1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
|
/* Copyright (c) 2011, 2025, Oracle and/or its affiliates.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is designed to work with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have either included with
the program or referenced in the documentation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
/**
@file sql/sql_tmp_table.cc
Temporary tables implementation.
*/
#include "sql/sql_tmp_table.h"
#include <fcntl.h>
#include <stddef.h>
#include <stdio.h>
#include <algorithm>
#include <cstring>
#include <new>
#include <utility>
#include <vector>
#include "field_types.h"
#include "lex_string.h"
#include "m_ctype.h"
#include "m_string.h"
#include "my_alloc.h"
#include "my_bitmap.h"
#include "my_compiler.h"
#include "my_dbug.h"
#include "my_pointer_arithmetic.h"
#include "my_sys.h"
#include "mysql/plugin.h"
#include "mysql/udf_registration_types.h"
#include "mysql_com.h"
#include "mysqld_error.h"
#include "scope_guard.h"
#include "sql/create_field.h"
#include "sql/current_thd.h"
#include "sql/dd/types/column.h"
#include "sql/debug_sync.h" // DEBUG_SYNC
#include "sql/field.h"
#include "sql/filesort.h" // filesort_free_buffers
#include "sql/handler.h"
#include "sql/item_func.h" // Item_func
#include "sql/item_sum.h" // Item_sum
#include "sql/key.h"
#include "sql/mem_root_allocator.h"
#include "sql/mem_root_array.h" // Mem_root_array
#include "sql/mysqld.h" // heap_hton
#include "sql/opt_trace.h" // Opt_trace_object
#include "sql/opt_trace_context.h" // Opt_trace_context
#include "sql/psi_memory_key.h"
#include "sql/query_options.h"
#include "sql/range_optimizer/range_optimizer.h"
#include "sql/sql_base.h" // free_io_cache
#include "sql/sql_class.h" // THD
#include "sql/sql_const.h"
#include "sql/sql_executor.h" // SJ_TMP_TABLE
#include "sql/sql_lex.h"
#include "sql/sql_list.h"
#include "sql/sql_opt_exec_shared.h"
#include "sql/sql_optimizer.h"
#include "sql/sql_plugin.h" // plugin_unlock
#include "sql/sql_plugin_ref.h"
#include "sql/sql_select.h"
#include "sql/system_variables.h"
#include "sql/table.h"
#include "sql/temp_table_param.h"
#include "sql/thd_raii.h"
#include "sql/thr_malloc.h"
#include "sql/window.h"
#include "template_utils.h"
using std::max;
using std::min;
static bool alloc_record_buffers(THD *thd, TABLE *table);
/**
Lifecycle management of internal temporary tables.
An internal temporary table is represented by a TABLE_SHARE object.
The interface to an internal temporary table is through one or more TABLE
objects, of which at most one TABLE object is a writer object, the remaining
TABLE objects are reader objects. Each TABLE object points to the TABLE_SHARE.
TABLE_SHARE::ref_count counts the number of TABLE objects that points to it.
The TABLE, TABLE_SHARE and associated objects (e.g Field objects) are
created in a dedicated mem_root. This mem_root is deleted when the TABLE_SHARE
object is deleted.
Initially, an internal temporary table is created with one TABLE_SHARE
object and one TABLE object. The table is created with no file handler
(storage engine) and in the "deleted" state. Later, more TABLE objects may
be created against the table, and TABLE_SHARE::ref_count is increased.
An internal temporary table may be instantiated and used multiple times,
typically once per execution of a statement.
To instantiate a table, call instantiate_tmp_table(). This function will
first assign and lock a storage engine using setup_tmp_table_handler(). The
locked engine is assigned to TABLE_SHARE::db_plugin and the file handler is
assigned to TABLE::file. After this, calling TABLE::has_storage_handler()
reports true.
After this, the table contents is created by calling TABLE::file->create()
and the table is opened by calling open_tmp_table(), which itself calls
TABLE::file->ha_open(), and sets the TABLE::created flag.
Thus, opening a temporary table is a two-stage operation:
1. assign and lock a storage engine, and
2. create the table contents.
Since a temporary table may be in any of the two stages, we use two
counter members in the TABLE_SHARE to count the number of TABLEs in each
of the stages: tmp_handler_count and tmp_open_count.
tmp_handler_count is incremented in setup_tmp_table_handler().
tmp_open_count is incremented in open_tmp_table().
To open an already instantiated table, assign a storage handler by calling
setup_tmp_table_handler(), then call open_tmp_table() which will
again increment TABLE_SHARE::tmp_open_count and set TABLE::created.
Insert, update, delete and read rows using the active TABLE handlers.
After use, close all active TABLE handlers by calling close_tmp_table().
For simplicity, we may also call close_tmp_table() on a non-active TABLE,
as it will check whether a storage handler has been assigned.
If the table is created, TABLE_SHARE::tmp_open_count is decremented.
If there are no remaining active TABLE objects, delete the table contents
by calling TABLE::file->ha_drop_table(), otherwise close it by calling
TABLE::file->ha_close().
Set status of the TABLE to deleted and delete the storage handler.
If there are no remaining active tables and the storage engine is still
locked, unlock the plugin and disassociate it from the TABLE_SHARE object,
and decrement TABLE_SHARE::tmp_handler_count.
After the final instantiation of an internal temporary table, call
free_tmp_table() for all associated TABLE objects.
free_tmp_table() can only be called on a non-instantiated temporary table
(but handlers may be assigned for other TABLE objects to the same table)..
It will decrement TABLE_SHARE::ref_count and the final call will also
remove the temporary table's mem_root object.
*/
/****************************************************************************
Create internal temporary table
****************************************************************************/
/**
Create field for temporary table from given field.
@param thd Thread handler
@param org_field Field from which new field will be created
@param name New field name
@param table Temporary table
@param item If item != NULL then fill_record() will update
the record in the original table.
If item == NULL then fill_record() will update
the temporary table
@retval
NULL on error
@retval
new_created field
*/
Field *create_tmp_field_from_field(THD *thd, const Field *org_field,
const char *name, TABLE *table,
Item_field *item) {
Field *new_field = org_field->new_field(thd->mem_root, table);
if (new_field == nullptr) return nullptr;
new_field->init(table);
new_field->field_name = name;
if (org_field->is_flag_set(NO_DEFAULT_VALUE_FLAG))
new_field->set_flag(NO_DEFAULT_VALUE_FLAG);
if (org_field->is_nullable() || org_field->table->is_nullable() ||
(item && item->is_nullable()))
new_field->clear_flag(NOT_NULL_FLAG); // Because of outer join
if (org_field->type() == FIELD_TYPE_DOUBLE)
down_cast<Field_double *>(new_field)->not_fixed = true;
/*
This field will belong to an internal temporary table, it cannot be
generated.
*/
new_field->gcol_info = nullptr;
new_field->stored_in_db = true;
/*
Invisible column is explicitly referred in the column list. Mark it as
VISIBLE column in the internal temporary table.
*/
if (new_field->is_hidden_by_user())
new_field->set_hidden(dd::Column::enum_hidden_type::HT_VISIBLE);
return new_field;
}
/**
Create field for temporary table using type of given item.
@param item Item to create a field for
@param table Temporary table
@retval
0 on error
@retval
new_created field
*/
static Field *create_tmp_field_from_item(Item *item, TABLE *table) {
bool maybe_null = item->is_nullable();
Field *new_field = nullptr;
switch (item->result_type()) {
case REAL_RESULT:
if (item->data_type() == MYSQL_TYPE_FLOAT) {
new_field = new (*THR_MALLOC)
Field_float(item->max_length, maybe_null, item->item_name.ptr(),
item->decimals, false);
} else {
new_field = new (*THR_MALLOC)
Field_double(item->max_length, maybe_null, item->item_name.ptr(),
item->decimals, false, true);
}
break;
case INT_RESULT:
/*
Select an integer type with the minimal fit precision.
MY_INT32_NUM_DECIMAL_DIGITS is sign inclusive, don't consider the sign.
Values with MY_INT32_NUM_DECIMAL_DIGITS digits may or may not fit into
Field_long : make them Field_longlong.
*/
if (item->max_length >= (MY_INT32_NUM_DECIMAL_DIGITS - 1))
new_field = new (*THR_MALLOC)
Field_longlong(item->max_length, maybe_null, item->item_name.ptr(),
item->unsigned_flag);
else
new_field = new (*THR_MALLOC)
Field_long(item->max_length, maybe_null, item->item_name.ptr(),
item->unsigned_flag);
break;
case STRING_RESULT:
assert(item->collation.collation);
/*
DATE/TIME, GEOMETRY and JSON fields have STRING_RESULT result type.
To preserve type they needed to be handled separately.
*/
if (item->is_temporal() || item->data_type() == MYSQL_TYPE_GEOMETRY ||
item->data_type() == MYSQL_TYPE_JSON) {
new_field = item->tmp_table_field_from_field_type(table, true);
} else {
new_field = item->make_string_field(table);
}
new_field->set_derivation(item->collation.derivation);
break;
case DECIMAL_RESULT:
new_field = Field_new_decimal::create_from_item(item);
break;
case ROW_RESULT:
default:
// This case should never be chosen
assert(0);
new_field = nullptr;
break;
}
if (new_field == nullptr) return nullptr;
new_field->init(table);
if (item->type() == Item::NULL_ITEM)
new_field->is_created_from_null_item = true;
return new_field;
}
/**
Create field for information schema table.
@param table Temporary table
@param item Item to create a field for
@retval
0 on error
@retval
new_created field
*/
static Field *create_tmp_field_for_schema(const Item *item, TABLE *table) {
if (item->data_type() == MYSQL_TYPE_VARCHAR) {
Field *field;
if (item->max_length > MAX_FIELD_VARCHARLENGTH)
field = new (*THR_MALLOC)
Field_blob(item->max_length, item->is_nullable(),
item->item_name.ptr(), item->collation.collation, false);
else {
field = new (*THR_MALLOC) Field_varstring(
item->max_length, item->is_nullable(), item->item_name.ptr(),
table->s, item->collation.collation);
table->s->db_create_options |= HA_OPTION_PACK_RECORD;
}
if (field) field->init(table);
return field;
}
return item->tmp_table_field_from_field_type(table, false);
}
/**
Create field for temporary table.
@param thd Thread handler
@param table Temporary table
@param item Item to create a field for
@param type Type of item (normally item->type)
@param copy_func If set and item is a function, store copy of item
in this array
@param from_field if field will be created using other field as example,
pointer example field will be written here
@param default_field If field has a default value field, store it here
@param group 1 if we are going to do a relative group by on result
@param modify_item 1 if item->result_field should point to new item.
This is relevant for how fill_record() is going to
work:
If modify_item is 1 then fill_record() will update
the record in the original table.
If modify_item is 0 then fill_record() will update
the temporary table
@param table_cant_handle_bit_fields if table can't handle bit-fields and
bit-fields shall be converted to long @see
Temp_table_param::bit_fields_as_long
@param make_copy_field if true, a pointer of the result field should be stored
in from_field, otherwise the item should be wrapped in Func_ptr and stored in
copy_func
@retval NULL On error.
@retval new_created field
*/
Field *create_tmp_field(THD *thd, TABLE *table, Item *item, Item::Type type,
Func_ptr_array *copy_func, Field **from_field,
Field **default_field, bool group, bool modify_item,
bool table_cant_handle_bit_fields,
bool make_copy_field) {
DBUG_TRACE;
Field *result = nullptr;
Item::Type orig_type = type;
Item *orig_item = nullptr;
// If we are optimizing twice (due to being in the hypergraph optimizer
// and consider materialized subqueries), we might have Item_cache nodes
// that we need to ignore.
if (type == Item::CACHE_ITEM) {
item = down_cast<Item_cache *>(item)->get_example();
type = item->type();
}
if (type != Item::FIELD_ITEM &&
item->real_item()->type() == Item::FIELD_ITEM) {
orig_item = item;
item = item->real_item();
type = Item::FIELD_ITEM;
}
bool is_wf =
type == Item::SUM_FUNC_ITEM && item->real_item()->m_is_window_function;
switch (type) {
case Item::FIELD_ITEM:
case Item::DEFAULT_VALUE_ITEM:
case Item::TRIGGER_FIELD_ITEM: {
Item_field *item_field = down_cast<Item_field *>(item);
/*
If item have to be able to store NULLs but underlaid field can't do it,
create_tmp_field_from_field() can't be used for tmp field creation.
*/
if (item_field->is_nullable() &&
!(item_field->field->is_nullable() ||
item_field->field->table->is_nullable())) {
result = create_tmp_field_from_item(item_field, table);
} else if (table_cant_handle_bit_fields &&
item_field->field->type() == MYSQL_TYPE_BIT) {
result = create_tmp_field_from_item(item_field, table);
/*
If the item is a function, a pointer to the item is stored in
copy_func. We separate fields from functions by checking if the
item is a result field item.
