File: ut0rnd-t.cc

package info (click to toggle)
mysql-8.0 8.0.43-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,273,924 kB
  • sloc: cpp: 4,684,605; ansic: 412,450; pascal: 108,398; java: 83,641; perl: 30,221; cs: 27,067; sql: 26,594; sh: 24,181; python: 21,816; yacc: 17,169; php: 11,522; xml: 7,388; javascript: 7,076; makefile: 2,194; lex: 1,075; awk: 670; asm: 520; objc: 183; ruby: 97; lisp: 86
file content (565 lines) | stat: -rw-r--r-- 19,872 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
/* Copyright (c) 2013, 2025, Oracle and/or its affiliates.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License, version 2.0,
   as published by the Free Software Foundation.

   This program is designed to work with certain software (including
   but not limited to OpenSSL) that is licensed under separate terms,
   as designated in a particular file or component or in included license
   documentation.  The authors of MySQL hereby grant you an additional
   permission to link the program and your derivative works with the
   separately licensed software that they have either included with
   the program or referenced in the documentation.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License, version 2.0, for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301  USA */

/* See http://code.google.com/p/googletest/wiki/Primer */

#include <gtest/gtest.h>
#include <array>
#include <cstdint>
#include <random>
#include "unittest/gunit/benchmark.h"

#include "storage/innobase/include/mach0data.h"
#include "storage/innobase/include/univ.i"
#include "storage/innobase/include/ut0crc32.h"
#include "storage/innobase/include/ut0rnd.h"

#include "extra/xxhash/my_xxhash.h"

namespace innodb_ut0rnd_unittest {

namespace old_impl {

/* Old implementations to compare against. */

#define UT_RND1 151117737
#define UT_RND2 119785373
#define UT_RND3 85689495
#define UT_RND4 76595339
#define UT_SUM_RND2 98781234
#define UT_SUM_RND3 126792457
#define UT_SUM_RND4 63498502
#define UT_XOR_RND1 187678878
#define UT_XOR_RND2 143537923

static inline ulint ut_rnd_gen_next_ulint(ulint rnd) {
  ulint n_bits;
  n_bits = 8 * sizeof(ulint);
  rnd = UT_RND2 * rnd + UT_SUM_RND3;
  rnd = UT_XOR_RND1 ^ rnd;
  rnd = (rnd << 20) + (rnd >> (n_bits - 20));
  rnd = UT_RND3 * rnd + UT_SUM_RND4;
  rnd = UT_XOR_RND2 ^ rnd;
  rnd = (rnd << 20) + (rnd >> (n_bits - 20));
  rnd = UT_RND1 * rnd + UT_SUM_RND2;
  return (rnd);
}

thread_local ulint ut_rnd_ulint_counter;

static inline ulint ut_rnd_gen_ulint() {
  ulint rnd = ut_rnd_ulint_counter;
  if (rnd == 0) {
    rnd = 65654363;
  }

  rnd = UT_RND1 * rnd + UT_RND2;

  ut_rnd_ulint_counter = rnd;

  return (ut_rnd_gen_next_ulint(rnd));
}

constexpr uint32_t UT_HASH_RANDOM_MASK = 1463735687;
constexpr uint32_t UT_HASH_RANDOM_MASK2 = 1653893711;

static inline ulint ut_hash_ulint(ulint key, ulint table_size) {
  ut_ad(table_size);
  key = key ^ UT_HASH_RANDOM_MASK2;

  return (key % table_size);
}
static inline ulint ut_fold_ulint_pair(ulint n1, ulint n2) {
  return (
      ((((n1 ^ n2 ^ UT_HASH_RANDOM_MASK2) << 8) + n1) ^ UT_HASH_RANDOM_MASK) +
      n2);
}

static inline ulint ut_fold_ull(uint64_t d) {
  return (ut_fold_ulint_pair((ulint)d & std::numeric_limits<uint32_t>::max(),
                             (ulint)(d >> 32)));
}

}  // namespace old_impl

static void init() {
  ut::detail::random_seed = 0;
  old_impl::ut_rnd_ulint_counter = 0;
}

struct random_data_t {
  std::array<byte, 100000> data;
  random_data_t() {
    for (byte &b : data) {
      b = rand();
    }
  }
};
random_data_t random_data{};

