1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
|
/* Copyright (c) 2020, 2025, Oracle and/or its affiliates.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is designed to work with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have either included with
the program or referenced in the documentation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
#include <assert.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <bitset>
#include <unordered_set>
#include <vector>
#include <gmock/gmock.h>
#include "my_compiler.h"
#include "sql/join_optimizer/subgraph_enumeration.h"
#include "unittest/gunit/benchmark.h"
using ::testing::_;
using ::testing::AnyNumber;
using ::testing::Expectation;
using ::testing::Return;
using ::testing::StrictMock;
using hypergraph::Hypergraph;
using hypergraph::NodeMap;
using hypergraph::PrintSet;
class MockReceiver {
public:
MOCK_METHOD1(HasSeen, bool(NodeMap));
MOCK_METHOD1(FoundSingleNode, bool(int));
MOCK_METHOD3(FoundSubgraphPair, bool(NodeMap, NodeMap, int));
};
TEST(DPhypTest, ExampleHypergraph) {
MEM_ROOT mem_root;
/*
The example graph from the DPhyp paper. One large
hyperedge and four simple edges.
R1-. ,-R4
| \ / |
R2---x---R5
| / \ |
R3-' `-R6
*/
Hypergraph g(&mem_root);
g.AddNode(); // R1
g.AddNode(); // R2
g.AddNode(); // R3
g.AddNode(); // R4
g.AddNode(); // R5
g.AddNode(); // R6
g.AddEdge(0b000001, 0b000010); // R1-R2
g.AddEdge(0b000010, 0b000100); // R2-R3
g.AddEdge(0b001000, 0b010000); // R4-R5
g.AddEdge(0b010000, 0b100000); // R5-R6
g.AddEdge(0b000111, 0b111000); // {R1,R2,R3}-{R4,R5,R6}
StrictMock<MockReceiver> mr;
EXPECT_CALL(mr, FoundSingleNode(0));
EXPECT_CALL(mr, FoundSingleNode(1));
EXPECT_CALL(mr, FoundSingleNode(2));
EXPECT_CALL(mr, FoundSingleNode(3));
EXPECT_CALL(mr, FoundSingleNode(4));
EXPECT_CALL(mr, FoundSingleNode(5));
// Fallback matcher.
EXPECT_CALL(mr, HasSeen(_)).WillRepeatedly(Return(false));
// Right side of the graph:
// Found link between R5 and R6.
Expectation seen_r5_r6 =
EXPECT_CALL(mr, FoundSubgraphPair(0b010000, 0b100000, 3));
EXPECT_CALL(mr, HasSeen(0b110000))
.After(seen_r5_r6)
.WillRepeatedly(Return(true));
// Found link between R4 and R5.
Expectation seen_r4_r5 =
EXPECT_CALL(mr, FoundSubgraphPair(0b001000, 0b010000, 2));
EXPECT_CALL(mr, HasSeen(0b011000))
.After(seen_r4_r5)
.WillRepeatedly(Return(true));
// Found link between R4 and {R5,R6}, through the R4-R5 edge.
Expectation seen_r4_r5r6 =
EXPECT_CALL(mr, FoundSubgraphPair(0b001000, 0b110000, 2));
// Found like between {R4,R5} and {R6}, through the R5-R6 edge.
Expectation seen_r4r5_r6 =
EXPECT_CALL(mr, FoundSubgraphPair(0b011000, 0b100000, 3));
// {R4,R5,R6} is connected (called only after we've seen its components).
EXPECT_CALL(mr, HasSeen(0b111000))
.After(seen_r4_r5r6)
.After(seen_r4r5_r6)
.WillRepeatedly(Return(true));
// Very similar, left side of the graph:
// Found link between R2 and R3.
Expectation seen_r2_r3 =
EXPECT_CALL(mr, FoundSubgraphPair(0b000010, 0b000100, 1));
EXPECT_CALL(mr, HasSeen(0b000110))
.After(seen_r2_r3)
.WillRepeatedly(Return(true));
// Found link between R1 and R2.
