File: opt_range-t.cc

package info (click to toggle)
mysql-8.0 8.0.43-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,273,924 kB
  • sloc: cpp: 4,684,605; ansic: 412,450; pascal: 108,398; java: 83,641; perl: 30,221; cs: 27,067; sql: 26,594; sh: 24,181; python: 21,816; yacc: 17,169; php: 11,522; xml: 7,388; javascript: 7,076; makefile: 2,194; lex: 1,075; awk: 670; asm: 520; objc: 183; ruby: 97; lisp: 86
file content (1899 lines) | stat: -rw-r--r-- 64,711 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
/* Copyright (c) 2011, 2025, Oracle and/or its affiliates.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License, version 2.0,
   as published by the Free Software Foundation.

   This program is designed to work with certain software (including
   but not limited to OpenSSL) that is licensed under separate terms,
   as designated in a particular file or component or in included license
   documentation.  The authors of MySQL hereby grant you an additional
   permission to link the program and your derivative works with the
   separately licensed software that they have either included with
   the program or referenced in the documentation.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License, version 2.0, for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301  USA */

#include <assert.h>
#include <gtest/gtest.h>
#include <stddef.h>
#include <sys/types.h>
#include <sstream>
#include <string>
#include <vector>

#include "my_inttypes.h"
#include "sql/parse_tree_helpers.h"
#include "sql/range_optimizer/internal.h"
#include "sql/range_optimizer/range_analysis.h"
#include "sql/range_optimizer/range_optimizer.h"
#include "sql/range_optimizer/tree.h"
#include "unittest/gunit/fake_range_opt_param.h"
#include "unittest/gunit/fake_table.h"
#include "unittest/gunit/handler-t.h"
#include "unittest/gunit/mock_field_long.h"
#include "unittest/gunit/test_utils.h"

namespace opt_range_unittest {

using std::string;
using std::vector;

/**
  Helper class to print which line a failing test was called from.
*/
class TestFailLinePrinter {
 public:
  explicit TestFailLinePrinter(int line) : m_line(line) {}
  int m_line;
};
static std::ostream &operator<<(std::ostream &s, const TestFailLinePrinter &v) {
  return s << "called from line " << v.m_line;
}

/**
  Keep in mind the following boolean algebra definitions and rules
  when reading the tests in this file:

  Operators:
    & (and)
    | (or)
    ! (negation)

  DeMorgans laws:
    DM1: !(X & Y) <==> !X | !Y
    DM2: !(X | Y) <==> !X & !Y

  Boolean axioms:
    A1 (associativity):    X & (Y & Z)  <==>  (X & Y) & Z
                           X | (Y | Z)  <==>  (X | Y) | Z
    A2 (commutativity):    X & Y        <==>  Y & X
                           X | Y        <==>  Y | X
    A3 (identity):         X | false    <==>  X
                           X | true     <==>  true
                           X & false    <==>  false
                           X & true     <==>  X
    A4 (distributivity):   X | (Y & Z)  <==>  (X | Y) & (X | Z)
                           X & (Y | Z)  <==>  (X & Y) | (X & Z)
    A5 (complements):      X | !X       <==>  true
                           X & !X       <==>  false
    A6 (idempotence of |): X | X        <==>  X
    A7 (idempotence of &): X & X        <==>  X

  Also note that the range optimizer follows a relaxed boolean algebra
  where the result may be bigger than boolean algebra rules dictate.
  @See get_mm_tree() for explanation.
*/

using my_testing::Server_initializer;

class OptRangeTest : public ::testing::Test {
 protected:
  OptRangeTest() : m_opt_param(nullptr) {}

  void SetUp() override {
    initializer.SetUp();
    init_sql_alloc(PSI_NOT_INSTRUMENTED, &m_alloc,
                   thd()->variables.range_alloc_block_size);
  }

  void TearDown() override {
    delete m_opt_param;

    initializer.TearDown();
  }

  THD *thd() { return initializer.thd(); }

  /**
    Create a table with the requested number of fields. All fields are
    indexed.

    @param  nbr_fields     The number of fields in the table
  */
  void create_table_singlecol_idx(int nbr_fields) {
    create_table(nbr_fields);
    for (int i = 0; i < nbr_fields; i++)
      m_opt_param->add_key(m_opt_param->table->field[i]);
    m_field = m_opt_param->table->field;
  }

  /**
    Create a table with the requested number of fields without
    creating indexes.

