1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
|
/* Copyright (c) 2021, 2025, Oracle and/or its affiliates.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is designed to work with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have either included with
the program or referenced in the documentation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
#include <gtest/gtest.h>
#include <stdio.h>
#include <memory>
#include <random>
#include <utility>
#include <vector>
#include "my_alloc.h"
#include "scope_guard.h"
#include "sql/handler.h"
#include "sql/join_optimizer/access_path.h"
#include "sql/join_optimizer/bit_utils.h"
#include "sql/join_optimizer/graph_simplification.h"
#include "sql/join_optimizer/hypergraph.h"
#include "sql/join_optimizer/make_join_hypergraph.h"
#include "sql/join_optimizer/node_map.h"
#include "sql/join_optimizer/online_cycle_finder.h"
#include "sql/join_optimizer/relational_expression.h"
#include "sql/join_optimizer/subgraph_enumeration.h"
#include "sql/join_optimizer/trivial_receiver.h"
#include "sql/mem_root_array.h"
#include "sql/table.h"
#include "unittest/gunit/benchmark.h"
#include "unittest/gunit/fake_table.h"
#include "unittest/gunit/test_utils.h"
class Item;
class THD;
using hypergraph::NodeMap;
using testing::UnorderedElementsAre;
TEST(OnlineCycleFinderTest, SelfEdges) {
MEM_ROOT mem_root;
OnlineCycleFinder cycles(&mem_root, 10);
EXPECT_TRUE(cycles.AddEdge(5, 5));
EXPECT_TRUE(cycles.EdgeWouldCreateCycle(5, 5));
}
TEST(OnlineCycleFinderTest, Simple) {
MEM_ROOT mem_root;
OnlineCycleFinder cycles(&mem_root, 10);
EXPECT_FALSE(cycles.EdgeWouldCreateCycle(3, 5));
EXPECT_FALSE(cycles.EdgeWouldCreateCycle(5, 3));
EXPECT_FALSE(cycles.AddEdge(3, 5));
EXPECT_TRUE(cycles.EdgeWouldCreateCycle(5, 3));
}
TEST(OnlineCycleFinderTest, InverseOrderIsFine) {
MEM_ROOT mem_root;
OnlineCycleFinder cycles(&mem_root, 10);
EXPECT_FALSE(cycles.AddEdge(5, 3));
EXPECT_TRUE(cycles.EdgeWouldCreateCycle(3, 5));
}
TEST(OnlineCycleFinderTest, Transitive) {
MEM_ROOT mem_root;
OnlineCycleFinder cycles(&mem_root, 10);
EXPECT_FALSE(cycles.AddEdge(1, 3));
EXPECT_FALSE(cycles.AddEdge(3, 5));
EXPECT_FALSE(cycles.AddEdge(5, 6));
EXPECT_FALSE(cycles.AddEdge(5, 9));
EXPECT_FALSE(cycles.EdgeWouldCreateCycle(7, 1));
EXPECT_TRUE(cycles.EdgeWouldCreateCycle(6, 1));
EXPECT_TRUE(cycles.EdgeWouldCreateCycle(9, 1));
EXPECT_FALSE(cycles.EdgeWouldCreateCycle(1, 7));
EXPECT_FALSE(cycles.EdgeWouldCreateCycle(1, 5));
}
static void AddEdge(THD *thd, RelationalExpression::Type join_type,
NodeMap left, NodeMap right, double selectivity,
MEM_ROOT *mem_root, JoinHypergraph *graph) {
JoinPredicate pred;
pred.selectivity = selectivity;
pred.expr = new (mem_root) RelationalExpression(thd);
pred.expr->type = join_type;
pred.expr->nodes_in_subtree = left | right;
pred.estimated_bytes_per_row = 0; // To keep the compiler happy.
graph->edges.push_back(std::move(pred));
graph->graph.AddEdge(left, right);
}
namespace {
// Helper for destroying all the Fake_TABLE objects in a JoinHypergraph.
class DestroyNodes {
public:
explicit DestroyNodes(const JoinHypergraph *graph) : m_graph(graph) {}
void operator()() const {
for (const JoinHypergraph::Node &node : m_graph->nodes) {
destroy(static_cast<Fake_TABLE *>(node.table));
}
}
private:
const JoinHypergraph *m_graph;
};
// RAII class which destroys Fake_TABLE objects when it goes out of scope.
using NodeGuard = Scope_guard<DestroyNodes>;
} // namespace
[[nodiscard]] static NodeGuard AddNodes(int num_nodes, MEM_ROOT *mem_root,
JoinHypergraph *g) {
for (int i = 0; i < num_nodes; ++i) {
TABLE *table =
new (mem_root) Fake_TABLE(/*num_columns=*/1, /*nullable=*/true);
table->file->stats.records = 1000;
char *alias = mem_root->ArrayAlloc<char>(20);
snprintf(alias, 20, "t%d", i + 1);
table->alias = alias;
g->nodes.push_back(JoinHypergraph::Node{table, {}, {}});
g->graph.AddNode();
}
return {DestroyNodes(g)};
}
TEST(GraphSimplificationTest, SimpleStar) {
my_testing::Server_initializer initializer;
initializer.SetUp();
// A simple star-join with four tables, similar to what's in the paper.