Expectation seen_r1_r2 =
EXPECT_CALL(mr, FoundSubgraphPair(0b000001, 0b000010, 0));
EXPECT_CALL(mr, HasSeen(0b000011))
.After(seen_r1_r2)
.WillRepeatedly(Return(true));
// Found link between R1 and {R2,R3}, through the R1-R2 edge.
Expectation seen_r1_r2r3 =
EXPECT_CALL(mr, FoundSubgraphPair(0b000001, 0b000110, 0));
// Found like between {R1,R2} and {R3}, through the R2-R3 edge.
Expectation seen_r1r2_r3 =
EXPECT_CALL(mr, FoundSubgraphPair(0b000011, 0b000100, 1));
// {R1,R2,R3} is connected (called only after we've seen its components).
EXPECT_CALL(mr, HasSeen(0b000111))
.After(seen_r1_r2r3)
.After(seen_r1r2_r3)
.WillRepeatedly(Return(true));
// Found link between {R1,R2,R3} and {R4,R5,R6}.
EXPECT_CALL(mr, FoundSubgraphPair(0b000111, 0b111000, 4))
.After(seen_r1_r2r3)
.After(seen_r1r2_r3)
.After(seen_r4_r5r6)
.After(seen_r4r5_r6);
EXPECT_FALSE(EnumerateAllConnectedPartitions(g, &mr));
}
TEST(DPhypTest, Loop) {
MEM_ROOT mem_root;
/*
Shows that we can go around a loop and connect R1 to {R2,R3,R4,R5}
graph through {R2,R5}, even though R5 was not part of R1's
neighborhood (ie., R2 was chosen as the representative node).
This requires that we remember that R5 was a part of R1's full
neighborhood.
R2----R3
/ |
/ |
R1-- |
\ |
\ |
R5----R4
*/
Hypergraph g(&mem_root);
g.AddNode(); // R1
g.AddNode(); // R2
g.AddNode(); // R3
g.AddNode(); // R4
g.AddNode(); // R5
g.AddEdge(0b00001, 0b10010); // R1-{R2,R5}
g.AddEdge(0b00010, 0b00100); // R2-R3
g.AddEdge(0b00100, 0b01000); // R3-R4
g.AddEdge(0b01000, 0b10000); // R4-R5
StrictMock<MockReceiver> mr;
EXPECT_CALL(mr, FoundSingleNode(0));
EXPECT_CALL(mr, FoundSingleNode(1));
EXPECT_CALL(mr, FoundSingleNode(2));
EXPECT_CALL(mr, FoundSingleNode(3));
EXPECT_CALL(mr, FoundSingleNode(4));
// Fallback matcher.
EXPECT_CALL(mr, HasSeen(_)).WillRepeatedly(Return(false));
// Found link between R4 and R5.
Expectation seen_r4_r5 =
EXPECT_CALL(mr, FoundSubgraphPair(0b01000, 0b10000, 3));
EXPECT_CALL(mr, HasSeen(0b11000))
.After(seen_r4_r5)
.WillRepeatedly(Return(true));
// Found link between R3 and R4.
Expectation seen_r3_r4 =
EXPECT_CALL(mr, FoundSubgraphPair(0b00100, 0b01000, 2));
EXPECT_CALL(mr, HasSeen(0b01100))
.After(seen_r3_r4)
.WillRepeatedly(Return(true));
// Found link between R3 and {R4,R5}, through the R3-R4 edge.
Expectation seen_r3_r4r5 =
EXPECT_CALL(mr, FoundSubgraphPair(0b00100, 0b11000, 2)).After(seen_r4_r5);
// Found link between {R3,R4} and R5, through the R4-R5 edge.
Expectation seen_r3r4_r5 =
EXPECT_CALL(mr, FoundSubgraphPair(0b01100, 0b10000, 3)).After(seen_r3_r4);
// {R3,R4,R5} is connected (called only after we've seen its components).
