1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
|
/* Copyright (c) 2021, 2025, Oracle and/or its affiliates.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is designed to work with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have either included with
the program or referenced in the documentation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
#include <stdint.h> // uint64_t
#include <stdlib.h> // atoi
#include <string> // std::string
#include <gtest/gtest.h>
#include "m_ctype.h" // my_charset_utf8mb4_0900_ai_ci
#include "my_alloc.h" // MEM_ROOT
#include "my_time.h" // MYSQL_TIME
#include "sql/field.h" // my_charset_numeric
#include "sql/histograms/equi_height.h" // Equi_height
#include "sql/histograms/histogram.h" // Histogram, Histogram_comparator
#include "sql/histograms/value_map.h" // Value_map<T>
#include "sql/my_decimal.h" // my_decimal
#include "sql_string.h" // String
namespace histogram_selectivity_test {
using namespace histograms;
class HistogramSelectivityTest : public ::testing::Test {
protected:
MEM_ROOT m_mem_root;
public:
HistogramSelectivityTest() : m_mem_root(PSI_NOT_INSTRUMENTED, 256) {}
};
template <class T>
void set_default(T *key) {
*key = 1;
}
template <class T>
void increment(T *key) {
*key += 1;
}
template <class T>
std::string key_to_string(const T &key) {
using std::to_string;
return to_string(key);
}
void set_default(my_decimal *key) {
int2my_decimal(E_DEC_FATAL_ERROR, 0LL, false, key);
}
void increment(my_decimal *key) {
longlong value;
my_decimal2int(E_DEC_FATAL_ERROR, key, false, &value);
int2my_decimal(E_DEC_FATAL_ERROR, value + 1, false, key);
}
std::string key_to_string(const my_decimal &decimal) {
longlong value;
my_decimal2int(E_DEC_FATAL_ERROR, &decimal, false, &value);
return std::to_string(value);
}
void set_default(MYSQL_TIME *datetime) {
set_zero_time(datetime, MYSQL_TIMESTAMP_DATETIME);
}
void increment(MYSQL_TIME *datetime) {
datetime->year = (datetime->year + 1) % 10000;
datetime->month = (datetime->month + 1) % 12;
datetime->day = (datetime->day + 1) % 28;
datetime->hour = (datetime->hour + 1) % 12;
datetime->minute = (datetime->minute + 1) % 60;
datetime->second = (datetime->second + 1) % 60;
}
std::string key_to_string(const MYSQL_TIME &datetime) {
char datetime_characters[MAX_DATE_STRING_REP_LENGTH];
my_datetime_to_str(datetime, datetime_characters, 0);
return std::string(datetime_characters);
}
void set_default(String *key) {
key->set_int(0, false, &my_charset_utf8mb4_0900_ai_ci);
}
void increment(String *key) {
int value = atoi(key->c_ptr_safe());
value += 1;
key->set_int(value, false, &my_charset_utf8mb4_0900_ai_ci);
}
enum class FrequencyDistribution {
Uniform,
Linear,
Quadratic,
Cubic,
LinearModulo100,
LinearDecreasing,
QuadraticDecreasing,
ExponentiallyDecreasing,
Pseudorandom,
SingleHeavyValue,
ExponentialTail,
};
template <class T>
void fill_value_map(Value_map<T> *map, int number_of_keys,
FrequencyDistribution dist) {
T key;
set_default(&key);
switch (dist) {
case FrequencyDistribution::Uniform: {
for (int i = 1; i <= number_of_keys; ++i) {
map->add_values(key, 1);
increment(&key);
}
break;
}
case FrequencyDistribution::Linear: {
for (int i = 1; i <= number_of_keys; ++i) {
map->add_values(key, i);
increment(&key);
}
break;
}
case FrequencyDistribution::Quadratic: {
for (int i = 1; i <= number_of_keys; ++i) {
map->add_values(key, i * i);
increment(&key);
}
break;
}
case FrequencyDistribution::Cubic: {
for (int i = 1; i <= number_of_keys; ++i) {
map->add_values(key, i * i * i);
increment(&key);
}
break;
}
case FrequencyDistribution::LinearModulo100: {
for (int i = 1; i <= number_of_keys; ++i) {
map->add_values(key, (i % 100) + 1);
increment(&key);
}
break;
}
case FrequencyDistribution::LinearDecreasing: {
for (int i = 1; i <= number_of_keys; ++i) {
map->add_values(key, number_of_keys - i + 1);
increment(&key);
}
break;
}
case FrequencyDistribution::QuadraticDecreasing: {
for (int i = 1; i <= number_of_keys; ++i) {
map->add_values(key, number_of_keys * number_of_keys - i * i + 1);
increment(&key);
}
break;
}
case FrequencyDistribution::ExponentiallyDecreasing: {
size_t frequency = number_of_keys * number_of_keys;
size_t one = 1;
for (int i = 1; i <= number_of_keys; ++i) {
map->add_values(key, std::max(frequency, one));
frequency = frequency / 2;
increment(&key);
}
break;
}
case FrequencyDistribution::Pseudorandom: {
// We use a random polynomial in a prime field (p = 2^17 - 1) to generate
// a fixed pseudorandom sequence (also known as universal hashing).
