File: gis_buffer-t.cc

package info (click to toggle)
mysql-8.0 8.0.43-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,273,924 kB
  • sloc: cpp: 4,684,605; ansic: 412,450; pascal: 108,398; java: 83,641; perl: 30,221; cs: 27,067; sql: 26,594; sh: 24,181; python: 21,816; yacc: 17,169; php: 11,522; xml: 7,388; javascript: 7,076; makefile: 2,194; lex: 1,075; awk: 670; asm: 520; objc: 183; ruby: 97; lisp: 86
file content (347 lines) | stat: -rw-r--r-- 12,210 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
// Copyright (c) 2021, 2025, Oracle and/or its affiliates.
//
//  This program is free software; you can redistribute it and/or modify
//  it under the terms of the GNU General Public License, version 2.0,
//  as published by the Free Software Foundation.
//
//  This program is designed to work with certain software (including
//  but not limited to OpenSSL) that is licensed under separate terms,
//  as designated in a particular file or component or in included license
//  documentation.  The authors of MySQL hereby grant you an additional
//  permission to link the program and your derivative works with the
//  separately licensed software that they have either included with
//  the program or referenced in the documentation.
//
//  This program is distributed in the hope that it will be useful,
//  but WITHOUT ANY WARRANTY; without even the implied warranty of
//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//  GNU General Public License, version 2.0, for more details.
//
//  You should have received a copy of the GNU General Public License
//  along with this program; if not, write to the Free Software
//  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301  USA

#include <gtest/gtest.h>
#include <memory>

#include "sql/gis/buffer.h"             // gis::buffer
#include "sql/gis/buffer_strategies.h"  // gis::BufferStrategies
#include "sql/gis/geometries.h"         // gis::{Coordinate_system, Geometry}
#include "sql/gis/geometries_cs.h"      // gis::{geometry types}
#include "unittest/gunit/gis_srs.h"     // gis_srs::swapped_epsg4326

namespace gis_buffer_unittest {

// Not testing the internal points of geometries as Boost has its own unittests

// Explicit testing because (1) not all strategy combinations are valid for all
// geometry types, and (2) the return type may be a Polygon, Multipolygon, or
// Geometrycollection depending on the input.

// The buffer of a multi-geometry may be merged into a single Polygon if the
// geometries are close enough or buffer distance is large enough. It may
// become an empty Geometrycollection if distance is so negative that buffers
// are shrunk to disappearance.

template <typename T>
void test_valid_input(const gis::Geometry &g,
                      const gis::BufferStrategies &strats, const T &expected_g,
                      const int &expected_size) {
  auto m_srs =
      (expected_g.coordinate_system() == gis::Coordinate_system::kGeographic)
          ? gis_srs::swapped_epsg4326()
          : nullptr;
  std::unique_ptr<gis::Geometry> result;
  bool buffer_error = gis::buffer(m_srs.get(), g, strats, "unittest", &result);

  // If true an exception has been thrown.
  ASSERT_FALSE(buffer_error);
  // Verify returned geometry is of correct type
  ASSERT_EQ(result->type(), expected_g.type());
  // Verify returned geometry has correct size
  EXPECT_EQ(down_cast<T *>(result.get())->size(), expected_size);
}

// Function used to create linearrings for Polygons
gis::Cartesian_linearring linearringFromVector(std::vector<double> data) {
  if (data.size() % 2 != 0) {
    throw std::exception(); /* purecov: dead code */
  }
  gis::Cartesian_linearring lr;
  for (size_t i = 0; i + 1 < data.size(); i += 2) {
    lr.push_back(gis::Cartesian_point(data[i], data[i + 1]));
  }
  return lr;
}

void reset_strategy_combinations(gis::BufferStrategies &s) {
  s.combination = 0;
  s.join_is_set = false;
  s.end_is_set = false;
  s.point_is_set = false;
}

class BufferTest : public ::testing::Test {
 public:
  gis::BufferStrategies strat;
  gis::Cartesian_polygon expected_py;
  gis::Cartesian_multipolygon expected_mpy;
  gis::Cartesian_geometrycollection expected_gc;
};

//////////////////////////////////////////////////////////////////////////////

// CARTESIAN GEOMETRIES (all)

TEST_F(BufferTest, CartesianPoint) {
  gis::Cartesian_point c_pt{0, 0};
  // Distance cannot be negative --> Only possible valid return type is Polygon
  strat.distance = 3;
  test_valid_input<gis::Cartesian_polygon>(c_pt, strat, expected_py, 1);
}

TEST_F(BufferTest, CartesianLinestring) {
  gis::Cartesian_linestring c_ls;
  c_ls.push_back(gis::Cartesian_point(0, 0));
  c_ls.push_back(gis::Cartesian_point(1, 1));
  c_ls.push_back(gis::Cartesian_point(2, 0));

  // Distance cannot be negative --> Only Polygon
  strat.distance = 3;
  test_valid_input<gis::Cartesian_polygon>(c_ls, strat, expected_py, 1);
}