EXPECT_CALL(mr, HasSeen(0b11100))
.After(seen_r3_r4r5)
.After(seen_r3r4_r5)
.WillRepeatedly(Return(true));
// Found link between R2 and R3.
Expectation seen_r2_r3 =
EXPECT_CALL(mr, FoundSubgraphPair(0b00010, 0b00100, 1));
EXPECT_CALL(mr, HasSeen(0b00110)).WillRepeatedly(Return(true));
// Found link between R2 and {R3,R4}, through the R2-R3 edge.
Expectation seen_r2_r3r4 =
EXPECT_CALL(mr, FoundSubgraphPair(0b00010, 0b01100, 1)).After(seen_r3_r4);
// Found link between {R2,R3} and R4, through the R3-R4 edge.
Expectation seen_r2r3_r4 =
EXPECT_CALL(mr, FoundSubgraphPair(0b00110, 0b01000, 2)).After(seen_r2_r3);
// {R2,R3,R4} is connected (called only after we've seen its components).
EXPECT_CALL(mr, HasSeen(0b01110))
.After(seen_r2_r3r4)
.After(seen_r2r3_r4)
.WillRepeatedly(Return(true));
// Found link between R2 and {R3,R4,R5}, through the R2-R3 edge.
Expectation seen_r2_r3r4r5 =
EXPECT_CALL(mr, FoundSubgraphPair(0b00010, 0b11100, 1))
.After(seen_r3_r4r5)
.After(seen_r3r4_r5);
// Found link between {R2,R3} and {R4,R5}, through the R3-R4 edge.
Expectation seen_r2r3_r4r5 =
EXPECT_CALL(mr, FoundSubgraphPair(0b00110, 0b11000, 2))
.After(seen_r2_r3)
.After(seen_r4_r5);
// Found link between {R2,R3,R4} and R5, through the R4-R5 edge.
Expectation seen_r2r3r4_r5 =
EXPECT_CALL(mr, FoundSubgraphPair(0b01110, 0b10000, 3))
.After(seen_r2r3_r4)
.After(seen_r2_r3r4);
// {R2,R3,R4,R5} is connected (called only after we've seen its components).
EXPECT_CALL(mr, HasSeen(0b11110))
.After(seen_r2_r3r4r5)
.After(seen_r2r3_r4r5)
.After(seen_r2r3r4_r5)
.WillRepeatedly(Return(true));
// Finally, found link between R1 and {R2,R3,R4,R5}, through the R1-{R2,R5}
// edge.
EXPECT_CALL(mr, FoundSubgraphPair(0b00001, 0b11110, 0))
.After(seen_r2_r3r4r5)
.After(seen_r2r3_r4r5)
.After(seen_r2r3r4_r5);
EXPECT_FALSE(EnumerateAllConnectedPartitions(g, &mr));
}
TEST(DPhypTest, AbortWithError) {
MEM_ROOT mem_root;
/*
A simple chain.
R1--R2--R3
*/
Hypergraph g(&mem_root);
g.AddNode(); // R1
g.AddNode(); // R2
g.AddNode(); // R3
g.AddEdge(0b000001, 0b000010); // R1-R2
g.AddEdge(0b000010, 0b000100); // R2-R3
StrictMock<MockReceiver> mr;
EXPECT_CALL(mr, FoundSingleNode(1));
EXPECT_CALL(mr, FoundSingleNode(2));
// Fallback matcher.
EXPECT_CALL(mr, HasSeen(_)).WillRepeatedly(Return(false));
// Found link between R2 and R3. We return true (error) here,
// so the algorithm should abort without ever seeing R1
// or any of the links to it.
