1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
|
/* Copyright (c) 2021, 2025, Oracle and/or its affiliates.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is designed to work with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have either included with
the program or referenced in the documentation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
#include <gtest/gtest.h>
#include <string>
#include <unordered_map>
#include <vector>
#include "my_table_map.h"
#include "sql/item.h"
#include "sql/item_cmpfunc.h"
#include "sql/join_optimizer/access_path.h"
#include "sql/join_optimizer/explain_access_path.h"
#include "sql/join_optimizer/relational_expression.h"
#include "sql/mem_root_array.h"
#include "sql/sql_class.h"
#include "sql/sql_executor.h"
#include "sql/sql_lex.h"
#include "sql/sql_opt_exec_shared.h"
#include "sql/sql_optimizer.h"
#include "sql/sql_select.h"
#include "unittest/gunit/fake_table.h"
#include "unittest/gunit/optimizer_test.h"
using optimizer_test::Table;
using std::vector;
using ConnectJoinTest = OptimizerTestBase;
// Tests a semijoin access path with two tables.
TEST_F(ConnectJoinTest, SemiJoin) {
Query_block *query_block =
ParseAndResolve("SELECT 1 FROM t1 WHERE t1.x IN (SELECT t2.x FROM t2)",
/*nullable=*/true);
query_block->join->const_tables = 0;
query_block->join->primary_tables = query_block->join->tables = 2;
// Set up plan for two table join - t1 semijoin t2. prefix_tables
// is unused for this query plan.
vector<Table> tables;
tables.push_back(Table("t1", /*plan_idx=*/0, /*prefix_tables=*/0b01));
tables.push_back(Table("t2", /*plan_idx=*/1, /*prefix_tables=*/0b11));
SetUpQEPTabs(query_block, /*num_tables=*/2, tables);
// Set up the semijoin path, by setting "firstmatch_return" to the table
// where the semijoin iterator will be created. Also attach the join
// condition.
JOIN *join = query_block->join;
join->qep_tab[1].firstmatch_return = 0;
join->qep_tab[1].set_condition(query_block->join->where_cond);
qep_tab_map unhandled_duplicates = 0;
qep_tab_map conditions_depend_on_outer_tables = 0;
vector<PendingInvalidator> pending_invalidators;
// This will set up the access paths.
AccessPath *root = ConnectJoins(
/*upper_first_idx=*/NO_PLAN_IDX, /*first_idx=*/0,
/*last_idx=*/2, join->qep_tab, m_thd,
/*calling_context=*/TOP_LEVEL, /*pending_conditions=*/nullptr,
&pending_invalidators, /*pending_join_conditions=*/nullptr,
&unhandled_duplicates, &conditions_depend_on_outer_tables);
// Prints out the query plan on failure.
SCOPED_TRACE(PrintQueryPlan(0, root, join,
/*is_root_of_join=*/true));
// Verify that we have t1 hash-semijoin t2 on t1.x = t2.x.
ASSERT_EQ(AccessPath::HASH_JOIN, root->type);
EXPECT_EQ(RelationalExpression::SEMIJOIN,
root->hash_join().join_predicate->expr->type);
const Mem_root_array<Item_eq_base *> &join_conditions =
root->hash_join().join_predicate->expr->equijoin_conditions;
ASSERT_EQ(1, join_conditions.size());
EXPECT_EQ("(t1.x = t2.x)", ItemToString(join_conditions[0]));
AccessPath *outer = root->hash_join().outer;
ASSERT_EQ(AccessPath::TABLE_SCAN, outer->type);
EXPECT_EQ(m_fake_tables["t1"], outer->table_scan().table);
AccessPath *inner = root->hash_join().inner;
ASSERT_EQ(AccessPath::TABLE_SCAN, inner->type);
EXPECT_EQ(m_fake_tables["t2"], inner->table_scan().table);
}
// We test a semijoin with two tables on its inner side (no multiple
// equalities).
TEST_F(ConnectJoinTest, SemiJoinWithInnerJoin) {
Query_block *query_block = ParseAndResolve(
"SELECT 1 FROM t1 WHERE t1.x IN (SELECT t2.x FROM t2 JOIN t3 "
"ON t2.y=t3.y)",
/*nullable=*/true);
query_block->join->const_tables = 0;
query_block->join->primary_tables = query_block->join->tables = 3;
// Set up the plan for three table join of the above query.
// Plan would be t1 SEMIJOIN (t2 JOIN t3). As the optimizer generates plan
// for an NLJ, the table order would be t1->t3->t2.
vector<Table> tables;
tables.push_back(Table("t1", /*plan_idx=*/0, /*prefix_tables=*/0b001));
tables.push_back(Table("t3", /*plan_idx=*/1, /*prefix_tables=*/0b011));
tables.push_back(Table("t2", /*plan_idx=*/2, /*prefix_tables=*/0b111));
SetUpQEPTabs(query_block, /*num_tables=*/3, tables);
// Setup the semijoin.