*/
if (item->is_result_field()) {
copy_func->push_back(Func_ptr(item, result));
}
} else {
result = create_tmp_field_from_field(
thd, item_field->field,
orig_item ? orig_item->item_name.ptr()
: item_field->item_name.ptr(),
table,
(modify_item && orig_type != Item::REF_ITEM) ? item_field
: nullptr);
}
if (result == nullptr) return nullptr;
if (modify_item) {
if (orig_type == Item::REF_ITEM)
orig_item->set_result_field(result);
else
item_field->set_result_field(result);
}
/*
Fields that are used as arguments to the DEFAULT() function already have
their data pointers set to the default value during name resolution. See
Item_default_value::fix_fields.
*/
if (orig_type != Item::DEFAULT_VALUE_ITEM &&
item_field->field->eq_def(result))
*default_field = item_field->field;
*from_field = item_field->field;
break;
}
[[fallthrough]];
case Item::FUNC_ITEM:
if (down_cast<Item_func *>(item)->functype() == Item_func::FUNC_SP) {
Item_func_sp *item_func_sp = down_cast<Item_func_sp *>(item);
Field *sp_result_field = item_func_sp->get_sp_result_field();
if (make_copy_field) {
assert(item_func_sp->get_result_field());
*from_field = item_func_sp->get_result_field();
}
result = create_tmp_field_from_field(thd, sp_result_field,
item_func_sp->item_name.ptr(),
table, nullptr);
if (!result) break;
if (modify_item) item_func_sp->set_result_field(result);
if (!make_copy_field) {
copy_func->push_back(Func_ptr(item, result));
}
break;
}
[[fallthrough]];
case Item::COND_ITEM:
case Item::FIELD_AVG_ITEM:
case Item::FIELD_BIT_ITEM:
case Item::FIELD_STD_ITEM:
case Item::FIELD_VARIANCE_ITEM:
case Item::SUBSELECT_ITEM:
/* The following can only happen with 'CREATE TABLE ... SELECT' */
case Item::PROC_ITEM:
case Item::INT_ITEM:
case Item::REAL_ITEM:
case Item::DECIMAL_ITEM:
case Item::STRING_ITEM:
case Item::REF_ITEM:
case Item::NULL_ITEM:
case Item::VARBIN_ITEM:
case Item::PARAM_ITEM:
case Item::SUM_FUNC_ITEM:
if (type == Item::SUM_FUNC_ITEM && !is_wf) {
Item_sum *item_sum = down_cast<Item_sum *>(item);
result = item_sum->create_tmp_field(group, table);
if (!result) my_error(ER_OUT_OF_RESOURCES, MYF(ME_FATALERROR));
} else {
if (make_copy_field) {
*from_field = item->get_tmp_table_field();
assert(*from_field);
}
result = create_tmp_field_from_item(item, table);
if (result == nullptr) return nullptr;
if (modify_item) item->set_result_field(result);
if (copy_func && !make_copy_field && item->is_result_field()) {
copy_func->push_back(Func_ptr(item, result));
}
}
break;
case Item::TYPE_HOLDER:
case Item::VALUES_COLUMN_ITEM:
result = down_cast<Item_aggregate_type *>(item)->make_field_by_type(
table, thd->is_strict_mode());
break;
default: // Doesn't have to be stored
assert(false);
break;
}
return result;
}
/*
Set up column usage bitmaps for a temporary table
IMPLEMENTATION
For temporary tables, we need one bitmap with all columns set and
a tmp_set bitmap to be used by things like filesort.
*/
static void setup_tmp_table_column_bitmaps(TABLE *table, uchar *bitmaps) {
uint field_count = table->s->fields;
bitmap_init(&table->def_read_set, (my_bitmap_map *)bitmaps, field_count);
bitmap_init(&table->tmp_set,
(my_bitmap_map *)(bitmaps + bitmap_buffer_size(field_count)),
field_count);
bitmap_init(&table->cond_set,
(my_bitmap_map *)(bitmaps + bitmap_buffer_size(field_count) * 2),
field_count);
// Establish the other sets as copies of read_set. Temporary tables are
// generally created with all relevant columns, so all fields can be marked in
// read_set. (An exception to this is temporary tables for materialized
// derived tables, which are instantiated with all the columns of the derived
// table, even if they are not needed in the outer query block. Currently, all
// columns get marked as read here, even those that are not required.)
table->read_set_internal = table->def_read_set;
table->def_write_set = table->def_read_set;
table->s->all_set = table->def_read_set;
bitmap_set_all(&table->s->all_set);
table->default_column_bitmaps();
table->s->column_bitmap_size = bitmap_buffer_size(field_count);
}
/**
Cache for the storage engine properties for the alternative temporary table
storage engines. This cache is initialized during startup of the server by
asking the storage engines for the values properties.
*/
class Cache_temp_engine_properties {
public:
static uint HEAP_MAX_KEY_LENGTH;
static uint TEMPTABLE_MAX_KEY_LENGTH;
static uint INNODB_MAX_KEY_LENGTH;
static uint HEAP_MAX_KEY_PART_LENGTH;
static uint TEMPTABLE_MAX_KEY_PART_LENGTH;
static uint INNODB_MAX_KEY_PART_LENGTH;
static uint HEAP_MAX_KEY_PARTS;
static uint TEMPTABLE_MAX_KEY_PARTS;
static uint INNODB_MAX_KEY_PARTS;
static void init(THD *thd);
};
void Cache_temp_engine_properties::init(THD *thd) {
handler *handler;
plugin_ref db_plugin;
// Cache HEAP engine's
db_plugin = ha_lock_engine(nullptr, heap_hton);
handler =
get_new_handler((TABLE_SHARE *)nullptr, false, thd->mem_root, heap_hton);
HEAP_MAX_KEY_LENGTH = handler->max_key_length();
HEAP_MAX_KEY_PART_LENGTH = handler->max_key_part_length(nullptr);
HEAP_MAX_KEY_PARTS = handler->max_key_parts();
destroy(handler);
plugin_unlock(nullptr, db_plugin);
// Cache TempTable engine's
db_plugin = ha_lock_engine(nullptr, temptable_hton);
handler = get_new_handler((TABLE_SHARE *)nullptr, false, thd->mem_root,
temptable_hton);
TEMPTABLE_MAX_KEY_LENGTH = handler->max_key_length();
TEMPTABLE_MAX_KEY_PART_LENGTH = handler->max_key_part_length(nullptr);
TEMPTABLE_MAX_KEY_PARTS = handler->max_key_parts();
destroy(handler);
plugin_unlock(nullptr, db_plugin);
// Cache INNODB engine's
db_plugin = ha_lock_engine(nullptr, innodb_hton);
handler = get_new_handler((TABLE_SHARE *)nullptr, false, thd->mem_root,
innodb_hton);
INNODB_MAX_KEY_LENGTH = handler->max_key_length();
/*
For ha_innobase::max_supported_key_part_length(), the returned value
is constant. However, in innodb itself, the limitation
on key_part length is up to the ROW_FORMAT. In current trunk, internal
temp table's ROW_FORMAT is DYNAMIC. In order to keep the consistence
between server and innodb, here we hard-coded 3072 as the maximum of
key_part length supported by innodb until bug#20629014 is fixed.
TODO: Remove the hard-code here after bug#20629014 is fixed.
*/
INNODB_MAX_KEY_PART_LENGTH = 3072;
INNODB_MAX_KEY_PARTS = handler->max_key_parts();
destroy(handler);
plugin_unlock(nullptr, db_plugin);
}
uint Cache_temp_engine_properties::HEAP_MAX_KEY_LENGTH = 0;
uint Cache_temp_engine_properties::TEMPTABLE_MAX_KEY_LENGTH = 0;
uint Cache_temp_engine_properties::INNODB_MAX_KEY_LENGTH = 0;
uint Cache_temp_engine_properties::HEAP_MAX_KEY_PART_LENGTH = 0;
uint Cache_temp_engine_properties::TEMPTABLE_MAX_KEY_PART_LENGTH = 0;
uint Cache_temp_engine_properties::INNODB_MAX_KEY_PART_LENGTH = 0;
uint Cache_temp_engine_properties::HEAP_MAX_KEY_PARTS = 0;
uint Cache_temp_engine_properties::TEMPTABLE_MAX_KEY_PARTS = 0;
uint Cache_temp_engine_properties::INNODB_MAX_KEY_PARTS = 0;
/**
Initialize the storage engine properties for the alternative temporary table
storage engines.
*/
void init_cache_tmp_engine_properties() {
assert(!current_thd);
THD *thd = new THD();
thd->thread_stack = pointer_cast<char *>(&thd);
thd->store_globals();
Cache_temp_engine_properties::init(thd);
delete thd;
}
/**
Get the minimum of max_key_length/part_length/parts.
The minimum is between HEAP engine and internal_tmp_disk_storage_engine.
@param[out] max_key_length Minimum of max_key_length
@param[out] max_key_part_length Minimum of max_key_part_length
@param[out] max_key_parts Minimum of max_key_parts
*/
void get_max_key_and_part_length(uint *max_key_length,
uint *max_key_part_length,
uint *max_key_parts) {
// Make sure these cached properties are initialized.
assert(Cache_temp_engine_properties::HEAP_MAX_KEY_LENGTH);
*max_key_length =
std::min(Cache_temp_engine_properties::HEAP_MAX_KEY_LENGTH,
Cache_temp_engine_properties::INNODB_MAX_KEY_LENGTH);
*max_key_part_length =
std::min(Cache_temp_engine_properties::HEAP_MAX_KEY_PART_LENGTH,
Cache_temp_engine_properties::INNODB_MAX_KEY_PART_LENGTH);
*max_key_parts = std::min(Cache_temp_engine_properties::HEAP_MAX_KEY_PARTS,
Cache_temp_engine_properties::INNODB_MAX_KEY_PARTS);
}
/**
Create a temporary name for one field if the field_name is empty.
@param thd Thread handle
@param item Item to name the field after
*/
static const char *create_tmp_table_field_tmp_name(THD *thd, Item *item) {
StringBuffer<STRING_BUFFER_USUAL_SIZE> field_name;
const ulonglong save_bits = thd->variables.option_bits;
thd->variables.option_bits &= ~OPTION_QUOTE_SHOW_CREATE;
item->print(
thd, &field_name,
enum_query_type(QT_NO_DEFAULT_DB | QT_SUBSELECT_AS_ONLY_SELECT_NUMBER));
thd->variables.option_bits = save_bits;
return thd->mem_strdup(field_name.c_ptr_safe());
}
/**
Helper function for create_tmp_table().
Insert a field at the head of the hidden field area.
@param table Temporary table
@param default_field Default value array pointer
@param from_field Original field array pointer
@param blob_field Array pointer to record fields index of blob type
@param field The registered hidden field
*/
static void register_hidden_field(TABLE *table, Field **default_field,
Field **from_field, uint *blob_field,
Field *field) {
uint i;
Field **tmp_field = table->field;
/* Increase all of registered fields index */
for (i = 0; i < table->s->fields; i++)
tmp_field[i]->set_field_index(tmp_field[i]->field_index() + 1);
// Increase the field_index of visible blob field
for (i = 0; i < table->s->blob_fields; i++) blob_field[i]++;
// Insert field
table->field[-1] = field;
default_field[-1] = nullptr;
from_field[-1] = nullptr;
field->table = table;
field->set_field_index(0);
// Keep the field from being expanded by SELECT *.
field->set_hidden(dd::Column::enum_hidden_type::HT_HIDDEN_SQL);
}
/**
Helper function which evaluates correct TABLE_SHARE::real_row_type
for the temporary table.
*/
static void set_real_row_type(TABLE *table) {
HA_CREATE_INFO create_info;
create_info.row_type = table->s->row_type;
create_info.options |=
HA_LEX_CREATE_TMP_TABLE | HA_LEX_CREATE_INTERNAL_TMP_TABLE;
create_info.table_options = table->s->db_create_options;
table->s->real_row_type = table->file->get_real_row_type(&create_info);
}
/**
Moves to the end of the 'copy_func' array the elements which contain a
reference to an expression of the SELECT list of 'query_block'.
@param query_block query block to search in
@param[in,out] copy_func array to sort
*/
static void sort_copy_func(const Query_block *query_block,
Func_ptr_array *copy_func) {
/*
In the query_block->fields list, there are hidden elements first, then
non-hidden. Non-hidden are those of the SELECT list. Hidden ones are:
(a) those of GROUP BY, HAVING, ORDER BY
(b) those which have been extracted from higher-level elements (of the
SELECT, GROUP BY, etc) by split_sum_func() (when aggregates are
involved).
