1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
|
/* Copyright (c) 2012, 2025, Oracle and/or its affiliates.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is designed to work with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have either included with
the program or referenced in the documentation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
#include <gtest/gtest.h>
#include <algorithm>
#include <memory>
#include <vector>
#include "my_byteorder.h"
#include "my_inttypes.h"
#include "sql/filesort_utils.h"
#include "unittest/gunit/benchmark.h"
#include "unittest/gunit/gunit_test_main.h"
namespace filesort_compare_unittest {
/*
Below are some performance microbenchmarks in order to compare our sorting
options:
std::sort - requires no extra memory,
typically implemented with introsort/insertion sort
std::stable_sort - requires extra memory: array of n pointers,
typically implemented with mergesort
The record format for filesort is constructed in such a way that we can
compare records byte-by-byte, without knowing the data types.
Nullable fields (maybe_null()) are pre-pended with an extra byte.
If we are sorting in descending mode, all the bytes are simply flipped.
This means that any variant of memcmp() can be used for comparing record.
Below we test different variants, including memcmp() itself.
*/
inline int bytes_to_int(const uchar *s) {
int val = longget(s);
return val ^ 0x80000000;
}
inline void int_to_bytes(uchar *s, int val) {
val = val ^ 0x80000000;
longstore(s, val);
}
TEST(BufferAlignmentTest, IntsToBytesToInt) {
uchar buf[10];
memset(buf, 0, sizeof(buf));
for (int ix = 0; ix < 6; ++ix) {
int test_data[] = {INT_MIN32, -42, -1, 0, 1, 42, INT_MAX32};
for (size_t iy = 0; iy < array_elements(test_data); ++iy) {
int val = test_data[iy];
int_to_bytes(buf + ix, val);
EXPECT_EQ(val, bytes_to_int(buf + ix));
}
}
}
class FileSortBMHelper {
public:
// Number of records.
static const int num_records = 100 * 100;
// Number of keys in each record.
static const int keys_per_record = 4;
// Size of each record.
static const int record_size = keys_per_record * sizeof(int);
// Buffer containing data to be sorted.
// (actually: we only sort the sort_keys below, data is stable).
std::vector<int> test_data;
FileSortBMHelper() {
test_data.reserve(num_records * keys_per_record);
union {
int val;
uchar buf[sizeof(int)];
} sort_str;
for (int ix = 0; ix < num_records * keys_per_record; ++ix) {
int val = ix / (10 * keys_per_record);
if (ix % 10 == 0) val = -val;
int_to_bytes(sort_str.buf, val);
test_data.push_back(sort_str.val);
}
// Comment away shuffling for testing partially pre-sorted data.
// std::random_shuffle(test_data.begin(), test_data.end());
sort_keys.reset(new uchar *[num_records]);
for (int ix = 0; ix < num_records; ++ix)
sort_keys[ix] = static_cast<uchar *>(
static_cast<void *>(&test_data[keys_per_record * ix]));
}
std::vector<uchar *> GetKeys() const {
return {sort_keys.get(), sort_keys.get() + num_records};
}
std::unique_ptr<uchar *[]> sort_keys;
};
/*
Some different mem_compare functions.
The second one seems to win on all platforms, except sparc,
where the builtin memcmp() wins.
TODO(sgunders): Consider re-tuning this and switch to one of
the other ones; ideally, just memcmp().
*/
inline bool mem_compare_0(const uchar *s1, const uchar *s2, size_t len) {
do {
if (*s1++ != *s2++) return *--s1 < *--s2;
} while (--len != 0);
return s1 > s2; // Return false for duplicate keys.
}
// This variant is safe against zero-length inputs.
inline bool mem_compare_0_zerosafe(const uchar *s1, const uchar *s2,
size_t len) {
for (size_t i = 0; i < len; ++i) {
if (s1[i] != s2[i]) return s1[i] < s2[i];
}
return s1 > s2; // Return false for duplicate keys.
