1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
|
/* Copyright (c) 2020, 2025, Oracle and/or its affiliates.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is designed to work with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have either included with
the program or referenced in the documentation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
#include <gtest/gtest.h>
#include <array>
#include "sql/item.h"
#include "sql/join_optimizer/interesting_orders.h"
#include "sql/key_spec.h"
#include "sql/sql_array.h"
#include "sql/thd_raii.h"
#include "unittest/gunit/benchmark.h"
#include "unittest/gunit/fake_table.h"
#include "unittest/gunit/test_utils.h"
using std::array;
using std::unique_ptr;
template <class T, size_t Size>
static int AddOrdering(THD *thd, std::array<T, Size> &terms, bool interesting,
LogicalOrderings *orderings) {
const Ordering::Kind kind = terms[0].direction == ORDER_NOT_RELEVANT
? Ordering::Kind::kGroup
: Ordering::Kind::kOrder;
const Ordering::Elements elements{terms.data(), terms.size()};
return orderings->AddOrdering(thd, Ordering{elements, kind}, interesting,
/*used_at_end=*/true, /*homogenize_tables=*/0);
}
TEST(InterestingOrderingTest, DeduplicateHandles) {
my_testing::Server_initializer m_initializer;
m_initializer.SetUp();
LogicalOrderings orderings(m_initializer.thd());
EXPECT_EQ(1, orderings.GetHandle(new Item_int(1)));
EXPECT_EQ(2, orderings.GetHandle(new Item_int(2)));
EXPECT_EQ(1, orderings.GetHandle(new Item_int(1)));
EXPECT_EQ(3, orderings.GetHandle(new Item_int(10)));
}
TEST(InterestingOrderingTest, DeduplicateOrderings) {
my_testing::Server_initializer m_initializer;
m_initializer.SetUp();
THD *thd = m_initializer.thd();
LogicalOrderings orderings(thd);
ItemHandle i1 = orderings.GetHandle(new Item_int(1));
ItemHandle i2 = orderings.GetHandle(new Item_int(2));
ItemHandle i3 = orderings.GetHandle(new Item_int(3));
array<OrderElement, 2> order_a{OrderElement{i1, ORDER_ASC},
OrderElement{i2, ORDER_ASC}};
EXPECT_EQ(1, AddOrdering(thd, order_a, /*interesting=*/false, &orderings));
EXPECT_FALSE(orderings.ordering_is_relevant_for_sortahead(1));
array<OrderElement, 2> order_b{OrderElement{i1, ORDER_ASC},
OrderElement{i3, ORDER_ASC}};
EXPECT_EQ(2, AddOrdering(thd, order_b, /*interesting=*/true, &orderings));
EXPECT_TRUE(orderings.ordering_is_relevant_for_sortahead(2));
EXPECT_EQ(1, AddOrdering(thd, order_a, /*interesting=*/true, &orderings));
EXPECT_TRUE(orderings.ordering_is_relevant_for_sortahead(1));
array<OrderElement, 2> order_equiv_a{OrderElement{i1, ORDER_ASC},
OrderElement{i2, ORDER_ASC}};
EXPECT_EQ(1,
AddOrdering(thd, order_equiv_a, /*interesting=*/true, &orderings));
array<OrderElement, 2> grouping_a{OrderElement{i1, ORDER_NOT_RELEVANT},
OrderElement{i2, ORDER_NOT_RELEVANT}};
EXPECT_EQ(3, AddOrdering(thd, grouping_a, /*interesting=*/true, &orderings));
}
TEST(InterestingOrderingTest, DeduplicateFunctionalDependencies) {
my_testing::Server_initializer m_initializer;
m_initializer.SetUp();
THD *thd = m_initializer.thd();
LogicalOrderings orderings(thd);
ItemHandle i1 = orderings.GetHandle(new Item_int(1));
ItemHandle i2 = orderings.GetHandle(new Item_int(2));
// Add i1 = i2.
array<ItemHandle, 1> head_i1{i1};
FunctionalDependency fd_equiv;
fd_equiv.type = FunctionalDependency::EQUIVALENCE;
fd_equiv.head = Bounds_checked_array<ItemHandle>(head_i1);
fd_equiv.tail = i2;
EXPECT_EQ(1, orderings.AddFunctionalDependency(thd, fd_equiv));
// Invert the equivalence; it should still be deduplicated away.
array<ItemHandle, 1> head_i2{i2};
fd_equiv.head = Bounds_checked_array<ItemHandle>(head_i2);
fd_equiv.tail = i1;
EXPECT_EQ(1, orderings.AddFunctionalDependency(thd, fd_equiv));
// Add i1 → i2.
FunctionalDependency fd_12;
fd_12.type = FunctionalDependency::FD;
fd_12.head = Bounds_checked_array<ItemHandle>(head_i1);
fd_12.tail = i2;
EXPECT_EQ(2, orderings.AddFunctionalDependency(thd, fd_12));
EXPECT_EQ(2, orderings.AddFunctionalDependency(thd, fd_12));
EXPECT_EQ(1, orderings.AddFunctionalDependency(thd, fd_equiv));
// Add i2 → i1. It is different from i1 → i2.
fd_12.head = Bounds_checked_array<ItemHandle>(head_i2);
fd_12.tail = i1;
EXPECT_EQ(3, orderings.AddFunctionalDependency(thd, fd_12));
}
TEST(InterestingOrderingTest, PruneFunctionalDependencies) {
my_testing::Server_initializer m_initializer;
m_initializer.SetUp();
THD *thd = m_initializer.thd();
LogicalOrderings orderings(thd);
ItemHandle i1 = orderings.GetHandle(new Item_int(1));
ItemHandle i2 = orderings.GetHandle(new Item_int(2));
ItemHandle i3 = orderings.GetHandle(new Item_int(3));
ItemHandle i4 = orderings.GetHandle(new Item_int(4));
// i1 and i2 are part of an interesting order.
array<OrderElement, 2> order_a{OrderElement{i1, ORDER_ASC},
OrderElement{i2, ORDER_ASC}};
EXPECT_EQ(1, AddOrdering(thd, order_a, /*interesting=*/true, &orderings));
// Add i1 -> i3. It should be pruned, since i3 is not part of
// an interesting order.
array<ItemHandle, 1> head_i1{i1};
FunctionalDependency fd_13;
fd_13.type = FunctionalDependency::FD;
fd_13.head = Bounds_checked_array<ItemHandle>(head_i1);
fd_13.tail = i3;
int fd_13_idx = orderings.AddFunctionalDependency(thd, fd_13);
// Add {} -> i1. It should be kept, since i1 is part of an interesting order.
FunctionalDependency fd_create_1;
fd_create_1.type = FunctionalDependency::FD;
fd_create_1.head = Bounds_checked_array<ItemHandle>();
fd_create_1.tail = i1;
int fd_create_1_idx = orderings.AddFunctionalDependency(thd, fd_create_1);
// Add {} → i4 and i2 = i4. These should both be kept, since i2 is part of
// and interesting order (and i2 = i4 counts as i4 → i2).
FunctionalDependency fd_create_4;
fd_create_4.type = FunctionalDependency::FD;
fd_create_4.head = Bounds_checked_array<ItemHandle>();
fd_create_4.tail = i4;
int fd_create_4_idx = orderings.AddFunctionalDependency(thd, fd_create_4);
array<ItemHandle, 1> head_i2{i2};
FunctionalDependency fd_24;
fd_24.type = FunctionalDependency::EQUIVALENCE;
fd_24.head = Bounds_checked_array<ItemHandle>(head_i2);
fd_24.tail = i4;
int fd_24_idx = orderings.AddFunctionalDependency(thd, fd_24);
string trace;
orderings.Build(thd, &trace);
SCOPED_TRACE(trace); // Prints out the trace on failure.
EXPECT_TRUE(orderings.GetFDSet(fd_13_idx).none());
EXPECT_FALSE(orderings.GetFDSet(fd_create_1_idx).none());
EXPECT_FALSE(orderings.GetFDSet(fd_create_4_idx).none());
EXPECT_FALSE(orderings.GetFDSet(fd_24_idx).none());
}
class InterestingOrderingTableTest : public ::testing::Test {
public:
InterestingOrderingTableTest() {
m_initializer.SetUp();
m_orderings.reset(new LogicalOrderings(m_initializer.thd()));
m_table.reset(new Fake_TABLE(/*num_columns=*/6, /*nullable=*/true));
m_table->field[0]->field_name = "a";
m_table->field[1]->field_name = "b";
m_table->field[2]->field_name = "c";
m_table->field[3]->field_name = "d";
m_table->field[4]->field_name = "e";
m_table->field[5]->field_name = "f";
a = m_orderings->GetHandle(new Item_field(m_table->field[0]));
b = m_orderings->GetHandle(new Item_field(m_table->field[1]));
c = m_orderings->GetHandle(new Item_field(m_table->field[2]));
d = m_orderings->GetHandle(new Item_field(m_table->field[3]));
e = m_orderings->GetHandle(new Item_field(m_table->field[4]));
// Don't add f; the tests can use it to get a higher handle
// than the others.
