counters(&nested_join->m_tables);
}
}
}
/**
Simplify joins replacing outer joins by inner joins whenever it's
possible.
The function, during a retrieval of join_list, eliminates those
outer joins that can be converted into inner join, possibly nested.
It also moves the join conditions for the converted outer joins
and from inner joins to conds.
The function also calculates some attributes for nested joins:
-# used_tables
-# not_null_tables
-# dep_tables.
-# join_cond_dep_tables
The first two attributes are used to test whether an outer join can
be substituted by an inner join. The third attribute represents the
relation 'to be dependent on' for tables. If table t2 is dependent
on table t1, then in any evaluated execution plan table access to
table t2 must precede access to table t2. This relation is used also
to check whether the query contains invalid cross-references.
The fourth attribute is an auxiliary one and is used to calculate
dep_tables.
As the attribute dep_tables qualifies possibles orders of tables in the
execution plan, the dependencies required by the straight join
modifiers are reflected in this attribute as well.
The function also removes all parentheses that can be removed from the join
expression without changing its meaning.
@note
An outer join can be replaced by an inner join if the where condition
or the join condition for an embedding nested join contains a conjunctive
predicate rejecting null values for some attribute of the inner tables.
E.g. in the query:
@code
SELECT * FROM t1 LEFT JOIN t2 ON t2.a=t1.a WHERE t2.b < 5
@endcode
the predicate t2.b < 5 rejects nulls.
The query is converted first to:
@code
SELECT * FROM t1 INNER JOIN t2 ON t2.a=t1.a WHERE t2.b < 5
@endcode
then to the equivalent form:
@code
SELECT * FROM t1, t2 ON t2.a=t1.a WHERE t2.b < 5 AND t2.a=t1.a
@endcode
Similarly the following query:
@code
SELECT * from t1 LEFT JOIN (t2, t3) ON t2.a=t1.a t3.b=t1.b
WHERE t2.c < 5
@endcode
is converted to:
@code
SELECT * FROM t1, (t2, t3) WHERE t2.c < 5 AND t2.a=t1.a t3.b=t1.b
@endcode
One conversion might trigger another:
@code
SELECT * FROM t1 LEFT JOIN t2 ON t2.a=t1.a
LEFT JOIN t3 ON t3.b=t2.b
WHERE t3 IS NOT NULL =>
SELECT * FROM t1 LEFT JOIN t2 ON t2.a=t1.a, t3
WHERE t3 IS NOT NULL AND t3.b=t2.b =>
SELECT * FROM t1, t2, t3
WHERE t3 IS NOT NULL AND t3.b=t2.b AND t2.a=t1.a
@endcode
The function removes all unnecessary parentheses from the expression
produced by the conversions.
E.g.
@code
SELECT * FROM t1, (t2, t3) WHERE t2.c < 5 AND t2.a=t1.a AND t3.b=t1.b
@endcode
finally is converted to:
@code
SELECT * FROM t1, t2, t3 WHERE t2.c < 5 AND t2.a=t1.a AND t3.b=t1.b
@endcode
It also will remove parentheses from the following queries:
@code
SELECT * from (t1 LEFT JOIN t2 ON t2.a=t1.a) LEFT JOIN t3 ON t3.b=t2.b
SELECT * from (t1, (t2,t3)) WHERE t1.a=t2.a AND t2.b=t3.b.
@endcode
The benefit of this simplification procedure is that it might return
a query for which the optimizer can evaluate execution plans with more
join orders. With a left join operation the optimizer does not
consider any plan where one of the inner tables is before some of outer
tables.
IMPLEMENTATION
The function is implemented by a recursive procedure. On the recursive
ascent all attributes are calculated, all outer joins that can be
converted are replaced and then all unnecessary parentheses are removed.
As join list contains join tables in the reverse order sequential
elimination of outer joins does not require extra recursive calls.
SEMI-JOIN NOTES
Remove all semi-joins that have are within another semi-join (i.e. have
an "ancestor" semi-join nest)
EXAMPLES
Here is an example of a join query with invalid cross references:
@code
SELECT * FROM t1 LEFT JOIN t2 ON t2.a=t3.a LEFT JOIN t3 ON t3.b=t1.b
@endcode
@param thd thread handler
@param join_list list representation of the join to be converted
@param top true <=> cond is the where condition
@param in_sj true <=> processing semi-join nest's children
@param[in,out] cond In: condition to which the join condition for converted
outer joins is to be added;
Out: new condition
@param changelog Don't specify this parameter, it is reserved for
recursive calls inside this function
@returns true for error, false for success
*/
bool Query_block::simplify_joins(THD *thd,
mem_root_deque<Table_ref *> *join_list,
bool top, bool in_sj, Item **cond,
uint *changelog) {
/*
Each type of change done by this function, or its recursive calls, is
tracked in a bitmap:
*/
enum change {
NONE = 0,
OUTER_JOIN_TO_INNER = 1 << 0,
JOIN_COND_TO_WHERE = 1 << 1,
PAREN_REMOVAL = 1 << 2,
SEMIJOIN = 1 << 3
};
uint changes = 0; // To keep track of changes.
if (changelog == nullptr) // This is the top call.
changelog = &changes;
Table_ref *prev_table = nullptr;
const bool straight_join = active_options() & SELECT_STRAIGHT_JOIN;
DBUG_TRACE;
/*
Try to simplify join operations from join_list.
The most outer join operation is checked for conversion first.
join_list is a join nest, and 'cond' is a condition which acts as a filter
applied to the nest's operation (post-filter).
Thus, considering this example:
(A LEFT JOIN B ON JC) WHERE W ,
we'll "confront W with A LEFT JOIN B": this will, recursively,
- confront W with B,
- confront W with A.
Because W is external to the nest, if W would be false when B is
NULL-complemented we know we can change LEFT JOIN to JOIN.
We will not confront JC with B or A, it wouldn't make sense, as JC isn't a
post-filter for their join operation.
Another example:
(A LEFT JOIN (B LEFT JOIN C ON JC2) ON JC1) WHERE W ,
while confronting W with (B LEFT JOIN C), we will also, as first step,
confront JC1 with (B LEFT JOIN C), and thus recursively confront JC1
with C and then with B.
Another example:
(A LEFT JOIN (B SEMI JOIN C ON JC2) ON JC1) WHERE W ,
while confronting W with (B SEMI JOIN C), if W is known false we will
*/
for (Table_ref *table : *join_list) {
table_map used_tables;
table_map not_null_tables = table_map(0);
NESTED_JOIN *nested_join = table->nested_join;
if (nested_join != nullptr) {
/*
If the element of join_list is a nested join apply
the procedure to its nested join list first.
This confronts the join nest's condition with each member of the
nest.
*/
if (table->join_cond() != nullptr) {
Item *join_cond = table->join_cond();
/*
If a join condition JC is attached to the table,
check all null rejected predicates in this condition.
If such a predicate over an attribute belonging to
an inner table of an embedded outer join is found,
the outer join is converted to an inner join and
the corresponding join condition is added to JC.
*/
if (simplify_joins(
thd, &nested_join->m_tables,
false, // not 'top' as it's not WHERE.
// SJ nests can dissolve into upper SJ or anti SJ nests:
in_sj || table->is_sj_or_aj_nest(), &join_cond, changelog))
return true;
if (join_cond != table->join_cond()) {
assert(join_cond != nullptr);
table->set_join_cond(join_cond);
/*
For a semi-join or anti-join table nest, if the join condition
has been reduced to a constant value, it means that factored out
join condition operands can be removed.
*/
if (table->is_sj_or_aj_nest() && join_cond->const_item()) {
clear_sj_expressions(nested_join);
}
}
}
nested_join->used_tables = table_map(0);
nested_join->not_null_tables = table_map(0);
// This recursively confronts "cond" with each member of the nest
if (simplify_joins(thd, &nested_join->m_tables,
top, // if it was WHERE it still is
in_sj || table->is_sj_or_aj_nest(), cond, changelog))
return true;
used_tables = nested_join->used_tables;
not_null_tables = nested_join->not_null_tables;
} else {
used_tables = table->map();
if (*cond != nullptr) not_null_tables = (*cond)->not_null_tables();
}
if (table->embedding != nullptr) {
table->embedding->nested_join->used_tables |= used_tables;
table->embedding->nested_join->not_null_tables |= not_null_tables;
}
if (!table->outer_join || (used_tables & not_null_tables)) {
/*
For some of the inner tables there are conjunctive predicates
that reject nulls => the outer join can be replaced by an inner join.
*/
if (table->outer_join) {
*changelog |= OUTER_JOIN_TO_INNER;
table->outer_join = false;
}
if (table->join_cond() != nullptr) {
*changelog |= JOIN_COND_TO_WHERE;
/* Add join condition to the WHERE or upper-level join condition. */
if (*cond != nullptr) {
Item *i1 = *cond;
Item *i2 = table->join_cond();
/*
User supplied stored procedures in the query can violate row-level
filter enforced by a view. So make sure view's filter conditions
precede any other conditions.
*/
if (table->is_view() && i1->has_stored_program()) {
std::swap(i1, i2);
}
Item_cond_and *new_cond =
down_cast<Item_cond_and *>(and_conds(i1, i2));
if (new_cond == nullptr) return true;
new_cond->apply_is_true();
/*
It is always a new item as both the upper-level condition and a
join condition existed
*/
assert(!new_cond->fixed);
Item *cond_after_fix = new_cond;
if (new_cond->fix_fields(thd, &cond_after_fix)) return true;
if (new_cond == cond_after_fix) {
}
*cond = cond_after_fix;
} else {
*cond = table->join_cond();
}
table->set_join_cond(nullptr);
}
}
// A table is traversed when 'cond' is WHERE, and when 'cond' is the join
// condition of any nest containing the table. Some bitmaps can be set
// only after all traversals of this table i.e. when 'cond' is WHERE.
if (!top) continue;
/*
Only inner tables of non-convertible outer joins remain with
the join condition.
*/
if (table->join_cond() != nullptr) {
table->dep_tables |= table->join_cond()->used_tables();
// At this point the joined tables always have an embedding join nest:
assert(table->embedding != nullptr);
table->dep_tables &= ~table->embedding->nested_join->used_tables;
// Embedding table depends on tables used in embedded join conditions.
table->embedding->join_cond_dep_tables |=
table->join_cond()->used_tables();
}
if (prev_table != nullptr) {
/* The order of tables is reverse: prev_table follows table */
if (prev_table->straight || straight_join)
prev_table->dep_tables |= used_tables;
if (prev_table->join_cond() != nullptr) {
prev_table->dep_tables |= table->join_cond_dep_tables;
table_map prev_used_tables = prev_table->nested_join != nullptr
? prev_table->nested_join->used_tables
: prev_table->map();
/*
If join condition contains no reference to outer tables
we still make the inner tables dependent on the outer tables,
as the outer must go before the inner since the executor requires
that at least one outer table is before the inner tables.
It would be enough to set dependency only on one outer table
for them. Yet this is really a rare case.
Note:
PSEUDO_TABLE_BITS mask should not be counted as it
prevents update of inner table dependencies.
For example it might happen if RAND()/COUNT(*) function
is used in JOIN ON clause.
*/
if ((((prev_table->join_cond()->used_tables() & ~PSEUDO_TABLE_BITS) &
~prev_used_tables) &
used_tables) == 0) {
prev_table->dep_tables |= used_tables;
}
}
}
prev_table = table;
}
/*
Flatten nested joins that can be flattened.
no join condition and not a semi-join => can be flattened.
*/
for (auto li = join_list->begin(); li != join_list->end();) {
Table_ref *table = *li;
NESTED_JOIN *nested_join = table->nested_join;
if (table->is_sj_nest() && !in_sj) {
/*
If this is a semi-join that is not contained within another semi-join,
leave it intact.
Otherwise it is flattened, for example
A SJ (B SJ (C)) becomes the equivalent A SJ (B JOIN C),
A AJ (B SJ (C)) becomes the equivalent A AJ (B JOIN C),
While dissolving a SJ nest into an AJ nest is ok (for the AJ
this may lead to duplicates but AJ only cares for "at least
one match"), dissolving an AJ nest into a SJ is not ok:
A SJ (B AJ (C)) is not equivalent to A SJ (B JOIN C);
that is why the next if() block is guarded by !join_cond() which takes
care of that.
Note that when dissolving the SJ nest, its condition isn't lost as it
has previously been added to WHERE or outer nest's condition in
convert_subquery_to_semijoin().
*/
*changelog |= SEMIJOIN;
} else if (nested_join != nullptr && table->join_cond() == nullptr) {
*changelog |= PAREN_REMOVAL;
for (Table_ref *tbl : nested_join->m_tables) {
tbl->embedding = table->embedding;
tbl->join_list = table->join_list;
tbl->dep_tables |= table->dep_tables;
}
li = join_list->erase(li);
li = join_list->insert(li, nested_join->m_tables.begin(),
nested_join->m_tables.end());
// Don't advance li; we want to process the newly added tables.
continue;
}
++li;
}
if (changes) {
Opt_trace_context *trace = &thd->opt_trace;
if (unlikely(trace->is_started())) {
Opt_trace_object trace_wrapper(trace);
Opt_trace_object trace_object(trace, "transformations_to_nested_joins");
{
Opt_trace_array trace_changes(trace, "transformations");
if (changes & SEMIJOIN) trace_changes.add_alnum("semijoin");
if (changes & OUTER_JOIN_TO_INNER)
trace_changes.add_alnum("outer_join_to_inner_join");
if (changes & JOIN_COND_TO_WHERE)
trace_changes.add_alnum("JOIN_condition_to_WHERE");
if (changes & PAREN_REMOVAL)
trace_changes.add_alnum("parenthesis_removal");
}
// the newly transformed query is worth printing
opt_trace_print_expanded_query(thd, this, &trace_object);
}
}
return false;
}
/**
Record join nest info in the select block.
After simplification of inner join, outer join and semi-join structures:
- record the remaining semi-join structures in the enclosing query block.
- record transformed join conditions in Table_ref objects.
This function is called recursively for each join nest and/or table
in the query block.
@param tables List of tables and join nests
@return False if successful, True if failure
*/
bool Query_block::record_join_nest_info(mem_root_deque<Table_ref *> *tables) {
for (Table_ref *table : *tables) {
if (table->nested_join == nullptr) {
if (table->join_cond()) outer_join |= table->map();
continue;
}
if (record_join_nest_info(&table->nested_join->m_tables)) return true;
/*
sj_inner_tables is set properly later in pull_out_semijoin_tables().
This assignment is required in case pull_out_semijoin_tables()
is not called.
*/
if (table->is_sj_or_aj_nest())
table->sj_inner_tables = table->nested_join->used_tables;
if (table->is_sj_or_aj_nest()) {
sj_nests.push_back(table);
}
if (table->join_cond()) outer_join |= table->nested_join->used_tables;
}
return false;
}
/**
Update table reference information for conditions and expressions due to
query blocks having been merged in from derived tables/views and due to
semi-join transformation.
This is needed for two reasons:
1. Since table numbers are changed, we need to update used_tables
information for all conditions and expressions that are possibly touched.
2. For semi-join, some column references are changed from outer references
to local references.
The function needs to recursively walk down into join nests,
in order to cover all conditions and expressions.
For a semi-join, tables from the subquery are added last in the query block.
This means that conditions and expressions from the outer query block
are unaffected. But all conditions inside the semi-join nest, including
join conditions, must have their table numbers changed.
For a derived table/view, tables from the subquery are merged into the
outer query, and this function is called for every derived table that is
merged in. This algorithm only works when derived tables are merged in
the order of their original table numbers.
A hypothetical example with a triple self-join over a mergeable view:
CREATE VIEW v AS SELECT t1.a, t2.b FROM t1 JOIN t2 USING (a);
SELECT v1.a, v1.b, v2.b, v3.b
FROM v AS v1 JOIN v AS v2 ON ... JOIN v AS v3 ON ...;
The analysis starts with three tables v1, v2 and v3 having numbers 0, 1, 2.
First we merge in v1, so we get (t1, t2, v2, v3). v2 and v3 are shifted up.
Tables from v1 need to have their table numbers altered (actually they do not
since both old and new numbers are 0 and 1, but this is a special case).
v2 and v3 are not merged in yet, so we delay pullout on them until they
are merged. Conditions and expressions from the outer query are not resolved
yet, so regular resolving will take of them later.
Then we merge in v2, so we get (t1, t2, t1, t2, v3). The tables from this
view gets numbers 2 and 3, and v3 gets number 4.
Because v2 had a higher number than the tables from v1, the join nest
representing v1 is unaffected. And v3 is still not merged, so the only
join nest we need to consider is v2.
Finally we merge in v3, and then we have tables (t1, t2, t1, t2, t1, t2),
with numbers 0 through 5.
Again, since v3 has higher number than any of the already merged in views,
only this join nest needs the pullout.
@param parent_query_block Query block being merged into
@param removed_query_block Query block that is removed (subquery)
@param tr Table object this pullout is applied to
@param table_adjust Number of positions that a derived table nest is
adjusted, used to fix up semi-join related fields.
Tables are adjusted from position N to N+table_adjust
@param lateral_deps Lateral dependencies of the unit owning
removed_query_block
*/
static void fix_tables_after_pullout(Query_block *parent_query_block,
Query_block *removed_query_block,
Table_ref *tr, uint table_adjust,
table_map lateral_deps) {
if (tr->is_merged()) {
// Update select list of merged derived tables:
for (Field_translator *transl = tr->field_translation;
transl < tr->field_translation_end; transl++) {
assert(transl->item->fixed);
transl->item->fix_after_pullout(parent_query_block, removed_query_block);
}
// Update used table info for the WHERE clause of the derived table
assert(!tr->derived_where_cond || tr->derived_where_cond->fixed);
if (tr->derived_where_cond)
tr->derived_where_cond->fix_after_pullout(parent_query_block,
removed_query_block);
}
/*
If join_cond() is fixed, it contains a join condition from a subquery
that has already been resolved. Call fix_after_pullout() to update
used table information since table numbers may have changed.
If join_cond() is not fixed, it contains a condition that was generated
in the derived table merge operation, which will be fixed later.
This condition may also contain a fixed part, but this is saved as
derived_where_cond and is pulled out explicitly.
*/
if (tr->join_cond() && tr->join_cond()->fixed)
tr->join_cond()->fix_after_pullout(parent_query_block, removed_query_block);
if (tr->nested_join) {
// In case a derived table is merged-in, these fields need adjustment:
tr->nested_join->sj_corr_tables <<= table_adjust;
tr->nested_join->sj_depends_on <<= table_adjust;
// If the removed query block is from a LATERAL derived table, and
// contains a semi-join nest, this nest may depend on the lateral
// dependencies, and if then, these should now be recorded as
// local dependencies of the nest. But it's impossible to know if this is
// the case, as the members below don't mention outer references. Be
// conservative and add dependencies unconditionally. At least this will
// prevent materialization.
tr->nested_join->sj_corr_tables |= lateral_deps;
tr->nested_join->sj_depends_on |= lateral_deps;
for (Table_ref *child : tr->nested_join->m_tables) {
fix_tables_after_pullout(parent_query_block, removed_query_block, child,
table_adjust, lateral_deps);
}
}
if (tr->is_derived() && tr->table &&
tr->derived_query_expression()->uncacheable & UNCACHEABLE_DEPENDENT) {
/*
It's a materialized derived table which is being pulled up.
If it has an outer reference, and this ref belongs to parent_query_block,
then the derived table will need re-materialization as if it were
LATERAL, not just once per execution of parent_query_block.
We thus compute its used_tables in the new context, to decide.
*/
Query_expression *unit = tr->derived_query_expression();
unit->m_lateral_deps = OUTER_REF_TABLE_BIT;
unit->fix_after_pullout(parent_query_block, removed_query_block);
unit->m_lateral_deps &= ~PSEUDO_TABLE_BITS;
tr->dep_tables |= unit->m_lateral_deps;
/*
If m_lateral_deps!=0, some outer ref is now a neighbour in FROM: we have
made 'tr' LATERAL.
Note that 'tr' might be a common table expression: it means we now have a
"lateral CTE".
*/
}
}
/**
Fix used tables information for a subquery after query transformations.
This is for transformations where the subquery remains a subquery - it is
not merged, it merely moves up by effect of a transformation on a containing
query block.
Most actions here involve re-resolving information for conditions
and items belonging to the subquery.
If the subquery contains an outer reference into removed_query_block or
parent_query_block, the relevant information is updated by
Item_ident::fix_after_pullout().
*/
void Query_expression::fix_after_pullout(Query_block *parent_query_block,
Query_block *removed_query_block)
{
// Go through all query specification objects of the subquery and re-resolve
// all relevant expressions belonging to them.
for (Query_block *sel = first_query_block(); sel;
sel = sel->next_query_block()) {
sel->fix_after_pullout(parent_query_block, removed_query_block);
}
// @todo figure out if we need to do it for fake_query_block too.
}
/// @see Query_expression::fix_after_pullout
void Query_block::fix_after_pullout(Query_block *parent_query_block,
Query_block *removed_query_block) {
if (where_cond())
where_cond()->fix_after_pullout(parent_query_block, removed_query_block);
/*
Join conditions can contain an outer reference; and
derived table merging changes WHERE to a join condition, which thus can
have an outer reference. So we have to call fix_after_pullout() on join
conditions. The reference may also be located in a derived table used by
this subquery. fix_tables_after_pullout() will handle the two cases.
table_adjust and lateral_deps are 0 because we're not merging these tables
up.
*/
for (Table_ref *tr : m_table_nest) {
fix_tables_after_pullout(parent_query_block, removed_query_block, tr,
/*table_adjust=*/0, /*lateral_deps=*/0);
}
if (having_cond())
having_cond()->fix_after_pullout(parent_query_block, removed_query_block);
for (Item *item : visible_fields()) {
item->fix_after_pullout(parent_query_block, removed_query_block);
}
/* Re-resolve ORDER BY and GROUP BY fields */
for (ORDER *order = order_list.first; order; order = order->next)
(*order->item)->fix_after_pullout(parent_query_block, removed_query_block);
for (ORDER *group = group_list.first; group; group = group->next)
(*group->item)->fix_after_pullout(parent_query_block, removed_query_block);
}
/**
Remove SJ outer/inner expressions.
@param nested_join join nest
*/
void Query_block::clear_sj_expressions(NESTED_JOIN *nested_join) {
nested_join->sj_outer_exprs.clear();
nested_join->sj_inner_exprs.clear();
assert(sj_nests.empty());
}
/**
Build equality predicates using outer expressions and inner expressions.
If an equality predicate is not constant, add it to the semi-join condition.
Otherwise, evaluate the predicate. If the result of the predicate is true,
remove the expressions of the constant predicate from the outer/inner
expressions list. If the result is false, remove all the expressions in
outer/inner expression list and attach an always false condition to
semijoin condition.
@param thd Thread context
@param nested_join Join nest
@param subq_query_block Query block for the subquery
@param outer_tables_map Map of tables from original outer query block
@param outer_tables_map Map of tables from original outer query block
@param[out] sj_cond Semi-join condition to be constructed
Contains non-equalities on input.
@param[out] simple_const true if the returned semi-join condition is
a simple true or false predicate, false otherwise.
@return false if success, true if error
*/
bool Query_block::build_sj_cond(THD *thd, NESTED_JOIN *nested_join,
Query_block *subq_query_block,
table_map outer_tables_map, Item **sj_cond,
bool *simple_const) {
*simple_const = false;
Item *new_cond = nullptr;
bool remove_condition = false;
auto ii = nested_join->sj_inner_exprs.begin();
auto oi = nested_join->sj_outer_exprs.begin();
while (ii != nested_join->sj_inner_exprs.end() &&
oi != nested_join->sj_outer_exprs.end()) {
bool remove_predicate = false;
Item *inner = *ii;
Item *outer = *oi;
/*
Ensure that all involved expressions are pulled out after transformation.
(If they are already out, this is a no-op).
*/
outer->fix_after_pullout(this, subq_query_block);
inner->fix_after_pullout(this, subq_query_block);
Item_func_eq *item_eq = new Item_func_eq(outer, inner);
if (item_eq == nullptr) return true; /* purecov: inspected */
Item *predicate = item_eq;
if (!item_eq->fixed && item_eq->fix_fields(thd, &predicate)) return true;
// Evaluate if the predicate is a const value:
if (predicate->const_item() &&
!(predicate)->walk(&Item::is_non_const_over_literals,
enum_walk::POSTFIX, nullptr)) {
bool cond_value = true;
/* Push ignore / strict error handler */
Ignore_error_handler ignore_handler;
Strict_error_handler strict_handler;
if (thd->lex->is_ignore())
thd->push_internal_handler(&ignore_handler);
else if (thd->is_strict_mode())
thd->push_internal_handler(&strict_handler);
bool err = eval_const_cond(thd, predicate, &cond_value);
/* Pop ignore / strict error handler */
if (thd->lex->is_ignore() || thd->is_strict_mode())
thd->pop_internal_handler();
if (err) return true;
if (cond_value) {
/*
Remove the expression from inner/outer expression list if the
const condition evaluates to true as Item_cond::fix_fields will
remove the condition later.
*/
remove_predicate = true;
} else {
/*
Predicate is false, and thus condition is false. However, generate
the full condition so that it can be removed completely when all
predicates have been processed.
*/
remove_condition = true;
}
}
/*
If the selected expression has a reference to our query block, add it as
a non-trivially correlated reference (to avoid materialization).
The case of yet-more-outer references is handled like this:
- if this nest is part of a LATERAL derived table, which is later
merged, fix_tables_after_pullout will update sj_corr_tables (with its
lateral_deps argument).
- if this nest is part of a subquery which later becomes a
semi/anti-join nest, it will be dissolved into the new parent nest, so
the inner nest's sj_corr_tables will be unused, while the parent's
will be correct as it will be computed from the concatenated new WHERE
condition.
*/
nested_join->sj_corr_tables |= inner->used_tables() & outer_tables_map;
if (remove_predicate) {
ii = nested_join->sj_inner_exprs.erase(ii);
oi = nested_join->sj_outer_exprs.erase(oi);
} else {
new_cond = and_items(new_cond, predicate);
if (new_cond == nullptr) return true; /* purecov: inspected */
++ii, ++oi;
}
}
if (remove_condition) {
/*
Condition is false.
Clean up the synthesized condition.
Remove all the expressions in inner/outer expression list.
Add an always false predicate to semi-join condition.
*/
Item::Cleanup_after_removal_context ctx(this);
new_cond->walk(&Item::clean_up_after_removal, walk_options,
pointer_cast<uchar *>(&ctx));
nested_join->sj_inner_exprs.clear();
nested_join->sj_outer_exprs.clear();
Item *new_item = new Item_func_false();
if (new_item == nullptr) return true;
(*sj_cond) = new_item;
*simple_const = true;
return false;
}
/*
Semijoin processing expects at least one inner/outer expression
in the list if there is a sj_nest present. This is required for semi-join
materialization and loose scan.