EXPECT_CALL(mr, FoundSubgraphPair(0b000010, 0b000100, 1))
.WillOnce(Return(true));
EXPECT_TRUE(EnumerateAllConnectedPartitions(g, &mr));
}
// A Receiver used for unit tests. It records all subgraph pairs we see,
// allowing us to check afterwards that the correct ones were discovered
// (and no others). It also verifies correct ordering of HasSeen() calls.
struct AccumulatingReceiver {
struct Subplan {
NodeMap left, right;
int edge_idx;
};
bool HasSeen(NodeMap subgraph) {
if (seen_subplans.find(subgraph) == seen_subplans.end()) {
has_returned_nonconnected.insert(subgraph);
return false;
} else {
assert(has_returned_nonconnected.count(subgraph) == 0);
return true;
}
}
bool FoundSingleNode(int node_idx) {
NodeMap map = TableBitmap(node_idx);
// We must always see all enumerations for a subset before we can
// use that subset.
assert(used_in_larger_subset.count(map) == 0);
// Should be called only once.
assert(seen_subplans.count(map) == 0);
seen_subplans.emplace(map, Subplan{0, 0, -1});
return false;
}
bool FoundSubgraphPair(NodeMap left, NodeMap right, int edge_idx) {
printf("Found connection between %s and %s along edge %d\n",
PrintSet(left).c_str(), PrintSet(right).c_str(), edge_idx);
// We must always see all enumerations for a subset before we can
// use that subset.
assert(used_in_larger_subset.count(left | right) == 0);
used_in_larger_subset.insert(left);
used_in_larger_subset.insert(right);
// Additional test that in practice tests the same thing.
assert(has_returned_nonconnected.count(left | right) == 0);
// We should only get a given subgraph pair once.
EXPECT_FALSE(SeenSubgraphPair(left, right, edge_idx))
<< "Duplicate connection between " << PrintSet(left) << " and "
<< PrintSet(right) << " along edge " << edge_idx;
seen_subplans.emplace(left | right, Subplan{left, right, edge_idx});
return false;
}
// Checks whether FoundSubgraphPair() was called with the given arguments.
// Fairly slow for large graphs.
bool SeenSubgraphPair(NodeMap left, NodeMap right, int edge_idx) {
const auto subset_subplans = seen_subplans.equal_range(left | right);
for (auto it = subset_subplans.first; it != subset_subplans.second; ++it) {
if (it->second.left == left && it->second.right == right &&
it->second.edge_idx == edge_idx) {
return true;
}
}
return false;
}
std::unordered_set<NodeMap> has_returned_nonconnected;
std::unordered_set<NodeMap> used_in_larger_subset;
std::multimap<NodeMap, Subplan> seen_subplans;
};
// A very simple receiver used during benchmarking only, used to isolate
// away receiver performance from the algorithm itself. Probably the fastest
// imaginable implementation; does nothing useful except remember which
// subgraphs are connected, as required for HasSeen().
template <int Size>
struct BenchmarkReceiver {
bool HasSeen(NodeMap subgraph) { return seen_subplans[subgraph]; }
bool FoundSingleNode(int node_idx) {
NodeMap map = TableBitmap(node_idx);
seen_subplans.set(map);
return false;
}
bool FoundSubgraphPair(NodeMap left, NodeMap right, int) {
seen_subplans.set(left | right);
return false;
}
static constexpr int num_elements = 1 << Size;
std::bitset<num_elements> seen_subplans;
};
// Creates a simple chain A-B-C-D-..., and verifies that we get all possible
// permutations.
TEST(DPhypTest, Chain) {
constexpr int num_elements = 20;
MEM_ROOT mem_root;
Hypergraph g(&mem_root);
for (int i = 0; i < num_elements; ++i) {
g.AddNode();
if (i != 0) {
g.AddEdge(TableBitmap(i - 1), TableBitmap(i));
}
}
AccumulatingReceiver receiver;
EXPECT_FALSE(EnumerateAllConnectedPartitions(g, &receiver));
// Look at all possible subchains of the chain.
int expected_subplans = 0;
for (int start_idx = 0; start_idx < num_elements; ++start_idx) {
for (int end_idx = start_idx + 1; end_idx <= num_elements; ++end_idx) {
NodeMap subset = TablesBetween(start_idx, end_idx);
if (end_idx == start_idx + 1) {
// Single node, so should have a single single-node subplan.