Note that the clauses in (a) are allowed to reference a non-hidden
expression through an alias (e.g. "SELECT a+2 AS x GROUP BY x+3"). The
clauses in (b) can reference non-hidden expressions without aliases if they
have been generated in a query transformation (for example when transforming
an IN subquery to a correlated EXISTS subquery ("(x, y) IN (SELECT expr1,
expr2 ...)" -> "EXISTS (SELECT * ... HAVING x = expr1 AND y = expr2 ...").
Let's go through the process of writing to the tmp table
(MaterializeIterator).
(1) we switch to the REF_SLICE used to read from that tmp table
(2) we (copy_fields()) copy some columns from the
output of the previous step of execution (e.g. the join's output) to the
tmp table
(3) Next is copy_funcs(). It is meant to evaluate expressions and
store their values into the tmp table.
Because we advanced the REF_SLICE, when copy_funcs() evaluates an
expression which uses Item_ref, that Item_ref may point to a column of
the tmp table. It is thus important that this column has been filled
already. So the order of evaluation of expressions by copy_funcs() must
respect "dependencies".
It is incorrect to evaluate elements of (a) first if they refer to
non-hidden elements through aliases. It is incorrect to evaluate elements of
(b) first if they refer to non-hidden elements. So, we partition the
elements below, moving to the end the ones which reference other expressions
in the same query block. We use a stable partitioning
(std::stable_partition), to avoid disturbing any dependency already
reflected in the order.
A simpler and more robust solution would be to break the design that
hidden elements are always first in Query_block::fields: references
using aliases (in GROUP BY, HAVING, ORDER BY) would be added to
fields last (after the SELECT list); an inner element (split by
split_sum_func) would be added right before its containing element. That
would reflect dependencies naturally. But it is hard to implement, as
some code relies on the fact that non-hidden elements are last.
You may wonder why we need a (relatively complex) sort, instead of just
putting all the hidden elements last: With window functions,
it's possible to have a hidden element be an aggregate (produced by
split_sum_func) _and_ be materialized (into a further tmp table),
so we have to leave it at the beginning of the copy_func array.
Except if it contains an alias to an expression
of the SELECT list: in that case, the sorting will move it to the end,
but will also move the aliased expression, and their relative order
will remain unchanged thanks to stable_partition, so their evaluation
will be in the right order.
So we walk each item to copy, put the ones that don't reference other
expressions in the query block first, and put those that reference other
expressions last.
*/
const auto without_reference_to_select_expr =
[query_block](const Func_ptr &ptr) {
Item *const item_to_copy = ptr.func();
const bool check_aliases_only = !item_to_copy->created_by_in2exists();
return !WalkItem(
item_to_copy, enum_walk::SUBQUERY_PREFIX,
[query_block, check_aliases_only](const Item *item) {
if (item->type() != Item::REF_ITEM) {
return false; // Check references only.
}
const auto item_ref = down_cast<const Item_ref *>(item);
// Normally only check references via aliases, but also check
// non-alias references for conditions synthesized by query
// transformations. See the comment above for details.
if (check_aliases_only && !item_ref->is_alias_of_expr()) {
return false;
}
if (item_ref->depended_from != nullptr) { // outer reference
return item_ref->depended_from == query_block;
} else {
return item_ref->context->query_block == query_block;
}
});
};
std::stable_partition(copy_func->begin(), copy_func->end(),
without_reference_to_select_expr);
}
/**
Helper function for create_tmp_table_* family for setting tmp table fields
to their place in record buffer
@param field field to set
@param pos field's position in table's record buffer
@param null_flags beginning of table's null bits buffer
@param null_count field's null bit in null bits buffer
*/
inline void relocate_field(Field *field, uchar *pos, uchar *null_flags,
uint *null_count) {
if (!field->is_flag_set(NOT_NULL_FLAG)) {
field->move_field(pos, null_flags + *null_count / 8,
(uint8)1 << (*null_count & 7));
(*null_count)++;
} else
field->move_field(pos, nullptr, 0);
if (field->type() == MYSQL_TYPE_BIT) {
/* We have to reserve place for extra bits among null bits */
((Field_bit *)field)
->set_bit_ptr(null_flags + *null_count / 8, *null_count & 7);
(*null_count) += (field->field_length & 7);
}
field->reset();
}
/**
Create a temp table according to a field list.
Given field pointers are changed to point at tmp_table for
send_result_set_metadata. The table object is self contained: it's
allocated in its own memory root, as well as Field objects
created for table columns. Those Field objects are common to TABLE and
TABLE_SHARE.
This function will replace Item_sum items in 'fields' list with
corresponding Item_field items, pointing at the fields in the
temporary table, unless save_sum_fields is set to false.
The Item_field objects are created in THD memory root.
@param thd thread handle
@param param a description used as input to create the table
@param fields list of items that will be used to define
column types of the table (also see NOTES)
@param group Group key to use for temporary table, NULL if
none
@param distinct should table rows be distinct
@param save_sum_fields see NOTES
@param select_options
@param rows_limit
@param table_alias possible name of the temporary table that can
be used for name resolving; can be "".
@remark mysql_create_view() checks that views have less than
MAX_FIELDS columns.
@remark We may actually end up with a table without any columns at all.
See comment below: We don't have to store this.
*/
#define STRING_TOTAL_LENGTH_TO_PACK_ROWS 128
#define AVG_STRING_LENGTH_TO_PACK_ROWS 64
#define RATIO_TO_PACK_ROWS 2
TABLE *create_tmp_table(THD *thd, Temp_table_param *param,
const mem_root_deque<Item *> &fields, ORDER *group,
bool distinct, bool save_sum_fields,
ulonglong select_options, ha_rows rows_limit,
const char *table_alias) {
DBUG_TRACE;
if (!param->allow_group_via_temp_table)
group = nullptr; // Can't use group key
if (group != nullptr) distinct = false; // Can't use distinct
for (ORDER *tmp = group; tmp; tmp = tmp->next) {
/*
marker == MARKER_BIT means two things:
- store NULLs in the key, and
- convert BIT fields to 64-bit long, needed because MEMORY tables
can't index BIT fields.
*/
(*tmp->item)->marker = Item::MARKER_BIT;
}
/**
When true, enforces unique constraint (by adding a hidden hash_field and
creating a key over this field) when:
(1) unique key is too long, or
(2) number of key parts in distinct key is too big, or
(3) the caller has requested it.
(4) we have INTERSECT or EXCEPT, i.e. not UNION.
*/
bool unique_constraint_via_hash_field =
param->m_operation != Temp_table_param::TTP_UNION_OR_TABLE;
/*
When loose index scan is employed as access method, it already
computes all groups and the result of all aggregate functions. We
make space for the items of the aggregate function in the list of
functions Temp_table_param::items_to_copy, so that the values of
these items are stored in the temporary table.
*/
uint copy_func_count = param->func_count;
if (param->precomputed_group_by) copy_func_count += param->sum_func_count;
/* Treat sum functions as normal ones when loose index scan is used. */
save_sum_fields |= param->precomputed_group_by;
// 4096 since (sizeof(TABLE) + sizeof(TABLE_SHARE) ~= 3KB)
MEM_ROOT own_root(key_memory_TABLE, 4096);
param->keyinfo = static_cast<KEY *>(own_root.Alloc(sizeof(*param->keyinfo)));
const uint field_count = param->func_count + param->sum_func_count;
try {
param->copy_fields.reserve(field_count);
} catch (std::bad_alloc &) {
return nullptr;
}
TABLE_SHARE *share = new (&own_root) TABLE_SHARE;
TABLE *table = new (&own_root) TABLE;
if (table == nullptr || share == nullptr) return nullptr;
// NOTE: reg_field/default_field/from_field/from_item correspond 1:1 to each
// other, except that reg_field contains an extra nullptr marker at the end.
// (They should have been a struct, but we cannot, since the reg_field
// array ends up in the TABLE object, which expects a flat array.)
// blob_field is a separate array, which indexes into these.
const uint extra_fields = 1 + (param->needs_set_counter() ? 1 : 0);
Field **reg_field =
own_root.ArrayAlloc<Field *>(field_count + extra_fields + 1, nullptr);
Field **default_field =
own_root.ArrayAlloc<Field *>(field_count + extra_fields, nullptr);
Field **from_field =
own_root.ArrayAlloc<Field *>(field_count + extra_fields, nullptr);
Item **from_item =
own_root.ArrayAlloc<Item *>(field_count + extra_fields, nullptr);
uint *blob_field = own_root.ArrayAlloc<uint>(field_count + 2);
if (reg_field == nullptr || default_field == nullptr ||
from_field == nullptr || from_item == nullptr || blob_field == nullptr)
return nullptr;
// Leave the first place(s) to be prepared for hash_field (and counter, if
// needed
reg_field += extra_fields;
default_field += extra_fields;
from_field += extra_fields;
from_item += extra_fields;
table->init_tmp_table(thd, share, &own_root, param->table_charset,
table_alias, reg_field, blob_field, false);
auto free_tmp_table_guard = create_scope_guard([table] {
close_tmp_table(table);
free_tmp_table(table);
});
/*
We will use TABLE_SHARE's MEM_ROOT for all allocations, so TABLE's
MEM_ROOT remains uninitialized.
TABLE_SHARE's MEM_ROOT is a copy of own_root, upon error free_tmp_table()
will free it.
*/
// @todo WL#6570 - might be allocated on THD->mem_root
param->items_to_copy =
new (&share->mem_root) Func_ptr_array(&share->mem_root);
if (param->items_to_copy == nullptr) return nullptr; /* purecov: inspected */
if (param->items_to_copy->reserve(copy_func_count)) return nullptr;
/* Calculate which type of fields we will store in the temporary table */
share->reclength = 0;
ulong string_total_length = 0;
ulong distinct_key_length = 0;
uint null_count = 0;
uint hidden_null_count = 0;
share->blob_fields = 0;
uint group_null_items = 0;
uint string_count = 0;
uint fieldnr = 0;
param->using_outer_summary_function = false;
long hidden_field_count = param->hidden_field_count;
const bool not_all_columns = !(select_options & TMP_TABLE_ALL_COLUMNS);
// Don't call set_result_field() on each item if:
// - we materialize all columns, with no filtering of aggregate functions
// or the likes (TODO: needs documentation with rationale, but probably
// indicates that we are doing derived table materialization, which doesn't
// use result fields), or
// - We are creating a window function's framebuffer table, where the result
// field is already set to the output field and must not be overwritten.
const bool modify_items = not_all_columns && !param->m_window_frame_buffer;
/*
total_uneven_bit_length is uneven bit length for visible fields
hidden_uneven_bit_length is uneven bit length for hidden fields
*/
uint total_uneven_bit_length = 0;
uint hidden_uneven_bit_length = 0;
for (Item *item : fields) {
Item::Type type = item->type();
const bool is_sum_func =
type == Item::SUM_FUNC_ITEM && !item->m_is_window_function;
if (param->m_window_frame_buffer) {
// These should have been filtered out in the caller.
assert(!item->m_is_window_function);
}
bool store_column = true;
if (not_all_columns) {
if (item->has_aggregation() && type != Item::SUM_FUNC_ITEM) {
if (item->is_outer_reference()) item->update_used_tables();
if (type == Item::SUBSELECT_ITEM ||
(item->used_tables() & ~OUTER_REF_TABLE_BIT)) {
/*
Mark that we have ignored an item that refers to a summary
function. We need to know this if someone is going to use
DISTINCT on the result.
*/
param->using_outer_summary_function = true;
store_column = false;
}
} else if (item->m_is_window_function) {
if (!param->m_window) {
// A pre-windowing table; no point in storing WF.
store_column = false;
} else if (param->m_window != down_cast<Item_sum *>(item)->window()) {
// A later window's WF: no point in storing it in this table.
store_column = false;
}
} else if (item->has_wf()) {
/*
A non-WF expression containing a WF conservatively requires all
windows to have been processed, and is not stored in any of
windowing tables until the last one.
*/
if (param->m_window == nullptr || !param->m_window->is_last())
store_column = false;
}
if (hidden_field_count <= 0) {
if (thd->lex->current_query_block()->is_implicitly_grouped() &&
(item->used_tables() & ~(RAND_TABLE_BIT | INNER_TABLE_BIT)) == 0) {
/*
This will be evaluated exactly once, regardless of the number
of rows in the temporary table, as there is only one result row.
*/
continue;
} else if (item->const_for_execution() &&
evaluate_during_optimization(
item, thd->lex->current_query_block())) {
/*
Constant for the duration of the query, so no need to store in
temporary table.