}
protected:
my_testing::Server_initializer m_initializer;
unique_ptr<LogicalOrderings> m_orderings;
unique_ptr<Fake_TABLE> m_table;
ItemHandle a, b, c, d, e;
};
TEST_F(InterestingOrderingTableTest, HomogenizeOrderings) {
THD *thd = m_initializer.thd();
// Add two tables, with some columns.
unique_ptr_destroy_only<Fake_TABLE> t1(
new (thd->mem_root) Fake_TABLE(/*num_columns=*/3, /*nullable=*/true));
t1->field[0]->field_name = "a";
t1->field[1]->field_name = "b";
t1->field[2]->field_name = "c";
ItemHandle t1_a = m_orderings->GetHandle(new Item_field(t1->field[0]));
ItemHandle t1_b = m_orderings->GetHandle(new Item_field(t1->field[1]));
ItemHandle t1_c = m_orderings->GetHandle(new Item_field(t1->field[2]));
unique_ptr_destroy_only<Fake_TABLE> t2(
new (thd->mem_root) Fake_TABLE(/*num_columns=*/3, /*nullable=*/true));
t2->field[0]->field_name = "a";
t2->field[1]->field_name = "b";
t2->field[2]->field_name = "c";
ItemHandle t2_a = m_orderings->GetHandle(new Item_field(t2->field[0]));
// t2_b is unused.
ItemHandle t2_c = m_orderings->GetHandle(new Item_field(t2->field[2]));
// Add t1.a = t2.a.
array<ItemHandle, 1> head_t1_a{t1_a};
FunctionalDependency fd_equiv;
fd_equiv.type = FunctionalDependency::EQUIVALENCE;
fd_equiv.head = Bounds_checked_array<ItemHandle>(head_t1_a);
fd_equiv.tail = t2_a;
m_orderings->AddFunctionalDependency(thd, fd_equiv);
// Add t1.a → t1.b.
FunctionalDependency fd_ab;
fd_ab.type = FunctionalDependency::FD;
fd_ab.head = Bounds_checked_array<ItemHandle>(head_t1_a);
fd_ab.tail = t1_b;
m_orderings->AddFunctionalDependency(thd, fd_ab);
// Set up the ordering (t1.a, t2.a). It should be homogenized into (t1.a)
// and (t2.a) due to the equivalence.
array<OrderElement, 2> order_aa{OrderElement{t1_a, ORDER_ASC},
OrderElement{t2_a, ORDER_ASC}};
EXPECT_EQ(
1, AddOrdering(thd, order_aa, /*interesting=*/true, m_orderings.get()));
// Add the ordering (t2.a, t1.b, t1.c↓). It should be homogenized into
// (t1.a, t1.c↓); the t1.b is optimized away due to the FD.
array<OrderElement, 3> order_abc{OrderElement{t2_a, ORDER_ASC},
OrderElement{t1_b, ORDER_ASC},
OrderElement{t1_c, ORDER_DESC}};
EXPECT_EQ(
2, AddOrdering(thd, order_abc, /*interesting=*/true, m_orderings.get()));
// And finally, (t1.a, t1.c, t2.a, t2.c), which cannot be homogenized
// onto a single table.
array<OrderElement, 4> order_acac{
OrderElement{t1_a, ORDER_ASC}, OrderElement{t1_c, ORDER_ASC},
OrderElement{t2_a, ORDER_ASC}, OrderElement{t2_c, ORDER_ASC}};
EXPECT_EQ(
3, AddOrdering(thd, order_acac, /*interesting=*/true, m_orderings.get()));
string trace;
m_orderings->Build(thd, &trace);
SCOPED_TRACE(trace); // Prints out the trace on failure.
ASSERT_EQ(7, m_orderings->num_orderings());
// (t1.a).
ASSERT_THAT(m_orderings->ordering(4).GetElements(),
testing::ElementsAre(OrderElement{t1_a, ORDER_ASC}));
// (t2.a).
ASSERT_THAT(m_orderings->ordering(5).GetElements(),
testing::ElementsAre(OrderElement{t2_a, ORDER_ASC}));
// (t1.a, t1.c↓).
ASSERT_THAT(m_orderings->ordering(6).GetElements(),
testing::ElementsAre(OrderElement{t1_a, ORDER_ASC},
OrderElement{t1_c, ORDER_DESC}));
}
TEST_F(InterestingOrderingTableTest, SetOrder) {
THD *thd = m_initializer.thd();
unique_ptr_destroy_only<Fake_TABLE> table(
new (thd->mem_root) Fake_TABLE(/*num_columns=*/3, /*nullable=*/true));
table->field[0]->field_name = "a";
table->field[1]->field_name = "b";
table->field[2]->field_name = "c";
ItemHandle a = m_orderings->GetHandle(new Item_field(table->field[0]));
ItemHandle b = m_orderings->GetHandle(new Item_field(table->field[1]));
ItemHandle c = m_orderings->GetHandle(new Item_field(table->field[2]));
// Interesting orders are a, a↓, b and bc.
array<OrderElement, 1> order_a{OrderElement{a, ORDER_ASC}};
array<OrderElement, 1> order_a_desc{OrderElement{a, ORDER_DESC}};
array<OrderElement, 1> order_b{OrderElement{b, ORDER_ASC}};
array<OrderElement, 2> order_bc{OrderElement{b, ORDER_ASC},
OrderElement{c, ORDER_ASC}};
int a_idx =
AddOrdering(thd, order_a, /*interesting=*/true, m_orderings.get());
int a_desc_idx =
AddOrdering(thd, order_a_desc, /*interesting=*/true, m_orderings.get());
int b_idx =
AddOrdering(thd, order_b, /*interesting=*/true, m_orderings.get());
int bc_idx =
AddOrdering(thd, order_bc, /*interesting=*/true, m_orderings.get());
string trace;
m_orderings->Build(thd, &trace);
SCOPED_TRACE(trace); // Prints out the trace on failure.
a_idx = m_orderings->RemapOrderingIndex(a_idx);
a_desc_idx = m_orderings->RemapOrderingIndex(a_desc_idx);
b_idx = m_orderings->RemapOrderingIndex(b_idx);
bc_idx = m_orderings->RemapOrderingIndex(bc_idx);
LogicalOrderings::StateIndex idx;
idx = m_orderings->SetOrder(a_idx);
EXPECT_TRUE(m_orderings->DoesFollowOrder(idx, a_idx));
EXPECT_FALSE(m_orderings->DoesFollowOrder(idx, a_desc_idx));
EXPECT_FALSE(m_orderings->DoesFollowOrder(idx, b_idx));
EXPECT_FALSE(m_orderings->DoesFollowOrder(idx, bc_idx));
idx = m_orderings->SetOrder(a_desc_idx);
EXPECT_FALSE(m_orderings->DoesFollowOrder(idx, bc_idx));
EXPECT_TRUE(m_orderings->DoesFollowOrder(idx, a_desc_idx));
EXPECT_FALSE(m_orderings->DoesFollowOrder(idx, b_idx));
EXPECT_FALSE(m_orderings->DoesFollowOrder(idx, a_idx));
idx = m_orderings->SetOrder(b_idx);
EXPECT_FALSE(m_orderings->DoesFollowOrder(idx, a_desc_idx));
EXPECT_FALSE(m_orderings->DoesFollowOrder(idx, a_idx));
EXPECT_TRUE(m_orderings->DoesFollowOrder(idx, b_idx));
EXPECT_FALSE(m_orderings->DoesFollowOrder(idx, bc_idx));
idx = m_orderings->SetOrder(bc_idx);
EXPECT_FALSE(m_orderings->DoesFollowOrder(idx, a_desc_idx));
EXPECT_FALSE(m_orderings->DoesFollowOrder(idx, a_idx));
EXPECT_TRUE(m_orderings->DoesFollowOrder(idx, b_idx));
EXPECT_TRUE(m_orderings->DoesFollowOrder(idx, bc_idx));
}
TEST_F(InterestingOrderingTableTest, BasicTest) {
THD *thd = m_initializer.thd();
// Interesting orders are ab, abc, de, abed.