ASSERT_EQ(1, receiver.seen_subplans.count(subset));
EXPECT_EQ(0, receiver.seen_subplans.find(subset)->second.left);
EXPECT_EQ(0, receiver.seen_subplans.find(subset)->second.right);
EXPECT_EQ(-1, receiver.seen_subplans.find(subset)->second.edge_idx);
++expected_subplans;
continue;
}
// This subchain should be splittable along all possible midpoints.
for (int split_after_idx = start_idx; split_after_idx < end_idx - 1;
++split_after_idx) {
NodeMap left = TablesBetween(start_idx, split_after_idx + 1);
NodeMap right = TablesBetween(split_after_idx + 1, end_idx);
int edge_idx = split_after_idx;
EXPECT_TRUE(receiver.SeenSubgraphPair(left, right, edge_idx))
<< "Subset " << PrintSet(subset) << " should be splittable into "
<< PrintSet(left) << " and " << PrintSet(right) << " along edge "
<< edge_idx;
++expected_subplans;
}
EXPECT_TRUE(receiver.seen_subplans.count(subset));
}
}
// We should have no other subplans than the ones we checked for earlier.
EXPECT_EQ(expected_subplans, receiver.seen_subplans.size());
}
// Demonstrates that we need to grow neighborhoods carefully when looking for
// complement seeds. Specifically, when starting with {R1} (which has
// neighborhood {R2,R3,R4}) and growing it with R2, we'd normally only consider
// the neighborhood of R2, since R3 and R4 are now in the forbidden set.
// However, when looking for seeds for the complement of {R1,R2}, we need to
// take R3 and R4 back into account, since they are not forbidden in this
// context.
//
// This test doesn't test precise call ordering, only that we get all the
// expected sets.
TEST(DPhypTest, SmallStar) {
MEM_ROOT mem_root;
/*
R2
|
|
R1---R3
|
|
R4
*/
Hypergraph g(&mem_root);
g.AddNode(); // R1
g.AddNode(); // R2
g.AddNode(); // R3
g.AddNode(); // R4
g.AddEdge(0b00001, 0b00010); // R1-R2
g.AddEdge(0b00001, 0b00100); // R1-R3
g.AddEdge(0b00001, 0b01000); // R1-R4
StrictMock<MockReceiver> mr;
EXPECT_CALL(mr, FoundSingleNode(0));
EXPECT_CALL(mr, FoundSingleNode(1));
EXPECT_CALL(mr, FoundSingleNode(2));
EXPECT_CALL(mr, FoundSingleNode(3));
for (int i = 1; i < 16; ++i) {
if (IsSingleBitSet(i)) {
EXPECT_CALL(mr, HasSeen(i))
.Times(AnyNumber())
.WillRepeatedly(Return(true));
} else {
// Anything containing R1 is connected, anything else is not.
EXPECT_CALL(mr, HasSeen(i))
.Times(AnyNumber())
.WillRepeatedly(Return(i & 1));
}
}
EXPECT_CALL(mr, FoundSubgraphPair(0b0001, 0b0010, 0)); // R1-R2.
EXPECT_CALL(mr, FoundSubgraphPair(0b0001, 0b0100, 1)); // R1-R3.
EXPECT_CALL(mr, FoundSubgraphPair(0b0001, 0b1000, 2)); // R1-R4.
EXPECT_CALL(mr,
FoundSubgraphPair(0b0011, 0b0100, 1)); // {R1,R2}-R3 along R1-R3.
EXPECT_CALL(mr,
FoundSubgraphPair(0b0011, 0b1000, 2)); // {R1,R2}-R4 along R1-R4.
EXPECT_CALL(mr,
FoundSubgraphPair(0b0101, 0b0010, 0)); // {R1,R3}-R2 along R1-R2.