TEST_F(BufferTest, CartesianPolygon) {
  gis::Cartesian_polygon c_py;
  c_py.push_back(linearringFromVector({0, 0, 4, 0, 4, 4, 0, 4, 0, 0}));

  // Distance CAN be negative --> May return Polygon or empty GC
  strat.distance = 3;
  test_valid_input<gis::Cartesian_polygon>(c_py, strat, expected_py, 1);
  strat.distance = -3;
  test_valid_input<gis::Cartesian_geometrycollection>(c_py, strat, expected_gc,
                                                      0);
}

TEST_F(BufferTest, CartesianMultipoint) {
  gis::Cartesian_multipoint c_mpt;
  c_mpt.push_back(gis::Cartesian_point(0, 0));
  c_mpt.push_back(gis::Cartesian_point(1, 1));
  c_mpt.push_back(gis::Cartesian_point(5, 5));

  // Distance cannot be negative for multipoint
  strat.distance = 3;
  test_valid_input<gis::Cartesian_polygon>(c_mpt, strat, expected_py, 1);
  strat.distance = 1;
  test_valid_input<gis::Cartesian_multipolygon>(c_mpt, strat, expected_mpy, 2);
}

TEST_F(BufferTest, CartesianMultilinestring) {
  gis::Cartesian_linestring ls1;
  ls1.push_back(gis::Cartesian_point(0, 0));
  ls1.push_back(gis::Cartesian_point(1, 1));
  ls1.push_back(gis::Cartesian_point(2, 0));

  gis::Cartesian_linestring ls2;
  ls2.push_back(gis::Cartesian_point(0, 4));
  ls2.push_back(gis::Cartesian_point(1, 5));
  ls2.push_back(gis::Cartesian_point(2, 4));

  gis::Cartesian_multilinestring c_mls;
  c_mls.push_back(ls1);
  c_mls.push_back(ls2);

  // Distance cannot be negative --> Only Polygon or Multipolygon
  strat.distance = 3;
  test_valid_input<gis::Cartesian_polygon>(c_mls, strat, expected_py, 1);
  strat.distance = 1;
  test_valid_input<gis::Cartesian_multipolygon>(c_mls, strat, expected_mpy, 2);
}

TEST_F(BufferTest, CartesianMultipolygon) {
  gis::Cartesian_polygon py1;
  py1.push_back(linearringFromVector({0, 0, 4, 0, 4, 4, 0, 4, 0, 0}));

  gis::Cartesian_polygon py2;
  py2.push_back(linearringFromVector({8, 0, 9, 0, 9, 1, 8, 1, 8, 0}));

  gis::Cartesian_multipolygon c_mpy;
  c_mpy.push_back(py1);
  c_mpy.push_back(py2);

  // Distance CAN be negative: May return Polygon, Multipolygon or empty GC
  strat.distance = 3;
  test_valid_input<gis::Cartesian_polygon>(c_mpy, strat, expected_py, 1);
  strat.distance = 1;
  test_valid_input<gis::Cartesian_multipolygon>(c_mpy, strat, expected_mpy, 2);
  strat.distance = -1;
  test_valid_input<gis::Cartesian_polygon>(c_mpy, strat, expected_py, 1);
  strat.distance = -3;
  test_valid_input<gis::Cartesian_geometrycollection>(c_mpy, strat, expected_gc,
                                                      0);
}

TEST_F(BufferTest, CartesianGeometrycollectionPos) {
  gis::Cartesian_linestring ls1;
  ls1.push_back(gis::Cartesian_point(0, 0));
  ls1.push_back(gis::Cartesian_point(1, 1));
  ls1.push_back(gis::Cartesian_point(2, 0));

  gis::Cartesian_polygon py2;
  py2.push_back(linearringFromVector({8, 0, 9, 0, 9, 1, 8, 1, 8, 0}));

  gis::Cartesian_geometrycollection c_gc;
  c_gc.push_back(gis::Cartesian_point(0, 2));
  c_gc.push_back(ls1);
  c_gc.push_back(py2);

  // Distance CAN be negative --> May return Polygon, Multipolygon or empty GC
  strat.distance = 3.1;
  test_valid_input<gis::Cartesian_polygon>(c_gc, strat, expected_py, 1);
  strat.distance = 1;
  test_valid_input<gis::Cartesian_multipolygon>(c_gc, strat, expected_mpy, 2);
}

TEST_F(BufferTest, CartesianGeometrycollectionNeg) {
  gis::Cartesian_polygon py1;
  py1.push_back(linearringFromVector({0, 0, 4, 0, 4, 4, 0, 4, 0, 0}));

  gis::Cartesian_polygon py2;
  py1.push_back(linearringFromVector({8, 0, 9, 0, 9, 1, 8, 1, 8, 0}));

  gis::Cartesian_polygon py3;
  py1.push_back(
      linearringFromVector({10, 0, 10.5, 0, 10.5, 0.5, 10, 0.5, 10, 0}));

  gis::Cartesian_multipolygon mpy1;
  mpy1.push_back(py1);
  mpy1.push_back(py2);

  gis::Cartesian_geometrycollection c_gc;
  c_gc.push_back(mpy1);
  c_gc.push_back(py3);