array<OrderElement, 2> order_ab{OrderElement{a, ORDER_ASC},
OrderElement{b, ORDER_ASC}};
array<OrderElement, 3> order_abc{OrderElement{a, ORDER_ASC},
OrderElement{b, ORDER_ASC},
OrderElement{c, ORDER_ASC}};
array<OrderElement, 2> order_de{OrderElement{d, ORDER_ASC},
OrderElement{e, ORDER_ASC}};
array<OrderElement, 4> order_abed{
OrderElement{a, ORDER_ASC}, OrderElement{b, ORDER_ASC},
OrderElement{e, ORDER_ASC}, OrderElement{d, ORDER_ASC}};
int ab_idx =
AddOrdering(thd, order_ab, /*interesting=*/true, m_orderings.get());
int abc_idx =
AddOrdering(thd, order_abc, /*interesting=*/true, m_orderings.get());
int de_idx =
AddOrdering(thd, order_de, /*interesting=*/true, m_orderings.get());
int abed_idx =
AddOrdering(thd, order_abed, /*interesting=*/true, m_orderings.get());
// Add b=d.
array<ItemHandle, 1> head_b{b};
FunctionalDependency fd_equiv;
fd_equiv.type = FunctionalDependency::EQUIVALENCE;
fd_equiv.head = Bounds_checked_array<ItemHandle>(head_b);
fd_equiv.tail = d;
int fd_equiv_idx = m_orderings->AddFunctionalDependency(thd, fd_equiv);
// Add {a, b} → e.
array<ItemHandle, 2> head_ab{a, b};
FunctionalDependency fd_complex;
fd_complex.type = FunctionalDependency::FD;
fd_complex.head = Bounds_checked_array<ItemHandle>(head_ab);
fd_complex.tail = e;
int fd_complex_idx = m_orderings->AddFunctionalDependency(thd, fd_complex);
// Finally, add {} → a and {} → d.
array<ItemHandle, 0> head_empty{};
FunctionalDependency fd_empty_a;
fd_empty_a.type = FunctionalDependency::FD;
fd_empty_a.head = Bounds_checked_array<ItemHandle>(head_empty);
fd_empty_a.tail = a;
int fd_empty_a_idx = m_orderings->AddFunctionalDependency(thd, fd_empty_a);
FunctionalDependency fd_empty_d;
fd_empty_d.type = FunctionalDependency::FD;
fd_empty_d.head = Bounds_checked_array<ItemHandle>(head_empty);
fd_empty_d.tail = d;
int fd_empty_d_idx = m_orderings->AddFunctionalDependency(thd, fd_empty_d);
string trace;
m_orderings->Build(thd, &trace);
SCOPED_TRACE(trace); // Prints out the trace on failure.
ab_idx = m_orderings->RemapOrderingIndex(ab_idx);
abc_idx = m_orderings->RemapOrderingIndex(abc_idx);
de_idx = m_orderings->RemapOrderingIndex(de_idx);
abed_idx = m_orderings->RemapOrderingIndex(abed_idx);
LogicalOrderings::StateIndex idx;
FunctionalDependencySet fds{0};
// Start with the empty ordering.
idx = m_orderings->SetOrder(0);
// Apply {} → a and {} → d.
fds |= m_orderings->GetFDSet(fd_empty_a_idx);
fds |= m_orderings->GetFDSet(fd_empty_d_idx);
idx = m_orderings->ApplyFDs(idx, fds);
EXPECT_FALSE(m_orderings->DoesFollowOrder(idx, ab_idx));
EXPECT_FALSE(m_orderings->DoesFollowOrder(idx, abc_idx));
EXPECT_FALSE(m_orderings->DoesFollowOrder(idx, de_idx));
EXPECT_FALSE(m_orderings->DoesFollowOrder(idx, abed_idx));
// Apply b = d. Now we should follow ab.
FunctionalDependencySet backup_fds = fds;
fds |= m_orderings->GetFDSet(fd_equiv_idx);
LogicalOrderings::StateIndex idx2 = m_orderings->ApplyFDs(idx, fds);
EXPECT_TRUE(m_orderings->DoesFollowOrder(idx2, ab_idx));
EXPECT_FALSE(m_orderings->DoesFollowOrder(idx2, abc_idx));
EXPECT_FALSE(m_orderings->DoesFollowOrder(idx2, de_idx));
EXPECT_FALSE(m_orderings->DoesFollowOrder(idx2, abed_idx));
// Go back and instead apply {a, b} → e. It shouldn't matter much;
// no orders should match.
fds = backup_fds;
fds |= m_orderings->GetFDSet(fd_complex_idx);
idx = m_orderings->ApplyFDs(idx, fds);
EXPECT_FALSE(m_orderings->DoesFollowOrder(idx, ab_idx));
EXPECT_FALSE(m_orderings->DoesFollowOrder(idx, abc_idx));
EXPECT_FALSE(m_orderings->DoesFollowOrder(idx, de_idx));
EXPECT_FALSE(m_orderings->DoesFollowOrder(idx, abed_idx));
// Finally, apply b = d again. This should give us ab _and_ abed
// (since we now have {a, b}, we also follow e).
fds |= m_orderings->GetFDSet(fd_equiv_idx);
idx = m_orderings->ApplyFDs(idx, fds);
EXPECT_TRUE(m_orderings->DoesFollowOrder(idx, ab_idx));
EXPECT_FALSE(m_orderings->DoesFollowOrder(idx, abc_idx));
EXPECT_FALSE(m_orderings->DoesFollowOrder(idx, de_idx));
EXPECT_TRUE(m_orderings->DoesFollowOrder(idx, abed_idx));
}
TEST_F(InterestingOrderingTableTest, AddReverseElement) {
THD *thd = m_initializer.thd();
// Interesting orders are a, ab↓.
array<OrderElement, 1> order_a{OrderElement{a, ORDER_ASC}};
array<OrderElement, 2> order_ab{OrderElement{a, ORDER_ASC},
OrderElement{b, ORDER_DESC}};
int a_idx =
AddOrdering(thd, order_a, /*interesting=*/true, m_orderings.get());
int ab_idx =
AddOrdering(thd, order_ab, /*interesting=*/true, m_orderings.get());
// Add {a} → b.
array<ItemHandle, 1> head_a{a};
FunctionalDependency fd_ab;
fd_ab.type = FunctionalDependency::FD;
fd_ab.head = Bounds_checked_array<ItemHandle>(head_a);
fd_ab.tail = b;
int fd_ab_idx = m_orderings->AddFunctionalDependency(thd, fd_ab);
string trace;
m_orderings->Build(thd, &trace);
SCOPED_TRACE(trace); // Prints out the trace on failure.
a_idx = m_orderings->RemapOrderingIndex(a_idx);
ab_idx = m_orderings->RemapOrderingIndex(ab_idx);
LogicalOrderings::StateIndex idx;
FunctionalDependencySet fds{0};
// Start with a.
idx = m_orderings->SetOrder(a_idx);
EXPECT_TRUE(m_orderings->DoesFollowOrder(idx, a_idx));
EXPECT_FALSE(m_orderings->DoesFollowOrder(idx, ab_idx));
// Apply {a} → b, which should make us follow ab↓, too.
fds |= m_orderings->GetFDSet(fd_ab_idx);
idx = m_orderings->ApplyFDs(idx, fds);
EXPECT_TRUE(m_orderings->DoesFollowOrder(idx, a_idx));
EXPECT_TRUE(m_orderings->DoesFollowOrder(idx, ab_idx));
}
TEST_F(InterestingOrderingTableTest, AddReverseElementThroughEquivalences) {
THD *thd = m_initializer.thd();
// Interesting orders are a, ac↓.
array<OrderElement, 1> order_a{OrderElement{a, ORDER_ASC}};
array<OrderElement, 2> order_ac{OrderElement{a, ORDER_ASC},
OrderElement{c, ORDER_DESC}};
int a_idx =
AddOrdering(thd, order_a, /*interesting=*/true, m_orderings.get());
int ac_idx =
AddOrdering(thd, order_ac, /*interesting=*/true, m_orderings.get());
// Add {a} → b.
array<ItemHandle, 1> head_a{a};
FunctionalDependency fd_ab;
fd_ab.type = FunctionalDependency::FD;
fd_ab.head = Bounds_checked_array<ItemHandle>(head_a);
fd_ab.tail = b;
int fd_ab_idx = m_orderings->AddFunctionalDependency(thd, fd_ab);
// Add b = c.