JOIN *join = query_block->join;
join->qep_tab[2].firstmatch_return = 0;
join->qep_tab[2].set_condition(query_block->join->where_cond);
qep_tab_map unhandled_duplicates = 0;
qep_tab_map conditions_depend_on_outer_tables = 0;
vector<PendingInvalidator> pending_invalidators;
// Create access paths now.
AccessPath *root = ConnectJoins(
/*upper_first_idx=*/NO_PLAN_IDX, /*first_idx=*/0,
/*last_idx=*/3, join->qep_tab, m_thd,
/*calling_context=*/TOP_LEVEL, /*pending_conditions=*/nullptr,
&pending_invalidators, /*pending_join_conditions=*/nullptr,
&unhandled_duplicates, &conditions_depend_on_outer_tables);
SCOPED_TRACE(PrintQueryPlan(0, root, join,
/*is_root_of_join=*/true));
// Verify that we have t1 hash-semijoin (t2 hash join t3 on t2.y = t3.y)
// on t1.x = t2.x
ASSERT_EQ(AccessPath::HASH_JOIN, root->type);
EXPECT_EQ(RelationalExpression::SEMIJOIN,
root->hash_join().join_predicate->expr->type);
const Mem_root_array<Item_eq_base *> &semijoin_conditions =
root->hash_join().join_predicate->expr->equijoin_conditions;
ASSERT_EQ(1, semijoin_conditions.size());
EXPECT_EQ("(t1.x = t2.x)", ItemToString(semijoin_conditions[0]));
AccessPath *semi_outer = root->hash_join().outer;
ASSERT_EQ(AccessPath::TABLE_SCAN, semi_outer->type);
EXPECT_EQ(m_fake_tables["t1"], semi_outer->table_scan().table);
AccessPath *semi_inner = root->hash_join().inner;
ASSERT_EQ(AccessPath::HASH_JOIN, semi_inner->type);
EXPECT_EQ(RelationalExpression::INNER_JOIN,
semi_inner->hash_join().join_predicate->expr->type);
const Mem_root_array<Item_eq_base *> &inner_join_conditions =
semi_inner->hash_join().join_predicate->expr->equijoin_conditions;
ASSERT_EQ(1, inner_join_conditions.size());
EXPECT_EQ("(t2.y = t3.y)", ItemToString(inner_join_conditions[0]));
AccessPath *first_table_inner = semi_inner->hash_join().outer;
ASSERT_EQ(AccessPath::TABLE_SCAN, first_table_inner->type);
EXPECT_EQ(m_fake_tables["t2"], first_table_inner->table_scan().table);
AccessPath *second_table_inner = semi_inner->hash_join().inner;
ASSERT_EQ(AccessPath::TABLE_SCAN, second_table_inner->type);
EXPECT_EQ(m_fake_tables["t3"], second_table_inner->table_scan().table);
}
// We test a semijoin with two tables on its inner side with multiple
// equalities.
TEST_F(ConnectJoinTest, SemiJoinWithMultiEqual) {
Query_block *query_block = ParseAndResolve(
"SELECT 1 FROM t1 WHERE t1.x IN (SELECT t2.x FROM t2 JOIN t3 "
"ON t2.x=t3.x)",
/*nullable=*/true);
query_block->join->const_tables = 0;
query_block->join->primary_tables = query_block->join->tables = 3;
// Set up the plan for three table join of the above query.
// Plan would be t1 SEMIJOIN (t2 JOIN t3). As the optimizer generates plan
// for an NLJ, the table order would be t1->t3->t2.
// JOIN_TAB indexing will be based on the position in the table list which is
// t1,t2,t3. However the planner would pick - t1,t3,t2
vector<Table> tables;
tables.push_back(Table("t1", /*plan_idx=*/0, /*prefix_tables=*/0b001));
tables.push_back(Table("t2", /*plan_idx=*/2, /*prefix_tables=*/0b111));
tables.push_back(Table("t3", /*plan_idx=*/1, /*prefix_tables=*/0b101));
SetUpJoinTabs(query_block, /*num_tables=*/3, tables);
// As mentioned before, the planner at the end would pick - t1,t3,t2
// QEP_TAB indexing is based on the final plan and not the pos_in_table_list.
tables.clear();
tables.push_back(Table("t1", /*plan_idx=*/0, /*prefix_tables=*/0b001));
tables.push_back(Table("t3", /*plan_idx=*/1, /*prefix_tables=*/0b011));
tables.push_back(Table("t2", /*plan_idx=*/2, /*prefix_tables=*/0b111));
SetUpQEPTabs(query_block, /*num_tables*/ 3, tables);
COND_EQUAL *cond_equal = nullptr;
// Generate multi-equalities.
