File: histogram_selectivity-t.cc

package info (click to toggle)
mysql-8.0 8.0.43-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,273,924 kB
  • sloc: cpp: 4,684,605; ansic: 412,450; pascal: 108,398; java: 83,641; perl: 30,221; cs: 27,067; sql: 26,594; sh: 24,181; python: 21,816; yacc: 17,169; php: 11,522; xml: 7,388; javascript: 7,076; makefile: 2,194; lex: 1,075; awk: 670; asm: 520; objc: 183; ruby: 97; lisp: 86
file content (438 lines) | stat: -rw-r--r-- 14,888 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
/* Copyright (c) 2021, 2025, Oracle and/or its affiliates.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License, version 2.0,
   as published by the Free Software Foundation.

   This program is designed to work with certain software (including
   but not limited to OpenSSL) that is licensed under separate terms,
   as designated in a particular file or component or in included license
   documentation.  The authors of MySQL hereby grant you an additional
   permission to link the program and your derivative works with the
   separately licensed software that they have either included with
   the program or referenced in the documentation.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License, version 2.0, for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301  USA */

#include <stdint.h>  // uint64_t
#include <stdlib.h>  // atoi

#include <string>  // std::string

#include <gtest/gtest.h>

#include "m_ctype.h"                     // my_charset_utf8mb4_0900_ai_ci
#include "my_alloc.h"                    // MEM_ROOT
#include "my_time.h"                     // MYSQL_TIME
#include "sql/field.h"                   // my_charset_numeric
#include "sql/histograms/equi_height.h"  // Equi_height
#include "sql/histograms/histogram.h"    // Histogram, Histogram_comparator
#include "sql/histograms/value_map.h"    // Value_map<T>
#include "sql/my_decimal.h"              // my_decimal
#include "sql_string.h"                  // String

namespace histogram_selectivity_test {

using namespace histograms;

class HistogramSelectivityTest : public ::testing::Test {
 protected:
  MEM_ROOT m_mem_root;

 public:
  HistogramSelectivityTest() : m_mem_root(PSI_NOT_INSTRUMENTED, 256) {}
};

template <class T>
void set_default(T *key) {
  *key = 1;
}

template <class T>
void increment(T *key) {
  *key += 1;
}

template <class T>
std::string key_to_string(const T &key) {
  using std::to_string;
  return to_string(key);
}

void set_default(my_decimal *key) {
  int2my_decimal(E_DEC_FATAL_ERROR, 0LL, false, key);
}

void increment(my_decimal *key) {
  longlong value;
  my_decimal2int(E_DEC_FATAL_ERROR, key, false, &value);
  int2my_decimal(E_DEC_FATAL_ERROR, value + 1, false, key);
}

std::string key_to_string(const my_decimal &decimal) {
  longlong value;
  my_decimal2int(E_DEC_FATAL_ERROR, &decimal, false, &value);
  return std::to_string(value);
}

void set_default(MYSQL_TIME *datetime) {
  set_zero_time(datetime, MYSQL_TIMESTAMP_DATETIME);
}

void increment(MYSQL_TIME *datetime) {
  datetime->year = (datetime->year + 1) % 10000;
  datetime->month = (datetime->month + 1) % 12;
  datetime->day = (datetime->day + 1) % 28;
  datetime->hour = (datetime->hour + 1) % 12;
  datetime->minute = (datetime->minute + 1) % 60;
  datetime->second = (datetime->second + 1) % 60;
}

std::string key_to_string(const MYSQL_TIME &datetime) {
  char datetime_characters[MAX_DATE_STRING_REP_LENGTH];
  my_datetime_to_str(datetime, datetime_characters, 0);
  return std::string(datetime_characters);
}

void set_default(String *key) {
  key->set_int(0, false, &my_charset_utf8mb4_0900_ai_ci);
}

void increment(String *key) {
  int value = atoi(key->c_ptr_safe());
  value += 1;
  key->set_int(value, false, &my_charset_utf8mb4_0900_ai_ci);
}

enum class FrequencyDistribution {
  Uniform,
  Linear,
  Quadratic,
  Cubic,
  LinearModulo100,
  LinearDecreasing,
  QuadraticDecreasing,
  ExponentiallyDecreasing,
  Pseudorandom,
  SingleHeavyValue,
  ExponentialTail,
};