EXPECT_CALL(mr,
FoundSubgraphPair(0b0101, 0b1000, 2)); // {R1,R3}-R4 along R1-R4.
EXPECT_CALL(mr,
FoundSubgraphPair(0b1001, 0b0010, 0)); // {R1,R4}-R2 along R1-R2.
EXPECT_CALL(mr,
FoundSubgraphPair(0b1001, 0b0100, 1)); // {R1,R4}-R3 along R1-R3.
EXPECT_CALL(
mr, FoundSubgraphPair(0b0111, 0b1000, 2)); // {R1,R2,R3}-R4 along R1-R4.
EXPECT_CALL(
mr, FoundSubgraphPair(0b1011, 0b0100, 1)); // {R1,R2,R4}-R3 along R1-R3.
EXPECT_CALL(
mr, FoundSubgraphPair(0b1101, 0b0010, 0)); // {R1,R2,R4}-R3 along R1-R2.
EXPECT_FALSE(EnumerateAllConnectedPartitions(g, &mr));
}
// Creates a clique (everything connected to everything, with simple edges)
// and checks that we get every possible permutation, along every relevant edge.
TEST(DPhypTest, Clique) {
constexpr int num_elements = 6;
int edge_indexes[num_elements][num_elements];
MEM_ROOT mem_root;
Hypergraph g(&mem_root);
for (int i = 0; i < num_elements; ++i) {
g.AddNode();
for (int j = 0; j < i; ++j) {
g.AddEdge(TableBitmap(i), TableBitmap(j));
edge_indexes[i][j] = edge_indexes[j][i] = (g.edges.size() - 1) / 2;
}
}
AccumulatingReceiver receiver;
EXPECT_FALSE(EnumerateAllConnectedPartitions(g, &receiver));
int expected_subplans = 0;
// Look at all possible non-zero subsets of the clique.
for (NodeMap subset = 1; subset < (NodeMap{1} << num_elements); ++subset) {
if (IsSingleBitSet(subset)) {
// Single node, so should have a single single-node subplan.
ASSERT_EQ(1, receiver.seen_subplans.count(subset));
EXPECT_EQ(0, receiver.seen_subplans.find(subset)->second.left);
EXPECT_EQ(0, receiver.seen_subplans.find(subset)->second.right);
EXPECT_EQ(-1, receiver.seen_subplans.find(subset)->second.edge_idx);
++expected_subplans;
continue;
}
// Find all possible two-way partitions of this subset.
for (NodeMap left : NonzeroSubsetsOf(subset)) {
if (left == subset) continue;
NodeMap right = subset & ~left;
if (IsolateLowestBit(left) > IsolateLowestBit(right)) continue;
for (size_t left_idx : BitsSetIn(left)) {
for (size_t right_idx : BitsSetIn(right)) {
int edge_idx = edge_indexes[left_idx][right_idx];
EXPECT_TRUE(receiver.SeenSubgraphPair(left, right, edge_idx))
<< "Subset " << PrintSet(subset) << " should be splittable into "
<< PrintSet(left) << " and " << PrintSet(right) << " along edge "
<< edge_idx;
++expected_subplans;
}
}
}
}
// We should have no other subplans than the ones we checked for earlier.
EXPECT_EQ(expected_subplans, receiver.seen_subplans.size());
}
// Constructs a hypergraph of A LEFT JOIN (B LEFT JOIN (C LEFT JOIN ...)),
// for null-tolerant joins; ie., no reordering is possible and only one
// possible plan should exist.