*/
if (nested_join->sj_inner_exprs.empty()) {
Item *const_item = new Item_int(1);
if (const_item == nullptr) return true;
nested_join->sj_inner_exprs.push_back(const_item);
nested_join->sj_outer_exprs.push_back(const_item);
new_cond = new Item_func_true();
if (new_cond == nullptr) return true;
*simple_const = true;
}
(*sj_cond) = and_items(*sj_cond, new_cond);
if (*sj_cond == nullptr) return true; /* purecov: inspected */
return false;
}
/// Context object used by semijoin equality decorrelation code.
class Semijoin_decorrelation {
mem_root_deque<Item *> *sj_outer_exprs, *sj_inner_exprs;
/// If nullptr: only a=b is decorrelated.
/// Otherwise, a OP b is decorrelated for OP in <>, >=, >, <=, <, and
/// for each decorrelated SJ outer/inner pair, located at position N
/// in sj_outer_exprs and sj_inner_exprs, we store, at the
/// same position in op_types, the operator's type code representing "outer OP
/// inner" (for example, LE_FUNC for outer<=inner as well as inner>=outer).
Mem_root_array<Item_func::Functype> *op_types;
public:
Semijoin_decorrelation(mem_root_deque<Item *> *sj_outer_exprs_arg,
mem_root_deque<Item *> *sj_inner_exprs_arg,
Mem_root_array<Item_func::Functype> *op_types_arg)
: sj_outer_exprs(sj_outer_exprs_arg),
sj_inner_exprs(sj_inner_exprs_arg),
op_types(op_types_arg) {}
void add_outer(Item *i) { sj_outer_exprs->push_back(i); }
void add_inner(Item *i) { sj_inner_exprs->push_back(i); }
bool decorrelate_only_eq() const { return op_types == nullptr; }
bool add_op_type(Item_func::Functype op_type) {
return (op_types != nullptr) ? op_types->push_back(op_type) : false;
}
Item_func::Functype op_type_at(int j) const {
return (op_types != nullptr) ? op_types->at(j) : Item_func::EQ_FUNC;
}
};
/**
Try to decorrelate an (in)equality node. The node can be decorrelated if one
argument contains only outer references and the other argument contains
references only to local tables.
Both arguments should be deterministic.
const-for-execution values are accepted in both arguments.
@note that a predicate like '(a,b) IN ((c,d))' is changed to two equalities
only during optimization, so at the present stage it isn't decorrelate-able.
@param sj_decor Object for recording the decorrelated expressions
@param func The query function node
@param[out] was_correlated = true if comparison is correlated and the
the expressions are added to sj_nest.
@returns false if success, true if error
*/
static bool decorrelate_equality(Semijoin_decorrelation &sj_decor,
Item_func *func, bool *was_correlated) {
*was_correlated = false;
Item_bool_func2 *bool_func = down_cast<Item_bool_func2 *>(func);
Item *const left = bool_func->arguments()[0];
Item *const right = bool_func->arguments()[1];
Item *inner = nullptr;
Item *outer = nullptr;
table_map left_used_tables = left->used_tables() & ~INNER_TABLE_BIT;
table_map right_used_tables = right->used_tables() & ~INNER_TABLE_BIT;
/*
Predicates that have non-deterministic elements are not decorrelated,
see explanation for Query_block::decorrelate_condition().
*/
if ((left_used_tables & RAND_TABLE_BIT) ||
(right_used_tables & RAND_TABLE_BIT))
return false;
if (left_used_tables == OUTER_REF_TABLE_BIT) {
outer = left;
} else if (!(left_used_tables & OUTER_REF_TABLE_BIT)) {
inner = left;
}
if (right_used_tables == OUTER_REF_TABLE_BIT) {
outer = right;
} else if (!(right_used_tables & OUTER_REF_TABLE_BIT)) {
inner = right;
}
if (inner == nullptr || outer == nullptr) return false;
// Equalities over row items cannot be decorrelated
if (outer->type() == Item::ROW_ITEM) return false;
sj_decor.add_outer(outer);
sj_decor.add_inner(inner);
if (sj_decor.add_op_type(
// use canonical form "outer OP inner":
(outer == left) ? bool_func->functype() : bool_func->rev_functype()))
return true;
*was_correlated = true;
return false;
}
static inline bool can_decorrelate_operator(Item_func *func, bool only_eq) {
auto op_type = func->functype();
switch (op_type) {
case Item_func::EQ_FUNC:
return true;
case Item_func::NE_FUNC:
case Item_func::LT_FUNC:
case Item_func::LE_FUNC:
case Item_func::GT_FUNC:
case Item_func::GE_FUNC:
return !only_eq;
default:
return false;
}
}
/**
Decorrelate the WHERE clause or a join condition of a subquery used in
an IN or EXISTS predicate.
Correlated predicates are removed from the condition and added to the
supplied semi-join nest.
The predicate must be either a simple (in)equality, or an AND condition that
contains one or more simple equalities, in order for decorrelation to be
possible.
@param sj_decor Object for recording the decorrelated expressions
@param join_nest Nest containing join condition to be decorrelated
=NULL: decorrelate the WHERE condition
@returns false if success, true if error
Decorrelation for subqueries containing non-deterministic components:
--------------------------------------------------------------------
There are two types of IN and EXISTS queries with non-deterministic
functions that may be meaningful (the EXISTS queries below are correlated
equivalents of the respective IN queries):
1. Non-deterministic function as substitute for expression from outer
query block:
A SELECT * FROM t1
WHERE RAND() IN (SELECT t2.x FROM t2)
B SELECT * FROM t1
WHERE EXISTS (SELECT * FROM t2 WHERE RAND() = t2.x);
Pick a set of random rows that matches against a fixed set (the subquery).
The intuitive interpretation of the IN subquery is that the random function
is evaluated per row of the outer query block, whereas in the EXISTS subquery,
it should be evaluated per row of the inner query block, and the subquery
is evaluated once per row of the outer query block.
2. Non-deterministic function as substitute for expression from inner
query block:
A SELECT * FROM t1
WHERE t1.x IN (SELECT RAND() FROM t2)
B SELECT * FROM t1
WHERE EXISTS (SELECT * FROM t2 WHERE RAND() = t1.x);
This is another way of picking a random row, but now the non-determinism
occurs in the inner query block.
The user will expect that only query 1A has the evaluation of
non-deterministic functions being performed in the outer query block.
Using decorrelation for query 1B would change the apparent semantics of
the query.
The purpose of decorrelation is to be able to use more execution strategies.
Without decorrelation, EXISTS is limited to FirstMatch and DupsWeedout
strategies. Decorrelation enables LooseScan and Materialization.
We can rule out LooseScan for case 2B, since it requires an indexed column
from the subquery, and for case 1B, since it requires that the outer table
is partitioned according to the distinct values of the index, and random
values do not fulfill that partitioning requirement.
The only strategy left is Materialization. With decorrelation, 1B would be
evaluated like 1A, which is not the intuitive way. 2B would also be
implemented like 2A, meaning that evaluation of non-deterministic functions
would move to the materialization function.
Thus, the intuitive interpretation is to avoid materialization for subqueries
with non-deterministic components in the inner query block, and hence
such predicates will not be decorrelated.
*/
bool Query_block::decorrelate_condition(Semijoin_decorrelation &sj_decor,
Table_ref *join_nest) {
Item *base_cond =
join_nest == nullptr ? where_cond() : join_nest->join_cond();
Item_cond *cond;
Item_func *func;
assert(base_cond != nullptr);
if (base_cond->type() == Item::FUNC_ITEM &&
(func = down_cast<Item_func *>(base_cond)) &&
can_decorrelate_operator(func, sj_decor.decorrelate_only_eq())) {
bool was_correlated;
if (decorrelate_equality(sj_decor, func, &was_correlated)) return true;
if (was_correlated) { // The simple equality has been decorrelated
if (join_nest == nullptr)
set_where_cond(nullptr);
else // Join conditions cannot be empty so install a TRUE value
join_nest->set_join_cond(new Item_func_true());
}
} else if (base_cond->type() == Item::COND_ITEM &&
(cond = down_cast<Item_cond *>(base_cond)) &&
cond->functype() == Item_func::COND_AND_FUNC) {
List<Item> *args = cond->argument_list();
List_iterator<Item> li(*args);
Item *item;
while ((item = li++)) {
if (item->type() == Item::FUNC_ITEM &&
(func = down_cast<Item_func *>(item)) &&
can_decorrelate_operator(func, sj_decor.decorrelate_only_eq())) {
bool was_correlated;
if (decorrelate_equality(sj_decor, func, &was_correlated)) return true;
if (was_correlated) li.remove();
}
}
if (args->is_empty()) { // All predicates have been decorrelated
if (join_nest == nullptr)
set_where_cond(nullptr);
else // Join conditions cannot be empty so install a TRUE value
join_nest->set_join_cond(new Item_func_true());
}
}
return false;
}
bool walk_join_list(mem_root_deque<Table_ref *> &list,
std::function<bool(Table_ref *)> action) {
for (Table_ref *tl : list) {
if (action(tl)) return true;
if (tl->nested_join != nullptr &&
walk_join_list(tl->nested_join->m_tables, action))
return true;
}
return false;
}
/**
Builds the list of SJ outer/inner expressions
@param thd Connection handle
@param[out] sj_outer_exprs Will add outer expressions here
@param[out] sj_inner_exprs Will add inner expressions here
@param subq_pred Item for the subquery
@param subq_query_block Single query block for the subquery
@returns true if error
*/
static bool build_sj_exprs(THD *thd, mem_root_deque<Item *> *sj_outer_exprs,
mem_root_deque<Item *> *sj_inner_exprs,
Item_exists_subselect *subq_pred,
Query_block *subq_query_block) {
Item_in_subselect *in_subq_pred = down_cast<Item_in_subselect *>(subq_pred);
assert(in_subq_pred->left_expr->fixed);
/*
We have a special case for IN predicates with a scalar subquery or a
row subquery in the predicand (left operand), such as this:
(SELECT 1,2 FROM t1) IN (SELECT x,y FROM t2)
We cannot make the join condition 1=x AND 2=y, since that might evaluate
to true even if t1 is empty. Instead make the join condition
(SELECT 1,2 FROM t1) = (x,y) in this case.
*/
Item_subselect *left_subquery =
(in_subq_pred->left_expr->type() == Item::SUBSELECT_ITEM)
? static_cast<Item_subselect *>(in_subq_pred->left_expr)
: nullptr;
if (left_subquery &&
(left_subquery->substype() == Item_subselect::SINGLEROW_SUBS)) {
mem_root_deque<Item *> ref_list(thd->mem_root);
Item *header = subq_query_block->base_ref_items[0];
for (uint i = 1; i < in_subq_pred->left_expr->cols(); i++) {
ref_list.push_back(subq_query_block->base_ref_items[i]);
}
Item_row *right_expr = new Item_row(header, ref_list);
if (!right_expr) return true; /* purecov: inspected */
sj_outer_exprs->push_back(in_subq_pred->left_expr);
sj_inner_exprs->push_back(right_expr);
} else {
for (uint i = 0; i < in_subq_pred->left_expr->cols(); i++) {
Item *const li = in_subq_pred->left_expr->element_index(i);
sj_outer_exprs->push_back(li);
sj_inner_exprs->push_back(subq_query_block->base_ref_items[i]);
}
}
return false;
}
/**
Convert a subquery predicate of this query block into a Table_ref
semi-join nest.
@param thd Thread handle
@param subq_pred Subquery predicate to be converted.
This is either an IN, =ANY or EXISTS predicate, possibly
negated.
@returns false if success, true if error
The following transformations are performed:
1. IN/=ANY predicates on the form:
@code
SELECT ...
FROM ot1 ... otN
WHERE (oe1, ... oeM) IN (SELECT ie1, ..., ieM
FROM it1 ... itK
[WHERE inner-cond])
[AND outer-cond]
[GROUP BY ...] [HAVING ...] [ORDER BY ...]
@endcode
are transformed into:
@code
SELECT ...
FROM (ot1 ... otN) SJ (it1 ... itK)
ON (oe1, ... oeM) = (ie1, ..., ieM)
[AND inner-cond]
[WHERE outer-cond]
[GROUP BY ...] [HAVING ...] [ORDER BY ...]
@endcode
Notice that the inner-cond may contain correlated and non-correlated
expressions. Further transformations will analyze and break up such
expressions.
2. EXISTS predicates on the form:
@code
SELECT ...
FROM ot1 ... otN
WHERE EXISTS (SELECT expressions
FROM it1 ... itK
[WHERE inner-cond])
[AND outer-cond]
[GROUP BY ...] [HAVING ...] [ORDER BY ...]
@endcode
are transformed into:
@code
SELECT ...
FROM (ot1 ... otN) SJ (it1 ... itK)
[ON inner-cond]
[WHERE outer-cond]
[GROUP BY ...] [HAVING ...] [ORDER BY ...]
@endcode
3. Negated EXISTS predicates on the form:
@code
SELECT ...
FROM ot1 ... otN
WHERE NOT EXISTS (SELECT expressions
FROM it1 ... itK
[WHERE inner-cond])
[AND outer-cond]
[GROUP BY ...] [HAVING ...] [ORDER BY ...]
@endcode
are transformed into:
@code
SELECT ...
FROM (ot1 ... otN) AJ (it1 ... itK)
[ON inner-cond]
[WHERE outer-cond AND is-null-cond(it1)]
[GROUP BY ...] [HAVING ...] [ORDER BY ...]
@endcode
where AJ means "antijoin" and is like a LEFT JOIN; and is-null-cond is
false if the row of it1 is "found" and "not_null_compl" (i.e. matches
inner-cond).
4. Negated IN predicates on the form:
@code
SELECT ...
FROM ot1 ... otN
WHERE (oe1, ... oeM) NOT IN (SELECT ie1, ..., ieM
FROM it1 ... itK
[WHERE inner-cond])
[AND outer-cond]
[GROUP BY ...] [HAVING ...] [ORDER BY ...]
@endcode
are transformed into:
@code
SELECT ...
FROM (ot1 ... otN) AJ (it1 ... itK)
ON (oe1, ... oeM) = (ie1, ..., ieM)
[AND inner-cond]
[WHERE outer-cond]
[GROUP BY ...] [HAVING ...] [ORDER BY ...]
@endcode
5. The cases 1/2 (respectively 3/4) above also apply when the predicate is
decorated with IS TRUE or IS NOT FALSE (respectively IS NOT TRUE or IS
FALSE).
*/
bool Query_block::convert_subquery_to_semijoin(
THD *thd, Item_exists_subselect *subq_pred) {
Table_ref *emb_tbl_nest = nullptr;
mem_root_deque<Table_ref *> *emb_join_list = &m_table_nest;
DBUG_TRACE;
assert(subq_pred->substype() == Item_subselect::IN_SUBS ||
subq_pred->substype() == Item_subselect::EXISTS_SUBS);
Opt_trace_context *trace = &thd->opt_trace;
Opt_trace_object trace_object(trace, "transformation_to_semi_join");
if (unlikely(trace->is_started())) {
trace_object.add("subquery_predicate", subq_pred);
}
bool outer_join = false; // True if predicate is inner to an outer join
// Save the set of tables in the outer query block:
table_map outer_tables_map = all_tables_map();
const bool do_aj = subq_pred->can_do_aj;
/*
Find out where to insert the semi-join nest and the generated condition.
For t1 LEFT JOIN t2, embedding_join_nest will be t2.
Note that t2 may be a simple table or may itself be a join nest
(e.g. in the case t1 LEFT JOIN (t2 JOIN t3))
*/
if (subq_pred->embedding_join_nest != nullptr) {
// Is this on inner side of an outer join?
outer_join = subq_pred->embedding_join_nest->is_inner_table_of_outer_join();
if (subq_pred->embedding_join_nest->nested_join) {
/*
We're dealing with
... [LEFT] JOIN ( ... ) ON (subquery AND condition) ...
The sj-nest will be inserted into the brackets nest.
*/
emb_tbl_nest = subq_pred->embedding_join_nest;
emb_join_list = &emb_tbl_nest->nested_join->m_tables;
} else if (!subq_pred->embedding_join_nest->outer_join) {
/*
We're dealing with
... INNER JOIN tblX ON (subquery AND condition) ...
The sj-nest will be tblX's "sibling", i.e. another child of its
parent. This is ok because tblX is joined as an inner join.
*/
emb_tbl_nest = subq_pred->embedding_join_nest->embedding;
if (emb_tbl_nest) emb_join_list = &emb_tbl_nest->nested_join->m_tables;
} else {
Table_ref *outer_tbl = subq_pred->embedding_join_nest;
/*
We're dealing with
... LEFT JOIN tbl ON (on_expr AND subq_pred) ...
tbl will be replaced with:
( tbl SJ (subq_tables) )
| |
|<----- wrap_nest ---->|
giving:
... LEFT JOIN ( tbl SJ (subq_tables) ) ON (on_expr AND subq_pred) ...
Q: other subqueries may be pointing to this element. What to do?
A1: simple solution: copy *subq_pred->embedding_join_nest= *parent_nest.
But we'll need to fix other pointers.
A2: Another way: have Table_ref::next_ptr so the following
subqueries know the table has been nested.
A3: changes in the Table_ref::outer_join will make everything work
automatically.
*/
Table_ref *const wrap_nest = Table_ref::new_nested_join(
thd->mem_root, "(sj-wrap)", outer_tbl->embedding,
outer_tbl->join_list, this);
if (wrap_nest == nullptr) return true;
wrap_nest->nested_join->m_tables.push_back(outer_tbl);
outer_tbl->embedding = wrap_nest;
outer_tbl->join_list = &wrap_nest->nested_join->m_tables;
/*
wrap_nest will take place of outer_tbl, so move the outer join flag
and join condition.
*/
wrap_nest->outer_join = outer_tbl->outer_join;
outer_tbl->outer_join = false;
wrap_nest->set_join_cond(outer_tbl->join_cond());
outer_tbl->set_join_cond(nullptr);
for (auto li = wrap_nest->join_list->begin();
li != wrap_nest->join_list->end(); ++li) {
Table_ref *tbl = *li;
if (tbl == outer_tbl) {
*li = wrap_nest;
break;
}
}
/*
outer_tbl is replaced by wrap_nest. Any subquery which was attached to
outer_tbl must be attached to embedding_join_nest instead.
*/
for (Item_exists_subselect *subquery : (*sj_candidates)) {
if (subquery->embedding_join_nest == outer_tbl)
subquery->embedding_join_nest = wrap_nest;
}
/*
Ok now wrap_nest 'contains' outer_tbl and we're ready to add the
semi-join nest into it
*/
emb_join_list = &wrap_nest->nested_join->m_tables;
emb_tbl_nest = wrap_nest;
}
}
// else subquery is in WHERE.
if (do_aj) {
/*
A negated IN/EXISTS like:
NOT EXISTS(... FROM subq_tables WHERE subq_cond)
The above code has ensured that we have one of these 3 situations:
(a) FROM ... WHERE (subquery AND condition)
(emb_tbl_nest == nullptr, emb_join_list == FROM clause)
which has to be changed to
FROM (...) LEFT JOIN (subq_tables) ON subq_cond
^ aj-left-nest ^aj-nest
WHERE x IS NULL AND condition
or:
(b) ... [LEFT] JOIN ( ... ) ON (subquery AND condition) ...
^ emb_tbl_nest, emb_join_list
which has to be changed to
... [LEFT] JOIN ( (...) LEFT JOIN (subq_tables) ON subq_cond)
^aj-left-nest ^aj-nest
^ emb_tbl_nest, emb_join_list
ON x IS NULL AND condition ...
or:
(c) ... INNER JOIN tblX ON (subquery AND condition) ...
^ emb_tbl_nest, emb_join_list
(if no '()' above this INNER JOIN up to the root, emb_tbl_nest ==
nullptr and emb_join_list == FROM clause)
which has to be changed to
( ... INNER JOIN tblX ON condition) LEFT JOIN (subq_tables) ON subq_cond
^aj-left-nest ^aj-nest
so:
- move all tables of emb_join_list into a new aj-left-nest
- emb_join_list is now empty
- put subq_tables in a new aj-nest
- add the subq's subq_cond to aj-nest's ON
- add a LEFT JOIN operator between the aj-left-nest and aj-nest, with
ON condition subq_cond.
- insert aj-nest and aj-left-nest into emb_join_list
- for some reason, a LEFT JOIN must always be wrapped into a nest (call
nest_last_join() then)
- do not yet add 'x IS NULL to WHERE' (add it in optimization phase when
we have the QEP_TABs so we can set up the 'found'/'not_null_compl'
pointers in trig conds).
*/
Table_ref *const wrap_nest = Table_ref::new_nested_join(
thd->mem_root, "(aj-left-nest)", emb_tbl_nest, emb_join_list, this);
if (wrap_nest == nullptr) return true;
// Go through tables of emb_join_list, insert them in wrap_nest
for (Table_ref *outer_tbl : *emb_join_list) {
wrap_nest->nested_join->m_tables.push_back(outer_tbl);
outer_tbl->embedding = wrap_nest;
outer_tbl->join_list = &wrap_nest->nested_join->m_tables;
}
// FROM clause is now only the new left nest
emb_join_list->clear();
emb_join_list->push_back(wrap_nest);
outer_join = true;
}
if (unlikely(trace->is_started()))
trace_object.add_alnum("embedded in", emb_tbl_nest ? "JOIN" : "WHERE");
Table_ref *const sj_nest = Table_ref::new_nested_join(
thd->mem_root, do_aj ? "(aj-nest)" : "(sj-nest)", emb_tbl_nest,
emb_join_list, this);
if (sj_nest == nullptr) return true; /* purecov: inspected */
NESTED_JOIN *const nested_join = sj_nest->nested_join;
/* Nests do not participate in those 'chains', so: */
/* sj_nest->next_leaf= sj_nest->next_local= sj_nest->next_global == NULL*/
/*
Using push_front, as sj_nest may be right arg of LEFT JOIN if
antijoin, and right args of LEFT JOIN go before left arg.
*/
emb_join_list->push_front(sj_nest);
/*
Natural joins inside a semi-join nest were already processed when the
subquery went through initial preparation.
*/
sj_nest->nested_join->natural_join_processed = true;
/*
nested_join->used_tables and nested_join->not_null_tables are
initialized in simplify_joins().
*/
Query_block *const subq_query_block = subq_pred->unit->first_query_block();
nested_join->query_block_id = subq_query_block->select_number;
// Merge tables from underlying query block into this join nest
if (sj_nest->merge_underlying_tables(subq_query_block))
return true; /* purecov: inspected */
/*
Add tables from subquery at end of leaf table chain.
(This also means that table map for parent query block tables are unchanged)
*/
Table_ref *tl;
for (tl = leaf_tables; tl->next_leaf; tl = tl->next_leaf) {
}
tl->next_leaf = subq_query_block->leaf_tables;
// Add tables from subquery at end of next_local chain.
m_table_list.push_back(&subq_query_block->m_table_list);
// Note that subquery's tables are already in the next_global chain
// Remove the original subquery predicate from the WHERE/ON
// The subqueries were replaced with TRUE value earlier
// @todo also reset the 'with_subselect' there.
// Walk through child's tables and adjust table map
uint table_no = leaf_table_count;
for (tl = subq_query_block->leaf_tables; tl; tl = tl->next_leaf, table_no++) {
tl->dep_tables <<= leaf_table_count;
tl->set_tableno(table_no);
}
/*
If we leave this function in an error path before subq_query_block is
unlinked, make sure tables are not duplicated, or cleanup code could be
confused:
*/
subq_query_block->m_table_list.clear();
subq_query_block->leaf_tables = nullptr;
// Adjust table and expression counts in parent query block:
derived_table_count += subq_query_block->derived_table_count;
materialized_derived_table_count +=
subq_query_block->materialized_derived_table_count;
table_func_count += subq_query_block->table_func_count;
has_sj_nests |= subq_query_block->has_sj_nests;
has_aj_nests |= subq_query_block->has_aj_nests;
partitioned_table_count += subq_query_block->partitioned_table_count;
leaf_table_count += subq_query_block->leaf_table_count;
cond_count += subq_query_block->cond_count;
between_count += subq_query_block->between_count;
if (subq_query_block->active_options() & OPTION_SCHEMA_TABLE)
add_base_options(OPTION_SCHEMA_TABLE);
if (outer_join) propagate_nullability(&sj_nest->nested_join->m_tables, true);
nested_join->sj_outer_exprs.clear();
nested_join->sj_inner_exprs.clear();
if (subq_pred->substype() == Item_subselect::IN_SUBS) {
build_sj_exprs(thd, &nested_join->sj_outer_exprs,
&nested_join->sj_inner_exprs, subq_pred, subq_query_block);
} else { // this is EXISTS
// Expressions from the SELECT list will not be used; unlike in the case of
// IN, they are not part of sj_inner_exprs.
// @todo in WL#6570, move this to resolve_subquery().
for (Item *item : subq_query_block->visible_fields()) {
Item::Cleanup_after_removal_context ctx(this);
item->walk(&Item::clean_up_after_removal, walk_options,
pointer_cast<uchar *>(&ctx));
}
}
{
/*
The WHERE clause and the join conditions may contain equalities that may
be leveraged by semi-join strategies (e.g to set up key lookups in
semi-join materialization), decorrelate them (ie. add respective fields
and expressions to sj_inner_exprs and sj_outer_exprs).