EXPECT_FALSE(optimize_cond(m_thd, query_block->where_cond_ref(), &cond_equal,
&query_block->m_table_nest,
&query_block->cond_value));
JOIN_TAB *map2table[3];
// Using the multi-equalities and based on the table order picked, create
// join conditions.
for (unsigned int i = 0; i < query_block->join->primary_tables; i++)
map2table[i] = &query_block->join->join_tab[i];
Item **where_cond = &query_block->join->where_cond;
*where_cond =
substitute_for_best_equal_field(m_thd, query_block->join->where_cond,
query_block->join->cond_equal, map2table);
EXPECT_EQ("((t3.x = t1.x) and (t2.x = t1.x))", ItemToString(*where_cond));
JOIN *join = query_block->join;
// Attach conditions to tables.
Item *cond = nullptr;
for (unsigned int i = 0; i < query_block->join->primary_tables; i++) {
JOIN_TAB *join_tab = &query_block->join->join_tab[i];
table_map used_tables = join_tab->prefix_tables();
table_map current_map = 1ULL << i;
cond = make_cond_for_table(m_thd, *where_cond, used_tables, current_map,
/*exclude_expensive_cond=*/false);
if (cond) join->qep_tab[join_tab->idx()].set_condition(cond);
}
// Setup semijoin path.
join->qep_tab[2].firstmatch_return = 0;
// Finally create access paths.
qep_tab_map unhandled_duplicates = 0;
qep_tab_map conditions_depend_on_outer_tables = 0;
vector<PendingInvalidator> pending_invalidators;
AccessPath *root = ConnectJoins(
/*upper_first_idx=*/NO_PLAN_IDX, /*first_idx=*/0,
/*last_idx=*/3, join->qep_tab, m_thd,
/*calling_context=*/TOP_LEVEL, /*pending_conditions=*/nullptr,
&pending_invalidators, /*pending_join_conditions=*/nullptr,
&unhandled_duplicates, &conditions_depend_on_outer_tables);
SCOPED_TRACE(PrintQueryPlan(0, root, join,
/*is_root_of_join=*/true));
// Verify that we have t1 hash-semijoin (t2 hash join t3 on t2.x = t3.x)
// on t1.x = t3.x
ASSERT_EQ(AccessPath::HASH_JOIN, root->type);
EXPECT_EQ(RelationalExpression::SEMIJOIN,
root->hash_join().join_predicate->expr->type);
const Mem_root_array<Item_eq_base *> &semijoin_conditions =
root->hash_join().join_predicate->expr->equijoin_conditions;
ASSERT_EQ(1, semijoin_conditions.size());
EXPECT_EQ("(t3.x = t1.x)", ItemToString(semijoin_conditions[0]));
AccessPath *semi_outer = root->hash_join().outer;
ASSERT_EQ(AccessPath::TABLE_SCAN, semi_outer->type);
EXPECT_EQ(m_fake_tables["t1"], semi_outer->table_scan().table);
AccessPath *semi_inner = root->hash_join().inner;
ASSERT_EQ(AccessPath::HASH_JOIN, semi_inner->type);
EXPECT_EQ(RelationalExpression::INNER_JOIN,
semi_inner->hash_join().join_predicate->expr->type);
const Mem_root_array<Item_eq_base *> &inner_join_conditions =
semi_inner->hash_join().join_predicate->expr->equijoin_conditions;
ASSERT_EQ(1, inner_join_conditions.size());
EXPECT_EQ("(t2.x = t3.x)", ItemToString(inner_join_conditions[0]));
AccessPath *first_table_inner = semi_inner->hash_join().outer;
ASSERT_EQ(AccessPath::TABLE_SCAN, first_table_inner->type);
EXPECT_EQ(m_fake_tables["t2"], first_table_inner->table_scan().table);
AccessPath *second_table_inner = semi_inner->hash_join().inner;
ASSERT_EQ(AccessPath::TABLE_SCAN, second_table_inner->type);
EXPECT_EQ(m_fake_tables["t3"], second_table_inner->table_scan().table);
}
// Test outer join
TEST_F(ConnectJoinTest, OuterJoin) {
Query_block *query_block = ParseAndResolve(
"SELECT 1 FROM t1 JOIN t2 ON t1.x = t2.x LEFT JOIN t3 "
"ON t2.x=t3.x",
/*nullable=*/true);
query_block->join->const_tables = 0;
query_block->join->primary_tables = query_block->join->tables = 3;
// Set up the plan for three table join of the above query.