const uint64_t max_frequency = 10000;
const uint64_t p = 131071;
for (int i = 1; i <= number_of_keys; ++i) {
uint64_t x = static_cast<uint64_t>(i);
uint64_t frequency =
1 + (((39618 + 107019 * x + 78986 * x * x) % p) % max_frequency);
map->add_values(key, frequency);
increment(&key);
}
break;
}
case FrequencyDistribution::SingleHeavyValue: {
for (int i = 1; i <= number_of_keys; ++i) {
if (i == number_of_keys / 2) {
map->add_values(key, number_of_keys);
} else {
map->add_values(key, 1);
}
increment(&key);
}
break;
}
case FrequencyDistribution::ExponentialTail: {
// Add an exponentially increasing tail to the otherwise uniform data.
for (int i = 1; i <= number_of_keys; ++i) {
int remaining_keys = number_of_keys - i + 1;
int scale = 1;
if (remaining_keys <= 5) {
map->add_values(key, scale * number_of_keys);
scale = 2 * scale;
} else {
map->add_values(key, 1);
}
increment(&key);
}
break;
}
}
}
std::string ValueMapTypeToString(Value_map_type type) {
switch (type) {
case Value_map_type::INVALID:
return "INVALID";
case Value_map_type::STRING:
return "STRING";
case Value_map_type::INT:
return "INT";
case Value_map_type::UINT:
return "UINT";
case Value_map_type::DOUBLE:
return "DOUBLE";
case Value_map_type::DECIMAL:
return "DECIMAL";
case Value_map_type::DATE:
return "DATE";
case Value_map_type::TIME:
return "TIME";
case Value_map_type::DATETIME:
return "DATETIME";
case Value_map_type::ENUM:
return "ENUM";
case Value_map_type::SET:
return "SET";
}
return "Error";
}
std::string FrequencyDistributionToString(FrequencyDistribution distribution) {
switch (distribution) {
case FrequencyDistribution::Uniform:
return "Uniform";
case FrequencyDistribution::Linear:
return "Linear";
case FrequencyDistribution::Quadratic:
return "Quadratic";
case FrequencyDistribution::Cubic:
return "Cubic";
case FrequencyDistribution::LinearModulo100:
return "LinearModulo100";
case FrequencyDistribution::LinearDecreasing:
return "LinearDecreasing";
case FrequencyDistribution::QuadraticDecreasing:
return "QuadraticDecreasing";
case FrequencyDistribution::ExponentiallyDecreasing:
return "ExponentiallyDecreasing";
case FrequencyDistribution::Pseudorandom:
return "Pseudorandom";
case FrequencyDistribution::SingleHeavyValue:
return "SingleHeavyValue";
case FrequencyDistribution::ExponentialTail:
return "ExponentialTail";
}
return "Error";
}
std::string SelectivityErrorInfo(Value_map_type type,
FrequencyDistribution distribution,
size_t number_of_buckets) {
return std::string("Histogram type: ") + ValueMapTypeToString(type) +
", Frequency distribution: " +
FrequencyDistributionToString(distribution) +
", Buckets: " + std::to_string(number_of_buckets);
}
// Fill a value map according to a given distribution, build a histogram, and
// verify that histogram selectivity estimates do not deviate from the true
// selectivities by too much.