*/
continue;
}
}
}
if (store_column && is_sum_func && group == nullptr &&
!save_sum_fields) { /* Can't calc group yet */
Item_sum *sum_item = down_cast<Item_sum *>(item);
for (uint i = 0; i < sum_item->argument_count(); i++) {
assert(!distinct);
Item *arg = sum_item->get_arg(i);
if (!arg->const_item()) {
Field *new_field = create_tmp_field(
thd, table, arg, arg->type(), param->items_to_copy,
&from_field[fieldnr], &default_field[fieldnr], /*group=*/false,
modify_items, false, false);
from_item[fieldnr] = arg;
if (new_field == nullptr) return nullptr; // Should be OOM
new_field->set_field_index(fieldnr);
reg_field[fieldnr++] = new_field;
share->reclength += new_field->pack_length();
if (new_field->is_flag_set(BLOB_FLAG)) {
*blob_field++ = new_field->field_index();
share->blob_fields++;
}
if (new_field->type() == MYSQL_TYPE_BIT)
total_uneven_bit_length += new_field->field_length & 7;
if (new_field->real_type() == MYSQL_TYPE_STRING ||
new_field->real_type() == MYSQL_TYPE_VARCHAR) {
string_count++;
string_total_length += new_field->pack_length();
}
arg = sum_item->set_arg(thd, i,
new (thd->mem_root) Item_field(new_field));
if (!new_field->is_flag_set(NOT_NULL_FLAG)) {
null_count++;
/*
new_field->maybe_null() is still false, it will be
changed below. But we have to setup Item_field correctly
*/
arg->set_nullable(true);
}
/* InnoDB temp table doesn't allow field with empty_name */
if (!new_field->field_name)
new_field->field_name = create_tmp_table_field_tmp_name(thd, item);
}
}
} else if (store_column) {
Field *new_field;
if (param->schema_table) {
new_field = create_tmp_field_for_schema(item, table);
} else {
/*
Parameters of create_tmp_field():
(1) is a bit tricky:
We need to set it to 0 in union, to get fill_record() to modify the
temporary table.
We need to set it to 1 on multi-table-update and in select to
write rows to the temporary table.
We here distinguish between UNION and multi-table-updates by the fact
that in the later case group is set to the row pointer.
(2) If item->marker == MARKER_BIT then we force create_tmp_field
to create a 64-bit longs for BIT fields because HEAP
tables can't index BIT fields directly. We do the same
for distinct, as we want the distinct index to be
usable in this case too.
*/
new_field = create_tmp_field(
thd, table, item, type, param->items_to_copy, &from_field[fieldnr],
&default_field[fieldnr],
group != nullptr, // (1)
!param->force_copy_fields && (modify_items || group != nullptr),
item->marker == Item::MARKER_BIT ||
param->bit_fields_as_long, //(2)
param->force_copy_fields);
from_item[fieldnr] = item;
}
if (new_field == nullptr) {
assert(thd->is_fatal_error());
return nullptr; // Got OOM
}
/*
Some group aggregate function use result_field to maintain their
current value (e.g. Item_avg_field stores both count and sum there).
But only for the group-by table. So do not set result_field if this is
a tmp table for UNION or derived table materialization.
*/
if (modify_items && type == Item::SUM_FUNC_ITEM)
down_cast<Item_sum *>(item)->set_result_field(new_field);
share->reclength += new_field->pack_length();
if (!new_field->is_flag_set(NOT_NULL_FLAG)) null_count++;
if (new_field->type() == MYSQL_TYPE_BIT)
total_uneven_bit_length += new_field->field_length & 7;
if (new_field->is_flag_set(BLOB_FLAG)) {
*blob_field++ = fieldnr;
share->blob_fields++;
}
if (new_field->real_type() == MYSQL_TYPE_STRING ||
new_field->real_type() == MYSQL_TYPE_VARCHAR) {
string_count++;
string_total_length += new_field->pack_length();
}
// In order to reduce footprint ask SE to pack variable-length fields.
if (new_field->type() == MYSQL_TYPE_VAR_STRING ||
new_field->type() == MYSQL_TYPE_VARCHAR)
table->s->db_create_options |= HA_OPTION_PACK_RECORD;
if (item->marker == Item::MARKER_BIT && item->is_nullable()) {
group_null_items++;
new_field->set_flag(GROUP_FLAG);
}
new_field->set_field_index(fieldnr);
reg_field[fieldnr++] = new_field;
/* InnoDB temp table doesn't allow field with empty_name */
if (!new_field->field_name) {
new_field->field_name = create_tmp_table_field_tmp_name(thd, item);
}
/*
Calculate length of distinct key. The goal is to decide what to use -
key or unique constraint. As blobs force unique constraint on their
own due to their length, they aren't taken into account.
*/
if (distinct && hidden_field_count <= 0) {
if (new_field->is_flag_set(BLOB_FLAG))
unique_constraint_via_hash_field = true;
else
distinct_key_length += new_field->pack_length();
}
}
hidden_field_count--;
if (hidden_field_count == 0) {
/*
This was the last hidden field; Remember how many hidden fields could
have null
*/
hidden_null_count = null_count;
/*
We need to update hidden_field_count as we may have stored group
functions with constant arguments
*/
param->hidden_field_count = fieldnr;
null_count = 0;
/*
On last hidden field we store uneven bit length in
hidden_uneven_bit_length and proceed calculation of
uneven bits for visible fields into
total_uneven_bit_length variable.
*/
hidden_uneven_bit_length = total_uneven_bit_length;
total_uneven_bit_length = 0;
}
} // end of for
assert(field_count >= fieldnr);
reg_field[fieldnr] = nullptr;
*blob_field = 0; // End marker
share->fields = fieldnr;
/*
Different temp table engine supports different max_key_length
and max_key_part_length. If HEAP engine is selected, it can be
possible to convert into on-disk engine later. We must choose
the minimal of max_key_length and max_key_part_length between
HEAP engine and possible on-disk engine to verify whether unique
constraint is needed so that the conversion goes well.
*/
uint max_key_length;
uint max_key_part_length;
uint max_key_parts;
get_max_key_and_part_length(&max_key_length, &max_key_part_length,
&max_key_parts);
if (group) {
DBUG_PRINT("info", ("Creating group key in temporary table"));
table->group = group; /* Table is grouped by key */
share->keys = 1;
// Let each group expression know the column which materializes its value
for (ORDER *cur_group = group; cur_group; cur_group = cur_group->next) {
Field *field = (*cur_group->item)->get_tmp_table_field();
assert(field->table == table);
cur_group->field_in_tmp_table = field;
/*
Use hash key as the unique constraint if the group-by key is
big or if it is non-deterministic. Group-by items get evaluated
twice and a non-deterministic function would cause a discrepancy.
*/
if ((*cur_group->item)->max_char_length() > CONVERT_IF_BIGGER_TO_BLOB ||
(*cur_group->item)->is_non_deterministic()) {
unique_constraint_via_hash_field = true;
}
}
if (param->group_parts > max_key_parts ||
param->group_length > max_key_length ||
param->group_length >= MAX_BLOB_WIDTH)
unique_constraint_via_hash_field = true;
// Use key definition created below only if the key isn't too long.
// Otherwise a dedicated key over a hash value will be created and this
// definition will be used by server to calc hash.
if (!unique_constraint_via_hash_field) {
param->keyinfo->table = table;
param->keyinfo->is_visible = true;
KEY_PART_INFO *key_part_info =
share->mem_root.ArrayAlloc<KEY_PART_INFO>(param->group_parts + 1);
if (key_part_info == nullptr) return nullptr;
param->keyinfo->key_part = key_part_info;
param->keyinfo->flags = HA_NOSAME;
param->keyinfo->actual_flags = param->keyinfo->flags;
param->keyinfo->usable_key_parts = param->group_parts;
param->keyinfo->user_defined_key_parts = param->group_parts;
param->keyinfo->actual_key_parts = param->keyinfo->user_defined_key_parts;
param->keyinfo->rec_per_key = nullptr;
// keyinfo->algorithm is set later, when storage engine is known
param->keyinfo->set_rec_per_key_array(nullptr, nullptr);
param->keyinfo->set_in_memory_estimate(IN_MEMORY_ESTIMATE_UNKNOWN);
param->keyinfo->name = "<group_key>";
for (ORDER *cur_group = group; cur_group;
cur_group = cur_group->next, key_part_info++) {
Field *field = cur_group->field_in_tmp_table;
key_part_info->init_from_field(field);
/* In GROUP BY 'a' and 'a ' are equal for VARCHAR fields */
key_part_info->key_part_flag |= HA_END_SPACE_ARE_EQUAL;
if (key_part_info->store_length > max_key_part_length) {
unique_constraint_via_hash_field = true;
break;
}
}
table->key_info = param->keyinfo;
share->key_info = param->keyinfo;
share->key_parts = param->keyinfo->user_defined_key_parts;
}
} else if ((distinct ||
param->m_operation != Temp_table_param::TTP_UNION_OR_TABLE) &&
share->fields != param->hidden_field_count) {
/*
Create an unique key or an unique constraint over all columns
that should be in the result. In the temporary table, there are
'param->hidden_field_count' extra columns, whose null bits are stored
in the first 'hidden_null_pack_length' bytes of the row.
*/
DBUG_PRINT("info", ("hidden_field_count: %d", param->hidden_field_count));
share->keys = 1;
share->is_distinct =
distinct || param->m_operation == Temp_table_param::TTP_INTERSECT ||
param->m_operation == Temp_table_param::TTP_EXCEPT;
if (!unique_constraint_via_hash_field) {
param->keyinfo->table = table;
param->keyinfo->is_visible = true;
param->keyinfo->user_defined_key_parts =
share->fields - param->hidden_field_count;
param->keyinfo->actual_key_parts = param->keyinfo->user_defined_key_parts;
KEY_PART_INFO *key_part_info = share->mem_root.ArrayAlloc<KEY_PART_INFO>(
param->keyinfo->user_defined_key_parts);
if (key_part_info == nullptr) return nullptr;
param->keyinfo->key_part = key_part_info;
param->keyinfo->flags = HA_NOSAME | HA_NULL_ARE_EQUAL;
param->keyinfo->actual_flags = param->keyinfo->flags;
param->keyinfo->name = "<auto_distinct_key>";
// keyinfo->algorithm is set later, when storage engine is known
param->keyinfo->set_rec_per_key_array(nullptr, nullptr);
param->keyinfo->set_in_memory_estimate(IN_MEMORY_ESTIMATE_UNKNOWN);
/* Create a distinct key over the columns we are going to return */
for (unsigned i = param->hidden_field_count; i < share->fields;
i++, key_part_info++) {
key_part_info->init_from_field(table->field[i]);
if (key_part_info->store_length > max_key_part_length) {
unique_constraint_via_hash_field = true;
break;
}
}
table->key_info = param->keyinfo;
share->key_info = param->keyinfo;
share->key_parts = param->keyinfo->user_defined_key_parts;
}
}
/*
To enforce unique constraint we need to add a field to hold key's hash
A1) distinct key is too long
A2) number of keyparts in distinct key is too big
A3) caller cannot accept distinct via indexes (e.g. because it wants
to turn off the checking at some point)
*/
if (distinct) {
if (distinct_key_length > max_key_length || // 1
(fieldnr - param->hidden_field_count) > max_key_parts || // 2
param->force_hash_field_for_unique) { // 3
unique_constraint_via_hash_field = true;
}
}
if (unique_constraint_via_hash_field) {
if (param->needs_set_counter()) {
// EXCEPT and INTERSECT implementation
Field_longlong *set_counter = new (&share->mem_root)
Field_longlong(sizeof(ulonglong), false, "<set counter>", true);
if (set_counter == nullptr) {
/* purecov: begin inspected */
assert(thd->is_fatal_error());
return nullptr; // Got OOM
/* purecov: end */
}
// Mark set_counter as NOT NULL
set_counter->set_flag(NOT_NULL_FLAG);
// Register set counter as a hidden field.
register_hidden_field(table, &default_field[0], &from_field[0],
share->blob_field, set_counter);
// Repoint arrays
table->field--;
default_field--;
from_field--;
from_item--;
share->reclength += set_counter->pack_length();
share->fields = ++fieldnr;
param->hidden_field_count++;
share->field--;
table->set_set_counter(
set_counter, param->m_operation == Temp_table_param::TTP_EXCEPT);
table->set_distinct(param->m_last_operation_is_distinct);
}
Field_longlong *field = new (&share->mem_root)
Field_longlong(sizeof(ulonglong), false, "<hash_field>", true);
if (!field) {
/* purecov: begin inspected */
assert(thd->is_fatal_error());
return nullptr; // Got OOM
/* purecov: end */
}
// Mark hash_field as NOT NULL
field->set_flag(NOT_NULL_FLAG);
// Register hash_field as a hidden field.