*/
Semijoin_decorrelation sj_decor(&sj_nest->nested_join->sj_outer_exprs,
&sj_nest->nested_join->sj_inner_exprs,
// decorrelate only equalities
/*op_types=*/nullptr);
if (subq_query_block->where_cond() &&
subq_query_block->decorrelate_condition(sj_decor, nullptr))
return true;
if (walk_join_list(
subq_query_block->m_table_nest, [&](Table_ref *tr) -> bool {
return !tr->is_inner_table_of_outer_join() && tr->join_cond() &&
subq_query_block->decorrelate_condition(sj_decor, tr);
}))
return true;
}
// Unlink the subquery's query expression:
subq_query_block->master_query_expression()->exclude_level();
// Merge subquery's name resolution contexts into parent's
merge_contexts(subq_query_block);
repoint_contexts_of_join_nests(subq_query_block->m_table_nest);
// Update table map for semi-join nest's WHERE condition and join conditions
fix_tables_after_pullout(this, subq_query_block, sj_nest, 0, 0);
Item *sj_cond = subq_query_block->where_cond();
if (sj_cond != nullptr) sj_cond->fix_after_pullout(this, subq_query_block);
// Assign the set of non-trivially tables after decorrelation
nested_join->sj_corr_tables =
(sj_cond != nullptr ? sj_cond->used_tables() & outer_tables_map : 0);
walk_join_list(subq_query_block->m_table_nest, [&](Table_ref *tr) -> bool {
if (tr->join_cond())
nested_join->sj_corr_tables |=
tr->join_cond()->used_tables() & outer_tables_map;
if (tr->is_derived() && tr->uses_materialization())
nested_join->sj_corr_tables |=
tr->derived_query_expression()->m_lateral_deps;
return false;
});
// Build semijoin condition using the inner/outer expression list
bool simple_cond;
if (build_sj_cond(thd, nested_join, subq_query_block, outer_tables_map,
&sj_cond, &simple_cond))
return true;
// Processing requires a non-empty semi-join condition:
assert(sj_cond != nullptr);
// Fix the created equality and AND
if (!sj_cond->fixed) {
Opt_trace_array sj_on_trace(&thd->opt_trace,
"evaluating_constant_semijoin_conditions");
sj_cond->apply_is_true();
if (sj_cond->fix_fields(thd, &sj_cond))
return true; /* purecov: inspected */
}
sj_nest->set_sj_or_aj_nest();
assert(sj_nest->join_cond() == nullptr);
if (do_aj) {
sj_nest->outer_join = true;
sj_nest->set_join_cond(sj_cond);
this->outer_join |= sj_nest->nested_join->used_tables;
if (emb_tbl_nest == nullptr)
nest_last_join(thd); // as is done for a true LEFT JOIN
}
if (unlikely(trace->is_started())) {
trace_object.add("semi-join condition", sj_cond);
Opt_trace_array trace_dep(trace, "decorrelated_predicates");
auto ii = nested_join->sj_inner_exprs.begin();
auto oi = nested_join->sj_outer_exprs.begin();
while (ii != nested_join->sj_inner_exprs.end() &&
oi != nested_join->sj_outer_exprs.end()) {
Item *inner = *ii++, *outer = *oi++;
Opt_trace_object trace_predicate(trace);
trace_predicate.add("outer", outer);
trace_predicate.add("inner", inner);
}
}
/*
sj_depends_on contains the set of outer tables referred in the
subquery's WHERE clause as well as tables referred in the IN predicate's
left-hand side, and lateral dependencies from materialized derived tables
contained in the original subquery.
*/
nested_join->sj_depends_on =
nested_join->sj_corr_tables | (sj_cond->used_tables() & outer_tables_map);
assert((nested_join->sj_corr_tables & OUTER_REF_TABLE_BIT) == 0);
assert((nested_join->sj_depends_on & OUTER_REF_TABLE_BIT) == 0);
// TODO fix QT_
DBUG_EXECUTE("where", print_where(thd, sj_cond, "SJ-COND", QT_ORDINARY););
Item *cond = nullptr;
if (do_aj) {
// Condition remains attached to inner table, as for LEFT JOIN
cond = sj_cond;
} else if (emb_tbl_nest) {
// Inject semi-join condition into parent's join condition
emb_tbl_nest->set_join_cond(and_items(emb_tbl_nest->join_cond(), sj_cond));
if (emb_tbl_nest->join_cond() == nullptr) return true;
emb_tbl_nest->join_cond()->apply_is_true();
if (!emb_tbl_nest->join_cond()->fixed &&
emb_tbl_nest->join_cond()->fix_fields(thd,
emb_tbl_nest->join_cond_ref()))
return true;
cond = emb_tbl_nest->join_cond();
} else {
// Inject semi-join condition into parent's WHERE condition
m_where_cond = and_items(m_where_cond, sj_cond);
if (m_where_cond == nullptr) return true;
m_where_cond->apply_is_true();
if (m_where_cond->fix_fields(thd, &m_where_cond)) return true;
cond = m_where_cond;
}
/*
If the current semi-join or anti-join condition is always TRUE or
always FALSE:
(a) there is no need to set up lookups (for loosescan or materialization).
(b) if some predicates were eliminated as part of const value optimization,
their expressions are still in the inner/outer expression list
and must be removed.
(If a "simple condition" was added in build_sj_cond(), this is not necessary
since the expressions were constant values and are safe to keep.)
*/
if (cond != nullptr && cond->const_item() && !simple_cond) {
clear_sj_expressions(nested_join);
}
if (subq_query_block->ftfunc_list->elements &&
add_ftfunc_list(subq_query_block->ftfunc_list))
return true; /* purecov: inspected */
if (do_aj)
has_aj_nests = true;
else
has_sj_nests = true; // This query block has semi-join nests
return false;
}
/**
Merge a derived table or view into a query block.
If some constraint prevents the derived table from being merged then do
nothing, which means the table will be prepared for materialization later.
After this call, check is_merged() to see if the table was really merged.
@param thd Thread handler
@param derived_table Derived table which is to be merged.
@return false if successful, true if error
*/
bool Query_block::merge_derived(THD *thd, Table_ref *derived_table) {
DBUG_TRACE;
if (!derived_table->is_view_or_derived() || derived_table->is_merged())
return false;
Query_expression *const derived_query_expression =
derived_table->derived_query_expression();
// A derived table must be prepared before we can merge it
assert(derived_query_expression->is_prepared());
LEX *const lex = parent_lex;
// Check whether the outer query allows merged views
if ((master_query_expression() == lex->unit && !lex->can_use_merged()) ||
lex->can_not_use_merged())
return false;
/*
@todo: The implementation of LEX::can_use_merged() currently avoids
merging of views that are contained in other views if
can_use_merged() returns false.
*/
/*
Check whether derived table is mergeable, and directives allow merging;
priority order is:
- ALGORITHM says MERGE or TEMPTABLE
- hint specifies MERGE or NO_MERGE (=materialization)
- optimizer_switch's derived_merge is ON and heuristic suggests merge
*/
if (derived_table->algorithm == VIEW_ALGORITHM_TEMPTABLE ||
!derived_query_expression->is_mergeable())
return false;
if (derived_table->algorithm == VIEW_ALGORITHM_UNDEFINED) {
const bool merge_heuristic =
(derived_table->is_view() || allow_merge_derived) &&
derived_query_expression->merge_heuristic(thd->lex);
if (!hint_table_state(thd, derived_table, DERIVED_MERGE_HINT_ENUM,
merge_heuristic ? OPTIMIZER_SWITCH_DERIVED_MERGE : 0))
return false;
}
Query_block *const derived_query_block =
derived_query_expression->first_query_block();
/*
If STRAIGHT_JOIN is specified, it is not valid to merge in a query block
that contains semi-join nests
*/
if ((active_options() & SELECT_STRAIGHT_JOIN) &&
(derived_query_block->has_sj_nests || derived_query_block->has_aj_nests))
return false;
// Check that we have room for the merged tables in the table map:
if (leaf_table_count + derived_query_block->leaf_table_count - 1 > MAX_TABLES)
return false;
derived_table->set_merged();
DBUG_PRINT("info", ("algorithm: MERGE"));
Opt_trace_context *const trace = &thd->opt_trace;
Opt_trace_object trace_wrapper(trace);
Opt_trace_object trace_derived(trace,
derived_table->is_view() ? "view" : "derived");
trace_derived.add_utf8_table(derived_table)
.add("select#", derived_query_block->select_number)
.add("merged", true);
Prepared_stmt_arena_holder ps_arena_holder(thd);
// Save offset for table number adjustment
uint table_adjust = derived_table->tableno();
// Set up permanent list of underlying tables of a merged view
derived_table->merge_underlying_list = derived_query_block->get_table_list();
/**
A view is updatable if any underlying table is updatable.
A view is insertable-into if all underlying tables are insertable.
A view is not updatable nor insertable if it contains an outer join
@see mysql_register_view()
*/
if (derived_table->is_view()) {
bool updatable = false;
bool insertable = true;
bool outer_joined = false;
for (Table_ref *tr = derived_table->merge_underlying_list; tr;
tr = tr->next_local) {
updatable |= tr->is_updatable();
insertable &= tr->is_insertable();
outer_joined |= tr->is_inner_table_of_outer_join();
}
updatable &= !outer_joined;
insertable &= !outer_joined;
if (updatable) derived_table->set_updatable();
if (insertable) derived_table->set_insertable();
}
// Add a nested join object to the derived table object
if (!(derived_table->nested_join = new (thd->mem_root) NESTED_JOIN))
return true;
// Merge tables from underlying query block into this join nest
if (derived_table->merge_underlying_tables(derived_query_block))
return true; /* purecov: inspected */
// Replace derived table in leaf table list with underlying tables:
for (Table_ref **tl = &leaf_tables; *tl; tl = &(*tl)->next_leaf) {
if (*tl == derived_table) {
for (Table_ref *leaf = derived_query_block->leaf_tables; leaf;
leaf = leaf->next_leaf) {
leaf->dep_tables <<= table_adjust;
if (leaf->next_leaf == nullptr) {
leaf->next_leaf = (*tl)->next_leaf;
break;
}
}
*tl = derived_query_block->leaf_tables;
break;
}
}
leaf_table_count += (derived_query_block->leaf_table_count - 1);
derived_table_count += derived_query_block->derived_table_count;
table_func_count += derived_query_block->table_func_count;
materialized_derived_table_count +=
derived_query_block->materialized_derived_table_count;
has_sj_nests |= derived_query_block->has_sj_nests;
has_aj_nests |= derived_query_block->has_aj_nests;
partitioned_table_count += derived_query_block->partitioned_table_count;
cond_count += derived_query_block->cond_count;
between_count += derived_query_block->between_count;
// Remove tables from old query block:
derived_query_block->leaf_tables = nullptr;
derived_query_block->leaf_table_count = 0;
derived_query_block->m_table_list.clear();
// Propagate schema table indication:
// @todo: Add to BASE options instead
if (derived_query_block->active_options() & OPTION_SCHEMA_TABLE)
add_base_options(OPTION_SCHEMA_TABLE);
// Propagate nullability for derived tables within outer joins:
if (derived_table->is_inner_table_of_outer_join())
propagate_nullability(&derived_table->nested_join->m_tables, true);
select_n_having_items += derived_query_block->select_n_having_items;
// Merge the WHERE clause into the outer query block
if (derived_table->merge_where(thd)) return true; /* purecov: inspected */
if (derived_table->create_field_translation(thd))
return true; /* purecov: inspected */
// Exclude the derived table query expression from query graph.
derived_query_expression->exclude_level();
// Don't try to access it:
derived_table->set_derived_query_expression((Query_expression *)1);
// Merge subquery's name resolution contexts into parent's
merge_contexts(derived_query_block);
repoint_contexts_of_join_nests(derived_query_block->m_table_nest);
// Leaf tables have been shuffled, so update table numbers for them
remap_tables(thd);
// Update table info of referenced expressions after query block is merged
fix_tables_after_pullout(this, derived_query_block, derived_table,
table_adjust,
derived_query_expression->m_lateral_deps);
if (derived_query_block->is_ordered()) {
/*
An ORDER BY clause is moved to an outer query block
- if the outer query block allows ordering, and
- that refers to this view/derived table only, and
- is not part of a set operation (UNION, EXCEPT, INTERSECT), and
- may have a WHERE clause but is not grouped or aggregated and is not
itself ordered.
Otherwise the ORDER BY clause is ignored.
Only SELECT statements and single-table UPDATE and DELETE statements
allow ordering.
Up to version 5.6 included, ORDER BY was unconditionally merged.
Currently we only merge in the simple case above, which ensures
backward compatibility for most reasonable use cases.
Note that table numbers in order_list do not need updating, since
the outer query contains only one table reference.
*/
// LIMIT currently blocks derived table merge
assert(!derived_query_block->has_limit());
if ((lex->sql_command == SQLCOM_SELECT ||
lex->sql_command == SQLCOM_UPDATE ||
lex->sql_command == SQLCOM_DELETE) &&
!(master_query_expression()->is_set_operation() || is_grouped() ||
is_distinct() || is_ordered() ||
get_table_list()->next_local != nullptr)) {
order_list.push_back(&derived_query_block->order_list);
for (ORDER *o = derived_query_block->order_list.first; o != nullptr;
o = o->next) {
/*
ORDER BY clause may contain expressions with outer references that
must be adjusted:
*/
o->item[0]->fix_after_pullout(this, derived_query_block);
/*
If at outer-most level (not within another derived table), ensure
the ordering columns are marked in read_set, since columns selected
from derived tables are not marked in initial resolving.
*/
if (!thd->derived_tables_processing) {
Mark_field mf(thd->mark_used_columns);
o->item[0]->walk(&Item::mark_field_in_map, enum_walk::POSTFIX,
pointer_cast<uchar *>(&mf));
}
}
} else {
if (derived_query_block->empty_order_list(this)) return true;
trace_derived.add_alnum("transformations_to_derived_table",
"removed_ordering");
}
}
// Add any full-text functions from derived table into outer query
if (derived_query_block->ftfunc_list->elements &&
add_ftfunc_list(derived_query_block->ftfunc_list))
return true; /* purecov: inspected */
/*
The "laterality" of this nest is not interesting anymore; it was
transferred to underlying tables.
*/
derived_query_expression->m_lateral_deps = 0;
return false;
}
/**
Destructively replaces a sub-condition inside a condition tree. The
parse tree is also altered.
@param thd thread handler
@param tree Must be the handle to the top level condition. This is needed
when the top-level condition changes.
@param old_cond The condition to be replaced.
@param new_cond The condition to be substituted.
@param do_fix_fields If true, Item::fix_fields(THD*, Item**) is called for
the new condition.
@param[out] found_ptr Pointer to boolean; used only in recursive sub-calls;
top call must not specify this argument. Function deposits there if it
found the searched Item or not.
@return error status
@retval true If there was an error.
@retval false If successful.
*/
static bool replace_subcondition(THD *thd, Item **tree, Item *old_cond,
Item *new_cond, bool do_fix_fields,
bool *found_ptr = nullptr) {
if (*tree == old_cond) {
*tree = new_cond;
if (do_fix_fields && new_cond->fix_fields(thd, tree)) return true;
if (found_ptr != nullptr) *found_ptr = true; // inform upper call
return false;
}
if ((*tree)->type() == Item::COND_ITEM) {
List_iterator<Item> li(*((Item_cond *)(*tree))->argument_list());
Item *item;
bool found_local = false;
while ((item = li++)) {
if (replace_subcondition(thd, li.ref(), old_cond, new_cond, do_fix_fields,
&found_local))
return true;
if (found_local) {
if (found_ptr != nullptr) *found_ptr = true; // inform upper call
return false;
}
}
}
// item not found
// if it is the top call: error, else: no error.
return (found_ptr == nullptr);
}
/**
Convert semi-join subquery predicates into semi-join join nests.
Convert candidate subquery predicates into semi-join join nests. This
transformation is performed once in query lifetime and is irreversible.
Conversion of one subquery predicate
------------------------------------
We start with a query block that has a semi-join subquery predicate:
@code
SELECT ...
FROM ot, ...
WHERE oe IN (SELECT ie FROM it1 ... itN WHERE subq_where) AND outer_where
@endcode
and convert the predicate and subquery into a semi-join nest:
@code
SELECT ...
FROM ot SEMI JOIN (it1 ... itN), ...
WHERE outer_where AND subq_where AND oe=ie
@endcode
that is, in order to do the conversion, we need to
* Create the "SEMI JOIN (it1 .. itN)" part and add it into the parent
query block's FROM structure.
* Add "AND subq_where AND oe=ie" into parent query block's WHERE (or ON if
the subquery predicate was in an ON condition)
* Remove the subquery predicate from the parent query block's WHERE
Considerations when converting many predicates
----------------------------------------------
A join may have at most MAX_TABLES tables. This may prevent us from
flattening all subqueries when the total number of tables in parent and
child selects exceeds MAX_TABLES. In addition, one slot is reserved per
semi-join nest, in case the subquery needs to be materialized in a
temporary table.
We deal with this problem by flattening children's subqueries first and
then using a heuristic rule to determine each subquery predicate's
priority, which is calculated in this order:
1. Prefer dependent subqueries over non-dependent ones
2. Prefer subqueries with many tables over those with fewer tables
3. Prefer early subqueries over later ones (to make sort deterministic)
@returns false if success, true if error
*/
bool Query_block::flatten_subqueries(THD *thd) {
DBUG_TRACE;
assert(has_sj_candidates());
Item_exists_subselect **subq, **subq_begin = sj_candidates->begin(),
**subq_end = sj_candidates->end();
Opt_trace_context *const trace = &thd->opt_trace;
/*
Semijoin flattening is bottom-up. Indeed, we have this execution flow,
for SELECT#1 WHERE X IN (SELECT #2 WHERE Y IN (SELECT#3)) :
Query_block::prepare() (select#1)
-> fix_fields() on IN condition
-> Query_block::prepare() on subquery (select#2)
-> fix_fields() on IN condition
-> Query_block::prepare() on subquery (select#3)
<- Query_block::prepare()
<- fix_fields()
-> flatten_subqueries: merge #3 in #2
<- flatten_subqueries
<- Query_block::prepare()
<- fix_fields()
-> flatten_subqueries: merge #2 in #1
Note that flattening of #(N) is done by its parent JOIN#(N-1), because
there are cases where flattening is not possible and only the parent can
know.
*/
uint subq_no;
for (subq = subq_begin, subq_no = 0; subq < subq_end; subq++, subq_no++) {
auto subq_item = *subq;
/*
Some subqueries may have been deleted, remove them fully before sorting
sj_candidates and subsequent processing:
*/
if (subq_item->strategy == Subquery_strategy::DELETED) {
sj_candidates->erase_value(subq_item);
subq--; // So that the next iteration will handle the next subquery.
subq_end = sj_candidates->end(); // array's end moved.
continue;
}
// Transformation of IN and EXISTS subqueries is supported
assert(subq_item->substype() == Item_subselect::IN_SUBS ||
subq_item->substype() == Item_subselect::EXISTS_SUBS);
Query_block *child_query_block = subq_item->unit->first_query_block();
// Check that we proceeded bottom-up
assert(child_query_block->sj_candidates == nullptr);
bool dependent = subq_item->unit->uncacheable & UNCACHEABLE_DEPENDENT;
subq_item->sj_convert_priority =
(((dependent * MAX_TABLES_FOR_SIZE) + // dependent subqueries first
child_query_block->leaf_table_count) *
65536) + // then with many tables
(65536 - subq_no); // then based on position
/*
We may actually allocate more than 64k subqueries in a query block,
but this is so unlikely that we ignore the impact it may have on sorting.
*/
}
/*
Pick which subqueries to convert:
sort the subquery array
- prefer correlated subqueries over uncorrelated;
- prefer subqueries that have greater number of outer tables;
*/
std::sort(subq_begin, subq_begin + sj_candidates->size(),
[](Item_exists_subselect *el1, Item_exists_subselect *el2) {
return el1->sj_convert_priority > el2->sj_convert_priority;
});
// A permanent transformation is going to start, so:
Prepared_stmt_arena_holder ps_arena_holder(thd);
// Transform certain subquery predicates to derived tables
for (subq = subq_begin; subq < subq_end; subq++) {
auto subq_item = *subq;
if (subq_item->strategy != Subquery_strategy::CANDIDATE_FOR_DERIVED_TABLE)
continue;
OPT_TRACE_TRANSFORM(trace, oto0, oto1,
subq_item->unit->first_query_block()->select_number,
"IN (SELECT)", "joined derived table");
oto1.add("chosen", true);
if (transform_table_subquery_to_join_with_derived(thd, subq_item))
return true;
}
/*
Replace all subqueries to be flattened with a truth predicate.
Generally, this predicate is TRUE, but if the subquery has a WHERE condition
that is always false, replace with a FALSE predicate. In the latter case,
also avoid converting the subquery to a semi-join.
*/
uint table_count = leaf_table_count;
for (subq = subq_begin; subq < subq_end; subq++) {
auto subq_item = *subq;
if (subq_item->strategy != Subquery_strategy::CANDIDATE_FOR_SEMIJOIN)
continue;
// Add the tables in the subquery nest plus one in case of materialization:
const uint tables_added =
subq_item->unit->first_query_block()->leaf_table_count + 1;
// (1) Not too many tables in total.
// (2) This subquery contains no antijoin nest (anti/semijoin nest cannot
// include antijoin nest for implementation reasons, see
// advance_sj_state()).
if (table_count + tables_added <= MAX_TABLES && // (1)
!subq_item->unit->first_query_block()->has_aj_nests) // (2)
subq_item->strategy = Subquery_strategy::SEMIJOIN;
Item *subq_where = subq_item->unit->first_query_block()->where_cond();
/*
A predicate can be evaluated to ALWAYS TRUE or ALWAYS FALSE when it
has only const items. If found to be ALWAYS FALSE, do not include
the subquery in transformations.
*/
bool cond_value = true;
if (subq_where && subq_where->const_item() &&
!subq_where->walk(&Item::is_non_const_over_literals, enum_walk::POSTFIX,
nullptr) &&
simplify_const_condition(thd, &subq_where, false, &cond_value))
return true;
if (!cond_value) {
// Unlink and delete this subquery's query expression
Item::Cleanup_after_removal_context ctx(this);
subq_item->walk(&Item::clean_up_after_removal, walk_options,
pointer_cast<uchar *>(&ctx));
}
if (subq_item->strategy == Subquery_strategy::SEMIJOIN)
table_count += tables_added;
if (subq_item->strategy != Subquery_strategy::SEMIJOIN &&
subq_item->strategy != Subquery_strategy::DELETED) {
subq_item->strategy = Subquery_strategy::UNSPECIFIED;
continue;
}
/*
In WHERE/ON of parent query, replace IN (subq) with truth value:
- When subquery is converted to anti/semi-join: truth value true.
- When subquery WHERE cond is false: IN returns FALSE, so truth value
false if a semijoin (IN) and truth value true if an antijoin (NOT IN).
*/
Item *truth_item =
(cond_value || subq_item->can_do_aj)
? implicit_cast<Item *>(new (thd->mem_root) Item_func_true())
: implicit_cast<Item *>(new (thd->mem_root) Item_func_false());
if (truth_item == nullptr) return true;
Item **tree = (subq_item->embedding_join_nest == nullptr)
? &m_where_cond
: subq_item->embedding_join_nest->join_cond_ref();
if (replace_subcondition(thd, tree, subq_item, truth_item, false))
return true; /* purecov: inspected */
}
/* Transform the selected subqueries into semi-join */
for (subq = subq_begin; subq < subq_end; subq++) {
auto subq_item = *subq;
if (subq_item->strategy != Subquery_strategy::SEMIJOIN) continue;
OPT_TRACE_TRANSFORM(
trace, oto0, oto1, subq_item->unit->first_query_block()->select_number,
"IN (SELECT)", subq_item->can_do_aj ? "antijoin" : "semijoin");
oto1.add("chosen", true);
if (convert_subquery_to_semijoin(thd, *subq)) return true;
}
/*
Finalize the subqueries that we did not convert,
ie. perform IN->EXISTS rewrite.
*/
for (subq = subq_begin; subq < subq_end; subq++) {
auto subq_item = *subq;
if (subq_item->strategy != Subquery_strategy::UNSPECIFIED) continue;
subq_item->changed = false;
subq_item->fixed = false;
Query_block *save_query_block = thd->lex->current_query_block();
thd->lex->set_current_query_block(subq_item->unit->first_query_block());
// This is the only part of the function which uses a JOIN.
if (subq_item->select_transformer(thd,
subq_item->unit->first_query_block()))
return true;
thd->lex->set_current_query_block(save_query_block);
subq_item->changed = true;
subq_item->fixed = true;
/*
If the Item has been substituted with another Item (e.g an
Item_in_optimizer), resolve it and add it to proper WHERE or ON clause.
If no substitute exists (e.g for EXISTS predicate), no action is required.
*/
Item *substitute = subq_item->substitution;
if (substitute == nullptr) continue;
const bool do_fix_fields = !substitute->fixed;
const bool subquery_in_join_clause =
subq_item->embedding_join_nest != nullptr;
Item **tree = subquery_in_join_clause
? (subq_item->embedding_join_nest->join_cond_ref())
: &m_where_cond;
if (replace_subcondition(thd, tree, *subq, substitute, do_fix_fields))
return true;
subq_item->substitution = nullptr;
}
sj_candidates->clear();
return false;
}
/**
Propagate nullability into inner tables of outer join operation
@param tables List of tables and join nests, start at m_table_nest
@param nullable true: Set all underlying tables as nullable
*/
void propagate_nullability(mem_root_deque<Table_ref *> *tables, bool nullable) {
for (Table_ref *tr : *tables) {
if (tr->table && !tr->table->is_nullable() && (nullable || tr->outer_join))
tr->table->set_nullable();
if (tr->nested_join == nullptr) continue;
propagate_nullability(&tr->nested_join->m_tables,
nullable || tr->outer_join);
}
}
/**
Propagate exclusion from unique table check into all subqueries belonging
to this query block.
This function can be applied to all subqueries of a materialized derived
table or view.
*/
void Query_block::propagate_unique_test_exclusion() {
for (Query_expression *unit = first_inner_query_expression(); unit;
unit = unit->next_query_expression())
for (Query_block *sl = unit->first_query_block(); sl;
sl = sl->next_query_block())
sl->propagate_unique_test_exclusion();
exclude_from_table_unique_test = true;
}
/**
Add a list of full-text function elements into a query block.
@param ftfuncs List of full-text function elements to add.
@returns false if success, true if error
*/
bool Query_block::add_ftfunc_list(List<Item_func_match> *ftfuncs) {
Item_func_match *ifm;
List_iterator_fast<Item_func_match> li(*ftfuncs);
while ((ifm = li++)) {
if (ftfunc_list->push_back(ifm)) return true; /* purecov: inspected */
}
return false;
}
/**
Go through a list of tables and join nests, recursively, and repoint
its query_block pointer.
@param join_list List of tables and join nests
*/
void Query_block::repoint_contexts_of_join_nests(
mem_root_deque<Table_ref *> join_list) {
for (Table_ref *tbl : join_list) {
tbl->query_block = this;
if (tbl->nested_join)
repoint_contexts_of_join_nests(tbl->nested_join->m_tables);
}
}
/**
Merge name resolution context objects belonging to an inner subquery
to parent query block.
Update all context objects to have this base query block.
Used when a subquery's query block is merged into its parent.
@param inner Subquery for which context objects are to be merged.
*/
void Query_block::merge_contexts(Query_block *inner) {
for (Name_resolution_context *ctx = inner->first_context; ctx != nullptr;
ctx = ctx->next_context) {
ctx->query_block = this;
if (ctx->next_context == nullptr) {
ctx->next_context = first_context;
first_context = inner->first_context;
inner->first_context = nullptr;
break;
}
}
}
/**
For a table subquery predicate (IN/ANY/ALL/EXISTS/etc):
since it does not support LIMIT the following clauses are redundant:
ORDER BY
DISTINCT
GROUP BY if there are no aggregate functions and no HAVING clause
For a scalar subquery without LIMIT:
ORDER BY is redundant, as the number of rows to order must be 1.