    @param  nbr_fields     The number of fields in the table
  */
  void create_table(int nbr_fields, bool columns_nullable) {
    m_opt_param =
        new Fake_RANGE_OPT_PARAM(thd(), &m_alloc, nbr_fields, columns_nullable);
    m_field = m_opt_param->table->field;
    if (nbr_fields != 0) {
      m_current_table = m_opt_param->table->pos_in_table_list->map();
    } else {
      m_current_table = 1;
    }
  }

  void create_table(int nbr_fields) { create_table(nbr_fields, false); }

  /*
    The new_item_xxx are convenience functions for creating Item_func
    descendents from Field's and ints without having to wrap them in
    Item's and resolving them.
  */
  template <typename T>
  T *new_item(Field *field, int value) {
    T *item = new T(new Item_field(field), new Item_int(value));
    Item *item_base = item;
    item->fix_fields(thd(), &item_base);
    return item;
  }

  Item_func_lt *new_item_lt(Field *field, int value) {
    return new_item<Item_func_lt>(field, value);
  }

  Item_func_gt *new_item_gt(Field *field, int value) {
    return new_item<Item_func_gt>(field, value);
  }

  Item_func_equal *new_item_equal(Field *field, int value) {
    return new_item<Item_func_equal>(field, value);
  }

  Item_func_xor *new_item_xor(Field *field, int value) {
    return new_item<Item_func_xor>(field, value);
  }

  Item_cond_and *new_item_between(Field *fld, int val1, int val2) {
    return new Item_cond_and(new_item_gt(fld, val1), new_item_lt(fld, val2));
  }

  Item_cond_or *new_item_ne(Field *fld, int val1) {
    return new Item_cond_or(new_item_lt(fld, val1), new_item_gt(fld, val1));
  }

  /**
    Utility funtion used to simplify creation of SEL_TREEs with
    specified range predicate operators and values. Also verifies that
    the created SEL_TREE has the expected range conditions.

    @param type            The type of range predicate operator requested
    @param fld             The field used in the range predicate
    @param val1            The first value used in the range predicate
    @param val2            The second value used in the range predicate.
                           Only used for range predicates that takes two
                           values (BETWEEN).
    @param expected_result The range conditions the created SEL_TREE
                           is expected to consist of. The format of this
                           string is what opt_range.cc print_tree() produces.

    @return SEL_TREE that has been verified to have expected range conditions.
  */
// Undefined at end of this file
#define create_tree(i, er) do_create_tree(i, er, TestFailLinePrinter(__LINE__))
  SEL_TREE *do_create_tree(Item *item, const char *expected_result,
                           TestFailLinePrinter called_from_line) {
    /*
      Controls whether or not ranges that do not have conditions on
      the first keypart are removed before two trees are ORed in such
      a way that index merge is required. The value of 'true' means
      that such ranges are removed.
     */
    const bool remove_jump_scans = true;

    SEL_TREE *result = get_mm_tree(thd(), m_opt_param, 0, 0, m_current_table,
                                   remove_jump_scans, item);
    SCOPED_TRACE(called_from_line);
    check_tree_result(result, SEL_TREE::KEY, expected_result);
    return result;
  }

  /**
    Utility funtion used to simplify creation of func items used as
    range predicates.

    @param type            The type of range predicate operator requested
    @param fld             The field used in the range predicate
    @param value           The value used in the range predicate

    @return Item for the specified range predicate
  */
  Item_func *create_item(Item_func::Functype type, Field *fld, int value);

  /**
    Create instance of Xor Item_func.

    @param    item1     first item for xor condition.
    @param    item2     second item for xor condition.

    @return pointer to newly created instance of Xor Item.
  */
  Item_func_xor *create_xor_item(Item *item1, Item *item2);

  /**
    Check that the use_count of all SEL_ARGs in the SEL_TREE are
    correct.

    @param   tree   The SEL_TREE to check
  */
  void check_use_count(SEL_TREE *tree);
  /**
    Verify that a SEL_TREE has the type and conditions we expect it to
    have.

    @param   tree            The SEL_TREE to check
    @param   expected_type   The type 'tree' is expected to have
    @param   expected_result The range conditions 'tree' is expected
                             to consist of. The format of this string
                             is what opt_range.cc print_tree() produces.
  */
  void check_tree_result(SEL_TREE *tree, const SEL_TREE::Type expected_type,
                         const char *expected_result);
  /**
    Perform OR between two SEL_TREEs and verify that the result of the
    OR operation is as expected.