// Plan would be t1 JOIN t2 LEFT JOIN t3.
vector<Table> tables;
tables.push_back(Table("t1", /*plan_idx=*/0, /*prefix_tables=*/0b001));
tables.push_back(Table("t2", /*plan_idx=*/1, /*prefix_tables=*/0b011));
tables.push_back(Table("t3", /*plan_idx=*/2, /*prefix_tables=*/0b111));
SetUpJoinTabs(query_block, /*num_tables=*/3, tables);
// Setup outer join info
// first inner table for including outer join
query_block->join->join_tab[2].set_first_inner(2);
// last table for embedding outer join
query_block->join->join_tab[2].set_last_inner(2);
// first inner table for embedding outer join
query_block->join->join_tab[2].set_first_upper(1);
// Set up QEP_TABs now
SetUpQEPTabs(query_block, /*num_tables=*/3, tables);
query_block->join->qep_tab[2].set_first_inner(2);
query_block->join->qep_tab[2].set_last_inner(2);
query_block->join->qep_tab[2].set_first_upper(1);
COND_EQUAL *cond_equal = nullptr;
// Generate multi-equalities
EXPECT_FALSE(optimize_cond(m_thd, query_block->where_cond_ref(), &cond_equal,
&query_block->m_table_nest,
&query_block->cond_value));
JOIN_TAB *map2table[3];
// Using the multi-equalities and based on the table order picked, create
// join conditions for each of the joins.
for (unsigned int i = 0; i < query_block->join->primary_tables; i++)
map2table[i] = &query_block->join->join_tab[i];
Item **where_cond = &query_block->join->where_cond;
*where_cond =
substitute_for_best_equal_field(m_thd, query_block->join->where_cond,
query_block->join->cond_equal, map2table);
EXPECT_EQ("(t1.x = t2.x)", ItemToString(*where_cond));
JOIN *join = query_block->join;
// Attach conditions to tables
Item *cond = nullptr;
for (unsigned int i = 0; i < query_block->join->primary_tables; i++) {
JOIN_TAB *join_tab = &query_block->join->join_tab[i];
table_map used_tables = join_tab->prefix_tables();
table_map current_map = 1ULL << i;
cond = make_cond_for_table(m_thd, *where_cond, used_tables, current_map,
/*exclude_expensive_cond=*/false);
if (cond)
join->qep_tab[join_tab->idx()].set_condition(cond);
else if (join->qep_tab[join_tab->idx()].condition() !=
join_tab->condition())
join->qep_tab[join_tab->idx()].set_condition(join_tab->condition());
}
// Add is_not_null_compl condition for the outer join condition attached
// to t3
Item *outer_join_cond = new (m_thd->mem_root) Item_func_trig_cond(
join->qep_tab[2].condition(), /*f - trigger variable=*/nullptr,
query_block->join, join->qep_tab[2].first_inner(),
Item_func_trig_cond::IS_NOT_NULL_COMPL);
outer_join_cond->quick_fix_field();
join->qep_tab[2].set_condition(outer_join_cond);
// Finally create access paths.
qep_tab_map unhandled_duplicates = 0;
qep_tab_map conditions_depend_on_outer_tables = 0;
vector<PendingInvalidator> pending_invalidators;
AccessPath *root = ConnectJoins(
/*upper_first_idx=*/NO_PLAN_IDX, /*first_idx=*/0,
/*last_idx=*/3, join->qep_tab, m_thd,
/*calling_context=*/TOP_LEVEL, /*pending_conditions=*/nullptr,
&pending_invalidators, /*pending_join_conditions=*/nullptr,
&unhandled_duplicates, &conditions_depend_on_outer_tables);
SCOPED_TRACE(PrintQueryPlan(0, root, join,
/*is_root_of_join=*/true));
ASSERT_EQ(AccessPath::HASH_JOIN, root->type);
EXPECT_EQ(RelationalExpression::LEFT_JOIN,
root->hash_join().join_predicate->expr->type);
const Mem_root_array<Item_eq_base *> &leftjoin_conditions =
root->hash_join().join_predicate->expr->equijoin_conditions;
ASSERT_EQ(1, leftjoin_conditions.size());
EXPECT_EQ("(t2.x = t3.x)", ItemToString(leftjoin_conditions[0]));
AccessPath *left_outer = root->hash_join().outer;
ASSERT_EQ(AccessPath::HASH_JOIN, root->type);
EXPECT_EQ(RelationalExpression::INNER_JOIN,
left_outer->hash_join().join_predicate->expr->type);
const Mem_root_array<Item_eq_base *> &inner_join_conditions =
left_outer->hash_join().join_predicate->expr->equijoin_conditions;
ASSERT_EQ(1, inner_join_conditions.size());
EXPECT_EQ("(t1.x = t2.x)", ItemToString(inner_join_conditions[0]));
AccessPath *first_table_outer = left_outer->hash_join().outer;
ASSERT_EQ(AccessPath::TABLE_SCAN, first_table_outer->type);
EXPECT_EQ(m_fake_tables["t2"], first_table_outer->table_scan().table);
AccessPath *second_table_outer = left_outer->hash_join().inner;
ASSERT_EQ(AccessPath::TABLE_SCAN, second_table_outer->type);
EXPECT_EQ(m_fake_tables["t1"], second_table_outer->table_scan().table);
AccessPath *left_inner = root->hash_join().inner;
ASSERT_EQ(AccessPath::TABLE_SCAN, left_inner->type);
EXPECT_EQ(m_fake_tables["t3"], left_inner->table_scan().table);
}
// Test semijoin with outer join on its inner side
TEST_F(ConnectJoinTest, OuterJoinInSemiJoin) {
Query_block *query_block = ParseAndResolve(
"SELECT 1 FROM t1 WHERE t1.x IN (SELECT t2.x FROM t2 LEFT "
"JOIN t3"
" ON t2.x=t3.x)",
/*nullable=*/true);
query_block->join->const_tables = 0;
query_block->join->primary_tables = query_block->join->tables = 3;
// Set up the plan for three table join of the above query.