This removal is permanent. Thus, it only makes sense to call this function
for regular queries and on first execution of SP/PS
@param thd thread handler
@param hidden_group_field_count Number of hidden group fields added
by setup_group().
@return true on error
*/
bool Query_block::remove_redundant_subquery_clauses(
THD *thd, int hidden_group_field_count) {
Item_subselect *subq_predicate = master_query_expression()->item;
enum change {
REMOVE_NONE = 0,
REMOVE_ORDER = 1 << 0,
REMOVE_DISTINCT = 1 << 1,
REMOVE_GROUP = 1 << 2
};
uint possible_changes;
if (subq_predicate->substype() == Item_subselect::SINGLEROW_SUBS) {
if (has_limit()) return false;
possible_changes = REMOVE_ORDER;
} else {
assert(subq_predicate->substype() == Item_subselect::EXISTS_SUBS ||
subq_predicate->substype() == Item_subselect::IN_SUBS ||
subq_predicate->substype() == Item_subselect::ALL_SUBS ||
subq_predicate->substype() == Item_subselect::ANY_SUBS);
possible_changes = REMOVE_ORDER | REMOVE_DISTINCT | REMOVE_GROUP;
}
uint changelog = 0;
if ((possible_changes & REMOVE_ORDER) && order_list.elements) {
changelog |= REMOVE_ORDER;
if (empty_order_list(this)) return true;
}
if ((possible_changes & REMOVE_DISTINCT) && is_distinct()) {
changelog |= REMOVE_DISTINCT;
remove_base_options(SELECT_DISTINCT);
}
/*
Remove GROUP BY if there are no aggregate functions, no HAVING clause,
no ROLLUP and no windowing functions.
*/
if ((possible_changes & REMOVE_GROUP) && group_list.elements &&
!agg_func_used() && !having_cond() && olap == UNSPECIFIED_OLAP_TYPE &&
m_windows.elements == 0) {
changelog |= REMOVE_GROUP;
for (ORDER *g = group_list.first; g != nullptr; g = g->next) {
if (g->is_item_original()) {
Item::Cleanup_after_removal_context ctx(this);
(*g->item)->walk(&Item::clean_up_after_removal, walk_options,
pointer_cast<uchar *>(&ctx));
}
}
group_list.clear();
while (hidden_group_field_count-- > 0) {
fields.pop_front();
base_ref_items[fields.size()] = nullptr;
}
}
if (changelog) {
Opt_trace_context *trace = &thd->opt_trace;
if (unlikely(trace->is_started())) {
Opt_trace_object trace_wrapper(trace);
Opt_trace_array trace_changes(trace, "transformations_to_subquery");
if (changelog & REMOVE_ORDER) trace_changes.add_alnum("removed_ordering");
if (changelog & REMOVE_DISTINCT)
trace_changes.add_alnum("removed_distinct");
if (changelog & REMOVE_GROUP) trace_changes.add_alnum("removed_grouping");
}
}
return false;
}
/**
Empty the ORDER list.
Delete corresponding elements from fields and base_ref_items too.
If ORDER list contain any subqueries, delete them from the query block list.
@param sl Query block that possible subquery blocks in the ORDER BY clause
are attached to (may be different from "this" when query block has
been merged into an outer query block).
@returns true on error
*/
bool Query_block::empty_order_list(Query_block *sl) {
for (ORDER *o = order_list.first; o != nullptr; o = o->next) {
if (o->is_item_original()) {
Item *const order_item = o->item_initial;
Item::Cleanup_after_removal_context ctx(sl);
order_item->walk(&Item::clean_up_after_removal, walk_options,
pointer_cast<uchar *>(&ctx));
if (order_item->hidden && m_windows.elements != 0) {
// Below, when we pop off the unused expression from the select list,
// we do it only if the query block has no windows. So, instead, we
// replace the ordering expression in the select list and
// base_ref_items with a hidden NULL which is harmless.
Item *const replacement = new (parent_lex->thd->mem_root) Item_null;
if (replacement == nullptr) return true;
replacement->hidden = true;
std::replace(fields.begin(), fields.end(), order_item, replacement);
std::replace(base_ref_items.begin(),
base_ref_items.begin() + fields.size(), order_item,
replacement);
}
}
}
order_list.clear();
if (m_windows.elements != 0) {
/*
The next lines doing cleanup of ORDER elements expect the
query block's ORDER BY items to be the last part of fields and
base_ref_items, as they just chop the lists' end. But if there is a
window, that end is actually the PARTITION BY and ORDER BY clause of the
window, so do not chop then: leave the items in place.
*/
return false;
}
while (hidden_order_field_count-- > 0) {
fields.pop_front();
base_ref_items[fields.size()] = nullptr;
}
return false;
}
/*****************************************************************************
Group and order functions
*****************************************************************************/
/**
Resolve an ORDER BY or GROUP BY column reference.
Given a column reference (represented by 'order') from a GROUP BY or ORDER
BY clause, find the actual column it represents. If the column being
resolved is from the GROUP BY clause, the procedure searches the SELECT
list 'fields' and the columns in the FROM list 'tables'. If 'order' is from
the ORDER BY clause, only the SELECT list is being searched.
If 'order' is resolved to an Item, then order->item is set to the found
Item. If there is no item for the found column (that is, it was resolved
into a table field), order->item is 'fixed' and is added to fields and
ref_item_array.
ref_item_array and fields are updated.
@param[in] thd Pointer to current thread structure
@param[in,out] ref_item_array All select, group and order by fields
@param[in] tables List of tables to search in (usually
FROM clause)
@param[in] order Column reference to be resolved
@param[in,out] fields List of fields to search in (usually
SELECT list; hidden items are ignored)
@param[in] is_group_field True if order is a GROUP field, false if
ORDER by field
@param[in] is_window_order True if order is a Window function's
PARTITION BY or ORDER BY field
@retval
false if OK
@retval
true if error occurred
*/
bool find_order_in_list(THD *thd, Ref_item_array ref_item_array,
Table_ref *tables, ORDER *order,
mem_root_deque<Item *> *fields, bool is_group_field,
bool is_window_order) {
Item *order_item = *order->item; /* The item from the GROUP/ORDER clause. */
Item::Type order_item_type;
Item **select_item; /* The corresponding item from the SELECT clause. */
Field *from_field; /* The corresponding field from the FROM clause. */
uint counter;
enum_resolution_type resolution;
/*
Local SP variables may be int but are expressions, not positions.
(And they can't be used before fix_fields is called for them).
*/
if (order_item->type() == Item::INT_ITEM &&
order_item->basic_const_item()) { /* Order by position */
uint count = (uint)order_item->val_int();
if (!count || count > CountVisibleFields(*fields)) {
my_error(ER_BAD_FIELD_ERROR, MYF(0), order_item->full_name(), thd->where);
return true;
}
order->item = &ref_item_array[count - 1];
// Order by is now referencing select expression, so increment the reference
// count for the select expression.
(*order->item)->increment_ref_count();
order->in_field_list = true;
return false;
}
/* Lookup the current GROUP/ORDER field in the SELECT clause. */
if (find_item_in_list(thd, order_item, fields, &select_item, &counter,
&resolution)) {
return true;
}
/* Check whether the resolved field is unambiguous. */
if (select_item != nullptr) {
Item *view_ref = nullptr;
/*
If we have found field not by its alias in select list but by its
original field name, we should additionally check if we have conflict
for this name (in case if we would perform lookup in all tables).
*/
if (resolution == RESOLVED_BEHIND_ALIAS && !order_item->fixed &&
order_item->fix_fields(thd, order->item))
return true;
/*
Lookup the current GROUP or WINDOW partition by or order by field in the
FROM clause.
*/
order_item_type = order_item->type();
from_field = not_found_field;
if (((is_group_field || is_window_order) &&
order_item_type == Item::FIELD_ITEM) ||
order_item_type == Item::REF_ITEM) {
from_field = find_field_in_tables(thd, (Item_ident *)order_item, tables,
nullptr, &view_ref, IGNORE_ERRORS, true,
// view_ref is a local variable, so
// don't record a change to roll back:
false);
if (thd->is_error()) return true;
if (!from_field) from_field = not_found_field;
}
if (from_field == not_found_field ||
(from_field != view_ref_found
?
/* it is field of base table => check that fields are same */
((*select_item)->type() == Item::FIELD_ITEM &&
((Item_field *)(*select_item))->field->eq(from_field))
:
/*
in is field of view table => check that references on translation
table are same
*/
((*select_item)->type() == Item::REF_ITEM &&
view_ref->type() == Item::REF_ITEM &&
down_cast<Item_ref *>(*select_item)->ref_pointer() ==
down_cast<Item_ref *>(view_ref)->ref_pointer()))) {
/*
If there is no such field in the FROM clause, or it is the same field
as the one found in the SELECT clause, then use the Item created for
the SELECT field. As a result if there was a derived field that
'shadowed' a table field with the same name, the table field will be
chosen over the derived field.
If we replace *order->item with one from the select list or
from a table in the FROM list, we should clean up after
removing the old *order->item from the query. The item has not
been fixed (so there are no aggregation functions that need
cleaning up), but it may contain subqueries that should be
unlinked.
*/
if ((*order->item)->real_item() != (*select_item)->real_item()) {
Item::Cleanup_after_removal_context ctx(
thd->lex->current_query_block());
(*order->item)
->walk(&Item::clean_up_after_removal, walk_options,
pointer_cast<uchar *>(&ctx));
}
order->item = &ref_item_array[counter];
// Order by is now referencing select expression, so increment the
// reference count for the select expression.
(*order->item)->increment_ref_count();
order->in_field_list = true;
if (resolution == RESOLVED_AGAINST_ALIAS && from_field == not_found_field)
order->used_alias = true;
return false;
}
/*
There is a field with the same name in the FROM clause. This
is the field that will be chosen. In this case we issue a
warning so the user knows that the field from the FROM clause
overshadows the column reference from the SELECT list.
For window functions we do not need to issue this warning
(field should resolve to a unique column in the FROM derived
table expression, cf. SQL 2016 section 7.15 SR 4)
*/
if (!is_window_order) {
push_warning_printf(thd, Sql_condition::SL_WARNING, ER_NON_UNIQ_ERROR,
ER_THD(thd, ER_NON_UNIQ_ERROR),
((Item_ident *)order_item)->field_name, thd->where);
}
}
// If we couldn't find the item, see if we can find it in a merged derived
// table, hidden behind an Item_view_ref. This is a lowest-priority
// fallback to make sure we don't add the field twice to the select list;
// once as hidden (directly) and once as visible (through the view_ref).
// Such double-adds would be a problem if we later create a temporary table
// containing the item, which will call item->get_tmp_table_item() and
// effectively peel away the ref -- an item cannot be both visible and
// hidden at the same time.
counter = 0;
for (auto it = VisibleFields(*fields).begin();
it != VisibleFields(*fields).end(); ++it, ++counter) {
Item *item = *it;
if (item->type() == Item::REF_ITEM &&
((Item_ref *)item)->ref_type() == Item_ref::VIEW_REF) {
Item_view_ref *item_ref = down_cast<Item_view_ref *>(item);
if (item_ref->cached_table->is_merged() &&
order_item->eq(item_ref->ref_item(), false)) {
order->item = &ref_item_array[counter];
// Order by is now referencing select expression, so increment the
// reference count for the select expression.
(*order->item)->increment_ref_count();
order->in_field_list = true;
return false;
}
}
}
order->in_field_list = false;
/*
The call to order_item->fix_fields() means that here we resolve
'order_item' to a column from a table in the list 'tables', or to
a column in some outer query. Exactly because of the second case
we come to this point even if (select_item == nullptr),
in spite of that fix_fields() calls find_item_in_list() one more
time.
We check order_item->fixed because Item_func_group_concat can put
arguments for which fix_fields already was called.
group_fix_field = true is so that we properly reject GROUP BY on
subqueries with references to group fields.
*/
bool save_group_fix_field = thd->lex->current_query_block()->group_fix_field;
if (is_group_field) thd->lex->current_query_block()->group_fix_field = true;
bool ret =
(!order_item->fixed && (order_item->fix_fields(thd, order->item) ||
(order_item = *order->item)->check_cols(1)));
thd->lex->current_query_block()->group_fix_field = save_group_fix_field;
if (ret) return true; /* Wrong field. */
uint el = fields->size();
if (!order_item->const_for_execution()) {
order_item->increment_ref_count();
assert_consistent_hidden_flags(*fields, order_item, /*hidden=*/true);
order_item->hidden = true;
fields->push_front(order_item); /* Add new field to field list. */
ref_item_array[el] = order_item;
}
/*
If the order_item is a SUM_FUNC_ITEM, when fix_fields is called
referenced_by is set to order->item which is the address of order_item.
But this needs to be address of order_item in the fields list.
As a result, when it gets replaced with Item_aggregate_ref
object in Item::split_sum_func2, we will be able to retrieve the
newly created object.
*/
if (order_item->type() == Item::SUM_FUNC_ITEM)
down_cast<Item_sum *>(order_item)->referenced_by[0] = &(*fields)[0];
/*
Currently, we assume that this assertion holds. If it turns out
that it fails for some query, order->item has changed and the old
item is removed from the query. In that case, we must call walk()
with clean_up_after_removal() on the old order->item.
*/
assert(order_item == *order->item);
if (!order_item->const_for_execution()) {
order->item = &ref_item_array[el];
}
return false;
}
/**
Resolve and setup list of expressions in ORDER BY clause.
Change order to point at item in select list.
If item isn't a number and doesn't exists in the select list, add it to the
the field list.
@param thd Current session.
@param ref_item_array The Ref_item_array for this query block.
@param tables From clause of the query.
@param fields All columns, including hidden ones.
@param order The query block's order clause.
@returns false if success, true if error.
*/
bool setup_order(THD *thd, Ref_item_array ref_item_array, Table_ref *tables,
mem_root_deque<Item *> *fields, ORDER *order) {
DBUG_TRACE;
assert(order);
Query_block *const select = thd->lex->current_query_block();
thd->where = "order clause";
const bool for_set_operation =
select->master_query_expression()->is_set_operation() &&
select == select->master_query_expression()->query_term()->query_block();
const bool is_aggregated = select->is_grouped();
for (uint number = 1; order; order = order->next, number++) {
Item *order_item = *order->item;
if (order_item->fixed && !order_item->const_item()) {
// If a non constant expression in order by is already
// resolved, it must have been merged from a derived table.
// So, we do not need to re-resolve in this query block. Add
// a hidden item if not present in the visible fields list.
// Update with the correct ref item.
uint counter = fields->size();
for (uint i = 0; i < fields->size(); i++) {
if (order_item->real_item()->eq(ref_item_array[i]->real_item(),
false)) {
order->item = &ref_item_array[i];
// Order by is now referencing select expression, so increment the
// reference count for the select expression.
(*order->item)->increment_ref_count();
order->in_field_list = true;
counter = i;
break;
}
}
if (counter == fields->size()) {
// Add as a hidden item.
ref_item_array[counter] = order_item;
fields->push_front(order_item);
order_item->hidden = true;
order->in_field_list = false;
order->item = &ref_item_array[counter];
}
continue;
}
select->m_current_order_by_number = number;
if (find_order_in_list(thd, ref_item_array, tables, order, fields, false,
false))
return true;
if ((*order->item)->has_aggregation()) {
/*
Aggregated expressions in ORDER BY are not supported by SQL standard,
but MySQL has some limited support for them.
1. A set operation query is not aggregated, so ordering by a set
function which aggregates in the set operation's query block is
always wrong. Checked in check_sum_func.
2. A non-aggregated query combined with a grouped aggregate function in
ORDER BY that does not contain an outer reference is illegal,
because it would cause the query to become aggregated. (Since
is_aggregated is false, this expression would cause agg_func_used()
to become true). This limitation is checked below.
*/
if (!is_aggregated && select->agg_func_used()) {
my_error(ER_AGGREGATE_ORDER_NON_AGG_QUERY, MYF(0), number);
return true;
}
}
if (for_set_operation && (*order->item)->has_wf()) {
// Window function in ORDER BY of set operation not supported,
// SQL2014 4.16.3
my_error(ER_AGGREGATE_ORDER_FOR_UNION, MYF(0), number);
return true;
}
if ((*order->item)->data_type() == MYSQL_TYPE_INVALID &&
(*order->item)->propagate_type(thd, MYSQL_TYPE_VARCHAR))
return true;
}
return false;
}
/**
Runs checks mandated by ONLY_FULL_GROUP_BY
@param thd THD pointer
@returns true if ONLY_FULL_GROUP_BY is violated.
*/
bool Query_block::check_only_full_group_by(THD *thd) {
bool rc = false;
if (is_grouped()) {
/*
"root" has very short lifetime, and should not consume much
=> not instrumented.
*/
MEM_ROOT root(PSI_NOT_INSTRUMENTED, MEM_ROOT_BLOCK_SIZE);
{
Group_check gc(this, &root);
rc = gc.check_query(thd);
gc.to_opt_trace(thd);
} // Scope, to let any destructor run before the MEM_ROOT DTOR.
}
if (!rc && is_distinct()) {
Distinct_check dc(this);
rc = dc.check_query(thd);
}
return rc;
}
/**
Do final setup of ORDER BY clause, after the query block is fully resolved.
Check that ORDER BY clause is not redundant.
Split any aggregate functions.
@param thd Thread handler
@returns false if success, true if error
*/
bool Query_block::setup_order_final(THD *thd) {
DBUG_TRACE;
if (is_implicitly_grouped()) {
// Result will contain zero or one row - ordering is redundant
return empty_order_list(this);
}
if (!master_query_expression()->is_simple()) {
std::pair<bool, bool> result =
master_query_expression()->query_term()->redundant_order_by(this, 0);
assert(result.first); // that we found the block
if (result.second) {
// Part of set operation which requires global ordering may skip local
// order
if (empty_order_list(this)) return true;
}
}
for (ORDER *ord = order_list.first; ord; ord = ord->next) {
Item *const item = *ord->item;
const bool is_grouped_aggregate =
(item->type() == Item::SUM_FUNC_ITEM && !item->m_is_window_function);
if (is_grouped_aggregate) continue;
if (item->has_aggregation() || item->has_wf()) {
item->split_sum_func(thd, base_ref_items, &fields);
if (thd->is_error()) return true; /* purecov: inspected */
}
}
return false;
}
/**
Resolve and set up the GROUP BY list.
@param thd Thread handler
@todo
change ER_WRONG_FIELD_WITH_GROUP to more detailed
ER_NON_GROUPING_FIELD_USED
@returns false if success, true if error
*/
bool Query_block::setup_group(THD *thd) {
DBUG_TRACE;
assert(group_list.elements);
thd->where = "group statement";
for (ORDER *group = group_list.first; group; group = group->next) {
if (find_order_in_list(thd, base_ref_items, get_table_list(), group,
&fields, true, false))
return true;
Item *item = *group->item;
if (item->has_aggregation() || item->has_wf()) {
my_error(ER_WRONG_GROUP_FIELD, MYF(0), (*group->item)->full_name());
return true;
}
else if (item->has_grouping_func()) {
my_error(ER_WRONG_GROUP_FIELD, MYF(0), "GROUPING function");
return true;
}
if (item->data_type() == MYSQL_TYPE_INVALID &&
item->propagate_type(thd, MYSQL_TYPE_VARCHAR))
return true;
}
return false;
}
/****************************************************************************
ROLLUP handling
****************************************************************************/
ORDER *Query_block::find_in_group_list(Item *item, int *rollup_level) const {
Item *real_item = item->real_item();
if (real_item->type() == Item::CACHE_ITEM) {
// Unwrap the cache, if any. NOTE: There should never be any caches
// in the GROUP BY list, so we don't need to unwrap any from there.
real_item = down_cast<const Item_cache *>(real_item)->get_example();
}
ORDER *best_candidate = nullptr;
int idx = 0;
for (ORDER *group = group_list.first; group; group = group->next, ++idx) {
Item *group_item = *group->item;
assert(group_item->real_item()->type() != Item::CACHE_ITEM);
if (real_item->eq(group_item->real_item(), /*binary_cmp=*/false)) {
if (item->item_name.ptr() != nullptr &&
group_item->item_name.ptr() != nullptr &&
item->item_name.eq(group_item->item_name)) {
// Match on group _and_ alias; return immediately.
if (rollup_level != nullptr) {
*rollup_level = idx;
}
return group;
} else if (best_candidate == nullptr) {
// Match on group but not alias; it's a good candidate,
// but only if we don't find a better match. (If there
// are multiple such candidates, we use the leftmost one.)
if (rollup_level != nullptr) {
*rollup_level = idx;
}
best_candidate = group;
}
}
}
return best_candidate;
}
int Query_block::group_list_size() const {
int size = 0;
for (ORDER *group = group_list.first; group; group = group->next) {
++size;
}
return size;
}
bool Query_block::has_wfs() {
List_iterator<Window> wi1(m_windows);
for (Window *w1 = wi1++; w1 != nullptr; w1 = wi1++) {
if (w1->functions().elements > 0) return true;
}
return false;
}
/**
Checks whether an item matches a grouped expression, creates an
Item_rollup_group_item around it and replaces the reference to it with that
item.
*/
static ReplaceResult wrap_grouped_expressions_for_rollup(
Query_block *select, Item *item, Item *parent, unsigned argument_idx) {
if (is_rollup_group_wrapper(item->real_item())) {
// This item must already be a group item, or we wouldn't have
// wrapped it earlier. No need to do anything more about it,
// since it's already wrapped (also, don't traverse further).
return {ReplaceResult::REPLACE, item};
}
int rollup_level = 0;
ORDER *group = select->find_in_group_list(item, &rollup_level);
if (group != nullptr) {
Item_rollup_group_item *new_item =
new Item_rollup_group_item(rollup_level, item);
if (new_item == nullptr || select->rollup_group_items.push_back(new_item)) {
return {ReplaceResult::ERROR, nullptr};
}
new_item->quick_fix_field();
if (group->rollup_item == nullptr) {
group->rollup_item = new_item;
}
return {ReplaceResult::REPLACE, new_item};
} else if (parent != nullptr && parent->type() == Item::FUNC_ITEM &&
down_cast<Item_func *>(parent)->functype() ==
Item_func::GROUPING_FUNC) {
my_error(ER_FIELD_IN_GROUPING_NOT_GROUP_BY, MYF(0), (argument_idx + 1));
return {ReplaceResult::ERROR, nullptr};
}
return {ReplaceResult::KEEP_TRAVERSING, nullptr};
}
bool WalkAndReplace(
THD *thd, Item *item,
const function<ReplaceResult(Item *item, Item *parent,
unsigned argument_idx)> &get_new_item) {
if (item->type() == Item::FUNC_ITEM ||
(item->type() == Item::SUM_FUNC_ITEM && item->m_is_window_function)) {
Item_func *func_item = down_cast<Item_func *>(item);
for (unsigned argument_idx = 0; argument_idx < func_item->arg_count;
argument_idx++) {
Item *arg = func_item->arguments()[argument_idx];
ReplaceResult result = get_new_item(arg, item, argument_idx);
if (result.action == ReplaceResult::ERROR) {
return true;
} else if (result.action == ReplaceResult::REPLACE) {
if (thd->lex->is_exec_started()) {
thd->change_item_tree(&func_item->arguments()[argument_idx],
result.replacement);
} else {
func_item->arguments()[argument_idx] = result.replacement;
}
} else if (WalkAndReplace(thd, arg, get_new_item)) {
return true;
}
}
if (item->m_is_window_function) {
down_cast<Item_sum *>(item)->update_after_wf_arguments_changed(thd);
}
} else if (item->type() == Item::ROW_ITEM) {
// Pretty much exactly the same logic as functions above.
Item_row *row_item = down_cast<Item_row *>(item);
for (unsigned argument_idx = 0; argument_idx < row_item->cols();
argument_idx++) {
Item *arg = row_item->element_index(argument_idx);
ReplaceResult result = get_new_item(arg, item, argument_idx);
if (result.action == ReplaceResult::ERROR) {
return true;
} else if (result.action == ReplaceResult::REPLACE) {
if (thd->lex->is_exec_started()) {
thd->change_item_tree(row_item->addr(argument_idx),
result.replacement);
} else {
*row_item->addr(argument_idx) = result.replacement;
}
} else if (WalkAndReplace(thd, arg, get_new_item)) {
return true;
}
}
} else if (item->type() == Item::COND_ITEM) {
Item_cond *cond_item = down_cast<Item_cond *>(item);
List_iterator<Item> li(*cond_item->argument_list());
unsigned argument_idx = 0;
for (Item *arg = li++; arg != nullptr; arg = li++) {
ReplaceResult result = get_new_item(arg, item, argument_idx++);
if (result.action == ReplaceResult::ERROR) {
return true;
} else if (result.action == ReplaceResult::REPLACE) {
if (thd->lex->is_exec_started()) {
thd->change_item_tree(li.ref(), result.replacement);
} else {
*li.ref() = result.replacement;
}
} else if (WalkAndReplace(thd, arg, get_new_item)) {
return true;
}
}
}
return false;
}
/**
Marks occurrences of group by fields in a function's arguments as nullable,
so that we do not optimize them away before we get to add the rollup wrappers.
@todo
Some functions are not null-preserving. For those functions
updating of the m_nullable attribute is an overkill.
*/
void Query_block::mark_item_as_maybe_null_if_rollup_item(Item *item) {
if (find_in_group_list(item, /*rollup_level=*/nullptr)) {
/*
If this item is present in GROUP BY clause, set m_nullable
to true, as ROLLUP will generate NULLs for this column.
This prevents the optimizer from constant-folding away
IS NULL expressions (e.g. in HAVING). This must be done
before we start resolving subselects in m_having_cond.
*/
item->set_nullable(true);
}
}
Item *Query_block::single_visible_field() const {
Item *ret = nullptr;
for (Item *item : visible_fields()) {
if (ret != nullptr) {
// More than one.
return nullptr;
}
ret = item;
}
return ret;
}
size_t Query_block::num_visible_fields() const {
return CountVisibleFields(fields);
}
bool Query_block::field_list_is_empty() const {
for (Item *item : fields) {
if (!item->hidden) return false;
}
return true;
}
/**
Refreshes the comparators after ROLLUP resolving.
This is needed because ROLLUP resolving happens after the comparators have
been set up. In ROLLUP resolving, it may turn out that something initially
believed to be constant, is not constant after all (e.g., group items that may
be NULL in some cases). So we call set_cmp_func() to make Arg_comparator
adjust/remove its caches accordingly.
