1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
|
/* Copyright (c) 2008, 2025, Oracle and/or its affiliates.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is designed to work with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have either included with
the program or referenced in the documentation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
/**
@file
Unit tests for lock-free algorithms of mysys
*/
#include "my_config.h"
#include <gtest/gtest.h>
#include <stddef.h>
#include <sys/types.h>
#include "lf.h"
#include "my_byteorder.h"
#include "my_compiler.h"
#include "my_inttypes.h"
#include "my_sys.h"
#include "my_systime.h"
#include "my_thread.h"
#include "mysql/components/services/bits/my_thread_bits.h"
namespace mysys_lf_unittest {
#include "unittest/gunit/thr_template.cc"
std::atomic<int32> inserts{0};
std::atomic<int32> N{0};
LF_ALLOCATOR lf_allocator;
LF_HASH lf_hash;
int with_my_thread_init = 0;
/*
pin allocator - alloc and release an element in a loop
*/
extern "C" void *test_lf_pinbox(void *arg) {
int m = *(int *)arg;
LF_PINS *pins;
if (with_my_thread_init) my_thread_init();
pins = lf_pinbox_get_pins(&lf_allocator.pinbox);
for (; m; m--) {
lf_pinbox_put_pins(pins);
pins = lf_pinbox_get_pins(&lf_allocator.pinbox);
}
lf_pinbox_put_pins(pins);
if (with_my_thread_init) my_thread_end();
return nullptr;
}
/*
thread local data area, allocated using lf_alloc.
union is required to enforce the minimum required element size (sizeof(ptr))
*/
union TLA {
std::atomic<int32> data;
void *not_used;
};
// SUPPRESS_UBSAN: integer overflow when generating random data.
extern "C" void *test_lf_alloc(void *arg) SUPPRESS_UBSAN;
extern "C" void *test_lf_alloc(void *arg) {
int m = (*(int *)arg) / 2;
int32 x, y = 0;
LF_PINS *pins;
if (with_my_thread_init) my_thread_init();
pins = lf_pinbox_get_pins(&lf_allocator.pinbox);
for (x = ((int)(intptr)(&m)); m; m--) {
TLA *node1, *node2;
x = (x * m + 0x87654321) & INT_MAX32;
node1 = (TLA *)lf_alloc_new(pins);
node1->data = x;
y += node1->data;
node1->data = 0;
node2 = (TLA *)lf_alloc_new(pins);
node2->data = x;
y -= node2->data;
node2->data = 0;
lf_pinbox_free(pins, node1);
lf_pinbox_free(pins, node2);
}
lf_pinbox_put_pins(pins);
bad += y;
if (--N == 0) {
#ifdef MY_LF_EXTRA_DEBUG
bad |= lf_allocator.mallocs - lf_alloc_pool_count(&lf_allocator);
#endif
}
if (with_my_thread_init) my_thread_end();
return nullptr;
}
const int N_TLH = 1000;
extern "C" void *test_lf_hash(void *arg) {
int m = (*(int *)arg) / (2 * N_TLH);
int32 x, y, z, sum = 0, ins = 0;
LF_PINS *pins;
if (with_my_thread_init) my_thread_init();
pins = lf_hash_get_pins(&lf_hash);
for (x = ((int)(intptr)(&m)); m; m--) {
int i;
y = x;
for (i = 0; i < N_TLH; i++) {
x = (x * (m + i) + 0x87654321) & INT_MAX32;
z = (x < 0) ? -x : x;
if (lf_hash_insert(&lf_hash, pins, &z)) {
sum += z;
ins++;
}
}
for (i = 0; i < N_TLH; i++) {
y = (y * (m + i) + 0x87654321) & INT_MAX32;
z = (y < 0) ? -y : y;
if (lf_hash_delete(&lf_hash, pins, (uchar *)&z, sizeof(z))) sum -= z;
}
}
lf_hash_put_pins(pins);
bad += sum;
inserts += ins;
if (--N == 0) {
bad |= lf_hash.count;
}
if (with_my_thread_init) my_thread_end();
return nullptr;
}
void do_tests() {