MEM_ROOT mem_root;
JoinHypergraph g(&mem_root, /*query_block=*/nullptr);
NodeGuard node_guard = AddNodes(4, &mem_root, &g);
AddEdge(initializer.thd(), RelationalExpression::INNER_JOIN, 0b1, 0b10, 0.999,
&mem_root, &g);
AddEdge(initializer.thd(), RelationalExpression::INNER_JOIN, 0b1, 0b100, 0.5,
&mem_root, &g);
AddEdge(initializer.thd(), RelationalExpression::INNER_JOIN, 0b1, 0b1000,
0.01, &mem_root, &g);
GraphSimplifier s(&g, &mem_root);
// Based on the selectivities, joining t1/t4 before t1/t2 will be the best
// choice. This means we'll broaden the t1/t2 edge to {t1,t4}/t2.
// (We could have put t4 on any side.)
ASSERT_EQ(GraphSimplifier::APPLIED_SIMPLIFICATION, s.DoSimplificationStep());
EXPECT_EQ(0b1001, g.graph.edges[0].left);
EXPECT_EQ(0b10, g.graph.edges[0].right);
EXPECT_EQ(g.graph.edges[0].left, g.graph.edges[1].right);
EXPECT_EQ(g.graph.edges[0].right, g.graph.edges[1].left);
// The t1/t2 edge is no longer simple; verify we updated the graph right.
EXPECT_EQ(0b1100, g.graph.nodes[0].simple_neighborhood);
EXPECT_EQ(0b0000, g.graph.nodes[1].simple_neighborhood);
EXPECT_THAT(g.graph.nodes[0].simple_edges, UnorderedElementsAre(2, 4));
EXPECT_THAT(g.graph.nodes[0].complex_edges, UnorderedElementsAre(0));
EXPECT_THAT(g.graph.nodes[1].simple_edges, UnorderedElementsAre());
EXPECT_THAT(g.graph.nodes[1].complex_edges, UnorderedElementsAre(1));
// Next, we'll do t1/t4 before t1/t3 (again based on selectivities),
// broadening t1/t3 to {t1,t4}/t3.
ASSERT_EQ(GraphSimplifier::APPLIED_SIMPLIFICATION, s.DoSimplificationStep());
EXPECT_EQ(0b1001, g.graph.edges[2].left);
EXPECT_EQ(0b100, g.graph.edges[2].right);
EXPECT_EQ(g.graph.edges[2].left, g.graph.edges[3].right);
EXPECT_EQ(g.graph.edges[2].right, g.graph.edges[3].left);
// Finally, t1-t3 before t1-t2, but these edges were already hyperedges.
// So {t1,t4}-{t2} will be extended to {t1,t3,t4}-{t2}.
ASSERT_EQ(GraphSimplifier::APPLIED_SIMPLIFICATION, s.DoSimplificationStep());
EXPECT_EQ(0b1101, g.graph.edges[0].left);
EXPECT_EQ(0b10, g.graph.edges[0].right);
EXPECT_EQ(g.graph.edges[0].left, g.graph.edges[1].right);
EXPECT_EQ(g.graph.edges[0].right, g.graph.edges[1].left);
// No further simplification should be possible.
EXPECT_EQ(GraphSimplifier::NO_SIMPLIFICATION_POSSIBLE,
s.DoSimplificationStep());
}
TEST(GraphSimplificationTest, TwoCycles) {
my_testing::Server_initializer initializer;
initializer.SetUp();
// Based on a real test case.
//
// .--t1\ .
// / | \ .
// | t2 t4
// \ | /
// `--t3/
//
MEM_ROOT mem_root;
JoinHypergraph g(&mem_root, /*query_block=*/nullptr);
NodeGuard node_guard = AddNodes(4, &mem_root, &g);
AddEdge(initializer.thd(), RelationalExpression::INNER_JOIN, 0b1, 0b10, 0.999,
&mem_root, &g);
AddEdge(initializer.thd(), RelationalExpression::INNER_JOIN, 0b10, 0b100, 0.5,
&mem_root, &g);
AddEdge(initializer.thd(), RelationalExpression::INNER_JOIN, 0b1, 0b100, 0.01,
&mem_root, &g);
AddEdge(initializer.thd(), RelationalExpression::INNER_JOIN, 0b1, 0b1000, 0.2,
&mem_root, &g);
AddEdge(initializer.thd(), RelationalExpression::INNER_JOIN, 0b100, 0b1000,
0.8, &mem_root, &g);
// Do simplification steps until we can't do more. (The number doesn't matter
// all that much, but it should definitely be more than one.)