register_hidden_field(table, &default_field[0], &from_field[0],
share->blob_field, field);
// Repoint arrays
table->field--;
default_field--;
from_field--;
from_item--;
share->reclength += field->pack_length();
share->fields = ++fieldnr;
param->hidden_field_count++;
share->field--;
table->hash_field = field;
}
if (setup_tmp_table_handler(thd, table, select_options, false,
param->schema_table))
return nullptr; /* purecov: inspected */
if (table->s->keys == 1 && table->key_info)
table->key_info->algorithm = table->file->get_default_index_algorithm();
table->hidden_field_count = param->hidden_field_count;
if (!unique_constraint_via_hash_field)
share->reclength += group_null_items; // null flag is stored separately
if (share->blob_fields == 0) {
/* We need to ensure that first byte is not 0 for the delete link */
if (param->hidden_field_count)
hidden_null_count++;
else
null_count++;
}
uint hidden_null_pack_length =
(hidden_null_count + 7 + hidden_uneven_bit_length) / 8;
share->null_bytes = (hidden_null_pack_length +
(null_count + total_uneven_bit_length + 7) / 8);
share->reclength += share->null_bytes;
if (share->reclength == 0) share->reclength = 1; // Dummy select
share->null_fields = null_count + hidden_null_count;
if (alloc_record_buffers(thd, table)) return nullptr;
uchar *pos = table->record[0] + share->null_bytes;
null_count = (share->blob_fields == 0) ? 1 : 0;
hidden_field_count = param->hidden_field_count;
assert((uint)hidden_field_count <= share->fields);
for (uint i = 0; i < share->fields; i++) {
Field *field = table->field[i];
if (!field->is_flag_set(NOT_NULL_FLAG)) {
if (field->is_flag_set(GROUP_FLAG) && !unique_constraint_via_hash_field) {
/*
We have to reserve one byte here for NULL bits,
as this is updated by 'end_update()'
*/
*pos++ = 0; // Null is stored here
}
}
relocate_field(field, pos, table->record[0], &null_count);
pos += field->pack_length();
if (!--hidden_field_count)
null_count = (null_count + 7) & ~7; // move to next byte
}
/* Use packed rows if there is blobs or a lot of space to gain */
bool use_packed_rows = false;
if (share->blob_fields != 0 ||
(string_total_length >= STRING_TOTAL_LENGTH_TO_PACK_ROWS &&
(share->reclength / string_total_length <= RATIO_TO_PACK_ROWS ||
string_total_length / string_count >= AVG_STRING_LENGTH_TO_PACK_ROWS)))
use_packed_rows = true;
if (!use_packed_rows) share->db_create_options &= ~HA_OPTION_PACK_RECORD;
param->func_count = param->items_to_copy->size();
assert(param->func_count <= copy_func_count); // Used <= allocated
sort_copy_func(thd->lex->current_query_block(), param->items_to_copy);
uchar *bitmaps = static_cast<uchar *>(share->mem_root.Alloc(
bitmap_buffer_size(field_count + extra_fields) * 3));
if (bitmaps == nullptr) return nullptr;
setup_tmp_table_column_bitmaps(table, bitmaps);
for (uint i = 0; i < share->fields; i++) {
Field *field = table->field[i];
/*
Test if there is a default field value. The test for ->ptr is to skip
'offset' fields generated by initalize_tables
*/
if (default_field[i] && default_field[i]->field_ptr() != nullptr) {
/*
default_field[i] is set only in the cases when 'field' can
inherit the default value that is defined for the field referred
by the Item_field object from which 'field' has been created.
*/
Field *orig_field = default_field[i];
/*
Get the value from default_values.
*/
ptrdiff_t diff = orig_field->table->default_values_offset();
Field *f_in_record0 = orig_field->table->field[orig_field->field_index()];
if (f_in_record0->is_real_null(diff))
field->set_null();
else {
field->set_notnull();
memcpy(field->field_ptr(), f_in_record0->field_ptr() + diff,
field->pack_length());
}
}
if (from_field[i]) {
/* This column is directly mapped to a column in the GROUP BY clause. */
if (param->m_window_frame_buffer) {
// Framebuffer copying uses copy_fields instead of items_to_copy,
// as it can copy fields in reverse (ie., back again from the
// framebuffer) when needed.
param->copy_fields.emplace_back(field, from_field[i]);
} else {
param->items_to_copy->push_back(Func_ptr{from_item[i], field});
}
}
// fix table name in field entry
field->table_name = &table->alias;
}
store_record(table, s->default_values); // Make empty default record
/*
Push the LIMIT clause to the temporary table creation, so that we
materialize only up to 'rows_limit' records instead of all result records.
*/
share->max_rows = std::min(share->max_rows, rows_limit);
param->end_write_records = rows_limit;
if (group && !unique_constraint_via_hash_field) {
if (param->can_use_pk_for_unique) share->primary_key = 0;
param->keyinfo->key_length = 0; // Will compute the sum of the parts below.
/*
Here, we have to make the group fields point to the right record
position.
*/
KEY_PART_INFO *key_part_info = param->keyinfo->key_part;
param->group_buff = share->mem_root.ArrayAlloc<uchar>(param->group_length);
if (param->group_buff == nullptr) return nullptr;
uchar *group_buff = param->group_buff;
for (ORDER *cur_group = group; cur_group;
cur_group = cur_group->next, key_part_info++) {
Field *field = cur_group->field_in_tmp_table;
const bool maybe_null = (*cur_group->item)->is_nullable();
key_part_info->init_from_field(key_part_info->field);
param->keyinfo->key_length += key_part_info->store_length;
cur_group->buff = pointer_cast<char *>(group_buff);
cur_group->field_in_tmp_table = field->new_key_field(
&share->mem_root, table, group_buff + maybe_null);
if (!cur_group->field_in_tmp_table)
return nullptr; /* purecov: inspected */
if (maybe_null) {
/*
To be able to group on NULL, we reserved place in group_buff
for the NULL flag just before the column. (see above).
The field data is after this flag.
The NULL flag is updated in 'end_update()' and 'end_write()'
*/
param->keyinfo->flags |= HA_NULL_ARE_EQUAL; // def. that NULL == NULL
cur_group->buff++; // Pointer to field data
group_buff++; // Skip null flag
}
group_buff += cur_group->field_in_tmp_table->pack_length();
}
}
if (distinct && share->fields != param->hidden_field_count &&
!unique_constraint_via_hash_field) {
if (param->can_use_pk_for_unique) share->primary_key = 0;
param->keyinfo->key_length = 0; // Will compute the sum of the parts below.
/*
Here, we have to make the key fields point to the right record
position.
*/
KEY_PART_INFO *key_part_info = param->keyinfo->key_part;
for (uint i = param->hidden_field_count; i < share->fields;
i++, key_part_info++) {
key_part_info->init_from_field(table->field[i]);
param->keyinfo->key_length += key_part_info->store_length;
}
}
// Create a key over hash_field to enforce unique constraint
if (unique_constraint_via_hash_field) {
KEY *hash_key;
KEY_PART_INFO *hash_kpi;
if (!multi_alloc_root(&share->mem_root, &hash_key, sizeof(*hash_key),
&hash_kpi, sizeof(*hash_kpi), // Only one key part
NullS))
return nullptr;
table->key_info = share->key_info = hash_key;
share->key_parts = 1;
hash_key->table = table;
hash_key->key_part = hash_kpi;
hash_key->actual_flags = hash_key->flags = HA_NULL_ARE_EQUAL;
hash_key->actual_key_parts = hash_key->usable_key_parts = 1;
hash_key->user_defined_key_parts = 1;
hash_key->set_rec_per_key_array(nullptr, nullptr);
hash_key->algorithm = table->file->get_default_index_algorithm();
hash_key->set_in_memory_estimate(IN_MEMORY_ESTIMATE_UNKNOWN);
if (distinct)
hash_key->name = "<hash_distinct_key>";
else
hash_key->name = "<hash_group_key>";
hash_kpi->init_from_field(table->hash_field);
hash_key->key_length = hash_kpi->store_length;
param->keyinfo = hash_key;
}
if (thd->is_fatal_error()) // If end of memory
return nullptr; /* purecov: inspected */
set_real_row_type(table);
if (!param->skip_create_table) {
if (instantiate_tmp_table(thd, table)) return nullptr;
}
DEBUG_SYNC(thd, "tmp_table_created");
free_tmp_table_guard.release();
return table;
}
/**
Create a temporary table to weed out duplicate rowid combinations
@param thd Thread handle
@param uniq_tuple_length_arg Length of the table's column
@param sjtbl Update sjtbl->[start_]recinfo values which
will be needed if we'll need to convert the
created temptable from HEAP to MyISAM/Maria.
@details
create_duplicate_weedout_tmp_table()
Create a temporary table to weed out duplicate rowid combinations. The
table has a single column that is a concatenation of all rowids in the
combination.
Depending on the needed length, there are two cases:
1. When the length of the column < max_key_length:
CREATE TABLE tmp (col VARBINARY(n) NOT NULL, UNIQUE KEY(col));
2. Otherwise (not a valid SQL syntax but internally supported):
CREATE TABLE tmp (col VARBINARY NOT NULL, UNIQUE CONSTRAINT(col));
The code in this function was produced by extraction of relevant parts
from create_tmp_table().
@return
created table
NULL on error
*/
TABLE *create_duplicate_weedout_tmp_table(THD *thd, uint uniq_tuple_length_arg,
SJ_TMP_TABLE *sjtbl) {
TABLE *table;
TABLE_SHARE *share;
Field **reg_field;
KEY_PART_INFO *key_part_info;
KEY *keyinfo;
uchar *group_buff;
uchar *bitmaps;
uint *blob_field;
bool unique_constraint_via_hash_field = false;
Field *field, *key_field, *hash_field = nullptr;
uint null_pack_length;
uchar *null_flags;
uchar *pos;
uint i;
DBUG_TRACE;
assert(!sjtbl || !sjtbl->is_confluent);
DBUG_EXECUTE_IF("create_duplicate_weedout_tmp_table_error", {
my_error(ER_UNKNOWN_ERROR, MYF(0));
return nullptr;
});
/* STEP 1: Figure if we'll be using a key or blob+constraint */
if (uniq_tuple_length_arg > CONVERT_IF_BIGGER_TO_BLOB)
unique_constraint_via_hash_field = true;
/* STEP 2: Allocate memory for temptable description */
MEM_ROOT own_root(key_memory_TABLE, TABLE_ALLOC_BLOCK_SIZE);
if (!multi_alloc_root(
&own_root, &table, sizeof(*table), &share, sizeof(*share), ®_field,
sizeof(Field *) * (1 + 2), &blob_field, sizeof(uint) * 3, &keyinfo,
sizeof(*keyinfo), &key_part_info, sizeof(*key_part_info) * 2,
&group_buff,
(!unique_constraint_via_hash_field ? uniq_tuple_length_arg : 0),
&bitmaps, bitmap_buffer_size(1) * 3, NullS)) {
return nullptr;
}
/* STEP 3: Create TABLE description */
new (table) TABLE;
memset(reg_field, 0, sizeof(Field *) * 3);
table->init_tmp_table(thd, share, &own_root, nullptr, "weedout-tmp",
reg_field, blob_field, false);
uint reclength = 0;
uint null_count = 0;
/* Create the field */
if (unique_constraint_via_hash_field) {
Field_longlong *field_ll = new (&share->mem_root)
Field_longlong(sizeof(ulonglong), false, "<hash_field>", true);
if (!field_ll) {
assert(thd->is_fatal_error());
goto err; // Got OOM
}
// Mark hash_field as NOT NULL
field_ll->set_flag(NOT_NULL_FLAG);
*(reg_field++) = hash_field = field_ll;
if (sjtbl) sjtbl->hash_field = field_ll;
table->hash_field = field_ll;
field_ll->table = table;
share->fields++;
field_ll->set_field_index(0);
reclength = field_ll->pack_length();
table->hidden_field_count++;
}
{
/*
For the sake of uniformity, always use Field_varstring (although we could
use Field_string for shorter keys)
*/
field = new (thd->mem_root) Field_varstring(
uniq_tuple_length_arg, false, "rowids", share, &my_charset_bin);
if (!field) return nullptr;
field->table = table;
field->auto_flags = Field::NONE;
field->set_flag(NOT_NULL_FLAG);
field->set_flag(BINARY_FLAG);
field->set_flag(NO_DEFAULT_VALUE_FLAG);
field->init(table);
*(reg_field++) = field;
*blob_field = 0;
*reg_field = nullptr;
field->set_field_index(share->fields);
share->fields++;
share->blob_fields = 0;
reclength += field->pack_length();
null_count++;
}
/* See also create_tmp_table() */
table->s->db_plugin = nullptr;
if (setup_tmp_table_handler(thd, table, 0LL, unique_constraint_via_hash_field,
false))
goto err;
null_pack_length = 1;
reclength += null_pack_length;
share->reclength = reclength;
share->null_bytes = null_pack_length;
share->null_fields = null_count;
if (alloc_record_buffers(thd, table)) goto err;
setup_tmp_table_column_bitmaps(table, bitmaps);
null_flags = table->record[0];
pos = table->record[0] + null_pack_length;
null_count = 1;
for (i = 0, reg_field = table->field; i < share->fields; i++, reg_field++) {
Field *field_r = *reg_field;
uint length;
relocate_field(field_r, pos, null_flags, &null_count);
length = field_r->pack_length();
pos += length;
// fix table name in field entry
field_r->table_name = &table->alias;
}
// Create a key over param->hash_field to enforce unique constraint
if (unique_constraint_via_hash_field) {
KEY *hash_key = keyinfo;
KEY_PART_INFO *hash_kpi = key_part_info;
share->keys = 1;
table->key_info = share->key_info = hash_key;
hash_key->table = table;
hash_key->key_part = hash_kpi;
hash_key->actual_flags = hash_key->flags = HA_NULL_ARE_EQUAL;
hash_kpi->init_from_field(hash_field);
hash_key->key_length = hash_kpi->store_length;
} else {
DBUG_PRINT("info", ("Creating group key in temporary table"));
share->keys = 1;
table->key_info = table->s->key_info = keyinfo;
keyinfo->key_part = key_part_info;
keyinfo->actual_flags = keyinfo->flags = HA_NOSAME;
keyinfo->key_length = 0;
{
key_part_info->init_from_field(field);
key_part_info->bin_cmp = true;
key_field = field->new_key_field(&share->mem_root, table, group_buff);
if (!key_field) goto err;
key_part_info->key_part_flag |= HA_END_SPACE_ARE_EQUAL; // todo need
// this?