// With the right construction algorithm it is possible to guarantee an absolute
// error of at most 2.0/#buckets. While the the current equi-height construction
// offers no such guarantee, it still passes the test.
template <class T>
void VerifySelectivityEstimates(MEM_ROOT *mem_root, CHARSET_INFO *charset,
Value_map_type type,
FrequencyDistribution distribution,
size_t number_of_buckets) {
// The number_of_keys cubed should fit into an int, otherwise the Cubic
// distribution will overflow.
const int number_of_keys = 1000;
Value_map<T> key_frequencies(charset, type);
fill_value_map<T>(&key_frequencies, number_of_keys, distribution);
Equi_height<T> *histogram =
Equi_height<T>::create(mem_root, "db1", "tbl1", "col1", type);
EXPECT_FALSE(histogram->build_histogram(key_frequencies, number_of_buckets));
ha_rows total_frequency = 0;
for (const auto &[key, frequency] : key_frequencies)
total_frequency += frequency;
const double max_abs_error =
2.0 / static_cast<double>(number_of_buckets) + 0.00000001;
std::string error_info =
SelectivityErrorInfo(type, distribution, number_of_buckets);
ha_rows cumulative_frequency = 0;
for (const auto &[key, frequency] : key_frequencies) {
double less_than_selectivity =
static_cast<double>(cumulative_frequency) / total_frequency;
EXPECT_NEAR(less_than_selectivity,
histogram->get_less_than_selectivity(key), max_abs_error)
<< "less than " << key_to_string(key) << "\n"
<< error_info;
double equal_to_selectivity =
static_cast<double>(frequency) / total_frequency;
EXPECT_NEAR(equal_to_selectivity, histogram->get_equal_to_selectivity(key),
max_abs_error)
<< "equal to " << key_to_string(key) << "\n"
<< error_info;
double greater_than_selectivity =
1.0 - (less_than_selectivity + equal_to_selectivity);
EXPECT_NEAR(greater_than_selectivity,
histogram->get_greater_than_selectivity(key), max_abs_error)
<< "greater than " << key_to_string(key) << "\n"
<< error_info;
cumulative_frequency += frequency;
}
}
TEST_F(HistogramSelectivityTest, EquiHeightSelectivity) {
std::vector<Value_map_type> histogram_types = {
Value_map_type::STRING, Value_map_type::INT, Value_map_type::UINT,
Value_map_type::DOUBLE, Value_map_type::DECIMAL,
// Value_map_type::DATE,
// Value_map_type::TIME,
Value_map_type::DATETIME,
// Value_map_type::ENUM,
// Value_map_type::SET,
};
std::vector<FrequencyDistribution> distributions = {
FrequencyDistribution::Uniform,
FrequencyDistribution::Linear,
FrequencyDistribution::Quadratic,
FrequencyDistribution::Cubic,
FrequencyDistribution::LinearModulo100,
FrequencyDistribution::LinearDecreasing,
FrequencyDistribution::QuadraticDecreasing,
FrequencyDistribution::ExponentiallyDecreasing,
FrequencyDistribution::Pseudorandom,
FrequencyDistribution::SingleHeavyValue,
FrequencyDistribution::ExponentialTail};
std::vector<size_t> numbers_of_buckets = {2, 4, 8, 16, 32, 64, 128, 256, 512};
for (const auto &histogram_type : histogram_types) {
for (const auto &distribution : distributions) {
for (const auto &number_of_buckets : numbers_of_buckets) {
switch (histogram_type) {
case Value_map_type::INT: {
VerifySelectivityEstimates<longlong>(
&m_mem_root, &my_charset_numeric, histogram_type, distribution,
number_of_buckets);
break;
}
case Value_map_type::STRING:
VerifySelectivityEstimates<String>(
&m_mem_root, &my_charset_utf8mb4_0900_ai_ci, histogram_type,
distribution, number_of_buckets);
break;
case Value_map_type::UINT: {
VerifySelectivityEstimates<ulonglong>(
&m_mem_root, &my_charset_numeric, histogram_type, distribution,
number_of_buckets);
break;
}
case Value_map_type::DOUBLE: {
VerifySelectivityEstimates<double>(&m_mem_root, &my_charset_numeric,
histogram_type, distribution,
number_of_buckets);
break;
}
case Value_map_type::DECIMAL: {
VerifySelectivityEstimates<my_decimal>(
&m_mem_root, &my_charset_numeric, histogram_type, distribution,
number_of_buckets);
break;
}
case Value_map_type::DATE:
case Value_map_type::TIME:
case Value_map_type::DATETIME: {
VerifySelectivityEstimates<MYSQL_TIME>(
&m_mem_root, &my_charset_numeric, histogram_type, distribution,
number_of_buckets);
break;
}
case Value_map_type::ENUM:
case Value_map_type::SET:
EXPECT_TRUE(false)
<< "Test for Value_map_type::"
<< ValueMapTypeToString(histogram_type) << " not implemented.";
break;
case Value_map_type::INVALID:
EXPECT_TRUE(false) << "Value_map_type::INVALID.";
break;
}
}
}
}
}
} // namespace histogram_selectivity_test
|