GraphSimplifier s(&g, &mem_root);
ASSERT_EQ(GraphSimplifier::APPLIED_SIMPLIFICATION, s.DoSimplificationStep());
ASSERT_EQ(GraphSimplifier::APPLIED_SIMPLIFICATION, s.DoSimplificationStep());
ASSERT_EQ(GraphSimplifier::APPLIED_SIMPLIFICATION, s.DoSimplificationStep());
ASSERT_EQ(GraphSimplifier::APPLIED_SIMPLIFICATION, s.DoSimplificationStep());
ASSERT_EQ(GraphSimplifier::APPLIED_SIMPLIFICATION, s.DoSimplificationStep());
ASSERT_EQ(GraphSimplifier::APPLIED_SIMPLIFICATION, s.DoSimplificationStep());
ASSERT_EQ(GraphSimplifier::NO_SIMPLIFICATION_POSSIBLE,
s.DoSimplificationStep());
// Finally, run DPhyp to make sure the graph is still consistent
// enough to find a solution.
TrivialReceiver receiver(g, &mem_root, /*subgraph_pair_limit=*/-1);
EXPECT_FALSE(EnumerateAllConnectedPartitions(g.graph, &receiver));
EXPECT_EQ(4, receiver.seen_nodes);
EXPECT_EQ(5, receiver.seen_subgraph_pairs);
EXPECT_TRUE(receiver.HasSeen(0b1111));
}
TEST(GraphSimplificationTest, ExistingHyperedge) {
my_testing::Server_initializer initializer;
initializer.SetUp();
// Based on a real test case.
//
// t1 --- t2 --- t3
// \ /
// \ /
// |
// |
// t4
//
MEM_ROOT mem_root;
JoinHypergraph g(&mem_root, /*query_block=*/nullptr);
NodeGuard node_guard = AddNodes(4, &mem_root, &g);
g.nodes[0].table->file->stats.records = 690;
g.nodes[1].table->file->stats.records = 6;
g.nodes[2].table->file->stats.records = 1;
g.nodes[3].table->file->stats.records = 1;
AddEdge(initializer.thd(), RelationalExpression::INNER_JOIN, 0b1, 0b10, 0.2,
&mem_root, &g);
AddEdge(initializer.thd(), RelationalExpression::INNER_JOIN, 0b100, 0b10, 1.0,
&mem_root, &g);
AddEdge(initializer.thd(), RelationalExpression::INNER_JOIN, 0b11, 0b1000,
0.1, &mem_root, &g);
GraphSimplifier s(&g, &mem_root);
// First, one of t1-t2 and t2-t3 should come before the other.
EXPECT_EQ(GraphSimplifier::APPLIED_SIMPLIFICATION, s.DoSimplificationStep());
// However, now all that can be done is to put t1-t2 before {t1,t2}-t4,
// and that is already always the case, so no further simplifications
// can be done.
EXPECT_EQ(GraphSimplifier::NO_SIMPLIFICATION_POSSIBLE,
s.DoSimplificationStep());
// Finally, run DPhyp to make sure the graph is still consistent
// enough to find a solution, and that we are fully simplified.
TrivialReceiver receiver(g, &mem_root, /*subgraph_pair_limit=*/-1);
EXPECT_FALSE(EnumerateAllConnectedPartitions(g.graph, &receiver));
EXPECT_EQ(4, receiver.seen_nodes);
EXPECT_EQ(3, receiver.seen_subgraph_pairs);
EXPECT_TRUE(receiver.HasSeen(0b1111));
}
TEST(GraphSimplificationTest, IndirectHierarcicalJoins) {
my_testing::Server_initializer initializer;
initializer.SetUp();
// Based on yet another real test case.
//
// t3 ---- t2 -.
// \ / \ .
// \ / \ .
// \ / --- t1
// | /
// | /
// t4 ____/
//
// The only possible join order here is first the simple t2-t3 edge,
// then join in t4, and then t1. But since t1 has zero rows, it seems
// attractive to take the t1-{t2,t4} join first, and we need to disallow that.
MEM_ROOT mem_root;
JoinHypergraph g(&mem_root, /*query_block=*/nullptr);
NodeGuard node_guard = AddNodes(4, &mem_root, &g);
g.nodes[0].table->file->stats.records = 0;
g.nodes[1].table->file->stats.records = 171;
g.nodes[2].table->file->stats.records = 6;
g.nodes[3].table->file->stats.records = 3824;
AddEdge(initializer.thd(), RelationalExpression::INNER_JOIN, 0b10, 0b100, 0.2,
&mem_root, &g);
AddEdge(initializer.thd(), RelationalExpression::INNER_JOIN, 0b110, 0b1000,
1.0, &mem_root, &g);
AddEdge(initializer.thd(), RelationalExpression::INNER_JOIN, 0b1, 0b1010, 0.1,
&mem_root, &g);
GraphSimplifier s(&g, &mem_root);
// No simplification steps should be possible, except for that we should
// discover that t1-{t2,t4} must come late (see above).