keyinfo->key_length += key_part_info->length;
}
}
{
table->key_info->user_defined_key_parts = 1;
table->key_info->usable_key_parts = 1;
table->key_info->actual_key_parts = table->key_info->user_defined_key_parts;
share->key_parts = table->key_info->user_defined_key_parts;
table->key_info->set_rec_per_key_array(nullptr, nullptr);
table->key_info->algorithm = table->file->get_default_index_algorithm();
table->key_info->set_in_memory_estimate(IN_MEMORY_ESTIMATE_UNKNOWN);
table->key_info->name = "weedout_key";
}
if (thd->is_fatal_error()) // If end of memory
goto err;
set_real_row_type(table);
if (instantiate_tmp_table(thd, table)) goto err;
return table;
err:
/* purecov: begin inspected */
table->file->ha_index_or_rnd_end();
close_tmp_table(table);
free_tmp_table(table);
return nullptr;
/* purecov: end */
}
/****************************************************************************/
/**
Create an, optionally reduced, TABLE object with properly set up Field list
from a list of field definitions.
@details
When is_virtual arg is true:
The created table doesn't have a table handler associated with
it, has no keys, no group/distinct, no copy_funcs array.
The sole purpose of this TABLE object is to use the power of Field
class to read/write data to/from table->record[0]. Then one can store
the record in any container (RB tree, hash, etc).
The table is created in THD mem_root, so are the table's fields.
Consequently, if you don't BLOB fields, you don't need to free it.
When is_virtual is false:
This function creates a normal tmp table out of fields' definitions,
rather than from lst of items. This is the main difference with
create_tmp_table. Also the table created here doesn't do grouping,
doesn't have indexes and copy_funcs/fields. The purpose is to be able to
create result table for table functions out of fields' definitions
without need in intermediate list of items.
@param thd connection handle
@param field_list list of column definitions
@param is_virtual if true, then it's effectively only a record buffer
with wrapper, used e.g to store vars in SP
if false, then a normal table, which can hold
records, is created
@param select_options options for non-virtual tmp table
@param alias table's alias
@return
0 if out of memory, TABLE object in case of success
*/
TABLE *create_tmp_table_from_fields(THD *thd, List<Create_field> &field_list,
bool is_virtual, ulonglong select_options,
const char *alias) {
uint field_count = field_list.elements;
uint blob_count = 0;
Field **reg_field;
Create_field *cdef; /* column definition */
uint record_length = 0;
uint null_count = 0; /* number of columns which may be null */
uint null_pack_length; /* NULL representation array length */
uint *blob_field;
uchar *bitmaps;
TABLE *table;
TABLE_SHARE *share;
MEM_ROOT own_root{key_memory_TABLE, TABLE_ALLOC_BLOCK_SIZE};
MEM_ROOT *m_root;
/*
total_uneven_bit_length is uneven bit length for BIT fields
*/
uint total_uneven_bit_length = 0;
if (!is_virtual) {
m_root = &own_root;
} else {
m_root = thd->mem_root;
}
if (!multi_alloc_root(m_root, &table, sizeof(*table), &share, sizeof(*share),
®_field, (field_count + 1) * sizeof(Field *),
&blob_field, (field_count + 1) * sizeof(uint), &bitmaps,
bitmap_buffer_size(field_count) * 3, NullS))
return nullptr;
new (table) TABLE;
new (share) TABLE_SHARE;
table->init_tmp_table(thd, share, m_root, nullptr, alias, reg_field,
blob_field, is_virtual);
/* Create all fields and calculate the total length of record */
List_iterator_fast<Create_field> it(field_list);
uint idx = 0;
while ((cdef = it++)) {
*reg_field =
cdef->is_nullable
? make_field(*cdef, share, nullptr,
pointer_cast<uchar *>(const_cast<char *>("")), 1)
: make_field(*cdef, share);
if (!*reg_field) goto error;
(*reg_field)->init(table);
record_length += (*reg_field)->pack_length();
if (!(*reg_field)->is_flag_set(NOT_NULL_FLAG)) null_count++;
(*reg_field)->set_field_index(idx++);
if ((*reg_field)->type() == MYSQL_TYPE_BIT)
total_uneven_bit_length += (*reg_field)->field_length & 7;
if ((*reg_field)->is_flag_set(BLOB_FLAG))
share->blob_field[blob_count++] = (uint)(reg_field - table->field);
reg_field++;
}
*reg_field = nullptr; /* mark the end of the list */
share->blob_field[blob_count] = 0; /* mark the end of the list */
share->blob_fields = blob_count;
null_pack_length = (null_count + total_uneven_bit_length + 7) / 8;
share->reclength = record_length + null_pack_length;
share->null_bytes = null_pack_length;
share->null_fields = null_count;
share->fields = field_count;
if (is_virtual) {
/*
When the table is virtual, updates won't be done on the table and
default values won't be stored. Thus no need to allocate buffers for
that.
*/
share->rec_buff_length = ALIGN_SIZE(share->reclength + 1);
table->record[0] = (uchar *)thd->alloc(share->rec_buff_length);
if (!table->record[0]) goto error;
if (null_pack_length) {
table->null_flags = table->record[0];
memset(table->record[0], 255, null_pack_length); // Set null fields
}
} else if (alloc_record_buffers(thd, table))
goto error;
setup_tmp_table_column_bitmaps(table, bitmaps);
{
/* Set up field pointers */
uchar *null_flags = table->record[0];
uchar *pos = null_flags + share->null_bytes;
uint null_counter = 0;
for (reg_field = table->field; *reg_field; ++reg_field) {
Field *field = *reg_field;
relocate_field(field, pos, null_flags, &null_counter);
pos += field->pack_length();
}
}
if (is_virtual) return table;
store_record(table, s->default_values); // Make empty default record
table->s->db_plugin = nullptr;
if (setup_tmp_table_handler(thd, table, select_options, false, false))
goto error;
return table;
error:
for (reg_field = table->field; *reg_field; ++reg_field) destroy(*reg_field);
return nullptr;
}
/**
Checks if disk storage engine should be used for temporary table.
@param thd thread handler
@param table table to allocate SE for
@param select_options current select's options
@param force_disk_table true <=> Use InnoDB
@param mem_engine Selected in-memory storage engine.
@return
true if disk storage engine should be used
false if disk storage engine is not required
*/
static bool use_tmp_disk_storage_engine(
THD *thd, TABLE *table, ulonglong select_options, bool force_disk_table,
enum_internal_tmp_mem_storage_engine mem_engine) {
TABLE_SHARE *share = table->s;
/* Caller needs SE to be disk-based (@see create_tmp_table()). */
if (force_disk_table) {
return true;
}
/*
During bootstrap, the heap engine is not available, so we force using
disk storage engine. This is especially hit when creating a I_S system
view definition with a UNION in it AND is also when upgrading from
older DD tables which involves execution of UPDATE queries to adjust
metadata of DD tables.
*/
if (opt_initialize || thd->is_dd_system_thread()) {
return true;
}
if (mem_engine == TMP_TABLE_MEMORY) {
/* MEMORY do not support BLOBs */
if (share->blob_fields) {
return true;
}
} else {
assert(mem_engine == TMP_TABLE_TEMPTABLE);
}
/* User said the result would be big, so may not fit in memory */
if ((thd->variables.big_tables) && !(select_options & SELECT_SMALL_RESULT)) {
return true;
}
return false;
}
/**
Helper function to create_tmp_table_* family for setting up table's SE
@param thd Thread handler
@param table table to allocate SE for
@param select_options Options that may control storage engine selection
@param force_disk_table true <=> Use InnoDB
@param schema_table whether the table is a schema table
@returns false if success, true if error
@note In a prepared statement, both preparation and execution may use this
function, for a same TABLE. Execution always uses
force_disk_table=schema_table=false; this may be inconsistent with what was
used at preparation, but it's ok in fact:
- force_disk_table=true is for semijoin duplicate elimination table, which
is execution-only
- schema_table=true is for schema tables, and they're re-created at each
execution.
*/
bool setup_tmp_table_handler(THD *thd, TABLE *table, ulonglong select_options,
bool force_disk_table, bool schema_table) {
TABLE_SHARE *share = table->s;
assert(table->file == nullptr);
if (share->db_plugin == nullptr) {
handlerton *hton;
enum_internal_tmp_mem_storage_engine mem_engine =
static_cast<enum_internal_tmp_mem_storage_engine>(
thd->variables.internal_tmp_mem_storage_engine);
// Except for special conditions, tmp table engine will be chosen by user.
/*
For information_schema tables we use the Heap engine because we do
not allow user-created TempTable tables and even though information_schema
tables are not user-created, an ingenious user may execute:
CREATE TABLE myowntemptabletable LIKE information_schema.some;
*/
if (schema_table && (mem_engine == TMP_TABLE_TEMPTABLE)) {
mem_engine = TMP_TABLE_MEMORY;
}
if (use_tmp_disk_storage_engine(thd, table, select_options,
force_disk_table, mem_engine)) {
hton = innodb_hton;
} else {
switch (mem_engine) {
case TMP_TABLE_TEMPTABLE:
hton = temptable_hton;
break;
case TMP_TABLE_MEMORY:
assert(!table->pos_in_table_list ||
!table->pos_in_table_list->schema_table);
hton = heap_hton;
break;
default:
assert(false);
hton = nullptr;
break;
}
}
share->db_plugin = ha_lock_engine(nullptr, hton);
}
assert(share->db_plugin != nullptr);
share->alloc_for_tmp_file_handler = thd->mem_root;
table->file = get_new_handler(share, false, share->alloc_for_tmp_file_handler,
share->db_type());
if (table->file == nullptr) return true;
share->tmp_handler_count++;
// Update the handler with information about the table object
table->file->change_table_ptr(table, share);
if (table->file->set_ha_share_ref(&share->ha_share)) {
destroy(table->file);
return true;
}
// Initialize cost model for this table
table->init_cost_model(thd->cost_model());
return false;
}
/**
Helper function for create_tmp_table_* family for allocating record buffers
@note Caller must initialize TABLE_SHARE::reclength and
TABLE_SHARE::null_bytes before calling this function.
@param thd thread handler
@param table table to allocate record buffers for
@returns false on success, true on error
*/
static bool alloc_record_buffers(THD *thd, TABLE *table) {
TABLE_SHARE *share = table->s;
/*
Same as MI_UNIQUE_HASH_LENGTH,
allows to exclude "myisam.h" from include files.
*/
const int TMP_TABLE_UNIQUE_HASH_LENGTH = 4;
uint alloc_length =
ALIGN_SIZE(share->reclength + TMP_TABLE_UNIQUE_HASH_LENGTH + 1);
share->rec_buff_length = alloc_length;
/*
Note that code in open_table_from_share() relies on the fact that
for optimizer-created temporary tables TABLE_SHARE::default_values
is allocated in a single chuck with TABLE::record[0] for the first
TABLE instance.