lf_alloc_init(&lf_allocator, sizeof(TLA), offsetof(TLA, not_used));
lf_hash_init(&lf_hash, sizeof(int), LF_HASH_UNIQUE, 0, sizeof(int), nullptr,
&my_charset_bin);
with_my_thread_init = 1;
test_concurrently("lf_pinbox (with my_thread_init)", test_lf_pinbox,
N = THREADS, CYCLES);
test_concurrently("lf_alloc (with my_thread_init)", test_lf_alloc,
N = THREADS, CYCLES);
test_concurrently("lf_hash (with my_thread_init)", test_lf_hash, N = THREADS,
CYCLES / 10);
with_my_thread_init = 0;
test_concurrently("lf_pinbox (without my_thread_init)", test_lf_pinbox,
N = THREADS, CYCLES);
test_concurrently("lf_alloc (without my_thread_init)", test_lf_alloc,
N = THREADS, CYCLES);
test_concurrently("lf_hash (without my_thread_init)", test_lf_hash,
N = THREADS, CYCLES / 10);
lf_hash_destroy(&lf_hash);
lf_alloc_destroy(&lf_allocator);
}
TEST(Mysys, LockFree) {
my_thread_attr_init(&thr_attr);
my_thread_attr_setdetachstate(&thr_attr, MY_THREAD_CREATE_DETACHED);
do_tests();
my_thread_attr_destroy(&thr_attr);
}
extern "C" {
static uint test_hash(const LF_HASH *, const uchar *key, size_t length) {
if (length < sizeof(uint32))
return 0;
else {
/* We use ulongget() to avoid potential problems with alignment. */
return ulongget(key);
}
}
static int test_match(const uchar *arg, void *match_arg [[maybe_unused]]) {
/*
Unlike keys passed to hash function memory passed to match
functions are always correctly aligned.
*/
return *reinterpret_cast<const uint32 *>(arg) & 0x100;
}
} /* extern "C" */
/**
Glass box test for lf_hash_random_match() function.
*/
TEST(Mysys, LFHashRandomMatch) {
LF_HASH hash;
LF_PINS *pins;
uint32 val, *fnd, *null_fnd = nullptr;
int rc;
lf_hash_init2(&hash, sizeof(uint32), LF_HASH_UNIQUE, 0, sizeof(int), nullptr,
&my_charset_bin, &test_hash, nullptr, nullptr, nullptr);
/* Right after initialization hash is expected to be empty */
EXPECT_EQ(0, hash.count.load());
pins = lf_hash_get_pins(&hash);
/* We should not be able to find anything in empty hash. */
fnd = static_cast<uint32 *>(
lf_hash_random_match(&hash, pins, &test_match, 0, nullptr));
EXPECT_EQ(null_fnd, fnd);
lf_hash_search_unpin(pins);
/* Insert a few non-matching values. */
for (val = 0; val < 4; ++val) {
rc = lf_hash_insert(&hash, pins, &val);
EXPECT_EQ(0, rc);
}
EXPECT_EQ(4, hash.count.load());
/* Search still should return nothing. */
fnd = static_cast<uint32 *>(
lf_hash_random_match(&hash, pins, &test_match, 0, nullptr));
EXPECT_EQ(null_fnd, fnd);
lf_hash_search_unpin(pins);
/* Even if we start from different bucket/hash value. */
fnd = static_cast<uint32 *>(
lf_hash_random_match(&hash, pins, &test_match, 3, nullptr));
EXPECT_EQ(null_fnd, fnd);
lf_hash_search_unpin(pins);
/* Insert matching record which also will be last in split-ordered list. */
val = 3 + 0x100;
rc = lf_hash_insert(&hash, pins, &val);
EXPECT_EQ(0, rc);
/*
We should be able to find this record when we start searching
from bucket #0.
*/
fnd = static_cast<uint32 *>(
lf_hash_random_match(&hash, pins, &test_match, 0, nullptr));
EXPECT_NE(null_fnd, fnd);
EXPECT_EQ(val, *fnd);
lf_hash_search_unpin(pins);
/*
Also when searching from buckets #2 and #5, which don't have dummy nodes and
lists associated yet.