EXPECT_EQ(GraphSimplifier::APPLIED_NOOP, s.DoSimplificationStep());
EXPECT_EQ(GraphSimplifier::NO_SIMPLIFICATION_POSSIBLE,
s.DoSimplificationStep());
// Finally, run DPhyp to make sure the graph is still consistent
// enough to find a solution, and that we are fully simplified.
TrivialReceiver receiver(g, &mem_root, /*subgraph_pair_limit=*/-1);
EXPECT_FALSE(EnumerateAllConnectedPartitions(g.graph, &receiver));
EXPECT_EQ(4, receiver.seen_nodes);
EXPECT_EQ(3, receiver.seen_subgraph_pairs);
EXPECT_TRUE(receiver.HasSeen(0b1111));
}
TEST(GraphSimplificationTest, IndirectHierarcicalJoins2) {
my_testing::Server_initializer initializer;
initializer.SetUp();
// An even more complicated case.
//
// t1----.
// / | |
// / | / \ .
// t5 | t4-t3
// \ | /
// \ | /
// \|/
// |
// |
// t2
//
// We need to understand that the join {t1,t4,t5}-t2 depends on the join t3-t4
// (i.e., we cannot say it should be done before that join). This isn't
// obvious at all; we need to understand that t3-t4 must be done before
// t1-{t3,t4} and propagate that information up to the t1 joins.
// (This is a case where our join inference algorithm fails, but we are being
// saved by the impossibility check.)
MEM_ROOT mem_root;
JoinHypergraph g(&mem_root, /*query_block=*/nullptr);
NodeGuard node_guard = AddNodes(5, &mem_root, &g);
g.nodes[0].table->file->stats.records = 1;
g.nodes[1].table->file->stats.records = 1;
g.nodes[2].table->file->stats.records = 1;
g.nodes[3].table->file->stats.records = 1;
g.nodes[4].table->file->stats.records = 1;
AddEdge(initializer.thd(), RelationalExpression::INNER_JOIN, 0b1, 0b10000,
0.1, &mem_root, &g); // t1-t5.
AddEdge(initializer.thd(), RelationalExpression::INNER_JOIN, 0b100, 0b1000,
1.0, &mem_root, &g); // t3-t4.
AddEdge(initializer.thd(), RelationalExpression::INNER_JOIN, 0b1, 0b1100, 0.1,
&mem_root, &g); // t1-{t3,t4}.
AddEdge(initializer.thd(), RelationalExpression::INNER_JOIN, 0b11001, 0b10,
0.01, &mem_root, &g); // {t1,t4,t5}-t2.
GraphSimplifier s(&g, &mem_root);
// We want first to put {t1,t4,t5}-t2 before t3-t4, but discover it is
// impossible, so we apply the opposite.
EXPECT_EQ(GraphSimplifier::APPLIED_NOOP, s.DoSimplificationStep());
// t1-{t3,t4} can be ordered relative to {t1}-{t5}, but after that,
// no further simplifications should be possible.
EXPECT_EQ(GraphSimplifier::APPLIED_SIMPLIFICATION, s.DoSimplificationStep());
EXPECT_EQ(GraphSimplifier::NO_SIMPLIFICATION_POSSIBLE,
s.DoSimplificationStep());
// Finally, run DPhyp to make sure the graph is still consistent
// enough to find a solution, and that we are fully simplified.
TrivialReceiver receiver(g, &mem_root, /*subgraph_pair_limit=*/-1);
EXPECT_FALSE(EnumerateAllConnectedPartitions(g.graph, &receiver));
EXPECT_EQ(5, receiver.seen_nodes);
EXPECT_EQ(4, receiver.seen_subgraph_pairs);
EXPECT_TRUE(receiver.HasSeen(0b11111));
}
TEST(GraphSimplificationTest, ConflictRules) {
my_testing::Server_initializer initializer;
initializer.SetUp();
// We set up a simple t1-t2-t3 chain join, but with a twist;
// we'd like to do t2-t3 before t1-t2 (because t3 has zero rows),
// but we add a conflict rule {t2} → t1 on the edge to prevent that.
// Naturally, in a real query, that conflict rule would be absorbed
// into a hyperedge, but we specifically want to test our handling
// of unabsorbed conflict rules here (which can occur
// in more complex graphs).