array<ItemHandle, 1> head_b{b};
FunctionalDependency fd_equiv;
fd_equiv.type = FunctionalDependency::EQUIVALENCE;
fd_equiv.head = Bounds_checked_array<ItemHandle>(head_b);
fd_equiv.tail = c;
int fd_equiv_idx = m_orderings->AddFunctionalDependency(thd, fd_equiv);
string trace;
m_orderings->Build(thd, &trace);
SCOPED_TRACE(trace); // Prints out the trace on failure.
a_idx = m_orderings->RemapOrderingIndex(a_idx);
ac_idx = m_orderings->RemapOrderingIndex(ac_idx);
LogicalOrderings::StateIndex idx;
FunctionalDependencySet fds{0};
// Start with a, then add both FDs. We should get ac↓ by means of adding ab↓
// and then converting b to c; note that b↓ should be added even though it
// was never in an ordering.
idx = m_orderings->SetOrder(a_idx);
fds |= m_orderings->GetFDSet(fd_ab_idx);
fds |= m_orderings->GetFDSet(fd_equiv_idx);
idx = m_orderings->ApplyFDs(idx, fds);
EXPECT_TRUE(m_orderings->DoesFollowOrder(idx, a_idx));
EXPECT_TRUE(m_orderings->DoesFollowOrder(idx, ac_idx));
}
// Demonstrates that the prefix test should not prune away non-strict prefixes
// if it wants to avoid following additional edges.
TEST_F(InterestingOrderingTableTest, DoesNotStrictlyPruneOnPrefixes) {
THD *thd = m_initializer.thd();
// Interesting orders are abcd, dc.
array<OrderElement, 4> order_abcd{
OrderElement{a, ORDER_ASC}, OrderElement{b, ORDER_ASC},
OrderElement{c, ORDER_ASC}, OrderElement{d, ORDER_ASC}};
array<OrderElement, 2> order_dc{OrderElement{d, ORDER_ASC},
OrderElement{c, ORDER_ASC}};
int abcd_idx =
AddOrdering(thd, order_abcd, /*interesting=*/true, m_orderings.get());
int dc_idx =
AddOrdering(thd, order_dc, /*interesting=*/true, m_orderings.get());
// Add b=d.
array<ItemHandle, 1> head_b{b};
FunctionalDependency fd_equiv;
fd_equiv.type = FunctionalDependency::EQUIVALENCE;
fd_equiv.head = Bounds_checked_array<ItemHandle>(head_b);
fd_equiv.tail = d;
int fd_equiv_idx = m_orderings->AddFunctionalDependency(thd, fd_equiv);
// Add {} → a.
array<ItemHandle, 0> head_empty{};
FunctionalDependency fd_empty_a;
fd_empty_a.type = FunctionalDependency::FD;
fd_empty_a.head = Bounds_checked_array<ItemHandle>(head_empty);
fd_empty_a.tail = a;
int fd_empty_a_idx = m_orderings->AddFunctionalDependency(thd, fd_empty_a);
string trace;
m_orderings->Build(thd, &trace);
SCOPED_TRACE(trace); // Prints out the trace on failure.
dc_idx = m_orderings->RemapOrderingIndex(dc_idx);
abcd_idx = m_orderings->RemapOrderingIndex(abcd_idx);
LogicalOrderings::StateIndex idx;
FunctionalDependencySet fds{0};
// Start at dc, then apply b=d. This generates, among others, the order
// (bcd). It is not a prefix of the interesting order abcd, but still,
// we don't want to prune it out.
idx = m_orderings->SetOrder(dc_idx);
EXPECT_TRUE(m_orderings->DoesFollowOrder(idx, dc_idx));
EXPECT_FALSE(m_orderings->DoesFollowOrder(idx, abcd_idx));
fds |= m_orderings->GetFDSet(fd_equiv_idx);
idx = m_orderings->ApplyFDs(idx, fds);
EXPECT_TRUE(m_orderings->DoesFollowOrder(idx, dc_idx));
EXPECT_FALSE(m_orderings->DoesFollowOrder(idx, abcd_idx));
// Now apply {} → a. Note that we break the contract here and don't
// include b=d in the set of functional dependencies; this is to verify that
// the state machine didn't actually need to follow b=d again, which it would
// if the order (bcd) was pruned out earlier. (Then, we'd find it through
// generating (abc) first in this step, which _is_ a prefix, so this is not
// about correctness, only performance.)
fds.reset();
fds |= m_orderings->GetFDSet(fd_empty_a_idx);
idx = m_orderings->ApplyFDs(idx, fds);
EXPECT_TRUE(m_orderings->DoesFollowOrder(idx, dc_idx));
EXPECT_TRUE(m_orderings->DoesFollowOrder(idx, abcd_idx));
}
// Demonstrates that pruning must take equivalences into account.
TEST_F(InterestingOrderingTableTest, TwoEquivalences) {
THD *thd = m_initializer.thd();
// Interesting orders are abc, dec.
array<OrderElement, 3> order_abc{OrderElement{a, ORDER_ASC},
OrderElement{b, ORDER_ASC},
OrderElement{c, ORDER_ASC}};
array<OrderElement, 3> order_dec{OrderElement{d, ORDER_ASC},
OrderElement{e, ORDER_ASC},
OrderElement{c, ORDER_ASC}};
int abc_idx =
AddOrdering(thd, order_abc, /*interesting=*/true, m_orderings.get());
int dec_idx =
AddOrdering(thd, order_dec, /*interesting=*/true, m_orderings.get());
// Add a=d and b=e.
array<ItemHandle, 1> head_a{a};
FunctionalDependency fd_ad;
fd_ad.type = FunctionalDependency::EQUIVALENCE;
fd_ad.head = Bounds_checked_array<ItemHandle>(head_a);
fd_ad.tail = d;
int fd_ad_idx = m_orderings->AddFunctionalDependency(thd, fd_ad);
array<ItemHandle, 1> head_b{b};
FunctionalDependency fd_be;
fd_be.type = FunctionalDependency::EQUIVALENCE;
fd_be.head = Bounds_checked_array<ItemHandle>(head_b);
fd_be.tail = e;
int fd_be_idx = m_orderings->AddFunctionalDependency(thd, fd_be);
string trace;
m_orderings->Build(thd, &trace);
SCOPED_TRACE(trace); // Prints out the trace on failure.
abc_idx = m_orderings->RemapOrderingIndex(abc_idx);
dec_idx = m_orderings->RemapOrderingIndex(dec_idx);
LogicalOrderings::StateIndex idx;
FunctionalDependencySet fds{0};
// Start at abc, then apply both a=d and b=e. Now we should have dec.
// Note that if we did not take equivalences into account when pruning,
// we could prune away the intermediate dbc ordering and never reach dec.
idx = m_orderings->SetOrder(abc_idx);
EXPECT_TRUE(m_orderings->DoesFollowOrder(idx, abc_idx));
EXPECT_FALSE(m_orderings->DoesFollowOrder(idx, dec_idx));
fds |= m_orderings->GetFDSet(fd_ad_idx);
fds |= m_orderings->GetFDSet(fd_be_idx);
idx = m_orderings->ApplyFDs(idx, fds);
EXPECT_TRUE(m_orderings->DoesFollowOrder(idx, abc_idx));
EXPECT_TRUE(m_orderings->DoesFollowOrder(idx, dec_idx));
}
TEST_F(InterestingOrderingTableTest, SortByConst) {
THD *thd = m_initializer.thd();
// The only interesting order is ab.
array<OrderElement, 2> order_ab{OrderElement{a, ORDER_ASC},
OrderElement{b, ORDER_ASC}};
int ab_idx =
AddOrdering(thd, order_ab, /*interesting=*/true, m_orderings.get());
// Add b=c.
array<ItemHandle, 1> head_b{b};
FunctionalDependency fd_equiv;
fd_equiv.type = FunctionalDependency::EQUIVALENCE;
fd_equiv.head = Bounds_checked_array<ItemHandle>(head_b);
fd_equiv.tail = c;
int fd_equiv_idx = m_orderings->AddFunctionalDependency(thd, fd_equiv);
// Finally, add {} → a and {} → c.
array<ItemHandle, 0> head_empty{};
FunctionalDependency fd_empty_a;
fd_empty_a.type = FunctionalDependency::FD;
fd_empty_a.head = Bounds_checked_array<ItemHandle>(head_empty);
fd_empty_a.tail = a;
int fd_empty_a_idx = m_orderings->AddFunctionalDependency(thd, fd_empty_a);
FunctionalDependency fd_empty_c;
fd_empty_c.type = FunctionalDependency::FD;
fd_empty_c.head = Bounds_checked_array<ItemHandle>(head_empty);
fd_empty_c.tail = c;
int fd_empty_c_idx = m_orderings->AddFunctionalDependency(thd, fd_empty_c);
string trace;
m_orderings->Build(thd, &trace);
SCOPED_TRACE(trace); // Prints out the trace on failure.
ab_idx = m_orderings->RemapOrderingIndex(ab_idx);
// Start with the empty ordering.
