1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
|
/*
Copyright (c) 2004, 2025, Oracle and/or its affiliates.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is designed to work with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have either included with
the program or referenced in the documentation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
#include "sql/time_zone_common.h"
#include <algorithm>
#include <fcntl.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <time.h>
#include "lex_string.h"
#include "m_ctype.h"
#include "m_string.h" // strmake
#include "map_helpers.h"
#include "my_alloc.h"
#include "my_base.h"
#include "my_compiler.h"
#include "my_dbug.h"
#include "my_dir.h"
#include "my_inttypes.h"
#include "my_io.h"
#include "my_loglevel.h"
#include "my_macros.h"
#include "my_pointer_arithmetic.h"
#include "my_psi_config.h"
#include "my_sys.h"
#include "my_time.h" // MY_TIME_T_MIN
#include "mysql/components/services/bits/mysql_mutex_bits.h"
#include "mysql/components/services/bits/psi_bits.h"
#include "mysql/components/services/bits/psi_memory_bits.h"
#include "mysql/components/services/bits/psi_mutex_bits.h"
#include "mysql/components/services/log_builtins.h"
#include "mysql/components/services/log_shared.h"
#include "mysql/psi/mysql_file.h"
#include "mysql/psi/mysql_memory.h"
#include "mysql/psi/mysql_mutex.h"
#include "mysqld_error.h"
#include "sql/dd/types/event.h"
#include "sql/field.h"
#include "sql/handler.h"
#include "sql/psi_memory_key.h"
#include "sql/sql_const.h"
#include "sql/sql_error.h"
#include "sql/system_variables.h"
#include "sql/thr_malloc.h"
#include "sql/tzfile.h" // TZ_MAX_REV_RANGES
#include "template_utils.h"
#include "thr_lock.h"
#include "thr_mutex.h"
#include <algorithm>
#include <string>
#include <unordered_map>
#include <utility>
#include "print_version.h"
#include "welcome_copyright_notice.h" /* ORACLE_WELCOME_COPYRIGHT_NOTICE */
using std::min;
/*
Most of the following code and structures were derived from
public domain code from ftp://elsie.nci.nih.gov/pub
(We will refer to this code as to elsie-code further.)
*/
bool prepare_tz_info(TIME_ZONE_INFO *sp, MEM_ROOT *storage) {
// We must allow values smaller than MYTIME_MIN_VALUE here (negative values)
// and values larger than MYTIME_MAX_VALUE
constexpr my_time_t MYTIME_MIN = std::numeric_limits<my_time_t>::min();
constexpr my_time_t MYTIME_MAX = std::numeric_limits<my_time_t>::max();
my_time_t cur_t = MYTIME_MIN;
my_time_t cur_l, end_t, end_l = 0;
my_time_t cur_max_seen_l = MYTIME_MIN;
long cur_offset, cur_corr, cur_off_and_corr;
uint next_trans_idx, next_leap_idx;
uint i;
/*
Temporary arrays where we will store tables. Needed because
we don't know table sizes ahead. (Well we can estimate their
upper bound but this will take extra space.)
*/
my_time_t revts[TZ_MAX_REV_RANGES];
REVT_INFO revtis[TZ_MAX_REV_RANGES];
/*
Let us setup fallback time type which will be used if we have not any
transitions or if we have moment of time before first transition.
We will find first non-DST local time type and use it (or use first
local time type if all of them are DST types).
*/
for (i = 0; i < sp->typecnt && sp->ttis[i].tt_isdst; i++) /* no-op */
;
if (i == sp->typecnt) i = 0;
sp->fallback_tti = &(sp->ttis[i]);
/*
Let us build shifted my_time_t -> my_time_t map.
*/
sp->revcnt = 0;
/* Let us find initial offset */
if (sp->timecnt == 0 || cur_t < sp->ats[0]) {
/*
If we have not any transitions or t is before first transition we are
using already found fallback time type which index is already in i.
*/
next_trans_idx = 0;
} else {
/* cur_t == sp->ats[0] so we found transition */
i = sp->types[0];
next_trans_idx = 1;
}
cur_offset = sp->ttis[i].tt_gmtoff;
/* let us find leap correction... unprobable, but... */
for (next_leap_idx = 0;
next_leap_idx < sp->leapcnt && cur_t >= sp->lsis[next_leap_idx].ls_trans;
++next_leap_idx)
continue;
if (next_leap_idx > 0)
cur_corr = sp->lsis[next_leap_idx - 1].ls_corr;
else
cur_corr = 0;
/* Iterate through t space */
while (sp->revcnt < TZ_MAX_REV_RANGES - 1) {
cur_off_and_corr = cur_offset - cur_corr;
/*
We assuming that cur_t could be only overflowed downwards,
we also assume that end_t won't be overflowed in this case.