/* Correctness tests for hashing methods. */

TEST(ut0rnd, hash_binary_ib_basic) {
  init();
  /* This value is used in page checksum for innodb algorithm, if chosen. This
  can't ever change to not make existing databases invalid. */
  EXPECT_EQ(58956420, ut::hash_binary_ib((const byte *)"innodb", 6));
}

static double calculate_limit_variance_from_expected(uint32_t n) {
  /* We set the limit arbitrarily. The higher N the lower the distance from
  expected variation should be. The below formula has points at around:
  3.00 for N=8,
  0.65 for N=64,
  0.25 for N=1024,
  0.11 for N=10000 */
  return 4.5 / log2(n / 2.0) + 0.75;
}

/** Tests if a given hasher produces a nice distribution. The buckets can't
differ in sizes more than 10% from the expected average. */
template <typename T, uint32_t N>
double test_distribution(const std::string &test_name, T hasher,
                         uint64_t multiplier) {
  std::array<uint64_t, N> buckets{0};
  std::array<uint64_t, N> max_res_buckets{0};
  constexpr auto maxM = std::max(uint32_t{10000}, N * 5);
  constexpr auto stepM = 3 * N;
  const ut::fast_modulo_t N_mod{N};
  int max_res_M = 0;
  double max_res = 0;
  const auto variance_limit = calculate_limit_variance_from_expected(N);
  for (uint32_t M = stepM, i = 0; M <= maxM; M += stepM) {
    for (; i < M; i++) {
      uint32_t hash = hasher(i * multiplier, N_mod);
      assert(hash < N);
      buckets[hash]++;
    }
    /* Suppose I choose two of the M elements at random (with replacement) and
    ask if they "collide" by being in the same bucket.
    A bucket with k elements contributes k*k such collisions. */
    uint64_t collisions = 0;
    for (uint32_t j = 0; j < N; j++) {
      collisions += buckets[j] * buckets[j];
    }
    /* Average number of elements in each bucket. */
    const auto avg = 1.0 * M / N;
    const auto minimum_possible_collisions = avg * avg * N;
    const auto excess_collisions = collisions - minimum_possible_collisions;
    /* If we just tossed M balls into N bins randomly, so that a ball landing in
    a particular bin has a chance p=1/N, the variance would be M*(1/N)*(1-1/N).
    Note that variance*N = sum {(buckets[j]-avg)^2} = excess_collisions.
    */
    const auto good_excess_collisions = 1.0 * M * (1 - 1.0 / N);
    /* We calculate "score" as ratio of actual number of excess collisions to
    the above good excess collisions. The lower the better. Also, we adjust
    score based on value of M, so that small values of M are required to be
    closer to the good variance and higher can have up to 50% more collisions
    for the same score. */
    const auto score = excess_collisions / good_excess_collisions /
                       (1 + std::min(0.5, 1.0 * (M - stepM) / 200));
    if (score > max_res) {
      max_res = score;
      max_res_M = M;
      max_res_buckets = buckets;
    }
  }
  /* Print all distributions that get close to the limit (70% of it) */
  if (max_res > 1 + (variance_limit - 1) * 0.7) {
    std::cout << "Bad distribution found for test \"" << test_name
              << "\", N=" << N << ", mult=" << multiplier
              << ", max_res=" << max_res << " @ M=" << max_res_M
              << ", limit=" << variance_limit << std::endl;
    if (N < 100) {
      for (auto a : max_res_buckets) {
        std::cout << a << " ";
      }
      std::cout << std::endl;
    }
  }
  return max_res;
}

template <typename T, uint32_t N>
void test_distribution(bool assert_distribution, const std::string &test_name,
                       T hasher) {
  double score = 0;
  constexpr auto P = 10;
  for (int i = 0; i <= P; i++) {
    score =
        std::max(score, test_distribution<T, N>(test_name, hasher, 1ULL << i));
  }
  score = std::max(score, test_distribution<T, N>(test_name, hasher, 7));
  score = std::max(score, test_distribution<T, N>(test_name, hasher, 11));
  score =
      std::max(score, test_distribution<T, N>(test_name, hasher, 2 * 3 * 5));

  const auto variance_limit = calculate_limit_variance_from_expected(N);
  std::cout << "Overall score for N=" << N << " is: " << score
            << ", while the limit for good enough result is " << variance_limit
            << std::endl;

  if (assert_distribution) {
    EXPECT_LE(score, variance_limit);
  }
}

template <typename THash>
void test_distribution(bool assert_distribution, const std::string &test_name,
                       THash hasher) {
  test_distribution<THash, 8>(assert_distribution, test_name,
                              hasher);  // For 2^n distributions
  test_distribution<THash, 10>(assert_distribution, test_name,
                               hasher);  // For 10^n distributions
  test_distribution<THash, 11>(assert_distribution, test_name,
                               hasher);  // For small prime distribution
  test_distribution<THash, 64>(assert_distribution, test_name,
                               hasher);  // For 2^n distributions
  test_distribution<THash, 1 << 10>(assert_distribution, test_name,
                                    hasher);  // For big 2^n distribution
  test_distribution<THash, 1000>(assert_distribution, test_name,
                                 hasher);  // For big 10^n distribution
  test_distribution<THash, 1 << 13>(assert_distribution, test_name,
                                    hasher);  // For big 2^n distribution
  test_distribution<THash, 10 * 1000>(assert_distribution, test_name,
                                      hasher);  // For big 10^n distribution
}