// Plan would be t1 SEMIJOIN t2 LEFT JOIN t3.
vector<Table> tables;
tables.push_back(Table("t1", /*plan_idx=*/0, /*prefix_tables=*/0b001));
tables.push_back(Table("t2", /*plan_idx=*/1, /*prefix_tables=*/0b011));
tables.push_back(Table("t3", /*plan_idx=*/2, /*prefix_tables=*/0b111));
SetUpJoinTabs(query_block, /*num_tables=*/3, tables);
// Set up QEP_TABs and the outer join info
SetUpQEPTabs(query_block, /*num_tables=*/3, tables);
query_block->join->qep_tab[2].set_first_inner(2);
query_block->join->qep_tab[2].set_last_inner(2);
query_block->join->qep_tab[2].set_first_upper(1);
Item *where_cond = query_block->join->where_cond;
JOIN *join = query_block->join;
// Attach conditions to tables
join->qep_tab[1].set_condition(where_cond);
join->qep_tab[2].set_condition(query_block->join->join_tab[2].condition());
// Add is_not_null_compl condition for the outer join condition attached
// to t3
Item *outer_join_cond = new (m_thd->mem_root) Item_func_trig_cond(
join->qep_tab[2].condition(), /* f - trigger variable=*/nullptr,
query_block->join, join->qep_tab[2].first_inner(),
Item_func_trig_cond::IS_NOT_NULL_COMPL);
outer_join_cond->quick_fix_field();
join->qep_tab[2].set_condition(outer_join_cond);
join->qep_tab[2].firstmatch_return = 0;
// Finally create access paths
qep_tab_map unhandled_duplicates = 0;
qep_tab_map conditions_depend_on_outer_tables = 0;
vector<PendingInvalidator> pending_invalidators;
AccessPath *root = ConnectJoins(
/*upper_first_idx=*/NO_PLAN_IDX, /*first_idx=*/0,
/*last_idx=*/3, join->qep_tab, m_thd,
/*calling_context=*/TOP_LEVEL, /*pending_conditions=*/nullptr,
&pending_invalidators, /*pending_join_conditions=*/nullptr,
&unhandled_duplicates, &conditions_depend_on_outer_tables);
// Verify if everything is as expected
SCOPED_TRACE(PrintQueryPlan(0, root, join,
/*is_root_of_join=*/true));
ASSERT_EQ(AccessPath::HASH_JOIN, root->type);
EXPECT_EQ(RelationalExpression::SEMIJOIN,
root->hash_join().join_predicate->expr->type);
const Mem_root_array<Item_eq_base *> &semijoin_conditions =
root->hash_join().join_predicate->expr->equijoin_conditions;
ASSERT_EQ(1, semijoin_conditions.size());
EXPECT_EQ("(t1.x = t2.x)", ItemToString(semijoin_conditions[0]));
AccessPath *semi_outer = root->hash_join().outer;
ASSERT_EQ(AccessPath::TABLE_SCAN, semi_outer->type);
EXPECT_EQ(m_fake_tables["t1"], semi_outer->table_scan().table);
AccessPath *semi_inner = root->hash_join().inner;
ASSERT_EQ(AccessPath::HASH_JOIN, root->type);
EXPECT_EQ(RelationalExpression::LEFT_JOIN,
semi_inner->hash_join().join_predicate->expr->type);
const Mem_root_array<Item_eq_base *> &outer_join_conditions =
semi_inner->hash_join().join_predicate->expr->equijoin_conditions;
ASSERT_EQ(1, outer_join_conditions.size());
EXPECT_EQ("(t2.x = t3.x)", ItemToString(outer_join_conditions[0]));
AccessPath *first_table_outer = semi_inner->hash_join().outer;
ASSERT_EQ(AccessPath::TABLE_SCAN, first_table_outer->type);
EXPECT_EQ(m_fake_tables["t2"], first_table_outer->table_scan().table);
AccessPath *second_table_outer = semi_inner->hash_join().inner;
ASSERT_EQ(AccessPath::TABLE_SCAN, second_table_outer->type);
EXPECT_EQ(m_fake_tables["t3"], second_table_outer->table_scan().table);
}
// Test semijoin within outer join.