LogicalOrderings::StateIndex idx = m_orderings->SetOrder(0);
EXPECT_FALSE(m_orderings->DoesFollowOrder(idx, ab_idx));
// If we do WHERE b=c AND a=<const> AND c=<const>, we should get (ab).
FunctionalDependencySet fds{0};
fds |= m_orderings->GetFDSet(fd_equiv_idx);
fds |= m_orderings->GetFDSet(fd_empty_a_idx);
fds |= m_orderings->GetFDSet(fd_empty_c_idx);
idx = m_orderings->ApplyFDs(idx, fds);
EXPECT_TRUE(m_orderings->DoesFollowOrder(idx, ab_idx));
}
TEST_F(InterestingOrderingTableTest, AlwaysActiveFD) {
THD *thd = m_initializer.thd();
// Interesting orderings are ab and b.
array<OrderElement, 2> order_ab{OrderElement{a, ORDER_ASC},
OrderElement{b, ORDER_ASC}};
array<OrderElement, 1> order_b{OrderElement{a, ORDER_ASC}};
int ab_idx =
AddOrdering(thd, order_ab, /*interesting=*/true, m_orderings.get());
int b_idx =
AddOrdering(thd, order_b, /*interesting=*/true, m_orderings.get());
// Add {} → a and {} → b, but the former is always active.
array<ItemHandle, 0> head_empty{};
FunctionalDependency fd_empty_a;
fd_empty_a.type = FunctionalDependency::FD;
fd_empty_a.head = Bounds_checked_array<ItemHandle>(head_empty);
fd_empty_a.tail = a;
fd_empty_a.always_active = true;
int fd_empty_a_idx = m_orderings->AddFunctionalDependency(thd, fd_empty_a);
FunctionalDependency fd_empty_b;
fd_empty_b.type = FunctionalDependency::FD;
fd_empty_b.head = Bounds_checked_array<ItemHandle>(head_empty);
fd_empty_b.tail = b;
int fd_empty_b_idx = m_orderings->AddFunctionalDependency(thd, fd_empty_b);
array<ItemHandle, 1> head_a{a};
FunctionalDependency fd_equiv;
fd_equiv.type = FunctionalDependency::EQUIVALENCE;
fd_equiv.head = Bounds_checked_array<ItemHandle>(head_a);
fd_equiv.tail = b;
int fd_equiv_idx = m_orderings->AddFunctionalDependency(thd, fd_equiv);
string trace;
m_orderings->Build(thd, &trace);
SCOPED_TRACE(trace); // Prints out the trace on failure.
ab_idx = m_orderings->RemapOrderingIndex(ab_idx);
b_idx = m_orderings->RemapOrderingIndex(b_idx);
// Start with the empty ordering.
LogicalOrderings::StateIndex idx = m_orderings->SetOrder(0);
EXPECT_FALSE(m_orderings->DoesFollowOrder(idx, ab_idx));
// Now we should get ab simply by means of {} → b, since a is always-active.
// Note that in a sense, the code here can cheat, because it can reduce ab to
// b ahead of time if it wants. However, this does not hold for the next test.
FunctionalDependencySet fds = m_orderings->GetFDSet(fd_empty_b_idx);
idx = m_orderings->ApplyFDs(idx, fds);
EXPECT_TRUE(m_orderings->DoesFollowOrder(idx, ab_idx));
// Restart, then apply a = b. This should give us b.
idx = m_orderings->SetOrder(0);
fds = m_orderings->GetFDSet(fd_equiv_idx);
idx = m_orderings->ApplyFDs(idx, fds);
EXPECT_TRUE(m_orderings->DoesFollowOrder(idx, b_idx));
// The always-on FD should have no bitmap, so that we don't waste time trying
// to follow it at runtime.
EXPECT_TRUE(m_orderings->GetFDSet(fd_empty_a_idx).none());
EXPECT_FALSE(m_orderings->GetFDSet(fd_empty_b_idx).none());
}
TEST_F(InterestingOrderingTableTest, FDsFromComputedItems) {
THD *thd = m_initializer.thd();
// Add a new item for b + 1.
Item *bplus1_item =
new Item_func_plus(new Item_field(m_table->field[1]), new Item_int(1));
bplus1_item->update_used_tables();
ItemHandle bplus1 = m_orderings->GetHandle(bplus1_item);
// The interesting orders are a and a, b + 1.
array<OrderElement, 1> order_a{OrderElement{a, ORDER_ASC}};
array<OrderElement, 2> order_ab{OrderElement{a, ORDER_ASC},
OrderElement{bplus1, ORDER_ASC}};
int a_idx =
AddOrdering(thd, order_a, /*interesting=*/true, m_orderings.get());
int ab_idx =
AddOrdering(thd, order_ab, /*interesting=*/true, m_orderings.get());
// Add a → b, which is always active.
array<ItemHandle, 1> head_a{a};
FunctionalDependency fd_ab;
fd_ab.type = FunctionalDependency::FD;
fd_ab.head = Bounds_checked_array<ItemHandle>(head_a);
fd_ab.tail = b;
fd_ab.always_active = true;
int fd_ab_idx = m_orderings->AddFunctionalDependency(thd, fd_ab);
string trace;
m_orderings->Build(thd, &trace);
SCOPED_TRACE(trace); // Prints out the trace on failure.
a_idx = m_orderings->RemapOrderingIndex(a_idx);
ab_idx = m_orderings->RemapOrderingIndex(ab_idx);
// Start with a. Now we should also have a, b + 1 (there should be
// an implict b → b + 1 FD), even though b is not in the ordering.
LogicalOrderings::StateIndex idx = m_orderings->SetOrder(a_idx);
idx = m_orderings->ApplyFDs(idx, m_orderings->GetFDSet(fd_ab_idx));
EXPECT_TRUE(m_orderings->DoesFollowOrder(idx, a_idx));
EXPECT_TRUE(m_orderings->DoesFollowOrder(idx, ab_idx));
}
TEST_F(InterestingOrderingTableTest, MoreOrderedThan) {
THD *thd = m_initializer.thd();
// Interesting orders a, ab, c.
array<OrderElement, 1> order_a{OrderElement{a, ORDER_ASC}};
array<OrderElement, 2> order_ab{OrderElement{a, ORDER_ASC},
OrderElement{b, ORDER_ASC}};
array<OrderElement, 1> order_c{OrderElement{c, ORDER_ASC}};
int a_order_idx =
AddOrdering(thd, order_a, /*interesting=*/true, m_orderings.get());
int ab_order_idx =
AddOrdering(thd, order_ab, /*interesting=*/true, m_orderings.get());
int c_order_idx =
AddOrdering(thd, order_c, /*interesting=*/true, m_orderings.get());
// Add a=c.
array<ItemHandle, 1> head_a{a};
FunctionalDependency fd_equiv;
fd_equiv.type = FunctionalDependency::EQUIVALENCE;
fd_equiv.head = Bounds_checked_array<ItemHandle>(head_a);
fd_equiv.tail = c;
int fd_equiv_idx = m_orderings->AddFunctionalDependency(thd, fd_equiv);
string trace;
m_orderings->Build(thd, &trace);
SCOPED_TRACE(trace); // Prints out the trace on failure.
a_order_idx = m_orderings->RemapOrderingIndex(a_order_idx);
ab_order_idx = m_orderings->RemapOrderingIndex(ab_order_idx);
c_order_idx = m_orderings->RemapOrderingIndex(c_order_idx);
// Start at a and apply a = c, which should give us a and c.