/* Test distributions for algorithms that hash uint64_t. */

TEST(ut0rnd, hash_uint64_distribution) {
  init();
  ut_crc32_init();
  test_distribution(true, "ut::hash_uint64(i)",
                    [](size_t i, const ut::fast_modulo_t &n) {
                      return ut::hash_uint64(i) % n;
                    });
}

TEST(ut0rnd, hash_std_hash_distribution) {
  init();
  test_distribution(false, "std::hash<uint64_t>{}(i)",
                    [](size_t i, const ut::fast_modulo_t &n) {
                      return std::hash<uint64_t>{}(i) % n;
                    });
}
TEST(ut0rnd, hash_uint32_old_distribution) {
  init();
  test_distribution(false, "old_impl::ut_hash_ulint(i, N)",
                    [](size_t i, const ut::fast_modulo_t &n) {
                      return old_impl::ut_hash_ulint(i, n.get_mod());
                    });
}

TEST(ut0rnd, hash_uint64_pair_sysbench_ahi_distribution) {
  ut_crc32_init();
  std::array<size_t, 8> buckets{};
  for (int i = 0; i < 8; i++) {
    uint32_t hash = ut::hash_uint64_pair(149 + 2 * i, i) % 8;
    buckets[hash]++;
  }

  int res = 0;
  for (int i = 0; i < 8; i++) {
    if (buckets[i] != 0) {
      res++;
    }
  }

  EXPECT_GE(res, 6);

  if (res < 6) {
    for (auto a : buckets) {
      std::cout << a << " ";
    }
    std::cout << std::endl;
  }
}

/* Test uint64_pair distribution of a sequential BIGINT record as hashed by
ut::hash_binary(). This method will read it as little-endian, while the InnoDB
storage format for BIGINT is big-endian. */
TEST(ut0rnd, hash_uint64_pair_highest_byte_distribution) {
  ut_crc32_init();
  /* This test checks if hash_uint64_pair causes collisions when one of the
  arguments is kept constant, and the other takes consecutive values.
  Historically, the number of collisions depended mostly on the pattern of
  lowest bits in the constant, so we try all possible lowest bytes. */
  for (uint64_t seed = 0; seed < 256; ++seed) {
    std::set<uint64_t> hashes_left, hashes_right;
    for (uint64_t highest = 0; highest < 256; highest++) {
      /* As mentioned in the test, we want to test a real-world example of a
      BIGINT field as seen by `tuple->fields[0].data`. It has 7 bytes set, with
      main non-zero part of the value in the highest bytes. The value of
      `highest` byte will be inserted to the 8th, the highest byte of this
      value and it represents the lowest byte of the BIGINT field's value. */
      uint64_t rec = 0x9a533400000080ULL | (highest << (64 - 8));
      EXPECT_TRUE(hashes_left.insert(ut::hash_uint64_pair(rec, seed)).second);
      EXPECT_TRUE(hashes_right.insert(ut::hash_uint64_pair(seed, rec)).second);
    }
  }
}

/* Test distributions for algorithms that hash pair of uint32_t that are:
increasing together or with either one being constant. */

template <typename THash>
static void hash_pair_distribution_test(bool assert_distribution,
                                        const std::string &test_name,
                                        THash hasher) {
  init();
  ut_crc32_init();
  test_distribution(assert_distribution, test_name + "(i, i)",
                    [&hasher](size_t i, const ut::fast_modulo_t &n) {
                      return hasher(i, i) % n;
                    });
  test_distribution(assert_distribution, test_name + "(1, i)",
                    [&hasher](size_t i, const ut::fast_modulo_t &n) {
                      return hasher(1, i) % n;
                    });
  test_distribution(assert_distribution, test_name + "(i, 1)",
                    [&hasher](size_t i, const ut::fast_modulo_t &n) {
                      return hasher(i, 1) % n;
                    });
  /* Distribution basing on <index_id, space_id> generated for tables by
  sysbench. */
  test_distribution(assert_distribution, test_name + "(149+2*i, i)",
                    [&hasher](size_t i, const ut::fast_modulo_t &n) {
                      return hasher(149 + 2 * i, i) % n;
                    });
}