TEST_F(ConnectJoinTest, SemiJoinInOuterJoin) {
Query_block *query_block = ParseAndResolve(
"SELECT 1 FROM t1 LEFT JOIN t2 ON t1.x = t2.x WHERE "
"t2.x IN (SELECT t3.x FROM t3)",
/*nullable=*/true);
query_block->join->const_tables = 0;
query_block->join->primary_tables = query_block->join->tables = 3;
// Set up the plan for three table join of the above query.
// Plan would be t1 LEFT JOIN t2 SEMI JOIN t3.
vector<Table> tables;
tables.push_back(Table("t1", /*plan_idx=*/0, /*prefix_tables=*/0b001));
tables.push_back(Table("t2", /*plan_idx=*/2, /*prefix_tables=*/0b111));
tables.push_back(Table("t3", /*plan_idx=*/1, /*prefix_tables=*/0b101));
SetUpJoinTabs(query_block, /*num_tables=*/3, tables);
tables.clear();
tables.push_back(Table("t1", /*plan_idx=*/0, /*prefix_tables=*/0b001));
tables.push_back(Table("t3", /*plan_idx=*/1, /*prefix_tables=*/0b011));
tables.push_back(Table("t2", /*plan_idx=*/2, /*prefix_tables=*/0b111));
SetUpQEPTabs(query_block, /*num_tables=*/3, tables);
// Setup outer join info
query_block->join->qep_tab[1].set_first_inner(1);
query_block->join->qep_tab[1].set_last_inner(2);
query_block->join->qep_tab[1].set_first_upper(0);
COND_EQUAL *cond_equal = nullptr;
// Generate multi-equalities
EXPECT_FALSE(optimize_cond(m_thd, query_block->where_cond_ref(), &cond_equal,
&query_block->m_table_nest,
&query_block->cond_value));
JOIN_TAB *map2table[3];
// Using the multi-equalities and based on the table order picked, create
// join conditions for each of the joins.
for (unsigned int i = 0; i < query_block->join->primary_tables; i++)
map2table[i] = &query_block->join->join_tab[i];
Item **where_cond = &query_block->join->where_cond;
*where_cond =
substitute_for_best_equal_field(m_thd, query_block->join->where_cond,
query_block->join->cond_equal, map2table);
EXPECT_EQ("((t3.x = t1.x) and (t2.x = t1.x))", ItemToString(*where_cond));
JOIN *join = query_block->join;
Item *cond = nullptr;
for (unsigned int i = 0; i < query_block->join->primary_tables; i++) {
JOIN_TAB *join_tab = &query_block->join->join_tab[i];
table_map used_tables = join_tab->prefix_tables();
table_map current_map = 1ULL << i;
cond = make_cond_for_table(m_thd, *where_cond, used_tables, current_map,
/*exclude_expensive_cond=*/false);
if (cond) join->qep_tab[join_tab->idx()].set_condition(cond);
}
// Add is_not_null_compl condition for the outer join condition attached
// to t3
Item *first_outer_join_cond = new (m_thd->mem_root) Item_func_trig_cond(
join->qep_tab[1].condition(), nullptr, query_block->join,
join->qep_tab[1].first_inner(), Item_func_trig_cond::IS_NOT_NULL_COMPL);
first_outer_join_cond->quick_fix_field();
join->qep_tab[1].set_condition(first_outer_join_cond);
Item *second_outer_join_cond = new (m_thd->mem_root) Item_func_trig_cond(
join->qep_tab[2].condition(), nullptr, query_block->join,
join->qep_tab[2].first_inner(), Item_func_trig_cond::IS_NOT_NULL_COMPL);
second_outer_join_cond->quick_fix_field();
join->qep_tab[2].set_condition(second_outer_join_cond);
join->qep_tab[2].firstmatch_return = 1;
// Create access paths.