*/
if (!(table->record[0] = (uchar *)share->mem_root.Alloc(
(alloc_length * 3 + share->null_bytes))))
return true;
table->record[1] = table->record[0] + alloc_length;
share->default_values = table->record[1] + alloc_length;
table->null_flags_saved = share->default_values + alloc_length;
if (share->null_bytes) {
table->null_flags = table->record[0];
memset(table->record[0], 255, share->null_bytes); // Set null fields
}
if (thd->variables.tmp_table_size == ~(ulonglong)0) // No limit
share->max_rows = ~(ha_rows)0;
else
share->max_rows = (ha_rows)(((share->db_type() == heap_hton)
? min(thd->variables.tmp_table_size,
thd->variables.max_heap_table_size)
: thd->variables.tmp_table_size) /
share->reclength);
share->max_rows =
std::max(share->max_rows, ha_rows(1)); // For dummy start options
return false;
}
bool open_tmp_table(TABLE *table) {
assert(table->s->ref_count() == 1 || // not shared, or:
table->s->db_type() == heap_hton || // using right engines
table->s->db_type() == temptable_hton ||
table->s->db_type() == innodb_hton);
int error;
if ((error = table->file->ha_open(table, table->s->table_name.str, O_RDWR,
HA_OPEN_TMP_TABLE | HA_OPEN_INTERNAL_TABLE,
nullptr))) {
table->file->print_error(error, MYF(0)); /* purecov: inspected */
table->db_stat = 0;
return (true);
}
(void)table->file->ha_extra(HA_EXTRA_QUICK); /* Faster */
table->s->tmp_open_count++;
table->set_created();
return false;
}
/**
Try to create an in-memory temporary table and if not enough space, then
try to create an on-disk one.
Create a temporary table according to passed description.
The passed array or MI_COLUMNDEF structures must have this form:
1. 1-byte column (afaiu for 'deleted' flag) (note maybe not 1-byte
when there are many nullable columns)
2. Table columns
3. One free MI_COLUMNDEF element (*recinfo points here)
This function may use the free element to create hash column for unique
constraint.
@param thd Thread handler
@param[in,out] table Table object that describes the table to be created
@retval false OK
@retval true Error
*/
static bool create_tmp_table_with_fallback(THD *thd, TABLE *table) {
TABLE_SHARE *share = table->s;
DBUG_TRACE;
HA_CREATE_INFO create_info;
create_info.db_type = table->s->db_type();
create_info.row_type = table->s->row_type;
create_info.options |=
HA_LEX_CREATE_TMP_TABLE | HA_LEX_CREATE_INTERNAL_TMP_TABLE;
/*
INNODB's fixed length column size is restricted to 1024. Exceeding this can
result in incorrect behavior.
*/
if (table->s->db_type() == innodb_hton) {
for (Field **field = table->field; *field; ++field) {
if ((*field)->type() == MYSQL_TYPE_STRING &&
(*field)->key_length() > 1024) {
my_error(ER_TOO_LONG_KEY, MYF(0), 1024);
return true;
}
}
}
int error =
table->file->create(share->table_name.str, table, &create_info, nullptr);
if (error == HA_ERR_RECORD_FILE_FULL &&
table->s->db_type() == temptable_hton) {
table->file = get_new_handler(
table->s, false, share->alloc_for_tmp_file_handler, innodb_hton);
error = table->file->create(share->table_name.str, table, &create_info,
nullptr);
}
if (error) {
table->file->print_error(error, MYF(0)); /* purecov: inspected */
table->db_stat = 0;
return true;
} else {
if (table->s->db_type() != temptable_hton) {
thd->inc_status_created_tmp_disk_tables();
}
return false;
}
}
static void trace_tmp_table(Opt_trace_context *trace, const TABLE *table) {
TABLE_SHARE *s = table->s;
Opt_trace_object trace_tmp(trace, "tmp_table_info");
if (strlen(table->alias) != 0)
if (table->pos_in_table_list != nullptr &&
strlen(table->pos_in_table_list->table_name) > 0) {
trace_tmp.add_utf8_table(table->pos_in_table_list);
} else {
trace_tmp.add_alnum("table", table->alias);
}
else
trace_tmp.add_alnum("table", "intermediate_tmp_table");
QEP_TAB *tab = table->reginfo.qep_tab;
if (tab != nullptr && tab->join() != nullptr)
trace_tmp.add("in_plan_at_position", tab->idx());
trace_tmp.add("columns", s->fields)
.add("row_length", s->reclength)
.add("key_length", table->s->keys > 0 ? table->key_info->key_length : 0)
.add("unique_constraint", table->hash_field ? true : false)
.add("makes_grouped_rows", table->group != nullptr)
.add("cannot_insert_duplicates", s->is_distinct);
if (s->db_type() == innodb_hton) {
trace_tmp.add_alnum("location", "disk (InnoDB)");
if (s->db_create_options & HA_OPTION_PACK_RECORD)
trace_tmp.add_alnum("record_format", "packed");
else
trace_tmp.add_alnum("record_format", "fixed");
} else if (table->s->db_type() == temptable_hton) {
trace_tmp.add_alnum("location", "TempTable");
} else {
assert(s->db_type() == heap_hton);
trace_tmp.add_alnum("location", "memory (heap)")
.add("row_limit_estimate", s->max_rows);
}
}
/**
Instantiates temporary table
@param thd Thread handler
@param table Table object that describes the table to be
instantiated
Creates temporary table and opens it.
@returns false if success, true if error
*/
bool instantiate_tmp_table(THD *thd, TABLE *table) {
// Ensure that "in_use" is synchronized with the current session
assert(table->in_use == nullptr || table->in_use == thd);
table->in_use = thd;
TABLE_SHARE *const share = table->s;
#ifndef NDEBUG
for (uint i = 0; i < share->fields; i++)
assert(table->field[i]->gcol_info == nullptr &&
table->field[i]->stored_in_db);
#endif
thd->inc_status_created_tmp_tables();
// @todo WL#6570 Unsure if this is wise: We may choose a different engine on
// repeated execution.
// @todo WL#6570: select_options required???
if (table->file == nullptr && setup_tmp_table_handler(thd, table, 0)) {
return true;
}
if (share->db_type() == temptable_hton) {
if (create_tmp_table_with_fallback(thd, table)) return true;
} else if (share->db_type() == innodb_hton) {
if (create_tmp_table_with_fallback(thd, table)) return true;
// Make empty record so random data is not written to disk
empty_record(table);
}
// If a heap table, it's created by open_tmp_table().
if (open_tmp_table(table)) {
/*
Delete table immediately if we fail to open it, so
TABLE::is_created() also implies that table is open.
*/
table->file->ha_delete_table(share->table_name.str,
nullptr); /* purecov: inspected */
return true;
}
if (share->first_unused_tmp_key < share->keys) {
/*
Some other clone of this materialized temporary table has defined
"possible" keys; as we are here creating the table in the engine, we must
decide here what to do with them: drop them now, or make them "existing"
now. As the other clone assumes they will be available if the Optimizer
chooses them, we make them existing.
*/
share->find_first_unused_tmp_key(Key_map(share->keys));
}
Opt_trace_context *const trace = &thd->opt_trace;
if (unlikely(trace->is_started())) {
Opt_trace_object wrapper(trace);
Opt_trace_object convert(trace, "creating_tmp_table");
trace_tmp_table(trace, table);
}
return false;
}
/**
Close a temporary table at end of preparation or execution
Any buffers associated with the table will be released.
When tmp_open_count reaches zero, the following will happen:
- If table contents has been created, it will be deleted.
When tmp_handler_count reaches zero, the following will happen:
- The storage handler will be deleted and the plugin will be released.
@param table Table reference
*/
void close_tmp_table(TABLE *table) {
DBUG_TRACE;
DBUG_PRINT("enter", ("table: %s", table->alias));
TABLE_SHARE *const share = table->s;
// Free blobs, even if no storage handler is assigned
for (Field **ptr = table->field; *ptr; ptr++) (*ptr)->mem_free();
if (!table->has_storage_handler()) return;
assert(table->has_storage_handler() && share->ref_count() > 0 &&
share->tmp_handler_count > 0 &&
share->tmp_handler_count <= share->ref_count() &&
share->tmp_open_count <= share->tmp_handler_count);
assert(table->mem_root.allocated_size() == 0);
filesort_free_buffers(table, true);
if (table->is_created()) {
if (--share->tmp_open_count > 0) {
table->file->ha_close();
} else // no more open 'handler' objects
table->file->ha_drop_table(table->s->table_name.str);
table->set_deleted();
}
destroy(table->file);
table->file = nullptr;
if (--share->tmp_handler_count == 0 && share->db_plugin != nullptr) {
plugin_unlock(nullptr, share->db_plugin);
share->db_plugin = nullptr;
}
free_io_cache(table);
// Mark table as inactive when it is closed
table->in_use = nullptr;
}
/**
Free temporary table
When ref_count reaches zero, the table's mem_root allocator is deleted.
@param table Table reference
*/
void free_tmp_table(TABLE *table) {
DBUG_TRACE;
DBUG_PRINT("enter", ("table: %s", table->alias));
TABLE_SHARE *const share = table->s;
assert(!table->is_created() && !table->has_storage_handler() &&
share->ref_count() > 0 && share->tmp_open_count == 0 &&
share->tmp_handler_count < share->ref_count());
if (table->pos_in_table_list != nullptr &&
table->pos_in_table_list->common_table_expr() != nullptr) {
table->pos_in_table_list->common_table_expr()->remove_table(
table->pos_in_table_list);
}
/*
In create_tmp_table(), the share's memroot is allocated inside own_root
and is then made a copy of own_root, so it is inside its memory blocks,
so as soon as we free a memory block the memroot becomes unreadbable.
So we need a copy to free it.
*/
if (share->decrement_ref_count() == 0) // no more TABLE objects
{
MEM_ROOT own_root = std::move(share->mem_root);
destroy(table);
own_root.Clear();
}
}
/**
If a MEMORY table gets full, create a disk-based table and copy all rows
to this.
@param[in] thd THD reference
@param[in] wtable Table reference being written to
@param[in] error Reason why inserting into MEMORY table failed.
@param[in] insert_last_record If true, the last record(table->record[0])
is inserted into the newly created table after
copying all the records from the temp table.
If false, the last record is not inserted
and the parameters ignore_last_dup, is_duplicate
are ignored.
@param[in] ignore_last_dup If true, ignore duplicate key error for last
inserted key (see detailed description below).
@param [out] is_duplicate If non-NULL and ignore_last_dup is true,
return true if last key was a duplicate,
and false otherwise.
@details
Function can be called with any error code, but only HA_ERR_RECORD_FILE_FULL
will be handled, all other errors cause a fatal error to be thrown.
The function creates a disk-based temporary table, copies all records
from the MEMORY table into this new table, deletes the old table and
switches to use the new table within the table handle.
The function uses table->record[1] as a temporary buffer while copying.
If the parameter insert_last_record is true, this function assumes that
table->record[0] contains the row that caused the error when inserting
into the MEMORY table (the "last row"). After all existing rows have been
copied to the new table,the last row is attempted to be inserted as well.
If ignore_last_dup is true, this row can be a duplicate of an existing row
without throwing an error. If is_duplicate is non-NULL, an indication of
whether the last row was a duplicate is returned.
If the parameter insert_last_record is false, this function makes no
assumptions on the operation and will not try an insert of the last
record(table->record[0]). The caller is expected to handle the operation
after moving to disk.
@note that any index/scan access initialized on the MEMORY 'wtable' is not
replicated to the on-disk table - it's the caller's responsibility.
However, access initialized on other TABLEs, is replicated.
If 'wtable' has other TABLE clones (example: a multi-referenced or a
recursive CTE), we convert all clones; if an error happens during conversion
of clone B after successfully converting clone A, clone A and B will exit
from the function with a TABLE_SHARE corresponding to the pre-conversion
table ("old" TABLE_SHARE). So A will be inconsistent (for example
s->db_type() will say "MEMORY" while A->file will be a disk-based engine).
However, as all callers bail out, it is reasonable to think that they won't
be using the TABLE_SHARE except in free_tmp_table(); and free_tmp_table()
only uses properties of TABLE_SHARE which are common to the old and new
object (reference counts, MEM_ROOT), so that should work.
Solutions to fix this cleanly:
- allocate new TABLE_SHARE on heap instead of on stack, to be able to
exit with two TABLE_SHAREs (drawback: more heap memory consumption, and need
to verify all exit paths are safe),
- close all TABLEs if error (but then callers and cleanup code may be
surprised to find already-closed tables so they would need fixing).
To lower the risk of error between A and B: we expect most errors will
happen when copying rows (e.g. read or write errors); so we convert 'wtable'
(which does the row copying) first; if it fails, the A-B situation is
avoided and we can properly exit with the old TABLE_SHARE.
@returns true if error.