*/
if (cur_off_and_corr < 0 && cur_t < MYTIME_MIN - cur_off_and_corr)
cur_t = MYTIME_MIN - cur_off_and_corr;
cur_l = cur_t + cur_off_and_corr;
/*
Let us choose end_t as point before next time type change or leap
second correction.
*/
end_t =
min((next_trans_idx < sp->timecnt) ? sp->ats[next_trans_idx] - 1
: MYTIME_MAX,
(next_leap_idx < sp->leapcnt) ? sp->lsis[next_leap_idx].ls_trans - 1
: MYTIME_MAX);
/*
again assuming that end_t can be overlowed only in positive side
we also assume that end_t won't be overflowed in this case.
*/
if (cur_off_and_corr > 0 && end_t > MYTIME_MAX - cur_off_and_corr)
end_t = MYTIME_MAX - cur_off_and_corr;
end_l = end_t + cur_off_and_corr;
if (end_l > cur_max_seen_l) {
/* We want special handling in the case of first range */
if (cur_max_seen_l == MYTIME_MIN) {
revts[sp->revcnt] = cur_l;
revtis[sp->revcnt].rt_offset = cur_off_and_corr;
revtis[sp->revcnt].rt_type = 0;
sp->revcnt++;
cur_max_seen_l = end_l;
} else {
if (cur_l > cur_max_seen_l + 1) {
/* We have a spring time-gap and we are not at the first range */
revts[sp->revcnt] = cur_max_seen_l + 1;
revtis[sp->revcnt].rt_offset = revtis[sp->revcnt - 1].rt_offset;
revtis[sp->revcnt].rt_type = 1;
sp->revcnt++;
if (sp->revcnt == TZ_MAX_TIMES + TZ_MAX_LEAPS + 1)
break; /* That was too much */
cur_max_seen_l = cur_l - 1;
}
/* Assume here end_l > cur_max_seen_l (because end_l>=cur_l) */
revts[sp->revcnt] = cur_max_seen_l + 1;
revtis[sp->revcnt].rt_offset = cur_off_and_corr;
revtis[sp->revcnt].rt_type = 0;
sp->revcnt++;
cur_max_seen_l = end_l;
}
}
if (end_t == MYTIME_MAX ||
((cur_off_and_corr > 0) && (end_t >= MYTIME_MAX - cur_off_and_corr)))
/* end of t space */
break;
cur_t = end_t + 1;
/*
Let us find new offset and correction. Because of our choice of end_t
cur_t can only be point where new time type starts or/and leap
correction is performed.
*/
if (sp->timecnt != 0 && cur_t >= sp->ats[0]) /* else reuse old offset */
if (next_trans_idx < sp->timecnt && cur_t == sp->ats[next_trans_idx]) {
/* We are at offset point */
cur_offset = sp->ttis[sp->types[next_trans_idx]].tt_gmtoff;
++next_trans_idx;
}
if (next_leap_idx < sp->leapcnt &&
cur_t == sp->lsis[next_leap_idx].ls_trans) {
/* we are at leap point */
cur_corr = sp->lsis[next_leap_idx].ls_corr;
++next_leap_idx;
}
}
/* check if we have had enough space */
if (sp->revcnt == TZ_MAX_REV_RANGES - 1) return true;
/* set maximum end_l as finisher */
revts[sp->revcnt] = end_l;
/* Allocate arrays of proper size in sp and copy result there */
if (!(sp->revts = (my_time_t *)storage->Alloc(sizeof(my_time_t) *
(sp->revcnt + 1))) ||
!(sp->revtis =
(REVT_INFO *)storage->Alloc(sizeof(REVT_INFO) * sp->revcnt)))
return true;
memcpy(sp->revts, revts, sizeof(my_time_t) * (sp->revcnt + 1));
memcpy(sp->revtis, revtis, sizeof(REVT_INFO) * sp->revcnt);
return false;
}
/*
End of elsie derived code.
*/
|