MEM_ROOT mem_root;
JoinHypergraph g(&mem_root, /*query_block=*/nullptr);
NodeGuard node_guard = AddNodes(3, &mem_root, &g);
g.nodes[0].table->file->stats.records = 100;
g.nodes[1].table->file->stats.records = 10000;
g.nodes[2].table->file->stats.records = 0;
AddEdge(initializer.thd(), RelationalExpression::INNER_JOIN, 0b1, 0b10, 1.0,
&mem_root, &g);
AddEdge(initializer.thd(), RelationalExpression::INNER_JOIN, 0b10, 0b100, 1.0,
&mem_root, &g);
g.edges[1].expr->conflict_rules.init(&mem_root);
g.edges[1].expr->conflict_rules.push_back(ConflictRule{0b10, 0b1});
GraphSimplifier s(&g, &mem_root);
// It would be fine here to have one simplification step,
// in theory (t1-t2 before t2-t3), because it's not immediately
// obvious that it's a no-op. But our implementation chooses to
// force-insert that as an edge when we try the failed “t2-t3
// before t1-t2” simplification, so we get the opposite first.
EXPECT_EQ(GraphSimplifier::APPLIED_NOOP, s.DoSimplificationStep());
EXPECT_EQ(GraphSimplifier::NO_SIMPLIFICATION_POSSIBLE,
s.DoSimplificationStep());
// Finally, run DPhyp to make sure the graph is still consistent
// enough to find a solution, and that we are fully simplified.
TrivialReceiver receiver(g, &mem_root, /*subgraph_pair_limit=*/-1);
EXPECT_FALSE(EnumerateAllConnectedPartitions(g.graph, &receiver));
EXPECT_EQ(3, receiver.seen_nodes);
EXPECT_EQ(2, receiver.seen_subgraph_pairs);
EXPECT_TRUE(receiver.HasSeen(0b111));
}
TEST(GraphSimplificationTest, Antijoin) {
my_testing::Server_initializer initializer;
initializer.SetUp();
// (t1_100 JOIN t2_100) ANTIJOIN t3_10000. Normally, it would be better to
// delay the t2-t3 join to get a more even cost, but since the antijoin
// produces effectively zero rows, it should be taken immediately.
MEM_ROOT mem_root;
JoinHypergraph g(&mem_root, /*query_block=*/nullptr);
NodeGuard node_guard = AddNodes(3, &mem_root, &g);
g.nodes[0].table->file->stats.records = 100;
g.nodes[1].table->file->stats.records = 100;
g.nodes[2].table->file->stats.records = 10000;
AddEdge(initializer.thd(), RelationalExpression::INNER_JOIN, 0b1, 0b10, 1.0,
&mem_root, &g);
AddEdge(initializer.thd(), RelationalExpression::ANTIJOIN, 0b10, 0b100, 1.0,
&mem_root, &g);
GraphSimplifier s(&g, &mem_root);
// t1-t2 should be broadened to t1-{t2,t3}, so that t2-t3 is taken first.
EXPECT_EQ(GraphSimplifier::APPLIED_SIMPLIFICATION, s.DoSimplificationStep());
EXPECT_EQ(0b1, g.graph.edges[0].left);
EXPECT_EQ(0b110, g.graph.edges[0].right);
EXPECT_EQ(g.graph.edges[0].left, g.graph.edges[1].right);
EXPECT_EQ(g.graph.edges[0].right, g.graph.edges[1].left);
EXPECT_EQ(GraphSimplifier::NO_SIMPLIFICATION_POSSIBLE,
s.DoSimplificationStep());
}
TEST(GraphSimplificationTest, CycleNeighboringHyperedges) {
my_testing::Server_initializer initializer;
initializer.SetUp();
MEM_ROOT mem_root;
JoinHypergraph g(&mem_root, /*query_block=*/nullptr);
/*
* Based on a real test case:
*
* t1___
* | \ t6
* | \ /
* /|\ +-- t5
* / | \ / \
* / | \ / t7
* t2--t3--t4
* \____/
*
* The problem with simplifying this graph is that the initial set of
* constraints says that all three of t2-t3, t2-t4 and t3-t4 must come
* before t1-{t2,t3,t4}. So if we later try to add a constraint that makes the
* latter join come before one of those three joins, the online cycle finder
* will tell us it's impossible because we get a cycle in the before-after
* relationship. Which is true, but it doesn't take into account that the
* final plan will never use more than two of those joins in order to join t2,
* t3 and t4. So the graph can still be joinable using two of the edges even
* if the third edge is involved in a cycle in the before-after graph.