LogicalOrderings::StateIndex ac_idx = m_orderings->SetOrder(a_order_idx);
FunctionalDependencySet fds{0};
fds |= m_orderings->GetFDSet(fd_equiv_idx);
ac_idx = m_orderings->ApplyFDs(ac_idx, fds);
LogicalOrderings::StateIndex empty_idx = m_orderings->SetOrder(0);
LogicalOrderings::StateIndex a_idx = m_orderings->SetOrder(a_order_idx);
LogicalOrderings::StateIndex ab_idx = m_orderings->SetOrder(ab_order_idx);
LogicalOrderings::StateIndex c_idx = m_orderings->SetOrder(c_order_idx);
EXPECT_FALSE(m_orderings->MoreOrderedThan(empty_idx, empty_idx, 0));
EXPECT_FALSE(m_orderings->MoreOrderedThan(empty_idx, a_idx, 0));
EXPECT_FALSE(m_orderings->MoreOrderedThan(empty_idx, ab_idx, 0));
EXPECT_FALSE(m_orderings->MoreOrderedThan(empty_idx, c_idx, 0));
EXPECT_FALSE(m_orderings->MoreOrderedThan(empty_idx, ac_idx, 0));
EXPECT_TRUE(m_orderings->MoreOrderedThan(a_idx, empty_idx, 0));
EXPECT_FALSE(m_orderings->MoreOrderedThan(a_idx, a_idx, 0));
EXPECT_FALSE(m_orderings->MoreOrderedThan(a_idx, ab_idx, 0));
EXPECT_TRUE(m_orderings->MoreOrderedThan(a_idx, c_idx, 0));
EXPECT_FALSE(m_orderings->MoreOrderedThan(a_idx, ac_idx, 0));
EXPECT_TRUE(m_orderings->MoreOrderedThan(ab_idx, empty_idx, 0));
EXPECT_TRUE(m_orderings->MoreOrderedThan(ab_idx, a_idx, 0));
EXPECT_FALSE(m_orderings->MoreOrderedThan(ab_idx, ab_idx, 0));
EXPECT_TRUE(m_orderings->MoreOrderedThan(ab_idx, c_idx, 0));
EXPECT_TRUE(m_orderings->MoreOrderedThan(ab_idx, ac_idx, 0));
EXPECT_TRUE(m_orderings->MoreOrderedThan(c_idx, empty_idx, 0));
EXPECT_TRUE(m_orderings->MoreOrderedThan(c_idx, a_idx, 0));
EXPECT_TRUE(m_orderings->MoreOrderedThan(c_idx, ab_idx, 0));
EXPECT_FALSE(m_orderings->MoreOrderedThan(c_idx, c_idx, 0));
EXPECT_FALSE(m_orderings->MoreOrderedThan(c_idx, ac_idx, 0));
EXPECT_TRUE(m_orderings->MoreOrderedThan(ac_idx, empty_idx, 0));
EXPECT_TRUE(m_orderings->MoreOrderedThan(ac_idx, a_idx, 0));
EXPECT_TRUE(m_orderings->MoreOrderedThan(ac_idx, ab_idx, 0));
EXPECT_TRUE(m_orderings->MoreOrderedThan(ac_idx, c_idx, 0));
EXPECT_FALSE(m_orderings->MoreOrderedThan(ac_idx, ac_idx, 0));
// If we don't care about (a) anymore (e.g. because it was a merge join
// that has since passed), it should be ignored in comparisons.
std::bitset<kMaxSupportedOrderings> ignored;
ignored.set(a_order_idx);
// Still true, because it could become c.
EXPECT_TRUE(m_orderings->MoreOrderedThan(a_idx, empty_idx, ignored));
EXPECT_FALSE(m_orderings->MoreOrderedThan(a_idx, a_idx, ignored));
EXPECT_FALSE(m_orderings->MoreOrderedThan(a_idx, ab_idx, ignored));
EXPECT_FALSE(m_orderings->MoreOrderedThan(a_idx, c_idx, ignored));
EXPECT_FALSE(m_orderings->MoreOrderedThan(a_idx, ac_idx, ignored));
EXPECT_TRUE(m_orderings->MoreOrderedThan(ab_idx, a_idx, ignored));
}
TEST_F(InterestingOrderingTableTest, HomogenizedOrderingsAreEquallyGood) {
THD *thd = m_initializer.thd();
// Add three tables, with one column each.
unique_ptr_destroy_only<Fake_TABLE> t1(
new (thd->mem_root) Fake_TABLE(/*num_columns=*/1, /*nullable=*/true));
t1->field[0]->field_name = "t1.a";
ItemHandle t1_a = m_orderings->GetHandle(new Item_field(t1->field[0]));
unique_ptr_destroy_only<Fake_TABLE> t2(
new (thd->mem_root) Fake_TABLE(/*num_columns=*/1, /*nullable=*/true));
t2->field[0]->field_name = "t2.a";
ItemHandle t2_a = m_orderings->GetHandle(new Item_field(t2->field[0]));
unique_ptr_destroy_only<Fake_TABLE> t3(
new (thd->mem_root) Fake_TABLE(/*num_columns=*/1, /*nullable=*/true));
t3->field[0]->field_name = "t3.a";
ItemHandle t3_a = m_orderings->GetHandle(new Item_field(t3->field[0]));
// And t1.a = t2.a.
array<ItemHandle, 1> head_t1_a{t1_a};
FunctionalDependency fd_12;
fd_12.type = FunctionalDependency::EQUIVALENCE;
fd_12.head = Bounds_checked_array<ItemHandle>(head_t1_a);
fd_12.tail = t2_a;
m_orderings->AddFunctionalDependency(thd, fd_12);
// And t1.a = t3.a.
FunctionalDependency fd_13;
fd_13.type = FunctionalDependency::EQUIVALENCE;
fd_13.head = Bounds_checked_array<ItemHandle>(head_t1_a);
fd_13.tail = t3_a;
m_orderings->AddFunctionalDependency(thd, fd_13);
// Set up the ordering (t1.a). It should be homogenized into (t2.a)
// and (t3.a) due to the equivalence.
array<OrderElement, 1> order_a{OrderElement{t1_a, ORDER_ASC}};
EXPECT_EQ(1, AddOrdering(thd, order_a,
/*interesting=*/true, m_orderings.get()));
string trace;
m_orderings->Build(thd, &trace);
SCOPED_TRACE(trace); // Prints out the trace on failure.
// Just make sure we have the right indexes.
ASSERT_EQ(4, m_orderings->num_orderings());
ASSERT_THAT(m_orderings->ordering(1).GetElements(),
testing::ElementsAre(OrderElement{t1_a, ORDER_ASC}));
ASSERT_THAT(m_orderings->ordering(2).GetElements(),
testing::ElementsAre(OrderElement{t2_a, ORDER_ASC}));
ASSERT_THAT(m_orderings->ordering(3).GetElements(),
testing::ElementsAre(OrderElement{t3_a, ORDER_ASC}));
LogicalOrderings::StateIndex empty_idx = m_orderings->SetOrder(0);
LogicalOrderings::StateIndex t1a_idx = m_orderings->SetOrder(1);
LogicalOrderings::StateIndex t2a_idx = m_orderings->SetOrder(2);
LogicalOrderings::StateIndex t3a_idx = m_orderings->SetOrder(3);
// (t1.a) is better than both (t2.a) and (t3.a), but the two are,
// crucially, equivalent to each other.
EXPECT_TRUE(m_orderings->MoreOrderedThan(t1a_idx, t2a_idx, 0));
EXPECT_TRUE(m_orderings->MoreOrderedThan(t1a_idx, t3a_idx, 0));
EXPECT_FALSE(m_orderings->MoreOrderedThan(t2a_idx, t3a_idx, 0));
EXPECT_FALSE(m_orderings->MoreOrderedThan(t3a_idx, t2a_idx, 0));
// However, both of them should be more interesting than nothing.
EXPECT_TRUE(m_orderings->MoreOrderedThan(t2a_idx, empty_idx, 0));
EXPECT_TRUE(m_orderings->MoreOrderedThan(t3a_idx, empty_idx, 0));
}
TEST_F(InterestingOrderingTableTest, PruneUninterestingOrders) {
THD *thd = m_initializer.thd();
unique_ptr_destroy_only<Fake_TABLE> table(
new (thd->mem_root) Fake_TABLE(/*num_columns=*/3, /*nullable=*/true));
table->field[0]->field_name = "a";
table->field[1]->field_name = "b";
table->field[2]->field_name = "c";
ItemHandle a = m_orderings->GetHandle(new Item_field(table->field[0]));
ItemHandle b = m_orderings->GetHandle(new Item_field(table->field[1]));
ItemHandle c = m_orderings->GetHandle(new Item_field(table->field[2]));
// Interesting orders are a and bc.
array<OrderElement, 1> order_a{OrderElement{a, ORDER_ASC}};
array<OrderElement, 2> order_bc{OrderElement{b, ORDER_ASC},
OrderElement{c, ORDER_ASC}};
int a_idx =
AddOrdering(thd, order_a, /*interesting=*/true, m_orderings.get());
int bc_idx =
AddOrdering(thd, order_bc, /*interesting=*/true, m_orderings.get());
// Add b → c.