TEST(DPhypTest, OuterJoinChain) {
constexpr int num_nodes = 5;
MEM_ROOT mem_root;
Hypergraph g(&mem_root);
g.AddNode(); // R1
g.AddNode(); // R2
g.AddNode(); // R3
g.AddNode(); // R4
g.AddNode(); // R5
g.AddEdge(0b11110, 0b00001); // R1-{R2,R3,R4,R5}
g.AddEdge(0b11100, 0b00010); // R2-{R3,R4,R5}
g.AddEdge(0b11000, 0b00100); // R3-{R4,R5}
g.AddEdge(0b10000, 0b01000); // R4-R5
AccumulatingReceiver receiver;
EXPECT_FALSE(EnumerateAllConnectedPartitions(g, &receiver));
int expected_subplans = 0;
for (size_t node_idx = 0; node_idx < num_nodes; ++node_idx) {
NodeMap subset = TableBitmap(node_idx);
ASSERT_EQ(1, receiver.seen_subplans.count(subset));
EXPECT_EQ(0, receiver.seen_subplans.find(subset)->second.left);
EXPECT_EQ(0, receiver.seen_subplans.find(subset)->second.right);
EXPECT_EQ(-1, receiver.seen_subplans.find(subset)->second.edge_idx);
++expected_subplans;
}
for (size_t edge_idx = 0; edge_idx < num_nodes - 1; ++edge_idx) {
NodeMap subset = g.edges[edge_idx * 2].left | g.edges[edge_idx * 2].right;
ASSERT_EQ(1, receiver.seen_subplans.count(subset));
// NOTE: The edges come out flipped compared to the order we added them,
// due to the ordering properties.
EXPECT_EQ(g.edges[edge_idx * 2].right,
receiver.seen_subplans.find(subset)->second.left);
EXPECT_EQ(g.edges[edge_idx * 2].left,
receiver.seen_subplans.find(subset)->second.right);
EXPECT_EQ(edge_idx, receiver.seen_subplans.find(subset)->second.edge_idx);
++expected_subplans;
}
// We should have no other subplans than the ones we checked for earlier.
EXPECT_EQ(expected_subplans, receiver.seen_subplans.size());
}
static void BM_Chain20(size_t num_iterations) {
StopBenchmarkTiming();
constexpr int num_nodes = 20;
MEM_ROOT mem_root;
Hypergraph g(&mem_root);
for (int i = 0; i < num_nodes; ++i) {
g.AddNode();
if (i != 0) {
g.AddEdge(TableBitmap(i - 1), TableBitmap(i));
}
}
for (size_t i = 0; i < num_iterations; ++i) {
BenchmarkReceiver<num_nodes> receiver;
StartBenchmarkTiming();
EnumerateAllConnectedPartitions(g, &receiver);
StopBenchmarkTiming();
}
}
BENCHMARK(BM_Chain20)
// Like the OuterJoinChain test, just as a benchmark.
//
// Note that even though we only emit one possible plan, this test is not
// that much faster then BM_Chain20. The reason is that even though the
// number of subsets go down from O(n³) to O(n²), each node also is touched
// by more hyperedges (on the order of O(n)), so neighborhood finding has to
// sift through more edges. It would be nice if we had some way of culling
// these “obviously wrong” edges without a linear search (e.g., it is
// meaningless for R5 to traverse a hyperedge to R1 in the neighborhood
// calculation when expanding subgraphs, since it goes “backwards”), but in the
// presence of cycles, there does not seem to be an obvious way of codifying
// this.
static void BM_NestedOuterJoin20(size_t num_iterations) {
StopBenchmarkTiming();
constexpr int num_nodes = 20;
MEM_ROOT mem_root;
Hypergraph g(&mem_root);
for (int i = 0; i < num_nodes; ++i) {
g.AddNode();
}
for (int i = 0; i < num_nodes - 1; ++i) {
g.AddEdge(TableBitmap(i), TablesBetween(i + 1, num_nodes));
}
for (size_t i = 0; i < num_iterations; ++i) {
BenchmarkReceiver<num_nodes> receiver;
StartBenchmarkTiming();
EnumerateAllConnectedPartitions(g, &receiver);
StopBenchmarkTiming();
}
}
BENCHMARK(BM_NestedOuterJoin20)
// Benchmark from the DPhyp paper. We only implement the version
// with hyperedges split into cardinality-2 hypernodes.
static void BM_HyperCycle16(size_t num_iterations) {
StopBenchmarkTiming();
constexpr int num_nodes = 16; // A multiple of four.