    @param   tree1           First SEL_TREE that will be ORed
    @param   tree2           Second SEL_TREE that will be ORed
    @param   expected_type   The type the ORed result is expected to have
    @param   expected_result The range conditions the ORed result is expected
                             to consist of. The format of this string
                             is what opt_range.cc print_tree() produces.

    @return SEL_TREE result of the OR operation between tree1 and
            tree2 that has been verified to have expected range
            conditions.
  */
// Undefined at end of this file
#define create_and_check_tree_or(t1, t2, et, er) \
  do_create_and_check_tree_or(t1, t2, et, er, TestFailLinePrinter(__LINE__))
  SEL_TREE *do_create_and_check_tree_or(SEL_TREE *tree1, SEL_TREE *tree2,
                                        const SEL_TREE::Type expected_type,
                                        const char *expected_result,
                                        TestFailLinePrinter called_from_line);
  /**
    Perform AND between two SEL_TREEs and verify that the result of the
    AND operation is as expected.

    @param   tree1           First SEL_TREE that will be ANDed
    @param   tree2           Second SEL_TREE that will be ANDed
    @param   expected_type   The type the ANDed result is expected to have
    @param   expected_result The range conditions the ANDed result is expected
                             to consist of. The format of this string
                             is what opt_range.cc print_tree() produces.

    @return SEL_TREE result of the AND operation between tree1 and
            tree2 that has been verified to have expected range
            conditions.
  */
// Undefined at end of this file
#define create_and_check_tree_and(t1, t2, et, er) \
  do_create_and_check_tree_and(t1, t2, et, er, TestFailLinePrinter(__LINE__))
  SEL_TREE *do_create_and_check_tree_and(SEL_TREE *tree1, SEL_TREE *tree2,
                                         const SEL_TREE::Type expected_type,
                                         const char *expected_result,
                                         TestFailLinePrinter called_from_line);

  Server_initializer initializer;
  MEM_ROOT m_alloc;

  Fake_RANGE_OPT_PARAM *m_opt_param;
  /*
    Pointer to m_opt_param->table->field. Only valid if the table was
    created by calling one of OptRangeTest::create_table*()
   */
  Field **m_field;
  table_map m_current_table;
};

Item_func *OptRangeTest::create_item(Item_func::Functype type, Field *fld,
                                     int value) {
  Item_func *result;
  switch (type) {
    case Item_func::GT_FUNC:
      result = new Item_func_gt(new Item_field(fld), new Item_int(value));
      break;
    case Item_func::LT_FUNC:
      result = new Item_func_lt(new Item_field(fld), new Item_int(value));
      break;
    case Item_func::MULT_EQUAL_FUNC:
      result = new Item_equal(new Item_int(value), new Item_field(fld));
      break;
    case Item_func::XOR_FUNC:
      result = new Item_func_xor(new Item_field(fld), new Item_int(value));
      break;
    default:
      result = nullptr;
      assert(false);
      return result;
  }
  Item *itm = static_cast<Item *>(result);
  result->fix_fields(thd(), &itm);
  return result;
}

Item_func_xor *OptRangeTest::create_xor_item(Item *item1, Item *item2) {
  Item_func_xor *xor_item = new Item_func_xor(item1, item2);
  Item *itm = static_cast<Item *>(xor_item);
  xor_item->fix_fields(thd(), &itm);
  return xor_item;
}

void OptRangeTest::check_use_count(SEL_TREE *tree) {
  for (uint i = 0; i < m_opt_param->keys; i++) {
    SEL_ROOT *cur_range = tree->keys[i];
    if (cur_range != nullptr) {
      EXPECT_FALSE(cur_range->test_use_count(cur_range));
    }
  }

  if (!tree->merges.is_empty()) {
    List_iterator<SEL_IMERGE> it(tree->merges);
    SEL_IMERGE *merge = it++;

    for (SEL_TREE *current : merge->trees) check_use_count(current);
  }
}

void OptRangeTest::check_tree_result(SEL_TREE *tree,
                                     const SEL_TREE::Type expected_type,
                                     const char *expected_result) {
  EXPECT_EQ(expected_type, tree->type);
  if (expected_type != SEL_TREE::KEY) return;

  char buff[512];
  String actual_result(buff, sizeof(buff), system_charset_info);
  actual_result.set_charset(system_charset_info);
  actual_result.length(0);
  print_tree(&actual_result, "result", tree, m_opt_param, false);
  EXPECT_STREQ(expected_result, actual_result.c_ptr());
  SCOPED_TRACE("check_use_count");
  check_use_count(tree);
}