TEST(ut0rnd, hash_uint64_pair_distribution) {
  hash_pair_distribution_test(true, "ut::hash_uint64_pair",
                              ut::hash_uint64_pair);
}

TEST(ut0rnd, hash_uint32_pair_old_distribution) {
  hash_pair_distribution_test(false, "ut::detail::hash_uint32_pair_ib",
                              ut::detail::hash_uint32_pair_ib);
}

static void test_interval_fast_distribution(uint64_t n) {
  const uint64_t max_count = n * 10000;
  // min, mid, max are usecases
  uint64_t target_score[][2] = {{0, 0}, {n / 2, 0}, {n - 1, 0}};

  // variation is needed. not needed to be so accurate always.
  const uint64_t min_score = 5000;
  const uint64_t max_score = 17000;

  for (uint64_t i = 0; i < max_count; i++) {
    const auto value = ut::random_from_interval_fast(0, n);
    for (auto target : target_score) {
      if (value == target[0]) {
        target[1]++;
      }
    }
    ut_delay(ut::random_from_interval_fast(0, 6));
  }

  for (auto target : target_score) {
    // EXPECT_GE(target[1], min_score);
    // EXPECT_LE(target[1], max_score);

    if (target[1] < min_score || target[1] > max_score) {
      std::cout << "test_interval_fast_distribution " << target[0] << " for 0-"
                << n - 1 << " : " << target[1] << " / " << max_count
                << std::endl;
    }
  }
}

TEST(ut0rnd, random_from_interval_fast) {
  init();
  test_interval_fast_distribution(2);    // 1/2
  test_interval_fast_distribution(10);   // 1/10
  test_interval_fast_distribution(100);  // 1/100
}

/* Micro-benchmark raw random generator performance. */

template <typename THash>
static void benchmark_hasher(const size_t num_iterations, THash hasher) {
  init();
  ut_crc32_init();

  uint32_t fold = 1;  // Non-zero value. Some hasher might return 0 for fold==0.
  for (size_t n = 0; n < num_iterations * 1000; n++) {
    fold += hasher(fold, n);
  }
  EXPECT_NE(0U, fold);  // To keep the compiler from optimizing it away.
  SetBytesProcessed(num_iterations * 1000);
}

static void BM_RND_GEN_OLD(const size_t num_iterations) {
  benchmark_hasher(num_iterations, [](uint64_t, uint64_t) {
    return old_impl::ut_rnd_gen_ulint();
  });
}
BENCHMARK(BM_RND_GEN_OLD)

static void BM_RND_GEN_STD_HASH(const size_t num_iterations) {
  benchmark_hasher(num_iterations, [](uint64_t, uint64_t n) {
    return std::hash<uint64_t>{}(n);
  });
}
BENCHMARK(BM_RND_GEN_STD_HASH)

#if SIZEOF_VOIDP >= 8
static void BM_RND_GEN_STD_LINEAR(const size_t num_iterations) {
  std::linear_congruential_engine<uint64_t, 0xacb1f3526e25dd39,
                                  0xf72a876a516b4b56,
                                  std::numeric_limits<uint64_t>::max()>
      eng;
  benchmark_hasher(num_iterations,
                   [&eng](uint64_t, uint64_t n) { return eng(); });
}
BENCHMARK(BM_RND_GEN_STD_LINEAR)
#endif

static void BM_RND_GEN(const size_t num_iterations) {
  benchmark_hasher(num_iterations,
                   [](uint64_t, uint64_t n) { return ut::random_64(); });
}
BENCHMARK(BM_RND_GEN)

static void BM_RND_GEN_FAST(const size_t num_iterations) {
  benchmark_hasher(num_iterations,
                   [](uint64_t, uint64_t) { return ut::random_64_fast(); });
}
BENCHMARK(BM_RND_GEN_FAST)

/* Micro-benchmark raw uint64_t hash performance. */

static void BM_HASH_UINT64(const size_t num_iterations) {
  benchmark_hasher(num_iterations, [](uint64_t fold, uint64_t) {
    return ut::hash_uint64(fold);
  });
}
BENCHMARK(BM_HASH_UINT64)

static void BM_HASH_UINT64_OLD(const size_t num_iterations) {
  benchmark_hasher(num_iterations, [](uint64_t fold, uint64_t) {
    return old_impl::ut_fold_ull(fold);
  });
}
BENCHMARK(BM_HASH_UINT64_OLD)