qep_tab_map unhandled_duplicates = 0;
qep_tab_map conditions_depend_on_outer_tables = 0;
vector<PendingInvalidator> pending_invalidators;
AccessPath *root = ConnectJoins(
/*upper_first_idx=*/NO_PLAN_IDX, /*first_idx=*/0,
/*last_idx=*/3, join->qep_tab, m_thd,
/*calling_context=*/TOP_LEVEL, /*pending_conditions=*/nullptr,
&pending_invalidators, /*pending_join_conditions=*/nullptr,
&unhandled_duplicates, &conditions_depend_on_outer_tables);
SCOPED_TRACE(PrintQueryPlan(0, root, join,
/*is_root_of_join=*/true));
ASSERT_EQ(AccessPath::HASH_JOIN, root->type);
EXPECT_EQ(RelationalExpression::LEFT_JOIN,
root->hash_join().join_predicate->expr->type);
const Mem_root_array<Item_eq_base *> &leftjoin_conditions =
root->hash_join().join_predicate->expr->equijoin_conditions;
ASSERT_EQ(1, leftjoin_conditions.size());
EXPECT_EQ("(t3.x = t1.x)", ItemToString(leftjoin_conditions[0]));
AccessPath *left_outer = root->hash_join().outer;
ASSERT_EQ(AccessPath::TABLE_SCAN, left_outer->type);
EXPECT_EQ(m_fake_tables["t1"], left_outer->table_scan().table);
AccessPath *left_inner = root->hash_join().inner;
ASSERT_EQ(AccessPath::HASH_JOIN, left_inner->type);
EXPECT_EQ(RelationalExpression::SEMIJOIN,
left_inner->hash_join().join_predicate->expr->type);
const Mem_root_array<Item_eq_base *> &semi_join_conditions =
left_inner->hash_join().join_predicate->expr->equijoin_conditions;
ASSERT_EQ(1, semi_join_conditions.size());
EXPECT_EQ("(t2.x = t3.x)", ItemToString(semi_join_conditions[0]));
AccessPath *first_table_semi = left_inner->hash_join().outer;
ASSERT_EQ(AccessPath::TABLE_SCAN, first_table_semi->type);
EXPECT_EQ(m_fake_tables["t3"], first_table_semi->table_scan().table);
AccessPath *second_table_semi = left_inner->hash_join().inner;
ASSERT_EQ(AccessPath::TABLE_SCAN, second_table_semi->type);
EXPECT_EQ(m_fake_tables["t2"], second_table_semi->table_scan().table);
}
// We test a semijoin having multiple equalites and a non-equal function
TEST_F(ConnectJoinTest, SemiJoinWithNotEqual) {
Query_block *query_block = ParseAndResolve(
"SELECT 1 FROM t1 WHERE t1.x IN (SELECT t2.x FROM t2 JOIN t3 "
"ON t2.x=t3.x JOIN t4 ON t3.x = t4.x where t3.y != t4.y)",
/*nullable=*/true);
query_block->join->const_tables = 0;
query_block->join->primary_tables = query_block->join->tables = 4;
// Set up the plan for four table join of the above query.
// Plan would be t1 SEMIJOIN (t2 JOIN t3 JOIN t4). As the optimizer generates
// plan for an NLJ, the table order would be t1->t4->t3->t2
// JOIN_TAB indexing will be based on the position in the table list which is
// t1,t2,t3,t4. However the planner would pick - t1,t4,t3,t2
vector<Table> tables;
tables.push_back(Table("t1", /*plan_idx=*/0, /*prefix_tables=*/0b0001));
tables.push_back(Table("t2", /*plan_idx=*/3, /*prefix_tables=*/0b1111));
tables.push_back(Table("t3", /*plan_idx=*/2, /*prefix_tables=*/0b1101));
tables.push_back(Table("t4", /*plan_idx=*/1, /*prefix_tables=*/0b1001));
SetUpJoinTabs(query_block, /*num_tables=*/4, tables);
// As mentioned before, the planner at the end would pick - t1,t4,t3,t2
// QEP_TAB indexing is based on the final plan and not the pos_in_table_list.
tables.clear();
tables.push_back(Table("t1", /*plan_idx=*/0, /*prefix_tables=*/0b0001));
tables.push_back(Table("t4", /*plan_idx=*/1, /*prefix_tables=*/0b0011));
tables.push_back(Table("t3", /*plan_idx=*/2, /*prefix_tables=*/0b0111));
tables.push_back(Table("t2", /*plan_idx=*/3, /*prefix_tables=*/0b1111));
SetUpQEPTabs(query_block, /*num_tables*/ 4, tables);
COND_EQUAL *cond_equal = nullptr;
// Generate multi-equalities.
EXPECT_FALSE(optimize_cond(m_thd, query_block->where_cond_ref(), &cond_equal,
&query_block->m_table_nest,
&query_block->cond_value));
JOIN_TAB *map2table[4];
// Using the multi-equalities and based on the table order picked, create
// join conditions.
for (unsigned int i = 0; i < query_block->join->primary_tables; i++)
map2table[i] = &query_block->join->join_tab[i];
Item **where_cond = &query_block->join->where_cond;
*where_cond =
substitute_for_best_equal_field(m_thd, query_block->join->where_cond,
query_block->join->cond_equal, map2table);
EXPECT_EQ(
"((t4.x = t1.x) and (t3.x = t1.x) and (t2.x = t1.x) and (t3.y <> t4.y))",
ItemToString(*where_cond));
JOIN *join = query_block->join;
// Attach conditions to tables.