template <class T>
void fill_value_map(Value_map<T> *map, int number_of_keys,
                    FrequencyDistribution dist) {
  T key;
  set_default(&key);
  switch (dist) {
    case FrequencyDistribution::Uniform: {
      for (int i = 1; i <= number_of_keys; ++i) {
        map->add_values(key, 1);
        increment(&key);
      }
      break;
    }
    case FrequencyDistribution::Linear: {
      for (int i = 1; i <= number_of_keys; ++i) {
        map->add_values(key, i);
        increment(&key);
      }
      break;
    }
    case FrequencyDistribution::Quadratic: {
      for (int i = 1; i <= number_of_keys; ++i) {
        map->add_values(key, i * i);
        increment(&key);
      }
      break;
    }
    case FrequencyDistribution::Cubic: {
      for (int i = 1; i <= number_of_keys; ++i) {
        map->add_values(key, i * i * i);
        increment(&key);
      }
      break;
    }
    case FrequencyDistribution::LinearModulo100: {
      for (int i = 1; i <= number_of_keys; ++i) {
        map->add_values(key, (i % 100) + 1);
        increment(&key);
      }
      break;
    }
    case FrequencyDistribution::LinearDecreasing: {
      for (int i = 1; i <= number_of_keys; ++i) {
        map->add_values(key, number_of_keys - i + 1);
        increment(&key);
      }
      break;
    }
    case FrequencyDistribution::QuadraticDecreasing: {
      for (int i = 1; i <= number_of_keys; ++i) {
        map->add_values(key, number_of_keys * number_of_keys - i * i + 1);
        increment(&key);
      }
      break;
    }
    case FrequencyDistribution::ExponentiallyDecreasing: {
      size_t frequency = number_of_keys * number_of_keys;
      size_t one = 1;
      for (int i = 1; i <= number_of_keys; ++i) {
        map->add_values(key, std::max(frequency, one));
        frequency = frequency / 2;
        increment(&key);
      }
      break;
    }
    case FrequencyDistribution::Pseudorandom: {
      // We use a random polynomial in a prime field (p = 2^17 - 1) to generate
      // a fixed pseudorandom sequence (also known as universal hashing).
      const uint64_t max_frequency = 10000;
      const uint64_t p = 131071;
      for (int i = 1; i <= number_of_keys; ++i) {
        uint64_t x = static_cast<uint64_t>(i);
        uint64_t frequency =
            1 + (((39618 + 107019 * x + 78986 * x * x) % p) % max_frequency);
        map->add_values(key, frequency);
        increment(&key);
      }
      break;
    }
    case FrequencyDistribution::SingleHeavyValue: {
      for (int i = 1; i <= number_of_keys; ++i) {
        if (i == number_of_keys / 2) {
          map->add_values(key, number_of_keys);
        } else {
          map->add_values(key, 1);
        }
        increment(&key);
      }
      break;
    }
    case FrequencyDistribution::ExponentialTail: {
      // Add an exponentially increasing tail to the otherwise uniform data.
      for (int i = 1; i <= number_of_keys; ++i) {
        int remaining_keys = number_of_keys - i + 1;
        int scale = 1;
        if (remaining_keys <= 5) {
          map->add_values(key, scale * number_of_keys);
          scale = 2 * scale;
        } else {
          map->add_values(key, 1);
        }
        increment(&key);
      }
      break;
    }
  }
}

std::string ValueMapTypeToString(Value_map_type type) {
  switch (type) {
    case Value_map_type::INVALID:
      return "INVALID";
    case Value_map_type::STRING:
      return "STRING";
    case Value_map_type::INT:
      return "INT";
    case Value_map_type::UINT:
      return "UINT";
    case Value_map_type::DOUBLE:
      return "DOUBLE";
    case Value_map_type::DECIMAL:
      return "DECIMAL";
    case Value_map_type::DATE:
      return "DATE";
    case Value_map_type::TIME:
      return "TIME";
    case Value_map_type::DATETIME:
      return "DATETIME";
    case Value_map_type::ENUM:
      return "ENUM";
    case Value_map_type::SET:
      return "SET";
  }
  return "Error";
}

std::string FrequencyDistributionToString(FrequencyDistribution distribution) {
  switch (distribution) {
    case FrequencyDistribution::Uniform:
      return "Uniform";
    case FrequencyDistribution::Linear:
      return "Linear";
    case FrequencyDistribution::Quadratic:
      return "Quadratic";
    case FrequencyDistribution::Cubic:
      return "Cubic";
    case FrequencyDistribution::LinearModulo100:
      return "LinearModulo100";
    case FrequencyDistribution::LinearDecreasing:
      return "LinearDecreasing";
    case FrequencyDistribution::QuadraticDecreasing:
      return "QuadraticDecreasing";
    case FrequencyDistribution::ExponentiallyDecreasing:
      return "ExponentiallyDecreasing";
    case FrequencyDistribution::Pseudorandom:
      return "Pseudorandom";
    case FrequencyDistribution::SingleHeavyValue:
      return "SingleHeavyValue";
    case FrequencyDistribution::ExponentialTail:
      return "ExponentialTail";
  }
  return "Error";
}

std::string SelectivityErrorInfo(Value_map_type type,
                                 FrequencyDistribution distribution,
                                 size_t number_of_buckets) {
  return std::string("Histogram type: ") + ValueMapTypeToString(type) +
         ", Frequency distribution: " +
         FrequencyDistributionToString(distribution) +
         ", Buckets: " + std::to_string(number_of_buckets);
}

// Fill a value map according to a given distribution, build a histogram, and
// verify that histogram selectivity estimates do not deviate from the true
// selectivities by too much.
// With the right construction algorithm it is possible to guarantee an absolute
// error of at most 2.0/#buckets. While the the current equi-height construction
// offers no such guarantee, it still passes the test.
template <class T>
void VerifySelectivityEstimates(MEM_ROOT *mem_root, CHARSET_INFO *charset,
                                Value_map_type type,
                                FrequencyDistribution distribution,
                                size_t number_of_buckets) {
  // The number_of_keys cubed should fit into an int, otherwise the Cubic
  // distribution will overflow.
  const int number_of_keys = 1000;