/* Micro-benchmark raw pair of uint32_t hash performance. */

static void BM_HASH_UINT64_PAIR(const size_t num_iterations) {
  benchmark_hasher(num_iterations, [](uint64_t fold, uint64_t n) {
    return ut::hash_uint64_pair(fold, ut::random_64());
  });
}
BENCHMARK(BM_HASH_UINT64_PAIR)

static void BM_HASH_UINT32_PAIR_OLD(const size_t num_iterations) {
  benchmark_hasher(num_iterations, [](uint64_t fold, uint64_t n) {
    return ut::detail::hash_uint32_pair_ib(fold, ut::random_64());
  });
}
BENCHMARK(BM_HASH_UINT32_PAIR_OLD)

/* Micro-benchmark raw performance of several hashing algorithms of arbitrary
 * string. */

#define BENCHMARK_HASH(NAME, N)                             \
  static void BM_HASH_##NAME##_##N(size_t num_iterations) { \
    BM_HASH_##NAME<N>(num_iterations);                      \
  }                                                         \
  BENCHMARK(BM_HASH_##NAME##_##N)
#define BENCHMARK_HASHES(NAME) \
  BENCHMARK_HASH(NAME, 5)      \
  BENCHMARK_HASH(NAME, 16)     \
  BENCHMARK_HASH(NAME, 31)     \
  BENCHMARK_HASH(NAME, 63)     \
  BENCHMARK_HASH(NAME, 127)    \
  BENCHMARK_HASH(NAME, 255)    \
  BENCHMARK_HASH(NAME, 511)    \
  BENCHMARK_HASH(NAME, 1023)   \
  BENCHMARK_HASH(NAME, 2047)   \
  BENCHMARK_HASH(NAME, 4095)   \
  BENCHMARK_HASH(NAME, 8191)   \
  BENCHMARK_HASH(NAME, 16383)  \
  BENCHMARK_HASH(NAME, 32767)  \
  BENCHMARK_HASH(NAME, 65535)

template <uint32_t N, typename THash>
static void benchmark_binary_hasher(const size_t num_iterations, THash hasher) {
  init();
  ut_crc32_init();
  uint64_t fold = 0;
  size_t i = 0;
  for (size_t n = 0; n < num_iterations * 1000; n++) {
    i = i > 20000 - N ? i + 1 : 0;
    fold = hasher(&random_data.data[i], fold);
  }
  EXPECT_NE(0U, fold);  // To keep the compiler from optimizing it away.
  SetBytesProcessed(num_iterations * N * 1000);
}

template <uint32_t N>
static void BM_HASH_BINARY_XXHASH(const size_t num_iterations) {
  benchmark_binary_hasher<N>(num_iterations, [](byte *buf, uint64_t fold) {
    return XXH64(buf, N, fold);
  });
}
BENCHMARK_HASHES(BINARY_XXHASH)

template <uint32_t N>
static void BM_HASH_BINARY_STD(const size_t num_iterations) {
  benchmark_binary_hasher<N>(num_iterations, [](byte *buf, uint64_t fold) {
    return ut::hash_uint64_pair(
        fold,
        std::hash<std::string_view>{}(std::string_view((const char *)buf, N)));
  });
}
BENCHMARK_HASHES(BINARY_STD)

template <uint32_t N>
static void BM_HASH_BINARY_OLD(const size_t num_iterations) {
  benchmark_binary_hasher<N>(num_iterations, [](byte *buf, uint64_t fold) {
    return ut::hash_uint64_pair(fold, ut::hash_binary_ib(buf, N));
  });
}
BENCHMARK_HASHES(BINARY_OLD)

template <uint32_t N>
static void BM_HASH_BINARY_UT(const size_t num_iterations) {
  benchmark_binary_hasher<N>(num_iterations, [](byte *buf, uint64_t fold) {
    return ut::hash_uint64_pair(fold, ut::hash_binary(buf, N));
  });
}
BENCHMARK_HASHES(BINARY_UT)

template <uint32_t N>
static void BM_HASH_BINARY_CRC32(const size_t num_iterations) {
  benchmark_binary_hasher<N>(num_iterations, [](byte *buf, uint64_t fold) {
    return ut::hash_uint64_pair(fold, ut_crc32(buf, N));
  });
}
BENCHMARK_HASHES(BINARY_CRC32)

}  // namespace innodb_ut0rnd_unittest