Item *cond = nullptr;
for (unsigned int i = 0; i < query_block->join->primary_tables; i++) {
JOIN_TAB *join_tab = &query_block->join->join_tab[i];
table_map used_tables = join_tab->prefix_tables();
table_map current_map = 1ULL << i;
cond = make_cond_for_table(m_thd, *where_cond, used_tables, current_map,
/*exclude_expensive_cond=*/false);
if (cond) join->qep_tab[join_tab->idx()].set_condition(cond);
}
// Setup semijoin path.
join->qep_tab[3].firstmatch_return = 0;
// Finally create access paths.
qep_tab_map unhandled_duplicates = 0;
qep_tab_map conditions_depend_on_outer_tables = 0;
vector<PendingInvalidator> pending_invalidators;
AccessPath *root = ConnectJoins(
/*upper_first_idx=*/NO_PLAN_IDX, /*first_idx=*/0,
/*last_idx=*/4, join->qep_tab, m_thd,
/*calling_context=*/TOP_LEVEL, /*pending_conditions=*/nullptr,
&pending_invalidators, /*pending_join_conditions=*/nullptr,
&unhandled_duplicates, &conditions_depend_on_outer_tables);
SCOPED_TRACE(PrintQueryPlan(0, root, join,
/*is_root_of_join=*/true));
// Verify that we have t1 hash-semijoin (t2 hash join (t3 hash join t4
// on t3.x = t4.x (with filter on t3.y != t4.y)) on t2.x = t4.x)
// on t1.x = t4.x)
// Earlier filter would not be placed with the inner join between
// t3 and t4
ASSERT_EQ(AccessPath::HASH_JOIN, root->type);
EXPECT_EQ(RelationalExpression::SEMIJOIN,
root->hash_join().join_predicate->expr->type);
const Mem_root_array<Item_eq_base *> &semijoin_conditions =
root->hash_join().join_predicate->expr->equijoin_conditions;
ASSERT_EQ(1, semijoin_conditions.size());
EXPECT_EQ("(t4.x = t1.x)", ItemToString(semijoin_conditions[0]));
AccessPath *semi_outer = root->hash_join().outer;
ASSERT_EQ(AccessPath::TABLE_SCAN, semi_outer->type);
EXPECT_EQ(m_fake_tables["t1"], semi_outer->table_scan().table);
AccessPath *semi_inner = root->hash_join().inner;
ASSERT_EQ(AccessPath::HASH_JOIN, semi_inner->type);
EXPECT_EQ(RelationalExpression::INNER_JOIN,
semi_inner->hash_join().join_predicate->expr->type);
const Mem_root_array<Item_eq_base *> &inner_join_conditions =
semi_inner->hash_join().join_predicate->expr->equijoin_conditions;
ASSERT_EQ(1, inner_join_conditions.size());
EXPECT_EQ("(t2.x = t4.x)", ItemToString(inner_join_conditions[0]));
AccessPath *first_table_inner = semi_inner->hash_join().outer;
ASSERT_EQ(AccessPath::TABLE_SCAN, first_table_inner->type);
EXPECT_EQ(m_fake_tables["t2"], first_table_inner->table_scan().table);
AccessPath *second_table_inner = semi_inner->hash_join().inner;
ASSERT_EQ(AccessPath::FILTER, second_table_inner->type);
EXPECT_EQ("(t3.y <> t4.y)",
ItemToString(second_table_inner->filter().condition));
AccessPath *filter_child = second_table_inner->filter().child;
ASSERT_EQ(AccessPath::HASH_JOIN, filter_child->type);
EXPECT_EQ(RelationalExpression::INNER_JOIN,
filter_child->hash_join().join_predicate->expr->type);
const Mem_root_array<Item_eq_base *> &below_filter_inner_join_conditions =
filter_child->hash_join().join_predicate->expr->equijoin_conditions;
ASSERT_EQ(1, below_filter_inner_join_conditions.size());
EXPECT_EQ("(t3.x = t4.x)",
ItemToString(below_filter_inner_join_conditions[0]));
AccessPath *first_table_inner_to_filter = filter_child->hash_join().outer;
ASSERT_EQ(AccessPath::TABLE_SCAN, first_table_inner_to_filter->type);
EXPECT_EQ(m_fake_tables["t3"],
first_table_inner_to_filter->table_scan().table);
AccessPath *second_table_inner_to_filter = filter_child->hash_join().inner;
ASSERT_EQ(AccessPath::TABLE_SCAN, second_table_inner_to_filter->type);
EXPECT_EQ(m_fake_tables["t4"],
second_table_inner_to_filter->table_scan().table);
}
|