array<ItemHandle, 1> head_b{b};
FunctionalDependency fd_bc;
fd_bc.type = FunctionalDependency::FD;
fd_bc.head = Bounds_checked_array<ItemHandle>(head_b);
fd_bc.tail = c;
m_orderings->AddFunctionalDependency(thd, fd_bc);
// Uninteresting orders are b, c and abc. c should be pruned away,
// since there's no way we can reach anything interesting,
// but b should be kept, since it could become bc. abc should be
// shortened and deduplicated into a.
array<OrderElement, 1> order_b{OrderElement{b, ORDER_ASC}};
array<OrderElement, 1> order_c{OrderElement{c, ORDER_ASC}};
array<OrderElement, 3> order_abc{OrderElement{a, ORDER_ASC},
OrderElement{b, ORDER_ASC},
OrderElement{c, ORDER_ASC}};
int b_idx =
AddOrdering(thd, order_b, /*interesting=*/false, m_orderings.get());
int c_idx =
AddOrdering(thd, order_c, /*interesting=*/false, m_orderings.get());
int abc_idx =
AddOrdering(thd, order_abc, /*interesting=*/false, m_orderings.get());
string trace;
m_orderings->Build(thd, &trace);
SCOPED_TRACE(trace); // Prints out the trace on failure.
EXPECT_EQ(0, m_orderings->RemapOrderingIndex(c_idx));
EXPECT_NE(0, m_orderings->RemapOrderingIndex(b_idx));
EXPECT_NE(m_orderings->RemapOrderingIndex(bc_idx),
m_orderings->RemapOrderingIndex(b_idx));
EXPECT_EQ(m_orderings->RemapOrderingIndex(a_idx),
m_orderings->RemapOrderingIndex(abc_idx));
}
TEST_F(InterestingOrderingTableTest, Groupings) {
THD *thd = m_initializer.thd();
// Interesting orders are ab, {a} and {abc} ({} means grouping).
array<OrderElement, 2> order_ab{OrderElement{a, ORDER_ASC},
OrderElement{b, ORDER_ASC}};
array<OrderElement, 1> group_a{OrderElement{a, ORDER_NOT_RELEVANT}};
array<OrderElement, 3> group_abc{OrderElement{a, ORDER_NOT_RELEVANT},
OrderElement{b, ORDER_NOT_RELEVANT},
OrderElement{c, ORDER_NOT_RELEVANT}};
int ab_idx =
AddOrdering(thd, order_ab, /*interesting=*/true, m_orderings.get());
int group_a_idx =
AddOrdering(thd, group_a, /*interesting=*/true, m_orderings.get());
int group_abc_idx =
AddOrdering(thd, group_abc, /*interesting=*/true, m_orderings.get());
// Add b → c.
array<ItemHandle, 1> head_b{b};
FunctionalDependency fd_bc;
fd_bc.type = FunctionalDependency::FD;
fd_bc.head = Bounds_checked_array<ItemHandle>(head_b);
fd_bc.tail = c;
int fd_bc_idx = m_orderings->AddFunctionalDependency(thd, fd_bc);
string trace;
m_orderings->Build(thd, &trace);
SCOPED_TRACE(trace); // Prints out the trace on failure.
ab_idx = m_orderings->RemapOrderingIndex(ab_idx);
group_a_idx = m_orderings->RemapOrderingIndex(group_a_idx);
group_abc_idx = m_orderings->RemapOrderingIndex(group_abc_idx);
// Start at ab.
LogicalOrderings::StateIndex idx = m_orderings->SetOrder(ab_idx);
EXPECT_TRUE(m_orderings->DoesFollowOrder(idx, ab_idx));
EXPECT_TRUE(m_orderings->DoesFollowOrder(idx, group_a_idx));
EXPECT_FALSE(m_orderings->DoesFollowOrder(idx, group_abc_idx));
// Apply b → c.
idx = m_orderings->ApplyFDs(idx, m_orderings->GetFDSet(fd_bc_idx));
EXPECT_TRUE(m_orderings->DoesFollowOrder(idx, ab_idx));
EXPECT_TRUE(m_orderings->DoesFollowOrder(idx, group_a_idx));
EXPECT_TRUE(m_orderings->DoesFollowOrder(idx, group_abc_idx));
}
TEST_F(InterestingOrderingTableTest, UninterestingOrderingsCanBecomeGroupings) {
THD *thd = m_initializer.thd();
// {ac} is interesting, cba is uninteresting. We should be able to
// build the former from the latter with c → a FD (see below).
array<OrderElement, 3> order_cba{OrderElement{c, ORDER_ASC},
OrderElement{b, ORDER_ASC},
OrderElement{a, ORDER_ASC}};
array<OrderElement, 2> group_ac{OrderElement{a, ORDER_NOT_RELEVANT},
OrderElement{c, ORDER_NOT_RELEVANT}};
int cba_idx =
AddOrdering(thd, order_cba, /*interesting=*/false, m_orderings.get());
int group_ac_idx =
AddOrdering(thd, group_ac, /*interesting=*/true, m_orderings.get());
// Add c → a.
array<ItemHandle, 1> head_c{c};
FunctionalDependency fd_ca;
fd_ca.type = FunctionalDependency::FD;
fd_ca.head = Bounds_checked_array<ItemHandle>(head_c);
fd_ca.tail = a;
int fd_ca_idx = m_orderings->AddFunctionalDependency(thd, fd_ca);
string trace;
m_orderings->Build(thd, &trace);
SCOPED_TRACE(trace); // Prints out the trace on failure.
// cba should not be pruned away entirely, since we can use (c) to convert
// into {c} and then continue on to {ac} later.
cba_idx = m_orderings->RemapOrderingIndex(cba_idx);
group_ac_idx = m_orderings->RemapOrderingIndex(group_ac_idx);
EXPECT_NE(0, cba_idx);
EXPECT_NE(0, group_ac_idx);
// Start at cba.
LogicalOrderings::StateIndex idx = m_orderings->SetOrder(cba_idx);
EXPECT_FALSE(m_orderings->DoesFollowOrder(idx, group_ac_idx));
// Apply c → a.
idx = m_orderings->ApplyFDs(idx, m_orderings->GetFDSet(fd_ca_idx));
EXPECT_TRUE(m_orderings->DoesFollowOrder(idx, group_ac_idx));
}
TEST_F(InterestingOrderingTableTest, GroupCover) {
THD *thd = m_initializer.thd();
// Interesting orders are {abc}, {d} and (b↓a).
array<OrderElement, 3> group_abc{OrderElement{a, ORDER_NOT_RELEVANT},
OrderElement{b, ORDER_NOT_RELEVANT},
OrderElement{c, ORDER_NOT_RELEVANT}};
array<OrderElement, 1> group_d{OrderElement{d, ORDER_NOT_RELEVANT}};
array<OrderElement, 2> order_ba{OrderElement{b, ORDER_DESC},
OrderElement{a, ORDER_ASC}};
AddOrdering(thd, group_abc, /*interesting=*/true, m_orderings.get());
AddOrdering(thd, group_d, /*interesting=*/true, m_orderings.get());
AddOrdering(thd, order_ba, /*interesting=*/true, m_orderings.get());
string trace;
m_orderings->Build(thd, &trace);
SCOPED_TRACE(trace); // Prints out the trace on failure.
// We should have two new orderings: (b↓ac) and (d).
ASSERT_EQ(6, m_orderings->num_orderings());
// (b↓ac).
EXPECT_THAT(m_orderings->ordering(4).GetElements(),
testing::ElementsAre(OrderElement{b, ORDER_DESC},
OrderElement{a, ORDER_ASC},
OrderElement{c, ORDER_ASC}));
// (d).
EXPECT_THAT(m_orderings->ordering(5).GetElements(),
testing::ElementsAre(OrderElement{d, ORDER_ASC}));
}
TEST_F(InterestingOrderingTableTest, NoGroupCoverWithNondeterminism) {
THD *thd = m_initializer.thd();
Item_func *r_item =
new Item_func_plus(new Item_int(2),
new Item_int(2)); // Guaranteed random.
r_item->set_used_tables(RAND_TABLE_BIT); // Chosen by fair die roll.
ItemHandle r = m_orderings->GetHandle(r_item);
// Get a new field that's higher than r, so that the grouping below
// is valid.