  // Distance CAN be negative --> May return Polygon, Multipolygon or empty GC
  strat.distance = -0.3;
  test_valid_input<gis::Cartesian_multipolygon>(c_gc, strat, expected_mpy, 2);
  strat.distance = -0.6;
  test_valid_input<gis::Cartesian_polygon>(c_gc, strat, expected_py, 1);
  strat.distance = -3;
  test_valid_input<gis::Cartesian_geometrycollection>(c_gc, strat, expected_gc,
                                                      0);
}

//////////////////////////////////////////////////////////////////////////////

// GEOGRAPHIC GEOMETRIES (only Point)

TEST_F(BufferTest, GeographicPoint) {
  gis::Geographic_polygon g_py;
  strat.distance = 20000;

  gis::Geographic_point g_pt{63.4451715, 10.9052167};

  // Strategy options cannot be set.
  // Distance cannot be negative --> Only possible valid return type is polygon
  test_valid_input<gis::Geographic_polygon>(g_pt, strat, g_py, 1);
}

//////////////////////////////////////////////////////////////////////////////

// BUFFER STRATEGIES

TEST_F(BufferTest, AllStrategies) {
  gis::Cartesian_linestring ls1;
  ls1.push_back(gis::Cartesian_point(0, 0));
  ls1.push_back(gis::Cartesian_point(1, 1));
  ls1.push_back(gis::Cartesian_point(2, 0));

  gis::Cartesian_polygon py2;
  py2.push_back(linearringFromVector({8, 0, 9, 0, 9, 1, 8, 1, 8, 0}));

  gis::Cartesian_geometrycollection c_gc;
  c_gc.push_back(gis::Cartesian_point(0, 2));
  c_gc.push_back(ls1);
  c_gc.push_back(py2);

  // Testing all 8 possible strategy combinations:
  strat.distance = 0.6;

  // 0
  reset_strategy_combinations(strat);
  strat.set_join_round(22);
  strat.set_end_round(22);
  strat.set_point_circle(22);
  test_valid_input<gis::Cartesian_multipolygon>(c_gc, strat, expected_mpy, 3);

  // 1
  reset_strategy_combinations(strat);
  strat.set_join_round(22);
  strat.set_end_flat();
  strat.set_point_circle(22);
  test_valid_input<gis::Cartesian_multipolygon>(c_gc, strat, expected_mpy, 3);

  // 2
  reset_strategy_combinations(strat);
  strat.set_join_miter(4.0);
  strat.set_end_round(22);
  strat.set_point_circle(22);
  test_valid_input<gis::Cartesian_multipolygon>(c_gc, strat, expected_mpy, 3);

  // 3
  reset_strategy_combinations(strat);
  strat.set_join_miter(4.0);
  strat.set_end_flat();
  strat.set_point_circle(22);
  test_valid_input<gis::Cartesian_multipolygon>(c_gc, strat, expected_mpy, 3);

  // 4
  reset_strategy_combinations(strat);
  strat.set_join_round(22);
  strat.set_end_round(22);
  strat.set_point_square();
  test_valid_input<gis::Cartesian_multipolygon>(c_gc, strat, expected_mpy, 2);

  // 5
  reset_strategy_combinations(strat);
  strat.set_join_round(22);
  strat.set_end_flat();
  strat.set_point_square();
  test_valid_input<gis::Cartesian_multipolygon>(c_gc, strat, expected_mpy, 2);

  // 6
  reset_strategy_combinations(strat);
  strat.set_join_miter(4.0);
  strat.set_end_round(22);
  strat.set_point_square();
  test_valid_input<gis::Cartesian_multipolygon>(c_gc, strat, expected_mpy, 2);

  // 7
  reset_strategy_combinations(strat);
  strat.set_join_miter(4.0);
  strat.set_end_flat();
  strat.set_point_square();
  test_valid_input<gis::Cartesian_multipolygon>(c_gc, strat, expected_mpy, 2);
}

TEST_F(BufferTest, PointStrategies) {
  // Showcasing that different strategies (for equal buffer distance) may yield
  // different results wrt. numbers of buffers returned from multi-geometries.

  gis::Cartesian_multipoint c_mpt;
  c_mpt.push_back(gis::Cartesian_point(0, 0));
  c_mpt.push_back(gis::Cartesian_point(1, 1));

  // At 0.70 circle(42) does NOT overlap, while at 0.71 it does
  // At 0.50 square() does NOT overlap, while at 0.51 it does
  strat.distance = 0.60;

  strat.set_point_circle(42);
  test_valid_input<gis::Cartesian_multipolygon>(c_mpt, strat, expected_mpy, 2);

  strat.point_is_set = false;
  strat.set_point_square();
  test_valid_input<gis::Cartesian_polygon>(c_mpt, strat, expected_py, 1);
}

}  // namespace gis_buffer_unittest