*/
fnd = static_cast<uint32 *>(
lf_hash_random_match(&hash, pins, &test_match, 2, nullptr));
EXPECT_NE(null_fnd, fnd);
EXPECT_EQ(val, *fnd);
lf_hash_search_unpin(pins);
fnd = static_cast<uint *>(
lf_hash_random_match(&hash, pins, &test_match, 5, nullptr));
EXPECT_NE(null_fnd, fnd);
EXPECT_EQ(val, *fnd);
lf_hash_search_unpin(pins);
/* Naturally, it should also be reachable from its native bucket #3. */
fnd = static_cast<uint32 *>(
lf_hash_random_match(&hash, pins, &test_match, 3, nullptr));
EXPECT_NE(null_fnd, fnd);
EXPECT_EQ(val, *fnd);
lf_hash_search_unpin(pins);
/*
If random value provided identifies element which should reside later
than the matching element in split-ordered list it should NOT be normally
reachable even if random value corresponds to the same bucket (i.e. #3).
This allows to avoid bias towards elements at the start of the bucket list.
But in this particular case it will be reachable because we have only one
matching element in the hash and we restart our search from the head of
split-ordered list if no matching elements were found at the tail.
Such restart is necessary to avoid bias against elements at the start of
the split-ordered list.
*/
fnd = static_cast<uint32 *>(lf_hash_random_match(&hash, pins, &test_match,
3 + 0x10 + 0x100, nullptr));
EXPECT_NE(null_fnd, fnd);
EXPECT_EQ(val, *fnd);
lf_hash_search_unpin(pins);
/* Let us add non-matching record to the end of the split-ordered list. */
val = 7;
rc = lf_hash_insert(&hash, pins, &val);
EXPECT_EQ(0, rc);
/*
Our matching record will be reachable from its bucket #7 as well,
since our search wraps around from the tail of the list to its head.
*/
fnd = static_cast<uint32 *>(
lf_hash_random_match(&hash, pins, &test_match, 7, nullptr));
EXPECT_NE(null_fnd, fnd);
val = 3 + 0x100;
EXPECT_EQ(val, *fnd);
lf_hash_search_unpin(pins);
/* Now let us add one more matching record to bucket #4. */
val = 4 + 0x100;
rc = lf_hash_insert(&hash, pins, &val);
EXPECT_EQ(0, rc);
/* This record should be reachable from buckets #0 and #4. */
fnd = static_cast<uint32 *>(
lf_hash_random_match(&hash, pins, &test_match, 0, nullptr));
EXPECT_NE(null_fnd, fnd);
EXPECT_EQ(val, *fnd);
lf_hash_search_unpin(pins);
fnd = static_cast<uint32 *>(
lf_hash_random_match(&hash, pins, &test_match, 4, nullptr));
EXPECT_NE(null_fnd, fnd);
EXPECT_EQ(val, *fnd);
lf_hash_search_unpin(pins);
/* But not from bucket #3. We will find another record instead. */
fnd = static_cast<uint32 *>(
lf_hash_random_match(&hash, pins, &test_match, 3, nullptr));
EXPECT_NE(null_fnd, fnd);
EXPECT_NE(val, *fnd);
lf_hash_search_unpin(pins);
/*
Thanks to search wrapping around from tail to the head of the list,
our record will be reachable from bucket #7.
*/
fnd = static_cast<uint32 *>(
lf_hash_random_match(&hash, pins, &test_match, 7, nullptr));
EXPECT_NE(null_fnd, fnd);
EXPECT_EQ(val, *fnd);
lf_hash_search_unpin(pins);
/*
To avoid bias towards elements at the start of the bucket list this record
should not be reachable even from its native bucket #4, if random number
identifies higher element. Instead we should get another matching element.
*/
fnd = static_cast<uint32 *>(lf_hash_random_match(&hash, pins, &test_match,
4 + 0x10 + 0x100, nullptr));
EXPECT_NE(null_fnd, fnd);
EXPECT_NE(val, *fnd);
lf_hash_search_unpin(pins);
lf_hash_put_pins(pins);
lf_hash_destroy(&hash);
}
} // namespace mysys_lf_unittest
|