*/
NodeGuard node_guard = AddNodes(7, &mem_root, &g);
g.nodes[0].table->file->stats.records = 1500;
g.nodes[1].table->file->stats.records = 6000;
g.nodes[2].table->file->stats.records = 700;
g.nodes[3].table->file->stats.records = 200;
g.nodes[4].table->file->stats.records = 150;
g.nodes[5].table->file->stats.records = 1000;
g.nodes[6].table->file->stats.records = 1000;
THD *thd = initializer.thd();
AddEdge(thd, RelationalExpression::LEFT_JOIN, 0b1, 0b1110, 0.0007, &mem_root,
&g);
AddEdge(thd, RelationalExpression::INNER_JOIN, 0b10, 0b100, 0.005, &mem_root,
&g);
AddEdge(thd, RelationalExpression::INNER_JOIN, 0b10, 0b1000, 0.005, &mem_root,
&g);
AddEdge(thd, RelationalExpression::INNER_JOIN, 0b100, 0b1000, 0.005,
&mem_root, &g);
AddEdge(thd, RelationalExpression::INNER_JOIN, 0b1001, 0b010000, 0.01,
&mem_root, &g);
AddEdge(thd, RelationalExpression::INNER_JOIN, 0b10000, 0b100000, 0.02,
&mem_root, &g);
AddEdge(thd, RelationalExpression::INNER_JOIN, 0b10000, 0b1000000, 0.021,
&mem_root, &g);
// Simplify the above graph as much as possible. The exact steps are not all
// that important. What matters, is that we're able to get past the third call
// to DoSimplificationStep(), where we previously hit infinite recursion, and
// continue to simplify the graph also after we hit the problematic condition.
GraphSimplifier s(&g, &mem_root);
// First two simplifications are applied by adding the following constraints:
//
// t3-t4 before t2-t3
// t1-t5 before t2-t4
EXPECT_EQ(GraphSimplifier::APPLIED_SIMPLIFICATION, s.DoSimplificationStep());
EXPECT_EQ(GraphSimplifier::APPLIED_SIMPLIFICATION, s.DoSimplificationStep());
// Here we hit the condition that we want to exercise with this test case. We
// want to add the constraint that {t1,t4}-t5 is before t1-{t2,t3,t4}, but we
// detect that the graph is not joinable if we do that. Usually, when we
// detect this, we would add the opposite constraint and return APPLIED_NOOP.
// However, the online cycle finder detects that adding the opposite
// constraint will cause a cycle in the before-after graph, and refuses to add
// it (this is because the online cycle finder doesn't take into account that
// a cyclic hypergraph contains redundant edges, so we won't end up following
// all the edges). Since we can't apply the opposite constraint, we instead
// remove the problematic constraint from the set of potential simplifications
// and retry with the second most promising simplification. This step
// completes successfully and adds the constraint t2-t3 is before t2-t4.
EXPECT_EQ(GraphSimplifier::APPLIED_SIMPLIFICATION, s.DoSimplificationStep());
// The next two simplifications we try are:
//
// {t1,t4}-t5 before t3-t4
// {t1,t4}-t5 before t2-t3
//
// Both of these make the resulting graph not joinable, so we reject both and
// instead add the opposite constraint. This time, the opposite constraints
// are added successfully (as seen by returning APPLIED_NOOP).
EXPECT_EQ(GraphSimplifier::APPLIED_NOOP, s.DoSimplificationStep());
EXPECT_EQ(GraphSimplifier::APPLIED_NOOP, s.DoSimplificationStep());
// Attempts to add the following constraints are successful:
//
// t5-t6 before t2-t4
// t5-t7 before t2-t4
// t5-t6 before {t1,t4}-t5
// t5-t7 before {t1,t4}-t5
// t5-t6 before t5-t7
EXPECT_EQ(GraphSimplifier::APPLIED_SIMPLIFICATION, s.DoSimplificationStep());
EXPECT_EQ(GraphSimplifier::APPLIED_SIMPLIFICATION, s.DoSimplificationStep());
EXPECT_EQ(GraphSimplifier::APPLIED_SIMPLIFICATION, s.DoSimplificationStep());
EXPECT_EQ(GraphSimplifier::APPLIED_SIMPLIFICATION, s.DoSimplificationStep());
EXPECT_EQ(GraphSimplifier::APPLIED_SIMPLIFICATION, s.DoSimplificationStep());
// Nothing more to simplify.
EXPECT_EQ(GraphSimplifier::NO_SIMPLIFICATION_POSSIBLE,
s.DoSimplificationStep());
// Verify that the simplified graph is consistent.
TrivialReceiver receiver(g, &mem_root, /*subgraph_pair_limit=*/-1);
EXPECT_FALSE(EnumerateAllConnectedPartitions(g.graph, &receiver));
EXPECT_EQ(7, receiver.seen_nodes);
EXPECT_EQ(6, receiver.seen_subgraph_pairs);
EXPECT_TRUE(receiver.HasSeen(0b1111111));
}
TEST(GraphSimplificationTest, CyclicInformationSchemaView) {
my_testing::Server_initializer initializer;
initializer.SetUp();
MEM_ROOT mem_root;
JoinHypergraph g(&mem_root, /*query_block=*/nullptr);
/*
This test case is based on the INFORMATION_SCHEMA.STATISTICS view. When
invoking graph simplification on it, the resulting simplified graph could in
some circumstances (depending on table sizes and statistics) be impossible
to join.