*/
static bool refresh_comparators_after_rollup(Item *item) {
return WalkItem(item, enum_walk::POSTFIX, [](Item *inner_item) {
if (inner_item->type() != Item::FUNC_ITEM) {
return false;
}
switch (down_cast<Item_func *>(inner_item)->functype()) {
case Item_func::GE_FUNC:
case Item_func::GT_FUNC:
case Item_func::LT_FUNC:
case Item_func::LE_FUNC:
case Item_func::EQ_FUNC:
case Item_func::NE_FUNC:
case Item_func::EQUAL_FUNC:
return down_cast<Item_bool_func2 *>(inner_item)->set_cmp_func();
default:
return false;
}
});
}
/**
Resolve an item (and its tree) for rollup processing by replacing items
matching grouped expressions with Item_rollup_group_items and
updating properties (m_nullable, PROP_ROLLUP_FIELD).
Also check any GROUPING function for incorrect column.
@param thd session context
@param item the item to be processed
@returns the new item, or nullptr on error
*/
Item *Query_block::resolve_rollup_item(THD *thd, Item *item) {
ReplaceResult result =
wrap_grouped_expressions_for_rollup(this, item, nullptr, 0);
if (result.action == ReplaceResult::ERROR) {
return nullptr;
} else if (result.action == ReplaceResult::REPLACE) {
item->set_nullable(true);
return result.replacement;
}
bool changed = false;
bool error = WalkAndReplace(
thd, item,
[this, &changed](Item *inner_item, Item *parent, unsigned argument_idx) {
ReplaceResult inner_result = wrap_grouped_expressions_for_rollup(
this, inner_item, parent, argument_idx);
changed |= (inner_result.action == ReplaceResult::REPLACE);
return inner_result;
});
if (error) return nullptr;
if (changed) {
if (refresh_comparators_after_rollup(item)) {
return nullptr;
}
item->update_used_tables();
// Since item is now nullable, mark every expression (except rollup sum
// functions) depending on it as also potentially nullable. (This is a
// conservative choice; in some cases, expressions can be proven
// non-nullable even for NULL arguments.)
class Update_nullability_for_rollup_items : public Item_tree_walker {
public:
using Item_tree_walker::is_stopped;
using Item_tree_walker::stop_at;
};
Update_nullability_for_rollup_items info;
if (WalkItem(
item, enum_walk::PREFIX | enum_walk::POSTFIX,
[&info](Item *inner_item) {
if (info.is_stopped(inner_item)) {
return false;
} else if (inner_item->type() == Item::SUM_FUNC_ITEM &&
down_cast<Item_sum *>(inner_item)->real_sum_func() ==
Item_sum::ROLLUP_SUM_SWITCHER_FUNC) {
info.stop_at(inner_item);
return false;
} else {
inner_item->set_nullable(true);
return false;
}
})) {
return nullptr;
}
}
return item;
}
Item *create_rollup_switcher(THD *thd, Query_block *query_block, Item_sum *item,
int send_group_parts) {
assert(!item->m_is_window_function);
assert(!item->is_rollup_sum_wrapper());
List<Item> alternatives;
alternatives.push_back(item);
for (int level = 0; level < send_group_parts; ++level) {
Item_sum *new_item = down_cast<Item_sum *>(item->copy_or_same(thd));
if (new_item == nullptr) {
return nullptr;
}
new_item->make_unique();
if (alternatives.push_back(new_item)) {
return nullptr;
}
}
Item_rollup_sum_switcher *new_item =
new Item_rollup_sum_switcher(&alternatives);
if (new_item == nullptr || query_block->rollup_sums.push_back(new_item)) {
return nullptr;
}
new_item->quick_fix_field();
return new_item;
}
/**
Resolve items in SELECT list and ORDER BY list for rollup processing
@param thd session context
@returns false if success, true if error
*/
bool Query_block::resolve_rollup(THD *thd) {
DBUG_TRACE;
uint send_group_parts = group_list_size();
for (auto it = fields.begin(); it != fields.end(); ++it) {
Item *item = *it;
Item *new_item;
if (Item_sum * item_sum; item->type() == Item::SUM_FUNC_ITEM &&
!item->const_item() &&
(item_sum = down_cast<Item_sum *>(item),
item_sum->aggr_query_block == this)) {
// This is a top level aggregate, which must be replaced with
// a different one for each rollup level.
new_item = create_rollup_switcher(thd, this, item_sum, send_group_parts);
} else {
new_item = resolve_rollup_item(thd, item);
}
if (new_item == nullptr) {
return true;
}
*it = new_item;
}
return false;
}
/**
Checks if there are any calls to the MATCH function that take a ROLLUP column
as argument in the SELECT list, GROUP BY clause, HAVING clause or ORDER BY
clause. Such calls should be rejected, since MATCH only works on base columns.
*/
static bool fulltext_uses_rollup_column(const Query_block *query_block) {
if (query_block->olap != ROLLUP_TYPE || !query_block->has_ft_funcs()) {
return false;
}
// References to ROLLUP columns in SELECT and HAVING are represented
// by Item_rollup_group_items. So we can just check if any of the MATCH
// functions has such an argument.
for (Item_func_match &match : *query_block->ftfunc_list) {
if (match.has_rollup_expr()) {
return true;
}
}
// The references in ORDER BY and GROUP BY are not wrapped in
// Item_rollup_group_item, so we need to search for them.
for (ORDER *order = query_block->order_list.first; order != nullptr;
order = order->next) {
if (WalkItem(*order->item, enum_walk::PREFIX, [query_block](Item *item) {
if (is_function_of_type(item, Item_func::FT_FUNC)) {
Item_func_match *match = down_cast<Item_func_match *>(item);
for (unsigned i = 0; i < match->arg_count; ++i) {
if (query_block->find_in_group_list(match->get_arg(i),
/*rollup_level=*/nullptr) !=
nullptr) {
return true;
}
}
}
return false;
})) {
return true;
}
}
for (ORDER *group = query_block->group_list.first; group != nullptr;
group = group->next) {
if (WalkItem(*group->item, enum_walk::PREFIX, [query_block](Item *item) {
if (is_function_of_type(item, Item_func::FT_FUNC)) {
Item_func_match *match = down_cast<Item_func_match *>(item);
for (unsigned i = 0; i < match->arg_count; ++i) {
if (query_block->find_in_group_list(match->get_arg(i),
/*rollup_level=*/nullptr) !=
nullptr) {
return true;
}
}
}
return false;
})) {
return true;
}
}
return false;
}
/**
Replace group by field references inside window functions with references
in the presence of ROLLUP.
@param thd session context
@returns false if success, true if error
*/
bool Query_block::resolve_rollup_wfs(THD *thd) {
DBUG_TRACE;
for (auto it = fields.begin(); it != fields.end(); ++it) {
Item *new_item = resolve_rollup_item(thd, *it);
if (new_item == nullptr) return true;
*it = new_item;
// Any expression having a window function which involves rollup
// expressions should be set nullable.
if (!new_item->is_nullable()) {
bool any_nullable_wf = false;
WalkItem(new_item, enum_walk::POSTFIX,
[&any_nullable_wf](Item *inner_item) {
if (inner_item->real_item()->type() == Item::SUM_FUNC_ITEM &&
inner_item->real_item()->m_is_window_function &&
inner_item->has_rollup_expr()) {
inner_item->set_nullable(true);
any_nullable_wf = true;
}
return false;
});
if (any_nullable_wf) new_item->set_nullable(true);
}
}
/*
When this method is called, all ORDER BY items not already present in
the SELECT list have been added to the select list as hidden items,
so we do not need to traverse order_list to see all items.
The companion method, resolve_rollup, needs to traverse order_list
list, because at the the time that method is called, the ORDER BY
items haven't been added yet. Cf second loop in resolve_rollup.
*/
return false;
}
/**
@brief validate_gc_assignment
Check whether the other values except DEFAULT are assigned
for generated columns.
@param fields Item_fields list to be filled
@param values values to fill with
@param table table to be checked
@return Operation status
@retval false OK
@retval true Error occurred
@note This function must be called after table->write_set has been
filled.
*/
bool validate_gc_assignment(const mem_root_deque<Item *> &fields,
const mem_root_deque<Item *> &values,
TABLE *table) {
Field **fld = nullptr;
MY_BITMAP *bitmap = table->write_set;
bool use_table_field = false;
DBUG_TRACE;
if (values.empty()) return false;
// If fields has no elements, we use all table fields
if (fields.empty()) {
use_table_field = true;
fld = table->field;
}
auto field_it = VisibleFields(fields).begin();
auto value_it = VisibleFields(values).begin();
while (value_it != VisibleFields(values).end()) {
Item *value = *value_it++;
const Field *rfield;
if (!use_table_field)
rfield = (down_cast<Item_field *>((*field_it++)->real_item()))->field;
else
rfield = *(fld++);
if (rfield->table != table) continue;
// Skip hidden system fields.
if (rfield->is_hidden_by_system()) continue;
// If any of the explicit values is DEFAULT
if (rfield->m_default_val_expr &&
value->type() == Item::DEFAULT_VALUE_ITEM) {
// Restore the statement safety flag to current lex
current_thd->lex->set_stmt_unsafe_flags(
rfield->m_default_val_expr->get_stmt_unsafe_flags());
// Mark the columns that this expression reads to rthe ead_set
for (uint j = 0; j < table->s->fields; j++) {
if (bitmap_is_set(&rfield->m_default_val_expr->base_columns_map, j)) {
bitmap_set_bit(table->read_set, j);
}
}
}
/* skip non marked fields */
if (!bitmap_is_set(bitmap, rfield->field_index())) continue;
if (rfield->gcol_info && value->type() != Item::DEFAULT_VALUE_ITEM) {
my_error(ER_NON_DEFAULT_VALUE_FOR_GENERATED_COLUMN, MYF(0),
rfield->field_name, rfield->table->s->table_name.str);
return true;
}
}
return false;
}
/// Minion of prune_sj_exprs, q.v.
static void prune_sj_exprs_from_nest(Item_func_eq *item, Table_ref *nest) {
auto it1 = nest->nested_join->sj_outer_exprs.begin();
auto it2 = nest->nested_join->sj_inner_exprs.begin();
while (it1 != nest->nested_join->sj_outer_exprs.end() &&
it2 != nest->nested_join->sj_inner_exprs.end()) {
Item *outer = *it1;
Item *inner = *it2;
if ((outer == item->arguments()[0] && inner == item->arguments()[1]) ||
(outer == item->arguments()[1] && inner == item->arguments()[0])) {
nest->nested_join->sj_outer_exprs.erase(it1);
nest->nested_join->sj_inner_exprs.erase(it2);
break;
}
it1++;
it2++;
}
}
/**
Recursively look for removed item inside any nested joins'
sj_{inner,outer}_exprs. If target for removal is found, remove such entries
because the corresponding equality condition has been eliminated.
@param item the equality which is being removed.
@param nest the table nest (nullptr means top nest)
*/
void Query_block::prune_sj_exprs(Item_func_eq *item,
mem_root_deque<Table_ref *> *nest) {
if (nest == nullptr) nest = &m_table_nest;
for (Table_ref *table : *nest) {
if (table->nested_join == nullptr) continue;
prune_sj_exprs_from_nest(item, table);
prune_sj_exprs(item, &table->nested_join->m_tables);
}
}
/**
Delete unused columns from merged tables.
This function is called recursively for each join nest and/or table
in the query block. For each merged table that it finds, each column
that contains a subquery and is not marked as used is removed and
the translation item is set to NULL.
@param tables List of tables and join nests
*/
void Query_block::delete_unused_merged_columns(
mem_root_deque<Table_ref *> *tables) {
DBUG_TRACE;
for (Table_ref *tl : *tables) {
if (tl->nested_join == nullptr) continue;
if (tl->is_merged()) {
for (Field_translator *transl = tl->field_translation;
transl < tl->field_translation_end; transl++) {
Item *const item = transl->item;
// Decrement the ref count as its no more used in
// select list.
if (item->decrement_ref_count()) continue;
// Cleanup the item since its not referenced from
// anywhere.
assert(item->fixed);
Item::Cleanup_after_removal_context ctx(this);
item->walk(&Item::clean_up_after_removal, walk_options,
pointer_cast<uchar *>(&ctx));
transl->item = nullptr;
}
}
delete_unused_merged_columns(&tl->nested_join->m_tables);
}
}
/**
Add item to the hidden part of select list.
@param item the item to add
@return Pointer to reference to the added item
*/
Item **Query_block::add_hidden_item(Item *item) {
const uint el = fields.size();
base_ref_items[el] = item;
assert_consistent_hidden_flags(fields, item, /*hidden=*/true);
fields.push_front(item);
item->hidden = true;
return &base_ref_items[el];
}
void Query_block::remove_hidden_items() {
for (uint i = 0; i < hidden_items_from_optimization; i++) {
fields.pop_front();
}
hidden_items_from_optimization = 0;
}
/**
Resolve the rows of a table value constructor and aggregate the type of each
column across rows.
@param thd thread handler
@returns false if success, true if error
*/
bool Query_block::resolve_table_value_constructor_values(THD *thd) {
// Item_values_column objects may be allocated; they should be persistent for
// PREPARE statements.
Prepared_stmt_arena_holder ps_arena_holder(thd);
size_t num_rows = row_value_list->size();
size_t row_degree = row_value_list->front()->size();
// All table row value expressions shall be of the same degree. Note that
// non-scalar subqueries are not allowed; we can simply count the number of
// elements.
if (row_degree > MAX_FIELDS) {
my_error(ER_TOO_MANY_FIELDS, MYF(0));
return true;
}
size_t row_index = 0;
for (mem_root_deque<Item *> *values_row : *row_value_list) {
if (values_row->size() != row_degree) {
my_error(ER_WRONG_VALUE_COUNT_ON_ROW, MYF(0), row_index + 1);
return true;
} else if (values_row->empty()) {
// A table value constructor with empty row objects is a syntax error,
// except when used as the source for an INSERT statement.
my_error(ER_TABLE_VALUE_CONSTRUCTOR_MUST_HAVE_COLUMNS, MYF(0));
return true;
}
size_t item_index = 0;
for (auto it = values_row->begin(); it != values_row->end(); ++it) {
Item *item = *it;
if ((!item->fixed && item->fix_fields(thd, &*it)) ||
(item = *it)->check_cols(1))
return true; /* purecov: inspected */
if (item->type() == Item::DEFAULT_VALUE_ITEM) {
my_error(ER_TABLE_VALUE_CONSTRUCTOR_CANNOT_HAVE_DEFAULT, MYF(0));
return true;
}
/*
In case this item is or contains a parameter, propagate a default
data type for the expression. Note that there is no context available
here that can give us a good default value (like what is done when
a VALUES clause is used directly with an INSERT statement).
*/
if (item->data_type() == MYSQL_TYPE_INVALID) {
if (item->propagate_type(thd, item->default_data_type())) return true;
}
if (row_index == 0) {
// If single row, we skip setting up indirections.
if (num_rows != 1 && first_execution) {
Item_values_column *column = new Item_values_column(thd, item);
if (column == nullptr) return true;
column->add_used_tables(item);
item = column;
}
// Make sure to also replace the reference in item_list. In the case
// where fix_fields transforms an item, it.ref() will only update the
// reference of values_row.
if (first_execution) fields[item_index] = item;
} else {
Item_values_column *column = down_cast<Item_values_column *>(
GetNthVisibleField(fields, item_index));
if (column->join_types(thd, item)) return true;
column->add_used_tables(item);
column->fixed = true; // Does not have regular fix_fields()
}
++item_index;
}
++row_index;
}
// base_ref_items is used during row_value_in_to_exists_transformer to set up
// equality checks when transforming IN subquery predicates.
if (setup_base_ref_items(thd)) return true;
size_t name_len;
char buff[NAME_LEN + 1];
if (check_stack_overrun(thd, STACK_MIN_SIZE, pointer_cast<uchar *>(buff)))
return true; /* purecov: inspected */
size_t item_index = 0;
for (Item *column : visible_fields()) {
base_ref_items[item_index] = column;
// Name the columns column_0, column_1, ...
name_len = snprintf(buff, NAME_LEN, "column_%zu", item_index);
column->item_name.copy(buff, name_len);
++item_index;
}
return false;
}
static bool baptize_item(THD *thd, Item *item, int *field_no);
static bool update_context_to_derived(Item *expr, Query_block *new_derived);
/**
Replace a table subquery ([NOT] {IN, EXISTS}) with a join to a derived table.
The principle of this transformation is:
FROM [tables] WHERE ... AND/OR oe IN (SELECT ie FROM it) ...
becomes
FROM (tables) LEFT JOIN (SELECT DISTINCT ie FROM it) AS derived
ON oe = derived.ie WHERE ... AND/OR derived.ie IS NOT NULL ...
If the subquery predicate is top-level in WHERE, and not negated, we use
JOIN instead of LEFT JOIN, and use TRUE instead of IS NOT NULL. If the
subquery predicate is negated, we use IS NULL instead of IS NOT NULL. If the
subquery predicate is without aggregation(etc), we decorrelate any equality
from it, and, if negated, we also decorrelate '<>,<,<=,>,>='; thus we handle
EXISTS too. If the subquery cannot be decorrelated, the derived table could be
made LATERAL, but as a certain secondary engine doesn't support that we just
return an error.
@param thd Connection handle
@param subq Item for subquery
@returns true if error
*/
bool Query_block::transform_table_subquery_to_join_with_derived(
THD *thd, Item_exists_subselect *subq) {
assert(first_execution);
Query_expression *const subs_query_expression = subq->unit;
Query_block *subs_query_block = subs_query_expression->first_query_block();
assert(subs_query_block->first_execution);
subq->strategy = Subquery_strategy::DERIVED_TABLE;
const int hidden_fields = CountHiddenFields(subs_query_block->fields);
const bool no_aggregates = !subs_query_block->is_grouped() &&
!subs_query_block->with_sum_func &&
subs_query_block->having_cond() == nullptr &&
!subs_query_block->has_windows();
const bool decorrelate =
no_aggregates &&
(subs_query_expression->uncacheable & UNCACHEABLE_DEPENDENT) &&
subs_query_block->where_cond() != nullptr &&
subs_query_block->where_cond()->is_outer_reference() &&
// decorrelation adds to the SELECT list, and hidden fields make it
// impossible (search for "hidden" in this function). Hidden fields
// usually come from aggregation, which we disallowed just above, but also
// if a SELECT list element is a subquery which contains an outer
// reference to subs_query_block.
hidden_fields == 0;
// Ensure that all lists are consistent. all_fields should have an optional
// prefix and then be fields_list. If no aggregates, base_ref_items should
// start with fields_list.
assert(hidden_fields >= 0);
// We're going to build the lists of outer and inner semijoin
// expressions:
// - they start empty
// - first (build_sj_exprs()), if this is IN, we add the left and right
// expressions of IN; if this is EXISTS, we do nothing
// - second (decorrelate_condition()), we decorrelate comparison operators
// in the subquery, and add the resulting left and right expressions.
mem_root_deque<Item *> sj_outer_exprs(thd->mem_root);
mem_root_deque<Item *> sj_inner_exprs(thd->mem_root);
Mem_root_array<Item_func::Functype> op_types(thd->mem_root);
if (subq->substype() == Item_subselect::IN_SUBS) {
build_sj_exprs(thd, &sj_outer_exprs, &sj_inner_exprs, subq,
subs_query_block);
// All these expressions are compared with '=':
op_types.resize(sj_outer_exprs.size(), Item_func::EQ_FUNC);
} else {
assert(subq->substype() == Item_subselect::EXISTS_SUBS);
if (subs_query_block->is_table_value_constructor) {
if ((subs_query_block->select_limit != nullptr &&
!subs_query_block->select_limit->const_item()) ||
(subs_query_block->offset_limit != nullptr &&
!subs_query_block->offset_limit->const_item())) {
subq->strategy = Subquery_strategy::SUBQ_MATERIALIZATION;
// We can't determine until materialization time whether we have
// an empty or non-empty result set, skip transform
return false;
}
}
// We must replace of all EXISTS' initial SELECT list with
// constants, otherwise they will interfere in DISTINCT, indeed if we didn't
// replace,
// SELECT ... FROM ot WHERE EXISTS(SELECT c1 FROM it)
// would become
// SELECT ... FROM ot JOIN (SELECT DISTINCT c1 FROM it) AS dt
// and we may get duplicate copies of a row of 'ot', wrongly.
// Note that in setup_wild() we already do that, but only for "SELECT *",
// not for an explicit list "SELECT expr1, expr2", so we still have to do
// that here.
// We cannot do that if the query is aggregated, consider:
// EXISTS(SELECT SUM(a) AS x, b as y FROM t GROUP BY y HAVING x>2)
// if we replace we get
// EXISTS(SELECT 1, 1 FROM t GROUP BY y HAVING x>2)
// And as 'x' points to 1, HAVING is "always false".
// resolve_subquery() ensures that this assertion holds.
assert(no_aggregates);
if (subs_query_block->is_table_value_constructor) {
// This transformation effectively converts a table value constructor
// query block to a scalar subquery with zero or one constant rows.
subs_query_block->is_table_value_constructor = false;
// We checked above that we can evaluate LIMIT/OFFSET, so use that to
// compute here whether result set is empty or not
const ulonglong limit = (subs_query_block->select_limit != nullptr)
? subs_query_block->select_limit->val_uint()
: std::numeric_limits<ulonglong>::max();
const ulonglong offset = (subs_query_block->offset_limit != nullptr)
? subs_query_block->offset_limit->val_uint()
: 0;
const ulonglong actual_rows = subs_query_block->row_value_list->size();
const bool empty_rs = limit == 0 || offset >= actual_rows;
auto limes = new (thd->mem_root) Item_int(empty_rs ? 0 : 1);
if (limes == nullptr) return true;
subs_query_block->select_limit = limes;
subs_query_block->offset_limit = nullptr;
}
Item::Cleanup_after_removal_context ctx(this);
int i = 0;
for (auto it = subs_query_block->visible_fields().begin();
it != subs_query_block->visible_fields().end(); ++it, ++i) {
Item *inner = *it;
if (inner->basic_const_item()) continue; // no need to replace it
auto constant = new (thd->mem_root) Item_int(
NAME_STRING("Not_used"), (longlong)1, MY_INT64_NUM_DECIMAL_DIGITS);
*it = constant;
subs_query_block->base_ref_items[i] = constant;
// Expressions from the SELECT list will not be used; unlike in the case
// of IN, they are not part of sj_inner_exprs.
inner->walk(&Item::clean_up_after_removal, walk_options,
pointer_cast<uchar *>(&ctx));
}
subs_query_block->select_list_tables = 0;
}
Semijoin_decorrelation sj_decor(
&sj_outer_exprs, &sj_inner_exprs,
// If antijoin, we can decorrelate '<>', '>=', etc, too (but not '<=>'):
// multiple inner rows may match '<>', but they will fail the IS NULL
// condition, and if this condition is top-level in WHERE it will
// eliminate the rows.
(subq->can_do_aj &&
subq->outer_condition_context == enum_condition_context::ANDS)
? &op_types
: nullptr);
if (decorrelate) {
// We try to decorrelate it, by looking at equalities in its WHERE.
// This helps for this common pattern:
// EXISTS(SELECT FROM it WHERE it.c=ot.c AND <condition on 'it' only>)
const int initial_sj_inner_exprs_count = sj_inner_exprs.size();
if (subs_query_block->decorrelate_condition(sj_decor, nullptr)) return true;
// Append inner expressions of decorrelated equalities to the SELECT
// list. Correct context info of outer expressions.
auto it_outer = sj_outer_exprs.begin() + initial_sj_inner_exprs_count;
auto it_inner = sj_inner_exprs.begin() + initial_sj_inner_exprs_count;
for (int i = 0; it_outer != sj_outer_exprs.end();
++it_outer, ++it_inner, ++i) {
Item *inner = *it_inner;
Item *outer = *it_outer;
// In setup_base_ref_items() we allocated space for appending this
// element.
// If there were a hidden element (there is none, see the setting of
// 'decorrelate'), we would be appending a *non*-hidden element
// (participating in DISTINCT) *after* the hidden element, which would
// break the usual layout of base_ref_items which is: "non-hidden then
// hidden" (see Query_block::add_hidden_item()). While this layout is not
// documented (?), it is safer to not break it.
subs_query_block->base_ref_items[subs_query_block->fields.size()] = inner;
subs_query_block->fields.push_back(inner);
// Needed for fix_after_pullout:
update_context_to_derived(outer, this);
// Decorrelated outer expression will move to ON, so fix it.
outer->fix_after_pullout(this, subs_query_block);
}
// Decorrelation identified new outer/inner expression pairs.
// Recalculate used_tables() after that (the subquery may have become
// uncorrelated). Because there is no aggregation, window functions, ORDER
// BY, we only have to collect used_tables bits from the SELECT list, FROM
// clause (outer-correlated derived tables and join conditions) and WHERE
// clause.
for (Item *inner : subs_query_block->visible_fields()) {
subs_query_block->select_list_tables |= inner->used_tables();
}
table_map new_used_tables = subs_query_block->select_list_tables;
if (subs_query_block->where_cond()) {
subs_query_block->where_cond()->update_used_tables();
new_used_tables |= subs_query_block->where_cond()->used_tables();
}
// Walk the FROM clause to gather any outer-correlated derived table or join
// condition.
walk_join_list(subs_query_block->m_table_nest, [&](Table_ref *tr) -> bool {
if (tr->join_cond()) new_used_tables |= tr->join_cond()->used_tables();
if (tr->is_derived() && tr->uses_materialization())
new_used_tables |= tr->derived_query_expression()->m_lateral_deps;
return false;
});
if (!(new_used_tables & OUTER_REF_TABLE_BIT)) {
// there is no outer reference anymore
subs_query_block->uncacheable &= ~UNCACHEABLE_DEPENDENT;
subs_query_expression->uncacheable &= ~UNCACHEABLE_DEPENDENT;
// this must be called only after the change to 'uncacheable' above
subq->update_used_tables();
}
}
if (!subs_query_block->can_skip_distinct())
subs_query_block->add_base_options(SELECT_DISTINCT);
// As the synthesised ON and WHERE will reference columns of the derived
// table, we must have unique names.
// A derived table must have unique column names, while a quantified
// subquery needn't; so names may not currently be unique and we have to
// make them so.
{
int i = 1;
for (Item *inner : subs_query_block->visible_fields()) {
if (baptize_item(thd, inner, &i)) return true;
}
}
// If the subquery is (still) correlated, we would need to create a LATERAL
// derived table, but a certain secondary engine doesn't support it. Error:
if ((subq->m_subquery_used_tables & ~PSEUDO_TABLE_BITS) != 0) {
my_error(ER_SUBQUERY_TRANSFORM_REJECTED, MYF(0));
return true;
}
// We have added to subs_query_expression->fields;
// subs_query_expression->types must always be equal to its visible fields.
subs_query_expression->types.clear();
for (Item *item : subq->unit->first_query_block()->visible_fields()) {
subs_query_expression->types.push_back(item);
}
Table_ref *tl;
if (transform_subquery_to_derived(
thd, &tl, subs_query_expression, subq,
// If subquery is top-level in WHERE, and not negated, use INNER JOIN,
// else use LEFT JOIN.