}
inline bool mem_compare_1(const uchar *s1, const uchar *s2, size_t len) {
do {
if (*s1++ != *s2++) return *--s1 < *--s2;
} while (--len != 0);
return false;
}
inline bool mem_compare_2(const uchar *s1, const uchar *s2, size_t len) {
int v = 0;
while (len-- > 0 && v == 0) {
v = *(s1++) - *(s2++);
}
return v < 0;
}
inline bool mem_compare_3(const uchar *s1, const uchar *s2, size_t len) {
while (--len && (s1[0] == s2[0])) {
++s1;
++s2;
}
return s1[0] < s2[0];
}
#if defined(_WIN32)
#pragma intrinsic(memcmp)
#endif
// For gcc, __builtin_memcmp is actually *slower* than the library call:
// http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43052
class Mem_compare_memcmp {
public:
explicit Mem_compare_memcmp(size_t n) : m_size(n) {}
bool operator()(const uchar *s1, const uchar *s2) {
return memcmp(s1, s2, m_size) < 0;
}
size_t m_size;
};
class Mem_compare_0 {
public:
explicit Mem_compare_0(size_t n) : m_size(n) {}
bool operator()(const uchar *s1, const uchar *s2) {
return mem_compare_0(s1, s2, m_size);
}
size_t m_size;
};
class Mem_compare_0_zerosafe {
public:
explicit Mem_compare_0_zerosafe(size_t n) : m_size(n) {}
bool operator()(const uchar *s1, const uchar *s2) {
return mem_compare_0_zerosafe(s1, s2, m_size);
}
size_t m_size;
};
class Mem_compare_1 {
public:
explicit Mem_compare_1(size_t n) : m_size(n) {}
bool operator()(const uchar *s1, const uchar *s2) {
return mem_compare_1(s1, s2, m_size);
}
size_t m_size;
};
class Mem_compare_2 {
public:
explicit Mem_compare_2(size_t n) : m_size(n) {}
bool operator()(const uchar *s1, const uchar *s2) {
return mem_compare_2(s1, s2, m_size);
}
size_t m_size;
};
class Mem_compare_3 {
public:
explicit Mem_compare_3(size_t n) : m_size(n) {}
bool operator()(const uchar *s1, const uchar *s2) {
return mem_compare_3(s1, s2, m_size);
}
size_t m_size;
};
#define COMPARE(N) \
if (s1[N] != s2[N]) return s1[N] < s2[N]
class Mem_compare_4 {
public:
explicit Mem_compare_4(size_t n) : m_size(n) {}
bool operator()(const uchar *s1, const uchar *s2) {
size_t len = m_size;
while (len > 0) {
COMPARE(0);
COMPARE(1);
COMPARE(2);
COMPARE(3);
len -= 4;
s1 += 4;
s2 += 4;
}
return false;
}
size_t m_size;
};
class Mem_compare_5 {
public:
explicit Mem_compare_5(size_t n) : m_size(n) {}
bool operator()(const uchar *s1, const uchar *s2) {
COMPARE(0);
COMPARE(1);
COMPARE(2);
COMPARE(3);
return memcmp(s1 + 4, s2 + 4, m_size - 4) < 0;
}
size_t m_size;
};
// This one works for any number of keys.
// We treat the first key as int, the rest byte-by-byte.
class Mem_compare_int {
public:
explicit Mem_compare_int(size_t n) : m_size(n), rest(n - sizeof(int)) {}
bool operator()(const uchar *s1, const uchar *s2) {
int int1 = bytes_to_int(s1);
int int2 = bytes_to_int(s2);
if (int1 == int2) return mem_compare_1(s1 + rest, s2 + rest, rest);
return int1 < int2;
}
private:
size_t m_size;
const size_t rest;
};
class Mem_compare_int_4 {
public:
explicit Mem_compare_int_4(size_t) : keyno(1) {}
bool operator()(const uchar *s1, const uchar *s2) {
int inta1 = bytes_to_int(s1);
int intb1 = bytes_to_int(s2);
if (keyno < 4 && inta1 == intb1) {
++keyno;
return operator()(s1 + sizeof(int), s2 + sizeof(int));
}
return inta1 < intb1;
}
int keyno;
};
template <class Compare>
static inline void RunSortBenchmark(size_t num_iterations, bool stable_sort) {
StopBenchmarkTiming();
FileSortBMHelper helper;
for (size_t ix = 0; ix < num_iterations; ++ix) {
std::vector<uchar *> keys = helper.GetKeys();
StartBenchmarkTiming();
if (stable_sort) {
std::stable_sort(keys.begin(), keys.end(), Compare(helper.record_size));
} else {
std::sort(keys.begin(), keys.end(), Compare(helper.record_size));
}
StopBenchmarkTiming();
}
}
/*
Several sorting tests below, each one runs num_iterations.
For each iteration we take a copy of the key pointers, and sort the copy.
Most of the tests below are run with std::sort and std::stable_sort.
Stable sort seems to be faster for all test cases, on all platforms.