MEM_ROOT mem_root;
Hypergraph g(&mem_root);
for (int i = 0; i < num_nodes; ++i) {
g.AddNode();
}
// Add the simple edges that create the cycle.
for (int i = 0; i < num_nodes; ++i) {
g.AddEdge(TableBitmap(i), TableBitmap((i + 1) % num_nodes));
}
// Add some hyperedges.
for (int i = 0; i < num_nodes; i += 4) {
g.AddEdge(TablesBetween(i, i + 2), TablesBetween(i + 2, i + 4));
}
for (size_t i = 0; i < num_iterations; ++i) {
BenchmarkReceiver<num_nodes> receiver;
StartBenchmarkTiming();
EnumerateAllConnectedPartitions(g, &receiver);
StopBenchmarkTiming();
}
}
BENCHMARK(BM_HyperCycle16)
static void BM_Star17(size_t num_iterations) {
StopBenchmarkTiming();
constexpr int num_nodes = 17;
MEM_ROOT mem_root;
Hypergraph g(&mem_root);
g.AddNode(); // The central node.
for (int i = 1; i < num_nodes; ++i) {
g.AddNode();
g.AddEdge(TableBitmap(0), TableBitmap(i));
}
for (size_t i = 0; i < num_iterations; ++i) {
BenchmarkReceiver<num_nodes> receiver;
StartBenchmarkTiming();
EnumerateAllConnectedPartitions(g, &receiver);
StopBenchmarkTiming();
}
}
BENCHMARK(BM_Star17)
// Benchmark from the DPhyp paper. This is the version with hyperedges split
// into cardinality-2 hypernodes.
static void BM_HyperStar17_ManyHyperedges(size_t num_iterations) {
StopBenchmarkTiming();
constexpr int num_nodes = 17; // A multiple of four, plus one.
MEM_ROOT mem_root;
Hypergraph g(&mem_root);
g.AddNode(); // The central node.
for (int i = 1; i < num_nodes; ++i) {
g.AddNode();
g.AddEdge(TableBitmap(0), TableBitmap(i));
}
// Add some hyperedges.
constexpr int half = (num_nodes - 1) / 2;
for (int i = 0; i < half; i += 2) {
g.AddEdge(TablesBetween(i + 1, i + 3),
TablesBetween(i + half + 1, i + half + 3));
}
for (size_t i = 0; i < num_iterations; ++i) {
BenchmarkReceiver<num_nodes> receiver;
StartBenchmarkTiming();
EnumerateAllConnectedPartitions(g, &receiver);
StopBenchmarkTiming();
}
}
BENCHMARK(BM_HyperStar17_ManyHyperedges)
// Benchmark from the DPhyp paper. This is the version with no hyperedge
// split (only one large hyperedge).
static void BM_HyperStar17_SingleLargeHyperedge(size_t num_iterations) {
StopBenchmarkTiming();
constexpr int num_nodes = 17; // A multiple of two, plus one.
MEM_ROOT mem_root;
Hypergraph g(&mem_root);
g.AddNode(); // The central node.
for (int i = 1; i < num_nodes; ++i) {
g.AddNode();
g.AddEdge(TableBitmap(0), TableBitmap(i));
}
// Add a single large hyperedge.
constexpr int half = (num_nodes - 1) / 2;
g.AddEdge(TablesBetween(1, half + 1), TablesBetween(half + 1, num_nodes));
for (size_t i = 0; i < num_iterations; ++i) {
BenchmarkReceiver<num_nodes> receiver;
StartBenchmarkTiming();
EnumerateAllConnectedPartitions(g, &receiver);
StopBenchmarkTiming();
}
}
BENCHMARK(BM_HyperStar17_SingleLargeHyperedge)
|