*/
bool create_ondisk_from_heap(THD *thd, TABLE *wtable, int error,
bool insert_last_record, bool ignore_last_dup,
bool *is_duplicate) {
int write_err = 0;
bool table_on_disk = false;
DBUG_TRACE;
if (error != HA_ERR_RECORD_FILE_FULL) {
/*
We don't want this error to be converted to a warning, e.g. in case of
INSERT IGNORE ... SELECT.
*/
wtable->file->print_error(error, MYF(ME_FATALERROR));
return true;
}
if (wtable->s->db_type() != heap_hton) {
if (wtable->s->db_type() != temptable_hton) {
/* Do not convert in-memory temporary tables to on-disk
temporary tables if the storage engine is anything other
than the temptable engine. */
wtable->file->print_error(error, MYF(ME_FATALERROR));
return true;
}
/* If we are here, then the in-memory temporary tables need
to be converted into on-disk temporary tables */
}
const char *save_proc_info = thd->proc_info();
THD_STAGE_INFO(thd, stage_converting_heap_to_ondisk);
TABLE_SHARE *const old_share = wtable->s;
const plugin_ref old_plugin = old_share->db_plugin;
#ifndef NDEBUG
const uint initial_handler_count = old_share->tmp_handler_count;
const uint initial_open_count = old_share->tmp_open_count;
bool rows_on_disk = false;
#endif
TABLE_SHARE share = std::move(*old_share);
assert(share.ha_share == nullptr);
share.db_plugin = ha_lock_engine(thd, innodb_hton);
Table_ref *const wtable_list = wtable->pos_in_table_list;
Derived_refs_iterator ref_it(wtable_list);
if (wtable_list) {
Common_table_expr *cte = wtable_list->common_table_expr();
if (cte) {
int i = 0, found = -1;
TABLE *t;
while ((t = ref_it.get_next())) {
if (t == wtable) {
found = i;
break;
}
++i;
}
assert(found >= 0);
if (found > 0)
// 'wtable' is at position 'found', move it to 0 to convert it first
std::swap(cte->tmp_tables[0], cte->tmp_tables[found]);
ref_it.rewind();
}
}
TABLE new_table, *table = nullptr;
while (true) {
if (wtable_list) // Possibly there are clones
{
table = ref_it.get_next();
if (table == nullptr) break;
} else // No clones
{
if (table == wtable) // Already processed
break;
table = wtable;
}
assert(table->mem_root.allocated_size() == 0);
table->mem_root.Clear();
// Set up a partial copy of the table.
new_table.record[0] = table->record[0];
new_table.record[1] = table->record[1];
new_table.field = table->field;
new_table.key_info = table->key_info;
new_table.in_use = table->in_use;
new_table.db_stat = table->db_stat;
new_table.key_info = table->key_info;
new_table.hash_field = table->hash_field;
new_table.group = table->group;
new_table.alias = table->alias;
new_table.pos_in_table_list = table->pos_in_table_list;
new_table.reginfo = table->reginfo;
new_table.read_set = table->read_set;
new_table.write_set = table->write_set;
new_table.s = &share; // New table points to new share
new_table.file =
get_new_handler(&share, false, old_share->alloc_for_tmp_file_handler,
new_table.s->db_type());
if (new_table.file == nullptr)
goto err_after_proc_info; /* purecov: inspected */
if (new_table.file->set_ha_share_ref(&share.ha_share))
goto err_after_alloc; /* purecov: inspected */
/* Fix row type which might have changed with SE change. */
set_real_row_type(&new_table);
if (!table_on_disk) {
if (create_tmp_table_with_fallback(thd, &new_table))
goto err_after_alloc; /* purecov: inspected */
table_on_disk = true;
}
bool rec_ref_w_open_cursor = false, psi_batch_started = false;
if (table->is_created()) {
// Close it, drop it, and open a new one in the disk-based engine.
if (open_tmp_table(&new_table))
goto err_after_create; /* purecov: inspected */
if (table->file->indexes_are_disabled())
new_table.file->ha_disable_indexes(HA_KEY_SWITCH_ALL);
if (table == wtable) {
// The table receiving writes; migrate rows before closing/dropping.
if (unlikely(thd->opt_trace.is_started())) {
Opt_trace_context *trace = &thd->opt_trace;
Opt_trace_object wrapper(trace);
Opt_trace_object convert(trace, "converting_tmp_table_to_ondisk");
assert(error == HA_ERR_RECORD_FILE_FULL);
convert.add_alnum("cause", "memory_table_size_exceeded");
trace_tmp_table(trace, &new_table);
}
table->file->ha_index_or_rnd_end();
if ((write_err = table->file->ha_rnd_init(true))) {
/* purecov: begin inspected */
table->file->print_error(write_err, MYF(ME_FATALERROR));
write_err = 0;
goto err_after_open;
/* purecov: end */
}
if (table->no_rows) {
new_table.file->ha_extra(HA_EXTRA_NO_ROWS);
new_table.no_rows = true;
}
/*
copy all old rows from heap table to on-disk table
This is the only code that uses record[1] to read/write but this
is safe as this is a temporary on-disk table without timestamp/
autoincrement or partitioning.
*/
while (!table->file->ha_rnd_next(new_table.record[1])) {
write_err = new_table.file->ha_write_row(new_table.record[1]);
DBUG_EXECUTE_IF("raise_error", write_err = HA_ERR_FOUND_DUPP_KEY;);
if (write_err) goto err_after_open;
}
if (insert_last_record) {
/* copy row that filled in-memory table */
if ((write_err = new_table.file->ha_write_row(table->record[0]))) {
if (!new_table.file->is_ignorable_error(write_err) ||
!ignore_last_dup)
goto err_after_open;
if (is_duplicate) *is_duplicate = true;
} else {
if (is_duplicate) *is_duplicate = false;
}
}
(void)table->file->ha_rnd_end();
#ifndef NDEBUG
rows_on_disk = true;
#endif
}
/* remove heap table and change to use on-disk table */
// TODO(sgunders): Move this into MaterializeIterator when we remove the
// pre-iterator executor.
if (table->pos_in_table_list &&
table->pos_in_table_list->is_recursive_reference() &&
table->file->inited) {
/*
Due to the last condition, this is guaranteed to be a recursive
reference belonging to the unit which 'wtable' materializes, and not
to the unit of another non-recursive reference (indeed, this other
reference will re-use the rows of 'wtable', i.e. not execute its
unit).
This reference has opened a cursor.
In the 'tmp_tables' list, 'wtable' is always before such recursive
reference, as setup_materialized_derived_tmp_table() runs before
substitute_recursive_reference(). So, we know the disk-based rows
already exist at this point.
*/
assert(rows_on_disk);
(void)table->file->ha_rnd_end();
rec_ref_w_open_cursor = true;
}
psi_batch_started = table->file->end_psi_batch_mode_if_started();
// Close the in-memory table
if (table->s->db_type() == temptable_hton) {
/* Drop the in-memory temptable. */
table->file->ha_drop_table(table->s->table_name.str);
} else {
// Closing the MEMORY table drops it if its ref count is down to zero
(void)table->file->ha_close();
}
share.tmp_open_count--;
}
/*
Replace the guts of the old table with the new one, although keeping
most members.
*/
destroy(table->file);
table->s = new_table.s;
table->file = new_table.file;
table->db_stat = new_table.db_stat;
table->in_use = new_table.in_use;
table->no_rows = new_table.no_rows;
table->record[0] = new_table.record[0];
table->record[1] = new_table.record[1];
assert(table->mem_root.allocated_size() == 0);
assert(new_table.mem_root.allocated_size() == 0);
table->mem_root = std::move(new_table.mem_root);
// TODO(sgunders): Move this into MaterializeIterator when we remove the
// pre-iterator executor.
if (rec_ref_w_open_cursor) {
/*
The table just changed from MEMORY to INNODB. 'table' is a reader and
had an open cursor to the MEMORY table. We closed the cursor, now need
to open it to InnoDB and re-position it at the same row as before.
Row positions (returned by handler::position()) are different in
MEMORY and InnoDB - so the MEMORY row and InnoDB row have differing
positions.
We had read N rows of the MEMORY table, need to re-position our
cursor after the same N rows in the InnoDB table.
*/
if (psi_batch_started) table->file->start_psi_batch_mode();
}
// Point 'table' back to old_share; *old_share will be updated after loop.
table->s = old_share;
/*
Update share-dependent pointers cached in 'table->file' and in
read_set/write_set.
*/
table->file->change_table_ptr(table, table->s);
table->file->set_ha_share_ref(&table->s->ha_share);
table->use_all_columns();
} // End of tables-processing loop
plugin_unlock(nullptr, old_plugin);
share.db_plugin = my_plugin_lock(nullptr, &share.db_plugin);
*old_share = std::move(share);
/*
Now old_share is new, and all TABLEs in Derived_refs_iterator point to
it, and so do their table->file: everything is consistent.
*/
assert(initial_handler_count == old_share->tmp_handler_count);
assert(initial_open_count == old_share->tmp_open_count);
if (save_proc_info)
thd_proc_info(thd, (!strcmp(save_proc_info, "Copying to tmp table")
? "Copying to tmp table on disk"
: save_proc_info));
return false;
err_after_open:
if (write_err) {
DBUG_PRINT("error", ("Got error: %d", write_err));
new_table.file->print_error(write_err, MYF(0));
}
if (table->file->inited) (void)table->file->ha_rnd_end();
(void)new_table.file->ha_close();
err_after_create:
new_table.file->ha_delete_table(new_table.s->table_name.str, nullptr);
err_after_alloc:
destroy(new_table.file);
err_after_proc_info:
thd_proc_info(thd, save_proc_info);
// New share took control of old share mem_root; regain control:
old_share->mem_root = std::move(share.mem_root);
return true;
}
/**
Encode an InnoDB PK in 6 bytes, high-byte first; like
InnoDB's dict_sys_write_row_id() does.
@param rowid_bytes where to store the result
@param length how many available bytes in rowid_bytes
@param row_num PK to encode
*/
void encode_innodb_position(uchar *rowid_bytes, uint length [[maybe_unused]],
ha_rows row_num) {
assert(length == 6);
for (int i = 0; i < 6; i++)
rowid_bytes[i] = (uchar)(row_num >> ((5 - i) * 8));
}
/**
Helper function for create_ondisk_from_heap().
Our InnoDB on-disk intrinsic table uses an autogenerated
auto-incrementing primary key:
- first inserted row has pk=1 (see
dict_table_get_next_table_sess_row_id()), second has pk=2, etc
- ha_rnd_next uses a PK index scan so returns rows in PK order
- position() returns the PK
- ha_rnd_pos() takes the PK in input.
@param table table read by cursor
@param row_num function should position on the row_num'th row in insertion
order.
*/
bool reposition_innodb_cursor(TABLE *table, ha_rows row_num) {
assert(table->s->db_type() == innodb_hton);
if (table->file->ha_rnd_init(false)) return true; /* purecov: inspected */
// Per the explanation above, the wanted InnoDB row has PK=row_num.
uchar rowid_bytes[6];
encode_innodb_position(rowid_bytes, sizeof(rowid_bytes), row_num);
/*
Go to the row, and discard the row. That places the cursor at
the same row as before the engine conversion, so that rnd_next() will
read the (row_num+1)th row.
*/
return table->file->ha_rnd_pos(table->record[0], rowid_bytes);
}
// Computes Func_ptr::m_func_bits.
static int FindCopyBitmap(Item *item) {
int bits = 1 << CFT_ALL;
if (item->m_is_window_function) {
bits |= 1 << CFT_WF;
Item_sum *item_wf = down_cast<Item_sum *>(item);
if (item_wf->framing()) {
bits |= 1 << CFT_WF_FRAMING;
}
if (item_wf->needs_partition_cardinality()) {
bits |= 1 << CFT_WF_NEEDS_PARTITION_CARDINALITY;
}
if (!item_wf->framing() && !item_wf->needs_partition_cardinality()) {
bits |= 1 << CFT_WF_NON_FRAMING;
}
if (item_wf->uses_only_one_row()) {
bits |= 1 << CFT_WF_USES_ONLY_ONE_ROW;
}
} else {
if (item->has_wf()) {
bits |= 1 << CFT_HAS_WF;
} else {
bits |= 1 << CFT_HAS_NO_WF;
}
if (item->real_item()->type() == Item::FIELD_ITEM) {
bits |= 1 << CFT_FIELDS;
}
}
return bits;
}
Func_ptr::Func_ptr(Item *item, Field *result_field)
: m_func(item),
m_result_field(result_field),
m_func_bits(FindCopyBitmap(item)) {}
void Func_ptr::set_func(Item *func) {
m_func = func;
m_func_bits = FindCopyBitmap(func);
}
Item_field *Func_ptr::result_item() const {
if (m_result_item == nullptr) {
m_result_item = new Item_field(m_result_field);
}
return m_result_item;
}
|