ItemHandle f = m_orderings->GetHandle(new Item_field(m_table->field[5]));
// Interesting orders are {rf} and (f).
array<OrderElement, 2> group_rf{OrderElement{r, ORDER_NOT_RELEVANT},
OrderElement{f, ORDER_NOT_RELEVANT}};
array<OrderElement, 1> order_f{OrderElement{f, ORDER_ASC}};
int group_rf_idx =
AddOrdering(thd, group_rf, /*interesting=*/true, m_orderings.get());
int f_idx =
AddOrdering(thd, order_f, /*interesting=*/true, m_orderings.get());
string trace;
m_orderings->Build(thd, &trace);
SCOPED_TRACE(trace); // Prints out the trace on failure.
// We will have covered {rf} with (fr), but that ordering should
// _not_ be used to satisfy (f). In this case, (rf) would also be
// an acceptable cover, but we don't constrain the cover logic;
// there's not really any need.
ASSERT_EQ(4, m_orderings->num_orderings());
EXPECT_THAT(m_orderings->ordering(3).GetElements(),
testing::ElementsAre(OrderElement{f, ORDER_ASC},
OrderElement{r, ORDER_ASC}));
int idx = m_orderings->SetOrder(3);
EXPECT_TRUE(m_orderings->DoesFollowOrder(idx, group_rf_idx));
EXPECT_FALSE(m_orderings->DoesFollowOrder(idx, f_idx));
}
TEST_F(InterestingOrderingTableTest, GroupReordering) {
THD *thd = m_initializer.thd();
// Interesting orders are (b) and {bc}.
array<OrderElement, 1> order_b{OrderElement{b, ORDER_ASC}};
array<OrderElement, 2> group_bc{OrderElement{b, ORDER_NOT_RELEVANT},
OrderElement{c, ORDER_NOT_RELEVANT}};
int b_idx =
AddOrdering(thd, order_b, /*interesting=*/true, m_orderings.get());
int bc_idx =
AddOrdering(thd, group_bc, /*interesting=*/true, m_orderings.get());
// Add a = c.
FunctionalDependency fd_equiv;
fd_equiv.type = FunctionalDependency::EQUIVALENCE;
fd_equiv.head = Bounds_checked_array<ItemHandle>(&a, 1);
fd_equiv.tail = c;
int fd_equiv_idx = m_orderings->AddFunctionalDependency(thd, fd_equiv);
// Add b → a.
FunctionalDependency fd_ba;
fd_ba.type = FunctionalDependency::FD;
fd_ba.head = Bounds_checked_array<ItemHandle>(&b, 1);
fd_ba.tail = a;
int fd_ba_idx = m_orderings->AddFunctionalDependency(thd, fd_ba);
string trace;
m_orderings->Build(thd, &trace);
SCOPED_TRACE(trace); // Prints out the trace on failure.
b_idx = m_orderings->RemapOrderingIndex(b_idx);
bc_idx = m_orderings->RemapOrderingIndex(bc_idx);
// Start with (b).
int idx = m_orderings->SetOrder(b_idx);
EXPECT_TRUE(m_orderings->DoesFollowOrder(idx, b_idx));
EXPECT_FALSE(m_orderings->DoesFollowOrder(idx, bc_idx));
// Apply both FDs.
FunctionalDependencySet fds{0};
fds |= m_orderings->GetFDSet(fd_equiv_idx);
fds |= m_orderings->GetFDSet(fd_ba_idx);
idx = m_orderings->ApplyFDs(idx, fds);
// Now we should also follow {b,c}. Note that this requires us
// either to create {b,a}, which follows a counterintuitive group
// canonicalization (the intuitive would be {a,b}), or internally
// represent {b,c} as {c,b}. Otherwise, we would be pruning away
// the the {a,b} (or {b,a}) grouping before reaching {b,c}.
EXPECT_TRUE(m_orderings->DoesFollowOrder(idx, b_idx));
EXPECT_TRUE(m_orderings->DoesFollowOrder(idx, bc_idx));
}
// Measures the time to build the interesting orders for this query:
//
// SELECT col1, col2, ... , colN, COUNT(*)
// FROM t1 JOIN t2 USING (col1, col2, ... , colN)
// GROUP BY col1, col2, ... , colN
// ORDER BY col1, col2, ... , colN
//
// It used to spend a lot of time in LogicalOrderings::PruneNFSM() when N was
// high and the generated NFSM was large. The number of NFSM states generated
// for this query is 2^(N+2)-3. Let's consider the case when N=2:
//
// There is one state for the empty ordering. There is one interesting order
// given by the ORDER BY clause (col1, col2), but due to the functional
// dependencies given by the join predicate, colN could expand to either t1.colN
// or t2.colN, so we get four states (t1.col1, t1.col2), (t1.col1, t2.col2),
// (t2.col1, t1.col2), (t2.col1, t2.col2). Additionally, each of these states
// have decay edges to shorter orderings by removing columns at the end, so we
// have states for (t1.col1) and (t2.col1). Giving a total of 6 non-empty
// orderings. And each of those orderings will also have a decay edge to a
// grouping on the same columns, thanks to the GROUP BY clause, adding another 6
// states for the groupings. So in total 1 + 6 + 6 = 13 states.
//
// There is a cut-off at 200 states when building the NFSM, but this is not a
// hard limit, and the NFSM could grow considerably bigger. At the time of
// adding this benchmark, the test case for N=32 builds an NFSM with 5017
// states. Which is much smaller than the 17 179 869 181 states it would have
// had without the cut-off, but still much bigger than the 200 states it was
// supposed to stop at.
template <size_t N>
static void BM_BuildInterestingOrders(size_t num_iterations) {
StopBenchmarkTiming();
my_testing::Server_initializer initializer;
initializer.SetUp();
THD *thd = initializer.thd();
Fake_TABLE table1(N, /*cols_nullable=*/true);
Fake_TABLE table2(N, /*cols_nullable=*/true);
array<Item_field *, N * 2> items;
for (size_t i = 0; i < N; ++i) {
items[i] = new Item_field(table1.field[i]);
items[i + N] = new Item_field(table2.field[i]);
}
array<ItemHandle, items.size()> handles;
array<OrderElement, N> ordering;
array<OrderElement, N> grouping;
MEM_ROOT mem_root;
Swap_mem_root_guard mem_root_guard(thd, &mem_root);
StartBenchmarkTiming();
for (size_t iteration = 0; iteration < num_iterations; ++iteration) {
mem_root.ClearForReuse();
LogicalOrderings orderings(thd);
// Create handles for all items involved.
for (size_t i = 0; i < handles.size(); ++i) {
handles[i] = orderings.GetHandle(items[i]);
}
// ORDER BY col1, col2, ...
for (size_t i = 0; i < ordering.size(); ++i) {
ordering[i] = OrderElement{handles[i], ORDER_ASC};
}
AddOrdering(thd, ordering, /*interesting=*/true, &orderings);
// GROUP BY col1, col2, ...
for (size_t i = 0; i < grouping.size(); ++i) {
grouping[i] = OrderElement{handles[i], ORDER_NOT_RELEVANT};
}
AddOrdering(thd, grouping, /*interesting=*/true, &orderings);
// Functional dependencies from USING (col1, col2, ...).
for (size_t i = 0; i < N; ++i) {
FunctionalDependency fd_equiv;
fd_equiv.type = FunctionalDependency::EQUIVALENCE;
fd_equiv.head = make_array(&handles[i], 1);
fd_equiv.tail = handles[i + N];
orderings.AddFunctionalDependency(thd, fd_equiv);
}
// Build the state machines.
orderings.Build(thd, /*trace=*/nullptr);
}
StopBenchmarkTiming();
}
static void BM_BuildInterestingOrders1(size_t num_iterations) {
BM_BuildInterestingOrders<1>(num_iterations);
}
BENCHMARK(BM_BuildInterestingOrders1)
static void BM_BuildInterestingOrders2(size_t num_iterations) {
BM_BuildInterestingOrders<2>(num_iterations);
}
BENCHMARK(BM_BuildInterestingOrders2)
static void BM_BuildInterestingOrders4(size_t num_iterations) {
BM_BuildInterestingOrders<4>(num_iterations);
}
BENCHMARK(BM_BuildInterestingOrders4)
static void BM_BuildInterestingOrders8(size_t num_iterations) {
BM_BuildInterestingOrders<8>(num_iterations);
}
BENCHMARK(BM_BuildInterestingOrders8)
static void BM_BuildInterestingOrders16(size_t num_iterations) {
BM_BuildInterestingOrders<16>(num_iterations);
}
BENCHMARK(BM_BuildInterestingOrders16)
static void BM_BuildInterestingOrders32(size_t num_iterations) {
BM_BuildInterestingOrders<32>(num_iterations);
}
BENCHMARK(BM_BuildInterestingOrders32)
|