*/
static void BM_StdSortmemcmp(size_t num_iterations) {
RunSortBenchmark<Mem_compare_memcmp>(num_iterations, /*stable_sort=*/false);
}
BENCHMARK(BM_StdSortmemcmp)
static void BM_StdStableSortmemcmp(size_t num_iterations) {
RunSortBenchmark<Mem_compare_memcmp>(num_iterations, /*stable_sort=*/true);
}
BENCHMARK(BM_StdStableSortmemcmp)
static void BM_StdSortCompare0(size_t num_iterations) {
RunSortBenchmark<Mem_compare_0>(num_iterations, /*stable_sort=*/false);
}
BENCHMARK(BM_StdSortCompare0)
static void BM_StdStableSortCompare0(size_t num_iterations) {
RunSortBenchmark<Mem_compare_0>(num_iterations, /*stable_sort=*/true);
}
BENCHMARK(BM_StdStableSortCompare0)
static void BM_StdSortCompare0ZeroSafe(size_t num_iterations) {
RunSortBenchmark<Mem_compare_0_zerosafe>(num_iterations,
/*stable_sort=*/false);
}
BENCHMARK(BM_StdSortCompare0ZeroSafe)
static void BM_StdStableSortCompare0ZeroSafe(size_t num_iterations) {
RunSortBenchmark<Mem_compare_0_zerosafe>(num_iterations,
/*stable_sort=*/true);
}
BENCHMARK(BM_StdStableSortCompare0ZeroSafe)
static void BM_StdSortCompare1(size_t num_iterations) {
RunSortBenchmark<Mem_compare_1>(num_iterations, /*stable_sort=*/false);
}
BENCHMARK(BM_StdSortCompare1)
static void BM_StdStableSortCompare1(size_t num_iterations) {
RunSortBenchmark<Mem_compare_1>(num_iterations, /*stable_sort=*/true);
}
BENCHMARK(BM_StdStableSortCompare1)
static void BM_StdSortCompare2(size_t num_iterations) {
RunSortBenchmark<Mem_compare_2>(num_iterations, /*stable_sort=*/false);
}
BENCHMARK(BM_StdSortCompare2)
static void BM_StdStableSortCompare2(size_t num_iterations) {
RunSortBenchmark<Mem_compare_2>(num_iterations, /*stable_sort=*/true);
}
BENCHMARK(BM_StdStableSortCompare2)
static void BM_StdSortCompare3(size_t num_iterations) {
RunSortBenchmark<Mem_compare_3>(num_iterations, /*stable_sort=*/false);
}
BENCHMARK(BM_StdSortCompare3)
static void BM_StdStableSortCompare3(size_t num_iterations) {
RunSortBenchmark<Mem_compare_3>(num_iterations, /*stable_sort=*/true);
}
BENCHMARK(BM_StdStableSortCompare3)
static void BM_StdSortCompare4(size_t num_iterations) {
RunSortBenchmark<Mem_compare_4>(num_iterations, /*stable_sort=*/false);
}
BENCHMARK(BM_StdSortCompare4)
static void BM_StdStableSortCompare4(size_t num_iterations) {
RunSortBenchmark<Mem_compare_4>(num_iterations, /*stable_sort=*/true);
}
BENCHMARK(BM_StdStableSortCompare4)
static void BM_StdSortCompare5(size_t num_iterations) {
RunSortBenchmark<Mem_compare_5>(num_iterations, /*stable_sort=*/false);
}
BENCHMARK(BM_StdSortCompare5)
static void BM_StdStableSortCompare5(size_t num_iterations) {
RunSortBenchmark<Mem_compare_5>(num_iterations, /*stable_sort=*/true);
}
BENCHMARK(BM_StdStableSortCompare5)
// Disabled: experimental.
[[maybe_unused]] static void BM_StdSortIntCompare(size_t num_iterations) {
RunSortBenchmark<Mem_compare_int>(num_iterations, /*stable_sort=*/false);
}
// BENCHMARK(BM_StdSortIntCompare)
[[maybe_unused]] static void BM_StdStableSortIntCompare(size_t num_iterations) {
RunSortBenchmark<Mem_compare_int>(num_iterations, /*stable_sort=*/true);
}
// BENCHMARK(BM_StdStableSortIntCompare)
// Disabled: experimental.
[[maybe_unused]] static void BM_StdSortIntIntIntInt(size_t num_iterations) {
RunSortBenchmark<Mem_compare_int_4>(num_iterations, /*stable_sort=*/false);
}
// BENCHMARK(BM_StdSortIntIntIntInt)
// Disabled: experimental.
[[maybe_unused]] static void BM_StdStableSortIntIntIntInt(
size_t num_iterations) {
RunSortBenchmark<Mem_compare_int_4>(num_iterations, /*stable_sort=*/true);
}
// BENCHMARK(BM_StdStableSortIntIntIntInt)
} // namespace filesort_compare_unittest
|