// We could use LEFT JOIN unconditionally and let simplify_joins()
// convert it to INNER JOIN, but the conversion is not perfect, as
// not all effects of propagate_nullability() are undone.
/*use_inner_join=*/
subq->outer_condition_context == enum_condition_context::ANDS &&
!subq->can_do_aj,
/*reject_multiple_rows*/ false,
/*join_condition=*/nullptr,
/*lifted_where_cond*/ nullptr))
return true;
assert(CountVisibleFields(sj_inner_exprs) == sj_inner_exprs.size());
const int first_sj_inner_expr_of_subquery =
CountVisibleFields(subs_query_block->fields) - sj_inner_exprs.size();
Item_field *derived_field;
// Make the join condition for the derived table:
Item *join_cond = nullptr;
// Start at first SJ inner expression in SELECT list:
int i = first_sj_inner_expr_of_subquery;
int j = 0; // counter of processed SJ inner expressions
for (auto it_outer = sj_outer_exprs.begin(); it_outer != sj_outer_exprs.end();
++i, ++j, ++it_outer) {
Item *outer = *it_outer;
assert(i < (int)tl->table->s->fields);
// Using this constructor, instead of the alternative which only takes a
// Field pointer, gives a persistent name to the item (sets orig_table_name
// etc) which is necessary for prepared statements.
derived_field = new (thd->mem_root)
Item_field(thd, &this->context, tl, tl->table->field[i]);
if (derived_field == nullptr) return true;
// The said constructor sets 'fixed' to true, so join_cond->fix_fields()
// below ignores 'derived_field', so derived_field->cached_table isn't set,
// making a prepared statement fail. Setting cached_table solves it, and
// also helps during name resolution because the derived table isn't in the
// context's name resolution chain.
// derived_field->cached_table = tl;
// derived_field->cached_field_index = i;
Item_bool_func *comp_item;
Item_func::Functype op_type = sj_decor.op_type_at(j);
switch (op_type) {
case Item_func::EQ_FUNC:
comp_item = new (thd->mem_root) Item_func_eq(outer, derived_field);
break;
case Item_func::NE_FUNC:
comp_item = new (thd->mem_root) Item_func_ne(outer, derived_field);
break;
case Item_func::LT_FUNC:
comp_item = new (thd->mem_root) Item_func_lt(outer, derived_field);
break;
case Item_func::LE_FUNC:
comp_item = new (thd->mem_root) Item_func_le(outer, derived_field);
break;
case Item_func::GT_FUNC:
comp_item = new (thd->mem_root) Item_func_gt(outer, derived_field);
break;
case Item_func::GE_FUNC:
comp_item = new (thd->mem_root) Item_func_ge(outer, derived_field);
break;
default:
assert(false);
comp_item = nullptr;
}
if (comp_item == nullptr) return true;
// 'outer' moved from the left expression of IN (or from an operator in
// WHERE, if decorrelated) to this new equality:
// thd->replace_rollback_place(comp_item->arguments());
join_cond = and_items(join_cond, comp_item);
}
if (join_cond == nullptr) // it's EXISTS and we couldn't decorrelate anything
join_cond = new (thd->mem_root) Item_func_true();
join_cond->apply_is_true();
if (!join_cond->fixed && join_cond->fix_fields(thd, &join_cond)) return true;
tl->set_join_cond(join_cond);
// Make the IS [NOT] NULL condition:
derived_field = new (thd->mem_root)
Item_field(thd, &this->context, tl, tl->table->field[0]);
if (derived_field == nullptr) return true;
// derived_field->cached_table = tl;
// derived_field->cached_field_index = 0;
Item *null_check;
if (!tl->outer_join)
null_check = new (thd->mem_root) Item_func_true();
else if (subq->can_do_aj)
null_check = new (thd->mem_root) Item_func_isnull(derived_field);
else
null_check = new (thd->mem_root) Item_func_isnotnull(derived_field);
null_check->apply_is_true();
if (null_check->fix_fields(thd, &null_check)) return true;
// We only need to test the first column for null-ness:
// if the NOT NULL test eliminates it, i.e. if it's NULL:
// - if it's not NULL-complemented: it's a NULL in the right member of the
// LEFT JOIN, thus in the subquery, thus it wouldn't pass the IN
// condition,
// - if it is NULL-complemented: then one IN sub-equality failed, thus it
// wouldn't pass the IN condition.
// Reciprocically: if the NOT NULL does not eliminate it: it's not
// NULL-complemented, so all IN sub-equalities passed, it would pass the IN
// condition.
// If the subquery was rather with EXISTS, the SELECT list's first
// expression is 1, so if it's NULL it's surely NULL-complemented; if there
// were decorrelated equalities one of them failed, or the inner table
// was empty.
// Walk the parent query's WHERE, to find the subquery item, and replace it.
if (replace_subcondition(thd, &m_where_cond, subq, null_check, false))
return true; /* purecov: inspected */
// WHERE now references the derived table's column, so used_tables needs an
// update; so does not_null_tables (by making it up to date, we allow
// simplify_joins() to optimize more).
m_where_cond->update_used_tables();
return false;
}
/**
Create a new Table_ref object for this query block, for either:
1) a derived table which will replace the subquery, or
2) an extra derived table for handling grouping, if necessary,
cf. transform_grouped_to_derived.
The derived table is added to the list of used tables for the query block
("outer").
@param thd the session context
@param unit the query expression for subquery (case 1), or a new
query expression for (case 2)
@param join_cond != nullptr: we are synthesizing a derived table for a
subquery within this join condition
= nullptr: synthesizing a derived table for a subquery
where the subquery is not contained in a join condition
@param left_outer true for case (1), false for (2)
@param use_inner_join for case (1): if true/false use INNER/LEFT JOIN
@returns the derived table object, or nullptr on error.
*/
Table_ref *Query_block::synthesize_derived(THD *thd, Query_expression *unit,
Item *join_cond, bool left_outer,
bool use_inner_join) {
char name[STRING_BUFFER_USUAL_SIZE];
const uint i = unit->first_query_block()->select_number;
std::snprintf(name, sizeof(name), "derived_%d_%d", select_number, i);
char *namep = thd->mem_strdup(name);
if (namep == nullptr) return nullptr;
auto *const ti = new (thd->mem_root) Table_ident(unit);
if (ti == nullptr) return nullptr;
Table_ref *derived_table =
add_table_to_list(thd, ti, namep, 0, TL_READ, MDL_SHARED_READ);
if (derived_table == nullptr) return nullptr;
if (left_outer) {
derived_table->outer_join = !use_inner_join;
if (!unit->item->is_bool_func())
derived_table->m_was_scalar_subquery = true;
if (join_cond != nullptr) {
// impossible if table subquery:
assert(derived_table->m_was_scalar_subquery);
if (nest_derived(thd, join_cond, m_current_table_nest, derived_table))
return nullptr;
} else {
// The derived table is not for a subquery in a join condition
if (add_joined_table(derived_table)) return nullptr;
if (nest_last_join(thd) == nullptr) return nullptr;
}
if (derived_table->m_was_scalar_subquery) {
auto *const join_cond_true = new (thd->mem_root) Item_func_true();
if (join_cond_true == nullptr) return nullptr;
derived_table->set_join_cond(join_cond_true);
} // else: table subquery, the join condition is complex, made by caller.
}
unit->derived_table = derived_table;
return derived_table;
}
/**
A minion of transform_grouped_to_derived.
Replace occurrences of the aggregate function identified in info.m_target with
the the field info.m_replacement in the expressions contained in list.
Note that since this is part of a permanent transformation, we use the extra
m_permanent_transform flag in the THD
@param info a tuple containing {aggregate, replacement field}
@param was_hidden true if the aggregate was originally hidden
@param list the list of expressions
@param ref_item_array to be kept in sync with any changes in 'list'
@returns true on error (can not happen currently unless replacement field is
empty)
*/
static bool replace_aggregate_in_list(Item::Aggregate_replacement &info,
bool was_hidden,
mem_root_deque<Item *> *list,
Ref_item_array *ref_item_array) {
for (auto lii = list->begin(); lii != list->end(); ++lii) {
Item *select_expr = *lii;
Item *const new_item = select_expr->transform(&Item::replace_aggregate,
pointer_cast<uchar *>(&info));
if (new_item == nullptr) return true;
new_item->update_used_tables();
if (new_item != select_expr) {
new_item->hidden = was_hidden;
new_item->increment_ref_count();
*lii = new_item;
for (size_t i = 0; i < list->size(); i++) {
if ((*ref_item_array)[i] == select_expr)
(*ref_item_array)[i] = new_item;
}
}
}
return false;
}
/**
A minion of transform_grouped_to_derived.
"Remove" any non-window aggregate functions from fields unconditionally.
If such an aggregate is found, the query block should have a HAVING clause.
This is asserted in debug mode. We "remove" them by replacing them with
an Item_int, which should have no adverse effects. This avoids creating
trouble for Query_block::add_hidden_item which would otherwise need to keep
track of removed items.
@param thd session context
@param select the query block whose aggregates are being moved into a
derived table
@returns true on error, else false
*/
bool Query_block::remove_aggregates(THD *thd,
[[maybe_unused]] Query_block *select) {
for (auto it = fields.begin(); it != fields.end(); ++it) {
Item *select_expr = *it;
if (!select_expr->m_is_window_function &&
select_expr->type() == Item::SUM_FUNC_ITEM) {
// must be an aggregate induced from a HAVING clause, remove from
// transformed query block since it is not needed on that
// level any more
assert(select->having_cond() != nullptr);
Item *int_item = new (thd->mem_root) Item_int(0);
int_item->hidden = select_expr->hidden;
if (int_item == nullptr) return true;
*it = int_item;
for (size_t i = 0; i < fields.size(); i++) {
if (base_ref_items[i] == select_expr) base_ref_items[i] = int_item;
}
}
}
return false;
}
/**
A minion of transform_grouped_to_derived.
This updates the name resolution contexts in expr to that of new_derived
permanently.
@param expr the expression to be updated
@param new_derived the query block of the new derived table which now holds
the expression after it has been moved down.
@returns true on error
*/
static bool update_context_to_derived(Item *expr, Query_block *new_derived) {
Item_ident::Change_context ctx(&new_derived->context);
if (expr != nullptr && expr->walk(&Item::change_context_processor,
enum_walk::POSTFIX, (uchar *)&ctx))
return true; /* purecov: inspected */
return false;
}
/**
A minion of transform_grouped_to_derived.
Collect a unique list of aggregate functions used in the transformed query
block, which will need to be replaced with fields from the derived table
containing the grouping during transform_grouped_to_derived.
@param[in] select the query block
@param[in, out] aggregates the accumulator which will contain the aggregates
@return true on error
*/
static bool collect_aggregates(
Query_block *select, Item_sum::Collect_grouped_aggregate_info *aggregates) {
for (Item *select_expr : select->visible_fields()) {
if (select_expr->walk(&Item::collect_grouped_aggregates,
enum_walk::SUBQUERY_PREFIX,
pointer_cast<uchar *>(aggregates)))
return true; /* purecov: inspected */
}
if (select->having_cond() != nullptr) {
if (select->having_cond()->walk(&Item::collect_grouped_aggregates,
enum_walk::SUBQUERY_PREFIX,
pointer_cast<uchar *>(aggregates)))
return true; /* purecov: inspected */
}
// We move the aggregate functions from an implicitly grouped query block to
// a new derived table, effectively making the existing query block
// non-grouped. When the grouping is implicit, the ORDER BY is eliminated
// since the result set has only one row, so skip processing of the
// order_list.
assert(select->order_list.elements == 0);
List_iterator<Window> li(select->m_windows);
for (Window *w = li++; w != nullptr; w = li++) {
for (ORDER *it : {w->first_order_by(), w->first_partition_by()}) {
if (it != nullptr) {
for (auto ord = it; ord != nullptr; ord = ord->next) {
if ((*ord->item)
->walk(&Item::collect_grouped_aggregates, enum_walk::PREFIX,
pointer_cast<uchar *>(aggregates)))
return true; /* purecov: inspected */
}
}
}
}
return false;
}
/**
Helper function to make names for columns of a derived table replacing a
scalar or table subquery.
Fields from the query block containing the scalar subquery are moved
to the new derived table. We give them synthetic unique names here.
@param thd current session context
@param item the item we want to name
@param field_no the field number
@returns true on error
*/
static bool baptize_item(THD *thd, Item *item, int *field_no) {
char buff[100];
std::snprintf(buff, sizeof(buff), SYNTHETIC_FIELD_NAME "%d", (*field_no)++);
char *namep = thd->mem_strdup(buff);
if (namep == nullptr) return true;
item->orig_name.set(item->item_name.ptr());
item->item_name.set(namep);
return false;
}
/**
Minion of \c transform_grouped_to_derived. Do a replacement in \c expr
using \c Item::transform as specified in \c info using \c transformer.
*/
bool Query_block::replace_item_in_expression(Item **expr, bool was_hidden,
Item::Item_replacement *info,
Item_transformer transformer) {
Item *new_item = (*expr)->transform(transformer, pointer_cast<uchar *>(info));
if (new_item == nullptr) return true;
new_item->update_used_tables();
if (new_item != *expr) {
// Save our original item name at this level
auto saved_item_name =
(*expr)->orig_name.is_set() ? (*expr)->orig_name : (*expr)->item_name;
replace_referenced_item(*expr, new_item);
// Replace in fields
const auto it = find(fields.begin(), fields.end(), new_item);
if (it == fields.end()) {
*expr = new_item;
} else {
// More than one occurrence of same replaced field, make another copy so
// we do not clobber the item_name (alias) of another occurrence in select
// list.
Item_field *f = down_cast<Item_field *>(new_item);
Item_field *cpy = new (parent_lex->thd->mem_root) Item_field(f->field);
if (cpy == nullptr) return true;
*expr = cpy;
}
// Mark this expression as hidden if it was hidden in this query
// block.
(*expr)->hidden = was_hidden;
(*expr)->item_name = saved_item_name;
}
return false;
}
/**
Minion of transform_scalar_subqueries_to_join_with_derived. Moves implicit
grouping down into a derived table to prepare for
transform_scalar_subqueries_to_join_with_derived.
Example:
@verbatim
SELECT (SELECT COUNT(*)
FROM t1) AS tot,
IFNULL(MAX(t2.b), 0) + 6 AS mx
FROM t2
WHERE expr-2;
is transformed to ->
SELECT derived_1_1.`COUNT(*)` AS tot,
(IFNULL(derived_1_0.`MAX(t2.b)`,0) + 6) AS mx
FROM (SELECT MAX(t2.b) AS `MAX(t2.b)`
FROM t2
WHERE expr-2) derived_1_0
LEFT JOIN
(SELECT COUNT(0) AS `COUNT(*)`
FROM t1) derived_1_1
ON TRUE;
@endverbatim
Create a new query expression object and query block object to represent the
contents of a derived table ("new_derived" in the code below, "derived1" in
the example above), with a select list which only contains the aggregate
functions lifted out of the transformed query block ("MAX(b) AS mx" above) and
any fields referenced ("i" above).
The transformed query block retains the original select list except aggregates
and fields are replaced by fields ("derived1.mx", "derived1.i" above) from the
new subquery, but it loses its FROM list, replaced by the new derived table
("derived1" above) and its WHERE and HAVING clauses which all go to
the derived table's query block.
Any DISTINCT, WINDOW clauses and LIMITs stay in place at the transformed
query block.
@param thd session context
@param[out] break_off set to true of transformation could not be performed
@returns true on error
*/
bool Query_block::transform_grouped_to_derived(THD *thd, bool *break_off) {
// Collect all aggregates, and add them to our new select list
Item_sum::Collect_grouped_aggregate_info aggregates(this);
if (collect_aggregates(this, &aggregates)) return true;
if (aggregates.m_break_off) {
*break_off = true; // some aggregates functions aggregate in an outer query
return false;
} else if (aggregates.list.size() == 0) {
// No longer to be found, probably optimized away ORDER BY
return false;
}
// Remember implicit grouping in case this query is also a scalar subquery
// so we can still identify it after this transform.
assert(is_implicitly_grouped());
m_was_implicitly_grouped = true;
Table_ref *tl = nullptr;
Query_block *new_derived = nullptr;
List<Item> item_fields_or_view_refs;
std::vector<Item_view_ref *> unique_view_refs;
std::unordered_map<Field *, Item_field *> unique_fields;
std::unordered_map<Field *, Item_field *> unique_default_values;
std::unordered_map<Field *, Item_field *> *field_classes[] = {
&unique_default_values, &unique_fields};
/*
In addition to adding the aggregates to the derived table's SELECT list,
we need to add all referenced fields that will be needed in this query
block.
They fall into three categories:
1) fields referenced directly in the select list
2) fields referenced by window functions as arguments, or in
in a window definition's ORDER BY or PARTITION BY clauses
3) fields referenced by the transformed query block's ORDER BY clause
All of these can reference items from tables that are now moved inside the
derived table.
This query block will get its fields replaced by the corresponding ones in
the derived table shortly, after we have resolved the derived table. We
need to give them unique names in the derived table, else we could have
issues with resolution. Can probably be removed after WL#6570.
Method: collect all unique fields referenced in categories 1-3 above.
Add them with unique names to the SELECT list of the derived table,
after the aggregates (e.g. inside the derived table one may see t1.i and
t2.i, but at this level both fields are part of the same derived table,
so they cannot both be known as i in this query block).
When the fields in the derived table are known (after the call to
resolve_placeholder_tables below, we can go back and modify the references
at this level.
*/
std::unordered_map<Item **, bool> contrib_exprs;
// We want permanent changes
{
Prepared_stmt_arena_holder ps_arena_holder(thd);
Query_expression *const old_slave = slave;
slave = nullptr;
// The new derived table takes over WHERE and HAVING from this query block
Query_expression *new_slu = parent_lex->create_query_expr_and_block(
thd, this, m_where_cond, m_having_cond, CTX_DERIVED);
if (new_slu == nullptr) return true;
new_derived = new_slu->first_query_block();
m_where_cond = nullptr;
m_having_cond = nullptr;
new_derived->linkage = DERIVED_TABLE_TYPE;
// inherit item counts for safe allocation of base_ref_items array
new_derived->select_n_having_items = select_n_having_items;
new_derived->select_n_where_fields = select_n_where_fields;
new_derived->n_sum_items = n_sum_items;
new_derived->n_child_sum_items = n_child_sum_items;
// update condition counts
new_derived->cond_count = cond_count;
// between_count is updated if cond_count gets updated when there are any
// transformations. So we do the same here too. However it needs to be
// investigated if this is necessary or not.
new_derived->between_count = between_count;
with_sum_func = false;
// Any moved Item_ident needs new name resolution context
Item *conds[2] = {new_derived->m_where_cond, new_derived->m_having_cond};
for (auto cond : conds) {
if (update_context_to_derived(cond, new_derived)) return true;
}
assert(join == nullptr);
// Move FROM tables under the new derived table with fix ups
new_derived->m_table_list = m_table_list;
m_table_list.clear();
for (Table_ref *tables = new_derived->get_table_list(); tables != nullptr;
tables = tables->next_local) {
tables->query_block = new_derived; // update query block context
if (update_context_to_derived(tables->join_cond(), new_derived))
return true; /* purecov: inspected */
}
new_derived->derived_table_count = this->derived_table_count;
derived_table_count = 0; // will soon become 1.
assert(is_implicitly_grouped()); // only implicit grouping moved
assert(group_list.elements == 0);
assert(olap == UNSPECIFIED_OLAP_TYPE);
// Let new derived take over grouping flags
new_derived->m_agg_func_used = m_agg_func_used;
m_agg_func_used = false;
new_derived->m_json_agg_func_used = m_json_agg_func_used;
m_json_agg_func_used = false;
// Let new derived take over any semijoin candidates
new_derived->sj_candidates = sj_candidates;
sj_candidates = nullptr;
assert(m_current_table_nest == &m_table_nest);
new_derived->m_table_nest = std::move(m_table_nest);
m_table_nest.clear();
new_derived->m_current_table_nest = &new_derived->m_table_nest;
new_derived->leaf_tables = leaf_tables;
new_derived->leaf_table_count = leaf_table_count;
leaf_tables = nullptr;
leaf_table_count = 0;
// Add the derived table to this query block's FROM list
tl = synthesize_derived(thd, new_slu, nullptr, false, false);
if (tl == nullptr) return true;
if (!(tl->derived_result = new (thd->mem_root) Query_result_union()))
return true; /* purecov: inspected */
new_slu->set_query_result(tl->derived_result);
m_table_nest.push_back(tl);
// Update this query block's and the derived table's query block's name
// resolution contexts
context.table_list = tl;
context.first_name_resolution_table = tl;
assert(context.last_name_resolution_table == nullptr);
new_derived->context.init();
new_derived->context.table_list = get_table_list();
new_derived->context.query_block = new_derived;
new_derived->context.outer_context = &context;
new_derived->context.first_name_resolution_table = get_table_list();
/*
Retain only subqueries from SELECT list in this block [2]; all other
query expressions go to the new derived table [1]:
*/
Item_subselect::Collect_subq_info subqueries(this);
for (Item *item : fields) {
if (item->walk(&Item::collect_subqueries, enum_walk::PREFIX,
pointer_cast<uchar *>(&subqueries)))
return true; /* purecov: inspected */
}
assert(slave != nullptr);
assert(new_derived->slave == nullptr);
// Collect all query expressions in a container first, since we cannot rely
// on old_slave's ::next pointer chain once we start inserting them.
std::vector<Query_expression *> old_slaves;
for (Query_expression *cand = old_slave; cand != nullptr;
cand = cand->next) {
old_slaves.push_back(cand);
}
for (auto cand : old_slaves) {
if (cand == new_slu) continue; // already in place
if (subqueries.contains(cand))
cand->include_down(parent_lex, this); // [2]
else {
cand->include_down(parent_lex, new_derived); // [1]
// These subqueries are now moving into a new query block, so we need
// to update any outer references inside such subqueries from this block
// to that of the new derived table.
Item_ident::Depended_change info{this, new_derived};
if (cand->walk(&Item::update_depended_from, enum_walk::SUBQUERY_PREFIX,
pointer_cast<uchar *>(&info)))
return true; /* purecov: inspected */
}
}
// Insert the aggregates in the derived table's query block
int i = 0;
for (Item_sum *agg : aggregates.list) {
assert(agg->aggr_query_block == agg->base_query_block);
agg->aggr_query_block = new_derived;
agg->base_query_block = new_derived;
if (agg->hidden) {
// Because 'agg' is going to move to the derived table's SELECT list,
// its 'hidden' flag will become true. Then, in the current query block,
// 'agg' will be replaced by an Item_field for the column of that
// derived table; such Item_field must have the original value of
// agg->hidden, which we thus save here:
aggregates.aggregates_that_were_hidden.insert(agg);
}
if (new_derived->add_item_to_list(agg)) return true;
if (agg->item_name.length() == 0) {
// Generate a name (required)
char buff[100];
std::snprintf(buff, sizeof(buff), "tmp_aggr_%d", ++i);
agg->item_name.copy(buff);
if (agg->item_name.length() == 0) return true; // allocation error.
}
}
// We will find all fields mentioned above by checking fields, which
// has any hidden fields induced by ORDER BY or window specifications, in
// addition to fields from the select expressions. We also make a note
// of the expression's hidden status to mark the expression as hidden
// when it is replaced with derived table expression later.
for (Item *&item : fields) {
contrib_exprs.emplace(&item, item->hidden);
}
// Collect fields in expr, but not from inside grouped aggregates.
Item::Collect_item_fields_or_view_refs info{&item_fields_or_view_refs,
this};
for (auto expr : contrib_exprs) {
if ((*expr.first)
->walk(&Item::collect_item_field_or_view_ref_processor,
enum_walk::SUBQUERY_PREFIX | enum_walk::POSTFIX,
pointer_cast<uchar *>(&info)))
return true; /* purecov: inspected */
}
List_iterator<Item> lfi(item_fields_or_view_refs);
Item *lf;
// Remove irrelevant field references, i.e. those fields that are not local
// to new_derived
while ((lf = lfi++)) {
if (lf->type() == Item::FIELD_ITEM) {
Item_field *f = down_cast<Item_field *>(lf);
if (!(f->context->query_block == this || f->depended_from == this))
lfi.remove();
}
}
// We now have all fields, default values and view references; now find only
// unique ones.
lfi.init(item_fields_or_view_refs);
while ((lf = lfi++)) {
if (lf->type() == Item::FIELD_ITEM) {
Item_field *f = down_cast<Item_field *>(lf);
if (unique_fields.find(f->field) == unique_fields.end()) {
unique_fields.emplace(std::pair<Field *, Item_field *>(f->field, f));
} else {
// Should already have been deduplicated during collection
assert(false);
}
} else if (lf->type() == Item::DEFAULT_VALUE_ITEM) {
Item_default_value *dv = down_cast<Item_default_value *>(lf);
Item_field *lf_field =
down_cast<Item_field *>(dv->argument()->real_item());
if (unique_default_values.find(lf_field->field) ==
unique_default_values.end()) {
unique_default_values.emplace(
std::pair<Field *, Item_field *>(lf_field->field, dv));
} else {
// Should already have been deduplicated during collection
assert(false);
}
} else {
Item_view_ref *vr = down_cast<Item_view_ref *>(lf);
for (auto curr : unique_view_refs) {
if (curr->eq(vr, true)) goto continue_outer;
}
unique_view_refs.push_back(vr);
}
continue_outer:;
}
int field_no = 1;
for (auto vr : unique_view_refs) {
if (baptize_item(thd, vr, &field_no)) return true;
if (new_derived->add_item_to_list(vr)) return true;
if (update_context_to_derived(vr, new_derived)) return true;
vr->depended_from = nullptr;
}
for (auto field_class : field_classes) {
for (auto pair : *field_class) {
Item_field *f = pair.second;
Item_field *der_field = f->type() != Item::DEFAULT_VALUE_ITEM
? new (thd->mem_root) Item_field(f->field)
: f;
if (der_field == nullptr) return true;
Item *sl_item = der_field;
if (f->protected_by_any_value()) { // The field was mentioned only ever
// inside arguments to ANY_VALUE, so
// protect it likewise in new_derived, lest we get a
// ER_MIX_OF_GROUP_FUNC_AND_FIELDS_V2. If not, we let the check
// proceed, i.e. we do not add ANY_VALUE for the column.
sl_item = new (thd->mem_root) Item_func_any_value(der_field);
if (sl_item == nullptr) return true;
if (sl_item->fix_fields(thd, &sl_item)) return true;
}
if (new_derived->add_item_to_list(sl_item)) return true;
if (baptize_item(thd, sl_item, &field_no)) return true;
if (update_context_to_derived(sl_item, new_derived)) return true;
f->depended_from = nullptr;
}
}
new_derived->original_tables_map = original_tables_map;
if (new_derived->has_sj_candidates() &&
new_derived->flatten_subqueries(thd))
return true;
if (setup_tables(thd, get_table_list(), false)) return true;
} // Prepared_stmt_arena_holder scope
// Resolving the new derived table needs normal arena
if (resolve_placeholder_tables(thd, true)) return true;
{
Prepared_stmt_arena_holder ps_arena_holder(thd);
assert(tl->table != nullptr);
/*
We pushed the HAVING clause into new_derived above, but it is resolved to
this query block, meaning it may have Item_aggregate_refs pointing into
this->base_ref_items. We need to update such references to point into
new_derived->base_ref_items instead, since this is where the aggregates
are now also. We do this by adding them as hidden items and setting
the Item_aggregate_refs::ref accordingly.