*/
NodeGuard node_guard = AddNodes(8, &mem_root, &g);
g.nodes[0].table->file->stats.records = 1399;
g.nodes[1].table->file->stats.records = 4706;
g.nodes[2].table->file->stats.records = 316;
g.nodes[3].table->file->stats.records = 222;
g.nodes[4].table->file->stats.records = 259;
g.nodes[5].table->file->stats.records = 6;
g.nodes[6].table->file->stats.records = 1;
g.nodes[7].table->file->stats.records = 1;
THD *thd = initializer.thd();
// t0-t1
AddEdge(thd, RelationalExpression::INNER_JOIN, TableBitmap(0), TableBitmap(1),
0.000212, &mem_root, &g);
// t3-t4
AddEdge(thd, RelationalExpression::INNER_JOIN, TableBitmap(3), TableBitmap(4),
0.00386, &mem_root, &g);
// t5-t6
AddEdge(thd, RelationalExpression::INNER_JOIN, TableBitmap(5), TableBitmap(6),
1.0, &mem_root, &g);
// t3-t5
AddEdge(thd, RelationalExpression::INNER_JOIN, TableBitmap(3), TableBitmap(5),
0.167, &mem_root, &g);
// t2-t3
AddEdge(thd, RelationalExpression::INNER_JOIN, TableBitmap(2), TableBitmap(3),
0.0045, &mem_root, &g);
// t0-{t2,t3}
AddEdge(thd, RelationalExpression::INNER_JOIN, TableBitmap(0),
TableBitmap(2, 3), 0.00316, &mem_root, &g);
// {t1,t2,t3,t5}-t7
AddEdge(thd, RelationalExpression::LEFT_JOIN, TableBitmap(1, 2, 3, 5),
TableBitmap(7), 0.001, &mem_root, &g);
// t0-t2
AddEdge(thd, RelationalExpression::INNER_JOIN, TableBitmap(0), TableBitmap(2),
0.00316, &mem_root, &g);
// Simplify the above graph as much as possible. The exact steps are not all
// that important. What matters, is that we're not making a hypergraph that is
// not joinable.
GraphSimplifier s(&g, &mem_root);
while (s.DoSimplificationStep() !=
GraphSimplifier::NO_SIMPLIFICATION_POSSIBLE) {
}
// Verify that the simplified graph is joinable.
TrivialReceiver receiver(g, &mem_root, /*subgraph_pair_limit=*/-1);
EXPECT_FALSE(EnumerateAllConnectedPartitions(g.graph, &receiver));
EXPECT_EQ(8, receiver.seen_nodes);
EXPECT_TRUE(receiver.HasSeen(0b11111111));
// And it should have limited the search space as much as possible (N-1 joins
// considered to join together N tables).
EXPECT_EQ(7, receiver.seen_subgraph_pairs);
}
[[nodiscard]] static NodeGuard CreateStarJoin(THD *thd, int graph_size,
std::mt19937 *engine,
MEM_ROOT *mem_root,
JoinHypergraph *g) {
std::uniform_int_distribution<int> table_size(1, 10000);
NodeGuard node_guard = AddNodes(graph_size, mem_root, g);
for (int node_idx = 0; node_idx < graph_size; ++node_idx) {
g->nodes[node_idx].table->file->stats.records = table_size(*engine);
}
std::uniform_real_distribution<double> selectivity(0.001, 1.000);
for (int node_idx = 1; node_idx < graph_size; ++node_idx) {
AddEdge(thd, RelationalExpression::INNER_JOIN, 0b1, NodeMap{1} << node_idx,
selectivity(*engine), mem_root, g);
}
return node_guard;
}
[[nodiscard]] static NodeGuard CreateCliqueJoin(THD *thd, int graph_size,
std::mt19937 *engine,
MEM_ROOT *mem_root,
JoinHypergraph *g) {
std::uniform_int_distribution<int> table_size(1, 10000);
NodeGuard node_guard = AddNodes(graph_size, mem_root, g);
for (int node_idx = 0; node_idx < graph_size; ++node_idx) {
g->nodes[node_idx].table->file->stats.records = table_size(*engine);
}
std::uniform_real_distribution<double> selectivity(0.001, 1.000);
for (int node1_idx = 0; node1_idx < graph_size; ++node1_idx) {
for (int node2_idx = node1_idx + 1; node2_idx < graph_size; ++node2_idx) {
AddEdge(thd, RelationalExpression::INNER_JOIN, NodeMap{1} << node1_idx,
NodeMap{1} << node2_idx, selectivity(*engine), mem_root, g);
}
}
return node_guard;
}
TEST(GraphSimplificationTest, UndoRedo) {
my_testing::Server_initializer initializer;
initializer.SetUp();
// Get consistent seeds between runs and platforms.
std::mt19937 engine(1234);
MEM_ROOT mem_root;
JoinHypergraph g(&mem_root, /*query_block=*/nullptr);
NodeGuard node_guard = CreateStarJoin(initializer.thd(), /*graph_size=*/20,
&engine, &mem_root, &g);
GraphSimplifier s(&g, &mem_root);
std::uniform_int_distribution<int> back_or_forward(0, 4);
for (;;) { // Termination condition within loop.
if (s.num_steps_done() == 0) {
// We can only go forward.