  Value_map<T> key_frequencies(charset, type);
  fill_value_map<T>(&key_frequencies, number_of_keys, distribution);
  Equi_height<T> *histogram =
      Equi_height<T>::create(mem_root, "db1", "tbl1", "col1", type);
  EXPECT_FALSE(histogram->build_histogram(key_frequencies, number_of_buckets));

  ha_rows total_frequency = 0;
  for (const auto &[key, frequency] : key_frequencies)
    total_frequency += frequency;

  const double max_abs_error =
      2.0 / static_cast<double>(number_of_buckets) + 0.00000001;

  std::string error_info =
      SelectivityErrorInfo(type, distribution, number_of_buckets);

  ha_rows cumulative_frequency = 0;
  for (const auto &[key, frequency] : key_frequencies) {
    double less_than_selectivity =
        static_cast<double>(cumulative_frequency) / total_frequency;
    EXPECT_NEAR(less_than_selectivity,
                histogram->get_less_than_selectivity(key), max_abs_error)
        << "less than " << key_to_string(key) << "\n"
        << error_info;

    double equal_to_selectivity =
        static_cast<double>(frequency) / total_frequency;
    EXPECT_NEAR(equal_to_selectivity, histogram->get_equal_to_selectivity(key),
                max_abs_error)
        << "equal to " << key_to_string(key) << "\n"
        << error_info;

    double greater_than_selectivity =
        1.0 - (less_than_selectivity + equal_to_selectivity);
    EXPECT_NEAR(greater_than_selectivity,
                histogram->get_greater_than_selectivity(key), max_abs_error)
        << "greater than " << key_to_string(key) << "\n"
        << error_info;

    cumulative_frequency += frequency;
  }
}

TEST_F(HistogramSelectivityTest, EquiHeightSelectivity) {
  std::vector<Value_map_type> histogram_types = {
      Value_map_type::STRING, Value_map_type::INT, Value_map_type::UINT,
      Value_map_type::DOUBLE, Value_map_type::DECIMAL,
      // Value_map_type::DATE,
      // Value_map_type::TIME,
      Value_map_type::DATETIME,
      // Value_map_type::ENUM,
      // Value_map_type::SET,
  };
  std::vector<FrequencyDistribution> distributions = {
      FrequencyDistribution::Uniform,
      FrequencyDistribution::Linear,
      FrequencyDistribution::Quadratic,
      FrequencyDistribution::Cubic,
      FrequencyDistribution::LinearModulo100,
      FrequencyDistribution::LinearDecreasing,
      FrequencyDistribution::QuadraticDecreasing,
      FrequencyDistribution::ExponentiallyDecreasing,
      FrequencyDistribution::Pseudorandom,
      FrequencyDistribution::SingleHeavyValue,
      FrequencyDistribution::ExponentialTail};
  std::vector<size_t> numbers_of_buckets = {2, 4, 8, 16, 32, 64, 128, 256, 512};
  for (const auto &histogram_type : histogram_types) {
    for (const auto &distribution : distributions) {
      for (const auto &number_of_buckets : numbers_of_buckets) {
        switch (histogram_type) {
          case Value_map_type::INT: {
            VerifySelectivityEstimates<longlong>(
                &m_mem_root, &my_charset_numeric, histogram_type, distribution,
                number_of_buckets);
            break;
          }
          case Value_map_type::STRING:
            VerifySelectivityEstimates<String>(
                &m_mem_root, &my_charset_utf8mb4_0900_ai_ci, histogram_type,
                distribution, number_of_buckets);
            break;
          case Value_map_type::UINT: {
            VerifySelectivityEstimates<ulonglong>(
                &m_mem_root, &my_charset_numeric, histogram_type, distribution,
                number_of_buckets);
            break;
          }
          case Value_map_type::DOUBLE: {
            VerifySelectivityEstimates<double>(&m_mem_root, &my_charset_numeric,
                                               histogram_type, distribution,
                                               number_of_buckets);
            break;
          }
          case Value_map_type::DECIMAL: {
            VerifySelectivityEstimates<my_decimal>(
                &m_mem_root, &my_charset_numeric, histogram_type, distribution,
                number_of_buckets);
            break;
          }
          case Value_map_type::DATE:
          case Value_map_type::TIME:
          case Value_map_type::DATETIME: {
            VerifySelectivityEstimates<MYSQL_TIME>(
                &m_mem_root, &my_charset_numeric, histogram_type, distribution,
                number_of_buckets);
            break;
          }
          case Value_map_type::ENUM:
          case Value_map_type::SET:
            EXPECT_TRUE(false)
                << "Test for Value_map_type::"
                << ValueMapTypeToString(histogram_type) << " not implemented.";
            break;
          case Value_map_type::INVALID:
            EXPECT_TRUE(false) << "Value_map_type::INVALID.";
            break;
        }
      }
    }
  }
}

}  // namespace histogram_selectivity_test