*/
if (new_derived->m_having_cond != nullptr) {
Item_sum::Collect_grouped_aggregate_info having_aggs(this);
if (new_derived->m_having_cond->walk(&Item::collect_grouped_aggregates,
enum_walk::PREFIX,
pointer_cast<uchar *>(&having_aggs)))
return true; /* purecov: inspected */
for (Item_sum *agg : having_aggs.list) {
Item::Aggregate_ref_update info(agg, new_derived);
[[maybe_unused]] bool error = new_derived->m_having_cond->walk(
&Item::update_aggr_refs, enum_walk::PREFIX,
pointer_cast<uchar *>(&info));
assert(!error);
agg->aggr_query_block = new_derived;
}
}
/*
Permanently replace the aggregates in this select list and windowing
clauses with fields from the derived table.
*/
Field **field_ptr = tl->table->field;
for (Item_sum *agg : aggregates.list) {
Item_field *replaces_agg = new (thd->mem_root) Item_field(*field_ptr);
if (replaces_agg == nullptr) return true;
// So we can re-bind this field in EXECUTE phase of prepared statement
// Remove after WL#6570.
// replaces_agg->set_orig_names();
/*
The WHERE condition cannot contain group function from this level, so
ignore. Only replace aggregates from the SELECT lists with fields from
the derived table, then remove aggregates from top select lists.
*/
Item::Aggregate_replacement info(agg, replaces_agg);
if (replace_aggregate_in_list(
info, aggregates.aggregates_that_were_hidden.count(agg) != 0,
&fields, &base_ref_items))
return true;
// We only transform implicit grouping to a derived table: in such a case,
// the order by is eliminated since the result set has only one row, so
// skip processing of order_list.
assert(group_list.elements == 0);
assert(order_list.elements == 0);
List_iterator<Window> wli(m_windows);
for (Window *w = wli++; w != nullptr; w = wli++) {
for (ORDER *it : {w->first_order_by(), w->first_partition_by()}) {
if (it != nullptr) {
for (auto ord = it; ord != nullptr; ord = ord->next) {
Item *new_item;
if (!(new_item = (*ord->item)
->transform(&Item::replace_aggregate,
pointer_cast<uchar *>(&info))))
return true; /* purecov: inspected */
new_item->update_used_tables();
if (new_item != *ord->item) {
*ord->item = new_item;
}
}
}
}
// Physical sorting order should not have been set up since we are
// implicitly grouped, so no need to attempt substitution in it.
assert(w->sorting_order(nullptr, false) == nullptr);
}
// Aggregate argument may contain identifiers that need correct
// context. View references will have been replaced Item_fields,
// so we have to be careful: these will be rolled back and to make
// our transformation permanent we need to update the context of the
// original Item_fields, not the Item_view_refs.
if (update_context_to_derived(agg, new_derived)) return true;
++field_ptr;
}
/*
Remove any moved aggregates from top query block that did not get
replaced above.
*/
if (remove_aggregates(thd, new_derived)) return true;
// field_ptr now points to the first of any view references added to the
// select list of the derived table's query block. We now create new fields
// for this block which will point to the corresponding item in the derived
// table and then we substitute the new fields for the view refs.
for (auto vr : unique_view_refs) {
for (const auto &[expr, was_hidden] : contrib_exprs) {
Item::Item_view_ref_replacement info(vr->real_item(), *field_ptr, this);
if (replace_item_in_expression(expr, was_hidden, &info,
&Item::replace_item_view_ref))
return true;
}
++field_ptr;
}
for (auto field_class : field_classes) {
// field_ptr now points to the first of the fields added to the select
// list of the derived table's query block. We now create new fields for
// this block which will point to the corresponding fields moved to the
// derived table and then we substitute the new fields for the old ones.
for (auto pair : *field_class) {
auto replaces_field = new (thd->mem_root) Item_field(*field_ptr);
if (replaces_field == nullptr) return true;
// We can update context of the field moved into the derived table
// now that replaces_field has inherited the upper context
pair.second->context = &new_derived->context;
replaces_field->increment_ref_count();
for (const auto &[expr, was_hidden] : contrib_exprs) {
Item_field *replacement = replaces_field;
// If this expression was hidden, we need to make a copy of the
// derived table field. The same derived table field cannot be marked
// both hidden and visible if the field replaces two different
// expressions in the transforming query block.
if (was_hidden) {
auto hidden_field = new (thd->mem_root) Item_field(*field_ptr);
if (hidden_field == nullptr) return true;
hidden_field->item_name.set(pair.second->orig_name.ptr());
pair.second->context = &new_derived->context;
replacement = hidden_field;
}
Item::Item_field_replacement info(
pair.first, replacement, this,
field_class == &unique_default_values
? Item::Item_field_replacement::Mode::DEFAULT_VALUE
: Item::Item_field_replacement::Mode::FIELD);
if (replace_item_in_expression(expr, was_hidden, &info,
&Item::replace_item_field))
return true;
}
++field_ptr;
}
}
OPT_TRACE_TRANSFORM(&thd->opt_trace, trace_wrapper, trace_object,
select_number, "grouped subquery",
"subquery over grouped derived table");
opt_trace_print_expanded_query(thd, this, &trace_object);
} // Prepared_stmt_arena_holder scope
return false;
}
/**
A minion of transform_scalar_subqueries_to_join_with_derived.
A transform creates a field representing the value of the derived table and
adds it as a hidden field to the select list. Next, it replaces the subquery
in the item tree with this field. If we replace in a HAVING condition, we
build an Item_ref, cf. PTI_simple_ident_ident::itemize which also creates a
Item_ref for a field reference in HAVING, because we may need to access the
field in a tmp table.
@param thd The session context
@param subquery The scalar subquery
@param tr The table reference for the derived table
@param expr The expression we are replacing (in)
*/
bool Query_block::replace_subquery_in_expr(THD *thd, Item::Css_info *subquery,
Table_ref *tr, Item **expr) {
if (!(*expr)->has_subquery()) return false;
Item_singlerow_subselect::Scalar_subquery_replacement info(
subquery->item,
// make sure to not replace with one of the hidden fields, if present,
// e.g. for INTERSECT:
tr->table->field[tr->table->hidden_field_count], this,
subquery->m_add_coalesce);
// ROLLUP wrappers might have been added to the expression at this point. Take
// care to transform the inner item and keep the rollup wrappers as is.
bool with_rollup_wrapper = is_rollup_group_wrapper(*expr);
Item *orig_unwrapped_item = unwrap_rollup_group(*expr);
Item *new_item = (*expr)->transform(&Item::replace_scalar_subquery,
pointer_cast<uchar *>(&info));
if (new_item == nullptr) return true;
// If we replaced an item contained in the transformed query block,
// retain its name so the metadata column name remains correct.
if (*expr != new_item) {
new_item->item_name.set((*expr)->item_name.ptr());
*expr = new_item;
} else if (with_rollup_wrapper) {
// If the original expression was a rollup group item, the inner item of the
// expression might have changed.
Item *new_unwrapped_item = unwrap_rollup_group(new_item);
if (new_unwrapped_item != orig_unwrapped_item)
new_unwrapped_item->item_name.set((*expr)->item_name.ptr());
}
new_item->update_used_tables();
// If this expression has aggregation and we have replaced a subquery
// with a field, we need to recompute split_sum_func
if ((new_item->has_aggregation() &&
!(new_item->type() == Item::SUM_FUNC_ITEM &&
!new_item->m_is_window_function)) || //(1)
new_item->has_wf()) // (2)
new_item->split_sum_func(thd, base_ref_items, &fields);
if (thd->is_error()) return true;
return false;
}
/**
A minion of transform_scalar_subqueries_to_join_with_derived.
Determine if the query expression is directly contained in the
query block, i.e. it is a subquery.
@param select the query block
@param slu the query expression
@returns true if slu is directly contained in select, else false
*/
static bool query_block_contains_subquery(Query_block *select,
Query_expression *slu) {
for (Query_expression *cand = select->first_inner_query_expression();
cand != nullptr; cand = cand->next_query_expression()) {
if (cand == slu) return true;
}
return false;
}
static bool walk_join_conditions(mem_root_deque<Table_ref *> &list,
std::function<bool(Item **expr_p)> action,
Item::Collect_scalar_subquery_info *info) {
for (Table_ref *tl : list) {
if (tl->join_cond() != nullptr) {
info->m_join_condition_context = tl->join_cond();
if (action(tl->join_cond_ref())) return true;
}
if (tl->nested_join != nullptr &&
walk_join_conditions(tl->nested_join->m_tables, action, info))
return true; /* purecov: inspected */
}
info->m_join_condition_context = nullptr;
return false;
}
/**
Remember if this transform was performed. It it was done by a secondary
engine, it may need to be rolled back before falling back on primary engine
execution.
*/
static void remember_transform(THD *thd, Query_block *select) {
if (!thd->optimizer_switch_flag(OPTIMIZER_SWITCH_SUBQUERY_TO_DERIVED)) {
// Transform was enabled not by switch, but by secondary enginee
select->parent_lex->m_sql_cmd->set_optional_transform_prepared(true);
}
}
/**
Push the generated derived table to the correct location inside a join nest.
It will be nested in a new nest along with the outer table to the join
which owns the search condition in which we found the scalar subquery.
For example:
select t1.i,
t2.i
from t1
left outer join
t2 on
(t1.i < (select max(t2.i) from t2));
in transformed to
select t1.i,
t2.i
from t1
left join
(select max(t2.i) AS `max(t2.i)` from t2) derived_1_0 [*]
on(true)
left join
t2
on((t1.i < derived_1_0.`max(t2.i)`))
[*]: the derived table is nested in here, just ahead of the inner table
t2 to which the join condition is attached.
In the original join nest before transformation may look like this
(the join order list is reversed relative to the logical order):
(nest_join)
t2 LEFT OUTER ON .. = .. (inner table)
t1 (outer table)
After the transformation we have this nest structure:
(nest_join)
t2 LEFT OUTER ON .. = ..
(nest_last_join)
derived_1_0 LEFT OUTER ON true
t1
The method will recursively inspect and rebuild join nests as needed since
the join with the condition may be deeply nested.
@param thd the session context
@param join_cond the join condition which identifies the join we want to
nest into
@param nested_join_list
the join list at the current nesting level
@param derived_table the table we want to nest
@returns true on error
*/
bool Query_block::nest_derived(THD *thd, Item *join_cond,
mem_root_deque<Table_ref *> *nested_join_list,
Table_ref *derived_table) {
// Locate join nest in which the joinee with the condition sits
const bool found [[maybe_unused]] = walk_join_list(
*nested_join_list,
[join_cond, &nested_join_list](Table_ref *tr) mutable -> bool {
if (tr->join_cond() == join_cond) {
// In certain cases, we can have a degenerate join (after other
// transformations, i.e. we have a join clause, but only table.
// In optimizer trace, this is printed as e.g.
// <constant table> join
// cte2
// on (select 3 from cte2) <> 0 <-- scalar subquery
// In such a case there will be no join nest, so tr->embedding will
// be empty. The resulting join after we add the new derived table:
// ( <constant table>
// left join
// (select 3 AS `3` from cte2) derived_2_5 <-- new derived table
// on true )
// join cte2
// on derived_2_5.`3` <> 0
// which will be simplified in due course to
// (select 3 AS `3` from `cte2`) derived_2_5
// join cte2
// where derived_2_5.`3` <> 0
if (tr->embedding != nullptr) {
nested_join_list = &tr->embedding->nested_join->m_tables;
}
return true; // break off walk
}
return false;
});
assert(found);
// Make a copy of the join list, outer before inner joinees, so we
// can rebuild the join_list after inserting the derived table in a nest
// with the outer(s)
mem_root_deque<Table_ref *> copy_list(*THR_MALLOC);
auto &jlist = *nested_join_list;
for (auto tl : jlist) copy_list.push_front(tl);
jlist.clear();
auto it = std::find_if(copy_list.begin(), copy_list.end(),
[join_cond](Table_ref *tl) -> bool {
return tl->join_cond() == join_cond;
});
assert(it != copy_list.end()); // assert that we found it
const size_t idx = it - copy_list.begin();
// Insert back all outer tables to the inner containing the condition.
// Normally only one.
for (size_t i = 0; i < idx; i++) {
jlist.push_front(copy_list[i]);
}
// Insert the derived table and nest it with the outer(s)
jlist.push_front(derived_table);
derived_table->join_list = &jlist;
derived_table->embedding = copy_list[idx]->embedding;
if (nest_join(thd, this, copy_list[idx]->embedding, &jlist, idx + 1,
"(nest_join)") == nullptr)
return true;
// Insert back the inner containing the JOIN condition and any subsequent
// joinees
for (size_t i = idx; i < copy_list.size(); i++) {
jlist.push_front(copy_list[i]);
}
return false;
}
struct Lifted_fields_map {
// Position in m_fields (disregarding outer references used as index to
// m_fields_position, gives field position in derived table
List<Item> m_fields;
std::vector<uint> m_field_positions;
};
/**
We have a correlated scalar subquery, so we must do several things:
1. Add the relevant non-correlated fields "NCF"(*) to the select list so they
can be referenced in the JOIN condition which now holds the earlier WHERE
AND predicates that were correlated. (*) i.e. the inner fields involved
in a predicate that contains an outer field reference. These were
identified in supported_correlated_scalar_subquery, and passed in as
'lifted_where'.
2. Add a COUNT(*) to select list so it can be referenced from the
transformed query's WHERE clause for cardinality check, if needed,
i.e. when there is no aggregate function in the subquery's single(*)
select expression. (*) single because we have a scalar subquery. Add this
to NCF. If it *does* contain an aggregate function, there will be only
one row per group iff the NCF are part of any GROUP BY list, and
we add them to it, so that property holds.
3. Add grouping on NCF to the subquery. If already grouped, add the NCF
at end of grouping list. Note that this might result in a grouped query
that might fail the functional dependency checks. So we wrap any
non-grouped field in the select list in Item_func_any_value.
We can safely add the Item_func_any_value because subqueries with
cardinalities greater than one will be rejected anyway.
4. Remember the set of NCF so we can create derived.field and
derived.`count(field)` (NCF'), after setting up the materialized derived
table, cf. 'lifted_fields'.
5. Update the correlated fields in the JOIN condition to no longer be
outer references, and the NCF' to refer to the derived table's fields,
NCF.
This logic is partially done *before* setting up the materialized derived
table, in the present method ("_pre"), and partly *after* setting up the
materialized derived table, cf. the companion method ("_post").
@param thd session context
@param derived the derived table being created in the transform
@param lifted_where the WHERE condition we move out to the JOIN cond
@param[out] lifted_fields mapping of where inner fields end up in the
derived table's fields.
@param[out] added_card_check set to true if we are adding a cardinality check
*/
bool Query_block::decorrelate_derived_scalar_subquery_pre(
THD *thd, Table_ref *derived, Item *lifted_where,
Lifted_fields_map *lifted_fields, bool *added_card_check) {
const uint hidden_fields = CountHiddenFields(fields);
const uint first_non_hidden = hidden_fields;
assert((fields.size() - hidden_fields) == 1); // scalar subquery
#ifndef NDEBUG
// Hidden fields should come before non-hidden.
for (uint i = 0; i < fields.size(); i++) {
assert((fields[i]->hidden) != (i >= hidden_fields));
}
#endif
Item_field *selected_field = nullptr;
if (fields[first_non_hidden]->type() == Item::FIELD_ITEM) {
selected_field = down_cast<Item_field *>(fields[first_non_hidden]);
}
// Collect referenced fields, a mixture of inner fields and the correlated
// fields.
Item::Collect_item_fields_or_refs info{&lifted_fields->m_fields};
if (lifted_where->walk(&Item::collect_item_field_or_ref_processor,
enum_walk::PREFIX | enum_walk::POSTFIX,
pointer_cast<uchar *>(&info)))
return true;
// Run through the inner fields and add them to the derived table's
// SELECT list if not already present (only one can be present, since it's a
// scalar subquery), and make a note of where in the derived table's Field
// list they are positioned: we need that information in
// Query_block::decorrelate_derived_scalar_subquery_post
Item *field_or_ref;
List_iterator<Item> li(lifted_fields->m_fields);
while ((field_or_ref = li++)) {
Item_field *const f = down_cast<Item_field *>(field_or_ref->real_item());
if (!field_or_ref->is_outer_reference()) {
// Add non-correlated fields in WHERE clause to select_list if not
// already present
if (selected_field == nullptr || f->field != selected_field->field) {
m_added_non_hidden_fields++;
// If f->hidden, f should be among the hidden fields in 'fields'.
assert(std::any_of(fields.cbegin(), fields.cbegin() + first_non_hidden,
[&f](const Item *item) { return f == item; }) ==
f->hidden);
Item_field *inner_field;
if (f->hidden) {
// Make a new Item_field to avoid changing the set of hidden
// Item_fields.
inner_field = new (thd->mem_root) Item_field(thd, f);
assert(!inner_field->hidden);
} else {
inner_field = f;
}
// select_n_where_fields is counted, so safe to add to base_ref_items
base_ref_items[fields.size()] = inner_field;
// Compute position in resulting derived table (TABLE::fields)
// Note the corresponding slice position calculation performed in
// - change_to_use_tmp_fields_except_sums (example figure
// expanded)
// - change_to_use_tmp_fields
// takes this new situation into account.
lifted_fields->m_field_positions.push_back(fields.size() -
hidden_fields);
fields.push_back(inner_field);
inner_field->increment_ref_count();
// We have added to fields; master_query_expression->types must
// always be equal to it;
master_query_expression()->types.push_back(inner_field);
} else {
// This is the field present in the scalar subquery initially, so it
// will be first in the derived table's set of fields.
lifted_fields->m_field_positions.push_back(0);
}
}
}
li.rewind();
// Run through the inner fields and add them to GROUP BY if not present
bool selected_field_in_group_by = false;
while ((field_or_ref = li++)) {
Item_field *f = down_cast<Item_field *>(field_or_ref->real_item());
if (!field_or_ref->is_outer_reference()) {
bool found = false;
for (ORDER *group = group_list.first; group != nullptr;
group = group->next) {
Item *item = *group->item;
if (item->type() == Item::FIELD_ITEM &&
down_cast<Item_field *>(item)->field == f->field) {
found = true;
break;
}
}
if (!found) {
Item_field *in_select = f;
if (selected_field != nullptr && (selected_field->field == f->field)) {
// We need GROUP BY to use the Item_field present in the select
// list, not the one in the predicate. The only f that didn't get
// added to the select list above, is the one whose Field was already
// there, so use that, lest create_tmp_table gets confused.
in_select = selected_field;
selected_field_in_group_by = true;
}
ORDER *o = new (thd->mem_root) PT_order_expr(in_select, ORDER_ASC);
if (o == nullptr) return true;
o->direction = ORDER_NOT_RELEVANT; // ignored by constructur
o->in_field_list = true;
o->used = in_select->used_tables();
// Add at back of list
group_list.link_in_list(o, &o->next);
}
}
}
// Wrap the field in the select list in Item_func_any_value if it was not
// added to group by above.
if (!selected_field_in_group_by &&
!fields[first_non_hidden]->has_aggregation()) {
Item *const old_field = fields[first_non_hidden];
Item *func_any = new (thd->mem_root) Item_func_any_value(old_field);
if (func_any == nullptr) return true;
if (func_any->fix_fields(thd, &func_any)) return true;
fields[first_non_hidden] = func_any;
replace_referenced_item(old_field, func_any);
}
if (!m_agg_func_used) {
// Add COUNT(*) to SELECT list
Item_int *number_0 = new (thd->mem_root) Item_int(int32{0}, 1);
if (number_0 == nullptr) return true;
Item *cnt = new (thd->mem_root) Item_sum_count(number_0);
if (cnt == nullptr) return true;
int item_no = fields.size() + 1;
baptize_item(thd, cnt, &item_no);
m_added_non_hidden_fields++;
{
// prelude to binding COUNT(*)
const bool save_asf = thd->lex->allow_sum_func;
Query_block *save_query_block = thd->lex->current_query_block();
assert(save_query_block == outer_query_block());
thd->lex->set_current_query_block(this);
auto save_allow_sum_func = thd->lex->allow_sum_func;
thd->lex->allow_sum_func |= (nesting_map)1 << nest_level;
if (cnt->fix_fields(thd, &cnt)) return true;
// postlude to binding COUNT(*)
thd->lex->allow_sum_func = save_asf;
thd->lex->set_current_query_block(save_query_block);
thd->lex->allow_sum_func = save_allow_sum_func;
}
// This should be safe, because we have reserved space for
// select_n_where_fields, but at least one of them is an outer reference
// so this extra COUNT(*) can use the first such space:
base_ref_items[fields.size()] = cnt;
lifted_fields->m_field_positions.push_back(fields.size() - hidden_fields);
fields.push_back(cnt);
cnt->increment_ref_count();
m_agg_func_used = true;
// Add a new column to the derived table's query expression
derived->derived_query_expression()->types.push_back(cnt);
*added_card_check = true;
}
return false;
}
/**
See explanation in companion method decorrelate_derived_scalar_subquery_pre.
*/
bool Query_block::decorrelate_derived_scalar_subquery_post(
THD *thd, Table_ref *derived, Lifted_fields_map *lifted_fields,
bool added_card_check) {
// We added referenced inner fields to select list, now replace occurrences
// of such fields in the join condition with derived.<Item_field-n>. Since
// we have now set up materialization the derived table, we now know the
// 'Field's to use for new 'Item_field's.
Item *field_or_ref;
List_iterator<Item> li(lifted_fields->m_fields);
uint pos = 0;
while ((field_or_ref = li++)) {
Item_field *f = down_cast<Item_field *>(field_or_ref->real_item());
if (!field_or_ref->is_outer_reference()) {
const uint pos_in_fields = lifted_fields->m_field_positions[pos++];
Field *field_in_derived = derived->table->field[pos_in_fields];
auto replaces_field = new (thd->mem_root) Item_field(field_in_derived);
if (replaces_field == nullptr) return true;
assert(replaces_field->data_type() == f->data_type());
Item::Item_field_replacement info(f->field, replaces_field, this);
Item *new_item = derived->join_cond()->transform(
&Item::replace_item_field, pointer_cast<uchar *>(&info));
if (new_item == nullptr) return true;
if (new_item != derived->join_cond()) derived->set_join_cond(new_item);
} else {
// This field used to be correlated, but is now lifted out to ON
// clause, so change its outer status
if (field_or_ref->type() == Item::REF_ITEM) {
down_cast<Item_ref *>(field_or_ref)->depended_from = nullptr;
// If this is an outer ref, we need to replace the ref with the
// underlying field as it is no more correlated. Else used_tables
// will not be correct.
if (down_cast<Item_ref *>(field_or_ref)->ref_type() ==
Item_ref::OUTER_REF) {
Item *new_item = derived->join_cond()->transform(
&Item::replace_outer_ref, pointer_cast<uchar *>(field_or_ref));
if (new_item != derived->join_cond())
derived->set_join_cond(new_item);
}
}
f->depended_from = nullptr;
}
}
if (added_card_check) {
// Add derived.count(0) <= 1 condition to transformed query block's WHERE
// condition.
const uint cnt_pos_in_fields = lifted_fields->m_field_positions[pos];
Field *cnt_f = derived->table->field[cnt_pos_in_fields];
auto cnt_i = new (thd->mem_root) Item_field(cnt_f);
if (cnt_i == nullptr) return true;
auto number_1 = new (thd->mem_root) Item_int(1);
if (number_1 == nullptr) return true;
Item *gt = new (thd->mem_root) Item_func_gt(cnt_i, number_1);
if (gt == nullptr) return true;
Item *check_card = new (thd->mem_root) Item_func_reject_if(gt);
if (check_card == nullptr) return true;
Item *new_cond = and_items(derived->join_cond(), check_card);
if (new_cond == nullptr) return true;
new_cond->apply_is_true();
if (new_cond->fix_fields(thd, &new_cond)) return true;
derived->set_join_cond(new_cond);
cond_count++;
}
derived->join_cond()->update_used_tables();
return false;
}
/**
Replace item in select list and preserve its reference count.
@param old_item Item to be replaced.
@param new_item Item to replace the old item.
If old item is present in base_ref_items, make sure it is replaced there.
Also make sure that reference count for old item is preserved in new item.
*/
void Query_block::replace_referenced_item(Item *const old_item,
Item *const new_item) {
for (size_t i = 0; i < fields.size(); i++) {
if (base_ref_items[i] == old_item) {
base_ref_items[i] = new_item;
break;
}
}
// Keep the same number of references as for the old expression:
new_item->increment_ref_count();
while (old_item->decrement_ref_count() > 0) {
new_item->increment_ref_count();
}
}
/**
Converts a subquery to a derived table and inserts it into the FROM
clause of the owning query block
@param thd Connection handle
@param[out] out_tl The created derived table will be stored in this.