ASSERT_NE(GraphSimplifier::NO_SIMPLIFICATION_POSSIBLE,
s.DoSimplificationStep());
} else {
// With 20% probability, undo a step. Otherwise, do one.
// This ensures we get to try both undos and redos.
if (back_or_forward(engine) == 0) {
s.UndoSimplificationStep();
} else {
if (s.DoSimplificationStep() ==
GraphSimplifier::NO_SIMPLIFICATION_POSSIBLE) {
// We're all simplified.
break;
}
}
}
}
// This is just an empirical number; it can change if the heuristics change.
// But it shouldn't change if we remove the undo code or change the seed.
EXPECT_EQ(171, s.num_steps_done());
}
static void BM_FullySimplifyStarJoin(int graph_size, size_t num_iterations) {
StopBenchmarkTiming();
// Get consistent seeds between runs and platforms.
std::mt19937 engine(1234);
for (size_t i = 0; i < num_iterations; ++i) {
MEM_ROOT mem_root;
JoinHypergraph g(&mem_root, /*query_block=*/nullptr);
my_testing::Server_initializer initializer;
initializer.SetUp();
NodeGuard node_guard =
CreateStarJoin(initializer.thd(), graph_size, &engine, &mem_root, &g);
StartBenchmarkTiming();
GraphSimplifier s(&g, &mem_root);
while (s.DoSimplificationStep() !=
GraphSimplifier::NO_SIMPLIFICATION_POSSIBLE)
;
StopBenchmarkTiming();
}
}
static void BM_FullySimplifyStarJoin10(size_t num_iterations) {
BM_FullySimplifyStarJoin(10, num_iterations);
}
static void BM_FullySimplifyStarJoin20(size_t num_iterations) {
BM_FullySimplifyStarJoin(20, num_iterations);
}
static void BM_FullySimplifyStarJoin30(size_t num_iterations) {
BM_FullySimplifyStarJoin(30, num_iterations);
}
static void BM_FullySimplifyStarJoin40(size_t num_iterations) {
BM_FullySimplifyStarJoin(40, num_iterations);
}
static void BM_FullySimplifyStarJoin50(size_t num_iterations) {
BM_FullySimplifyStarJoin(50, num_iterations);
}
BENCHMARK(BM_FullySimplifyStarJoin10)
BENCHMARK(BM_FullySimplifyStarJoin20)
BENCHMARK(BM_FullySimplifyStarJoin30)
BENCHMARK(BM_FullySimplifyStarJoin40)
BENCHMARK(BM_FullySimplifyStarJoin50)
// NOTE: 100-way star joins are quoted as 160 ms in the paper,
// but since MAX_TABLES == 61, we cannot compare directly.
// Extrapolation indicates that we are doing fairly well, though.
static void BM_FullySimplifyCliqueJoin(int graph_size, size_t num_iterations) {
StopBenchmarkTiming();
// Get consistent seeds between runs and platforms.
std::mt19937 engine(1234);
for (size_t i = 0; i < num_iterations; ++i) {
MEM_ROOT mem_root;
JoinHypergraph g(&mem_root, /*query_block=*/nullptr);
my_testing::Server_initializer initializer;
initializer.SetUp();
NodeGuard node_guard =
CreateCliqueJoin(initializer.thd(), graph_size, &engine, &mem_root, &g);
StartBenchmarkTiming();
GraphSimplifier s(&g, &mem_root);
while (s.DoSimplificationStep() !=
GraphSimplifier::NO_SIMPLIFICATION_POSSIBLE)
;
StopBenchmarkTiming();
}
}
static void BM_FullySimplifyCliqueJoin10(size_t num_iterations) {
BM_FullySimplifyCliqueJoin(10, num_iterations);
}
static void BM_FullySimplifyCliqueJoin20(size_t num_iterations) {
BM_FullySimplifyCliqueJoin(20, num_iterations);
}
static void BM_FullySimplifyCliqueJoin30(size_t num_iterations) {
BM_FullySimplifyCliqueJoin(30, num_iterations);
}
// static void BM_FullySimplifyCliqueJoin40(size_t num_iterations) {
// BM_FullySimplifyCliqueJoin(40, num_iterations);
// }
// static void BM_FullySimplifyCliqueJoin50(size_t num_iterations) {
// BM_FullySimplifyCliqueJoin(50, num_iterations);
// }
BENCHMARK(BM_FullySimplifyCliqueJoin10)
BENCHMARK(BM_FullySimplifyCliqueJoin20)
BENCHMARK(BM_FullySimplifyCliqueJoin30)
// Too slow to run on every commit, but can be enabled manually without
// problems.
// BENCHMARK(BM_FullySimplifyCliqueJoin40)
// BENCHMARK(BM_FullySimplifyCliqueJoin50)
|