@param subs_query_expression Unit for the subquery
@param subq Item for the subquery
@param use_inner_join Insert with INNER JOIN, or with LEFT JOIN
@param reject_multiple_rows
For scalar subqueries where we need run-time cardinality
check: true, else false
@param join_condition See join_cond in synthesize_derived()
@param lifted_where_cond
The subquery's where condition, moving to JOIN cond of
JOIN with the derived table
*/
bool Query_block::transform_subquery_to_derived(
THD *thd, Table_ref **out_tl, Query_expression *subs_query_expression,
Item_subselect *subq, bool use_inner_join, bool reject_multiple_rows,
Item *join_condition, Item *lifted_where_cond) {
Table_ref *tl;
{
// We did not do the transformation yet
remember_transform(thd, this);
// We want the Table_ref, Table_ident and m_join_cond to be permanent
Prepared_stmt_arena_holder ps_arena_holder(thd);
tl = synthesize_derived(thd, subs_query_expression, join_condition,
/*left_outer=*/true, use_inner_join);
if (tl == nullptr) return true;
if (lifted_where_cond != nullptr) {
tl->set_join_cond(lifted_where_cond);
cond_count += (lifted_where_cond->type() == Item::COND_ITEM)
? down_cast<Item_cond *>(lifted_where_cond)
->argument_list()
->elements
: 1;
}
// Append to end of leaf tables list
Table_ref *leaf;
for (leaf = leaf_tables; leaf->next_leaf != nullptr;
leaf = leaf->next_leaf) {
}
leaf->next_leaf = tl;
// Adjust table no and map
tl->set_tableno(leaf_table_count);
tl->embedding->nested_join->query_block_id =
subq->unit->first_query_block()->select_number;
leaf_table_count += 1;
if (!(tl->derived_result = new (thd->mem_root) Query_result_union()))
return true; /* purecov: inspected */
subs_query_expression->m_reject_multiple_rows = reject_multiple_rows;
subs_query_expression->set_explain_marker(thd, CTX_DERIVED);
subs_query_expression->first_query_block()->linkage = DERIVED_TABLE_TYPE;
// Break connection to the subquery expression:
subs_query_expression->item = nullptr;
}
subs_query_expression->set_query_result(tl->derived_result);
subs_query_expression->first_query_block()->set_query_result(
tl->derived_result);
materialized_derived_table_count++;
derived_table_count++;
Lifted_fields_map lifted_where_fields;
bool added_cardinality_check = false;
if (lifted_where_cond != nullptr) {
assert(!subs_query_expression->is_set_operation());
if (subs_query_expression->first_query_block()
->decorrelate_derived_scalar_subquery_pre(
thd, tl, lifted_where_cond, &lifted_where_fields,
&added_cardinality_check))
return true;
}
// We skip resolve_derived(), as the subquery has already been resolved before
// the conversion to derived table.
assert(tl->table == nullptr);
if (tl->setup_materialized_derived(thd)) return true; /* purecov: inspected */
if (lifted_where_cond != nullptr) {
assert(tl->join_cond() == lifted_where_cond);
if (decorrelate_derived_scalar_subquery_post(thd, tl, &lifted_where_fields,
added_cardinality_check))
return true;
}
*out_tl = tl;
return false;
}
/**
Called to check if the provided correlated predicate is eligible for
transformation. To be eligible, it must have one non-correlated operand
and one correlated operand, and the non-correlated operand must be a
simple column reference (Else we need to group on expressions in the
derived table - not supported currently).
@param cor_pred correlated predicate that needs to be examined
@return true if predicate is eligible for transformation.
*/
bool is_correlated_predicate_eligible(Item *cor_pred) {
assert(cor_pred->is_outer_reference());
if (cor_pred->type() != Item::FUNC_ITEM ||
down_cast<Item_func *>(cor_pred)->functype() != Item_func::EQ_FUNC)
return false;
Item_func *eq_func = down_cast<Item_func *>(cor_pred);
bool non_correlated_operand = false;
for (uint i = 0; i < eq_func->argument_count(); i++) {
Item *item = eq_func->arguments()[i];
if (!item->is_outer_reference()) {
if (item->real_item()->type() != Item::FIELD_ITEM) return false;
non_correlated_operand = true;
} else if (item->used_tables() & ~PSEUDO_TABLE_BITS) {
// Inner table reference mixed with outer table reference is not allowed.
return false;
}
}
// We need to find one non-correlated operand in the correlated predicate
return non_correlated_operand;
}
/**
Extracts the top level correlated condition in an OR condition.
For ex:
(((t1.a = t2.b ) and (t1.c =10)) OR ((t1.a = t2.b) and (t1.d =10))) is the
same as (t1.a = t2.b) and ((t1.c = 10) or (t1.d = 10))
So we extract the (t1.a = t2.b) as the correlated condition and leave ((t1.c =
10) or (t1.d = 10)) in the original condition that is passed as the argument.
The caller of the function has to send an OR condition. Only the top level
correlated condition is extracted. Caller could repeatedly call this function
to extract the inner level correlated conditions as well.
@param thd session context
@param[in,out] cond Original condition that is looked into, to extract the
correlated condition.
@param[out] correlated_cond correlated condition that is extracted
@return false when a correlated condition is successfully extracted.
true when no correlated condition could be extracted.
*/
static bool extract_correlated_condition(THD *thd, Item **cond,
Item **correlated_cond) {
Item_cond *or_condition = down_cast<Item_cond *>(*cond);
Item *cor_pred = nullptr;
bool found = false;
for (Item &item : *or_condition->argument_list()) {
Mem_root_array<Item *> cond_parts(thd->mem_root);
ExtractConditions(&item, &cond_parts); // all elements AND'ed
found = false;
for (Item *pred : cond_parts) {
// Check if we have a correlated condition that is present in all the
// arguments to this OR condition. Only then we can extract it.
if (pred->is_outer_reference()) {
// If the correlated condition itself is disjuntive, we reject.
if (pred->type() == Item::COND_ITEM) return true;
// If this is the first argument to the OR condition, we need to be
// finding this correlated condition in all other arguments of the OR
// condition
if (cor_pred == nullptr) cor_pred = pred;
// If it is not the first argument to the OR condition, we already
// have a predicate with us that we need to look for in this argument.
// So, continue to search until we find it.
else if (!cor_pred->eq(pred, false))
continue;
found = true;
if (!is_correlated_predicate_eligible(cor_pred)) return true;
break;
}
}
if (!found) return true;
}
// We now have a correlated condition that could be extracted. So we remove
// the condition from each of the arguments of the OR condition and return
// the correlated condition to the caller.
List_iterator<Item> li(*(or_condition->argument_list()));
Item *item;
while ((item = li++)) {
Mem_root_array<Item *> cond_parts(thd->mem_root);
ExtractConditions(item, &cond_parts); // all elements AND'ed
std::vector<Item *> final_args;
for (Item *pred : cond_parts) {
if (!cor_pred->eq(pred, false)) final_args.push_back(pred);
}
if (final_args.size() == 0)
li.remove();
else {
auto *tmp_cond = down_cast<Item_cond *>(*li.ref());
tmp_cond->argument_list()->clear();
for (Item *pred : final_args) tmp_cond->argument_list()->push_back(pred);
li.replace(tmp_cond);
}
}
or_condition->update_used_tables();
*correlated_cond = cor_pred;
return false;
}
/**
Called when the scalar subquery is correlated. If the type of correlation is
not supported, return false and leave *lifted_where unassigned. If it is
supported, *lifted_where contains a set of correlated predicates.
Currently, we can only de-correlate the WHERE clause: if the clause is not a
top level AND, we lift out the entire predicate to the JOIN clause. If it is
a top level AND, we lift out only those AND operand predicates which are
correlated, leaving un-correlated operand predicates in the subquery's WHERE
clause, as lifting all out would be too ineffective, potentially creating
large cartesian products in the subquery.
@param thd session context
@param subquery the subquery under consideration
@param[out] lifted_where set of predicates lifted out of WHERE
@returns true for error else false
*/
bool Query_block::supported_correlated_scalar_subquery(THD *thd,
Item::Css_info *subquery,
Item **lifted_where) {
// Disallow if subquery is in a JOIN clause
if (subquery->m_location &
Item_aggregate_type::Collect_scalar_subquery_info::L_JOIN_COND)
return false;
// Check that we do no have correlation inside a derived table in the
// FROM list
for (Table_ref *tr = leaf_tables; tr != nullptr; tr = tr->next_leaf)
if (tr->is_derived() && tr->derived_query_expression()->uncacheable)
return false;
// Disallow LIMIT, OFFSET
if (has_limit()) return false;
// Disallow window functions: transform not valid in their presence.
if (has_windows()) return false;
const size_t first_selected = CountHiddenFields(fields);
if (is_implicitly_grouped()) {
Item_sum::Collect_grouped_aggregate_info aggregates(this);
if (fields[first_selected]->walk(&Item::collect_grouped_aggregates,
enum_walk::PREFIX,
pointer_cast<uchar *>(&aggregates))) {
return true;
}
bool saw_count{false};
Item_sum *cnt_item{nullptr};
for (auto a : aggregates.list) {
if (a->sum_func() == Item_sum::COUNT_FUNC ||
a->sum_func() == Item_sum::COUNT_DISTINCT_FUNC) {
saw_count = true;
cnt_item = a;
}
}
if (saw_count) {
// The COUNT() must be the selected item, no expression involved
if (fields[first_selected] != cnt_item) return false;
// If we have an occurrence of COUNT() in the selected expression and
// implicit grouping , we know that the transform can yield NULL rather
// than 0. In such a case, we need to add a COALESCE around the replaced
// subquery expression, i.e. COALESCE(derived.`COUNT()`, 0). This is
// because in a LEFT JOIN inner position, a COUNT(0) can yield NULL
// which it could not in the original subquery position.
subquery->m_add_coalesce = true;
}
}
// Only allow outer reference in the WHERE clause, check now
// 1. select list
for (Item *sel_expr : fields) {
if (sel_expr->is_outer_reference()) return false;
}
// 2. group by clause
if (is_grouped()) {
for (ORDER *group = group_list.first; group != nullptr;
group = group->next) {
if ((*group->item)->is_outer_reference()) return false;
}
}
// 3. HAVING clause
if (having_cond() != nullptr && having_cond()->is_outer_reference())
return false;
// 4. ORDER BY clause
if (is_ordered()) {
for (ORDER *o = order_list.first; o != nullptr; o = o->next) {
if ((*o->item)->is_outer_reference()) return false;
}
}
if (m_where_cond == nullptr) {
// We expect to find outer references (field of a FROM table of a query
// block directly containing this subquery) in the WHERE, since all other
// possibilities are exhausted. But we didn't find any correlated field.
// It may have disappeared due to ORDER BY elimination in the subquery.
// The subquery will still be marked as using having correlated fields.
// How to handle this?
// TODO. Example:
// SELECT t1.a, SUM(t1.b)
// FROM t1
// WHERE t1.a = (SELECT SUM(t2.b)
// FROM t2 ORDER BY SUM(t2.b) + SUM(t1.b) LIMIT 1)
// GROUP BY t
return false;
}
// Check that the WHERE clause doesn't contain an aggregate function which
// aggregates outside this query block. We only want outer reference to
// a field.
Item_sum::Collect_grouped_aggregate_info aggregates(this);
if (m_where_cond->walk(&Item::collect_grouped_aggregates, enum_walk::PREFIX,
pointer_cast<uchar *>(&aggregates)))
return true;
if (aggregates.m_outside)
// some aggregate functions aggregate in an outer query, not supported
return false;
// Check that the WHERE clause doesn't contain any nested scalar subqueries
// that are still there (correlated of a kind we couldn't handle: any nested
// subqueries that did support transformation will already have been
// transformed).
Item::Collect_scalar_subquery_info subqueries;
subqueries.m_collect_unconditionally = true;
if (m_where_cond->walk(&Item::collect_scalar_subqueries, enum_walk::PREFIX,
pointer_cast<uchar *>(&subqueries)))
return true;
if (subqueries.m_list.size() > 0) return false;
// Get all fields/refs referenced in the WHERE clause, and count the number
// of correlated ones.
List<Item> fields_or_refs;
Item::Collect_item_fields_or_refs info{&fields_or_refs};
if (m_where_cond->walk(&Item::collect_item_field_or_ref_processor,
enum_walk::PREFIX | enum_walk::POSTFIX,
pointer_cast<uchar *>(&info)))
return true;
int cnt = 0;
List_iterator<Item> li(fields_or_refs);
while (Item *i = li++) {
cnt = cnt + (i->is_outer_reference() ? 1 : 0);
}
if (cnt == 0) {
// We didn't find any correlated field. It may have disappeared due to
// ORDER BY elimination in the subquery. The subquery would still be marked
// as having correlated fields. Related case to missing WHERE above.
//
// TODO: We can improve these two cases by returning, presuming no
// correlation, but we would like to improve the status of the subquery's
// used_tables instead.
//
// Example: (correlated field inside ORDER BY optimized away)
// SELECT t1.a, SUM(t1.b)
// FROM t1
// WHERE t1.a = (SELECT SUM(t2.b)
// FROM t2
// WHERE t2.a > 4 ORDER BY t1.b)
// GROUP BY t1.a ORDER BY t1.a LIMIT 30;
return false;
}
// Extract the predicates that must be moved out to JOIN, i.e. those AND
// constituents which contain an outer reference, and those which shall
// remain.
std::vector<Item *> staying;
List<Item> going;
Mem_root_array<Item *> condition_parts(thd->mem_root);
bool orig_where_modified = false;
ExtractConditions(m_where_cond, &condition_parts); // all elements AND'ed
for (Item *cond_part : condition_parts) {
// If the condition part extracted is an OR condition having correlated
// fields, we extract top level correlated condition if possible. If not,
// transformation cannot happen.
if (cond_part->is_outer_reference()) {
Item *cor_pred = nullptr;
if (cond_part->type() == Item::COND_ITEM) {
assert(down_cast<Item_cond *>(cond_part)->functype() ==
Item_func::COND_OR_FUNC);
if (extract_correlated_condition(thd, &cond_part, &cor_pred))
return false;
// Make a note if this extracted predicate is the same as the original
// where condition.
if (cond_part == m_where_cond) orig_where_modified = true;
} else {
cor_pred = cond_part;
cond_part = nullptr;
}
if (!is_correlated_predicate_eligible(cor_pred)) return false;
going.push_back(cor_pred);
}
if (cond_part) staying.push_back(cond_part);
}
// No correlated predicates. Note that we did find some fields earlier which
// were marked as being an "outer reference". However, it might be that the
// expression containing this outer reference is not marked as such due to
// some optimizations. Reject such queries for transformation (Since we
// anyways reject queries with non-correlated operands having expressions in
// is_correlated_predicate_eligible())
if (going.elements == 0) return false;
// Construct a new, reduced, WHERE clause sans the lifted predicates, which
// will stay in the subquery
if (staying.size() == 0) {
m_where_cond = nullptr;
} else {
// If the original where condition was a disjunctive correlated predicate,
// it would have been modified when extracting the correlated condition.
// So, just update the used tables.
if (orig_where_modified)
m_where_cond->update_used_tables();
else {
auto *new_where = down_cast<Item_cond *>(m_where_cond);
new_where->argument_list()->clear();
for (Item *pred : staying) new_where->argument_list()->push_back(pred);
m_where_cond = new_where;
new_where->update_used_tables();
}
assert(!m_where_cond->is_outer_reference());
}
// Construct the lifted part of the WHERE condition, which will go to the
// JOIN condition
if (going.elements == 1) {
*lifted_where = going.head();
} else {
auto cond = new (thd->mem_root) Item_cond_and(going);
if (cond == nullptr) return true;
cond->update_used_tables();
*lifted_where = cond;
}
// there is no outer reference in this query expression/block anymore
uncacheable &= ~UNCACHEABLE_DEPENDENT;
master_query_expression()->uncacheable &= ~UNCACHEABLE_DEPENDENT;
return false;
}
bool Query_block::transform_scalar_subqueries_to_join_with_derived(THD *thd) {
if (thd->lex->m_subquery_to_derived_is_impossible) return false;
// Need at least one FROM table. Also, we do not want to perform this
// transformation if we have an assignment of a user variable in the query.
if (leaf_table_count == 0 || thd->lex->set_var_list.elements > 0)
return false;
/*
Collect list of eligible scalar subqueries used in JOIN conds, WHERE conds,
SELECT list expressions and HAVING cond. NOTE: Join conditions need to be
collected/transformed first since they have the be nested after the outer
join table (i.e. before the inner). So, if we have scalar subqueries in
other locations that the JOIN conditions, those need to be added after the
JOIN conditions have been put in place.
*/
Item::Collect_scalar_subquery_info subqueries;
// Collect from join conditions
if (walk_join_conditions(
m_table_nest,
[&](Item **expr_p) mutable -> bool {
subqueries.m_location =
Item::Collect_scalar_subquery_info::L_JOIN_COND;
if ((*expr_p)->has_subquery() &&
(*expr_p)->walk(&Item::collect_scalar_subqueries,
enum_walk::PREFIX | enum_walk::POSTFIX,
pointer_cast<uchar *>(&subqueries)))
return true; /* purecov: inspected */
return false;
},
&subqueries))
return true; /* purecov: inspected */
subqueries.m_location = Item::Collect_scalar_subquery_info::L_WHERE;
Item **where_expr_p = &m_where_cond;
if (*where_expr_p != nullptr && (*where_expr_p)->has_subquery()) {
if ((*where_expr_p)
->walk(&Item::collect_scalar_subqueries,
enum_walk::PREFIX | enum_walk::POSTFIX,
pointer_cast<uchar *>(&subqueries)))
return true; /* purecov: inspected */
}
subqueries.m_location =
Item_singlerow_subselect::Collect_scalar_subquery_info::L_SELECT;
for (Item *select_expr : visible_fields()) {
if (select_expr->has_subquery() &&
select_expr->walk(&Item::collect_scalar_subqueries,
enum_walk::PREFIX | enum_walk::POSTFIX,
pointer_cast<uchar *>(&subqueries)))
return true; /* purecov: inspected */
}
subqueries.m_location = Item::Collect_scalar_subquery_info::L_HAVING;
Item **having_expr_p = &m_having_cond;
if (*having_expr_p != nullptr && (*having_expr_p)->has_subquery()) {
if ((*having_expr_p)
->walk(&Item::collect_scalar_subqueries,
enum_walk::PREFIX | enum_walk::POSTFIX,
pointer_cast<uchar *>(&subqueries)))
return true; /* purecov: inspected */
}
/*
Loop through eligible subqueries and see if we need the extra transform of
implicit grouping into a separate derived table before we can
transform the scalar subqueries to more derived tables. But we
cannot do this if we have a HAVING expression which references or contains
a subquery.
In that case, we throw in the towel and don't do any transformations. E.g.
1. SELECT SUM(a), (SELECT SUM(b) FROM t3) scalar
FROM t1
HAVING SUM(a) > scalar;
2. SELECT MAX(a)
FROM t1
WHERE FALSE
HAVING (SELECT MIN(a) FROM t1) > 0;
TODO: we could solve this by not moving the HAVING condition into the derived
table, but instead letting it remain in the transformed block as a WHERE
predicate, e.g. in the case of example 1:
SELECT derived0.summ, derived1.scalar
FROM (SELECT SUM(a) AS summ FROM t1) AS derived0
LEFT JOIN
(SELECT SUM(b) AS scalar FROM t3) AS derived1
ON TRUE
WHERE derived0.sum > derived1.scalar;
but this is not yet done.
*/
if (is_implicitly_grouped()) {
bool need_new_outer = false;
for (auto subquery : subqueries.m_list) {
auto *subq = subquery.item;
if (!query_block_contains_subquery(this, subq->unit)) continue;
// Possibly contradicting requirements
// (1) Subquery is in SELECT list: new_outer
// (2) No new outer possible if HAVING contains subquery
if (subquery.m_location & Item::Collect_scalar_subquery_info::L_SELECT) {
need_new_outer = true;
}
if (subquery.m_location & Item::Collect_scalar_subquery_info::L_HAVING)
return false;
}
if (need_new_outer) {
/*
In this case, the default transform with a single new derived table and
a LEFT OUTER JOIN isn't always correct - we need to first move the
aggregated query to a new derived subquery before we can transform the
scalar subqueries to other derived tables.
*/
bool break_off = false;
if (transform_grouped_to_derived(thd, &break_off)) return true;
if (break_off) return false; // skip transformation
}
}
/*
Loop through eligible subqueries and transform them to derived tables
and replace occurrences in expression trees with a field of the relevant
derived table.
*/
for (auto subquery : subqueries.m_list) {
Item_singlerow_subselect *const subq = subquery.item;
Query_expression *const subs_query_expression = subq->unit;
/*
[1] A reference to a scalar subquery from another query expression can
happen. We can't transform it here, but it may be replaced from
another query block.
[2] A constant scalar subquery will be evaluated at prepare time
*/
if (!query_block_contains_subquery(this, subs_query_expression) || // [1]
(subq->const_item() && subs_query_expression->is_optimized())) // [2]
continue;
Table_ref *tl;
// Do we need a run-time cardinality check?
bool needs_cardinality_check = !subquery.m_implicitly_grouped_and_no_union;
Item *lifted_where = nullptr;
if (subquery.m_correlation_map != 0) {
// We have a correlated subquery. Check if we can handle it or not (only
// applicable for subqueries without set operations)
if (!subs_query_expression->is_set_operation()) {
if (subs_query_expression->first_query_block()
->supported_correlated_scalar_subquery(thd, &subquery,
&lifted_where))
return true;
if (lifted_where == nullptr) continue;
} else
continue;
// Since we have a correlated subquery, we will use GROUP BY to
// materialize so, we do not expect a single row result set. For
// correlated scalar subquery, we use another run-time check.
needs_cardinality_check = false;
}
// Create a derived table for the subquery and nest it. If we found the
// subquery outside of a join condition, we simply nest it at the end
// with a LEFT OUTER .. ON TRUE, e.g.
//
// SELECT (SELECT COUNT(a) FROM t2) + a FROM t1;
// ->
// SELECT derived.cnt + t1.a FROM
// t1 LEFT OUTER JOIN
// (select COUNT(a) AS cnt FROM t2) AS derived
// ON TRUE;
//
// If we have a subquery inside a join condition we nest it after the
// outer table:
//
// SELECT * FROM t1 LEFT JOIN
// t2
// ON (SELECT COUNT(a) AS cnt FROM t2) = t1.a;
// ->
// SELECT * FROM t1 LEFT JOIN
// (SELECT COUNT(t2.a) AS cnt
// FROM t2) derived_1_0
// ON(TRUE) LEFT JOIN
// t2
// ON derived_1_0.cnt = t1.a
//
if (transform_subquery_to_derived(thd, &tl, subs_query_expression, subq,
/*use_inner_join=*/false,
needs_cardinality_check,
subquery.m_join_condition, lifted_where))
return true;
/*
Replace the subquery with a field in the materialized tmp table
in WHERE, JOIN conditions, HAVING clause or SELECT expressions (could be
optimized by keeping track in which expression the subquery was found)
*/
// Replace in WHERE clause?
if (subquery.m_location & Item::Collect_scalar_subquery_info::L_WHERE) {
if (*where_expr_p != nullptr &&
replace_subquery_in_expr(thd, &subquery, tl, where_expr_p))
return true; /* purecov: inspected */
}
// Replace in join conditions?
if (subquery.m_location & Item::Collect_scalar_subquery_info::L_JOIN_COND) {
if (walk_join_conditions(
m_table_nest,
[&](Item **expr_p) mutable -> bool {
subqueries.m_location =
Item::Collect_scalar_subquery_info::L_JOIN_COND;
if (*expr_p != nullptr &&
replace_subquery_in_expr(thd, &subquery, tl, expr_p))
return true; /* purecov: inspected */
return false;
},
&subqueries))
return true; /* purecov: inspected */
}
size_t old_size;
do {
old_size = fields.size();
for (Item *&select_expr : fields) {
// At this time, expression could be wrapped in a rollup group
// wrapper. It is the inner item of the rollup group item that
// gets replaced. We take care to retain the rollup wrappers.
Item *prev_value = unwrap_rollup_group(select_expr);
if (replace_subquery_in_expr(thd, &subquery, tl, &select_expr))
return true;
Item *unwrapped_select_expr = unwrap_rollup_group(select_expr);
if (unwrapped_select_expr != prev_value) {
replace_referenced_item(prev_value, unwrapped_select_expr);
}
if (fields.size() != old_size) {
// The (implicit) iterator over fields has been invalidated,
// probably due to a call to split_sum_func(), so we cannot
// iterate any further. The simplest fix is just restarting
// the loop, as it is idempotent.
break;
}
}
} while (old_size != fields.size());
// Replace in HAVING clause?
if (subquery.m_location & (Item::Collect_scalar_subquery_info::L_HAVING)) {
if (*having_expr_p != nullptr &&
replace_subquery_in_expr(thd, &subquery, tl, having_expr_p))
return true; /* purecov: inspected */
}
// A subquery in the SELECT list can be present in the GROUP BY clause
// so we potentially need to replace there too.
for (ORDER *ord = group_list.first; ord != nullptr; ord = ord->next) {
if (replace_subquery_in_expr(thd, &subquery, tl, ord->item)) return true;
}
OPT_TRACE_TRANSFORM(
&thd->opt_trace, trace_wrapper, trace_object,
tl->derived_query_expression()->first_query_block()->select_number,
"scalar subquery", "derived table");
opt_trace_print_expanded_query(thd, this, &trace_object);
}
return false;
}
bool Query_block::lift_fulltext_from_having_to_select_list(THD *thd) {
Item *having_cond = m_having_cond;
if (having_cond == nullptr) return false;
Prealloced_array<Item **, 8> refs_to_fulltext(PSI_NOT_INSTRUMENTED);
// Add all full-text search calls as hidden elements of the SELECT list, if
// they are not already there.
if (WalkItem(having_cond, enum_walk::PREFIX | enum_walk::POSTFIX,
NonAggregatedFullTextSearchVisitor(
[this, thd, &refs_to_fulltext](Item_func_match *item) {
const auto it = find(fields.begin(), fields.end(), item);
Item **ref =
it != fields.end() ? &*it : add_hidden_item(item);
// The above is sufficient for the hypergraph optimizer.
// The old optimizer additionally needs to have references
// from the HAVING clause to the corresponding elements in
// the SELECT list, so that it knows that it should read
// results from a temporary table instead of evaluating the
// expressions if they have been materialized. So we wrap
// these items in an Item_ref later.
if (!thd->lex->using_hypergraph_optimizer()) {
return refs_to_fulltext.push_back(ref);
}
return false;
}))) {
return true;
}
// Add Item_ref indirection in the old optimizer.
for (Item **item_to_replace : refs_to_fulltext) {
assert(!thd->lex->using_hypergraph_optimizer());
having_cond = TransformItem(having_cond, [&](Item *sub_item) -> Item * {
if (sub_item == *item_to_replace) {
return new (thd->mem_root)
Item_ref(&context, item_to_replace, "<fulltext>");
} else {
return sub_item;
}
});
if (having_cond == nullptr) return true;
}
// The MATCH calls are always wrapped in other functions, since non-boolean
// predicates in HAVING are made complete. The topmost Item should therefore
// never be changed in the above calls to TransformItem().
assert(having_cond == m_having_cond);
return false;
}
/**
@} (end of group Query_Resolver)
*/
|