SEL_TREE *OptRangeTest::do_create_and_check_tree_or(
    SEL_TREE *tree1, SEL_TREE *tree2, const SEL_TREE::Type expected_type,
    const char *expected_result, TestFailLinePrinter called_from_line) {
  {
    // Check that tree use counts are OK before OR'ing
    SCOPED_TRACE(called_from_line);
    check_use_count(tree1);
    check_use_count(tree2);
  }

  SEL_TREE *result =
      tree_or(m_opt_param, /*remove_jump_scans=*/true, tree1, tree2);

  // Tree returned from tree_or()
  SCOPED_TRACE(called_from_line);
  check_tree_result(result, expected_type, expected_result);

  return result;
}

SEL_TREE *OptRangeTest::do_create_and_check_tree_and(
    SEL_TREE *tree1, SEL_TREE *tree2, const SEL_TREE::Type expected_type,
    const char *expected_result, TestFailLinePrinter called_from_line) {
  {
    // Check that tree use counts are OK before AND'ing
    SCOPED_TRACE(called_from_line);
    check_use_count(tree1);
    check_use_count(tree2);
  }

  SEL_TREE *result = tree_and(m_opt_param, tree1, tree2);

  // Tree returned from tree_and()
  SCOPED_TRACE(called_from_line);
  check_tree_result(result, expected_type, expected_result);

  return result;
}

/*
 Experiment with these to measure performance of
   'new (thd->mem_root)' Foo vs. 'new Foo'.
 With gcc 4.4.2 I see ~4% difference (in optimized mode).
*/
const int num_iterations = 10;
const int num_allocs = 10;

TEST_F(OptRangeTest, AllocateExplicit) {
  for (int ix = 0; ix < num_iterations; ++ix) {
    thd()->mem_root->ClearForReuse();
    for (int ii = 0; ii < num_allocs; ++ii) new (thd()->mem_root) SEL_ARG;
  }
}

TEST_F(OptRangeTest, AllocateImplicit) {
  for (int ix = 0; ix < num_iterations; ++ix) {
    thd()->mem_root->ClearForReuse();
    for (int ii = 0; ii < num_allocs; ++ii) new (thd()->mem_root) SEL_ARG;
  }
}

/*
  We cannot do EXPECT_NE(NULL, get_mm_tree(...))
  because of limits in google test.
 */
const SEL_TREE *null_tree = nullptr;
const SEL_ROOT *null_root = nullptr;
const SEL_ARG *null_arg = nullptr;

static void print_selarg_ranges(String *s, SEL_ARG *sel_arg,
                                const KEY_PART_INFO *kpi) {
  for (SEL_ARG *cur = sel_arg->first(); cur != opt_range::null_element;
       cur = cur->right) {
    String current_range;
    append_range(&current_range, kpi, cur->min_value, cur->max_value,
                 cur->min_flag | cur->max_flag);

    if (s->length() > 0) s->append(STRING_WITH_LEN("\n"));

    s->append(current_range);
  }
}

TEST_F(OptRangeTest, SimpleCond) {
  Fake_RANGE_OPT_PARAM opt_param(thd(), &m_alloc, 0, false);
  EXPECT_NE(null_tree,
            get_mm_tree(thd(), &opt_param, 0, 0, m_current_table,
                        /*remove_jump_scans=*/true, new Item_int(42)));
}

/*
  Exercise range optimizer without adding indexes
*/
TEST_F(OptRangeTest, EqualCondNoIndexes) {
  Fake_RANGE_OPT_PARAM opt_param(thd(), &m_alloc, 1, false);
  SEL_TREE *tree = get_mm_tree(thd(), &opt_param, 0, 0, m_current_table,
                               /*remove_jump_scans=*/true,
                               new_item_equal(opt_param.table->field[0], 42));
  EXPECT_EQ(null_tree, tree);
}

/*
  Exercise range optimizer with xor operator.
*/
TEST_F(OptRangeTest, XorCondIndexes) {
  create_table(1);

  m_opt_param->add_key(m_field[0]);
  /*
    XOR is not range optimizible ATM and is treated as
    always true. No SEL_TREE is therefore expected.
  */
  SEL_TREE *tree =
      get_mm_tree(thd(), m_opt_param, 0, 0, m_current_table,
                  /*remove_jump_scans=*/true, new_item_xor(m_field[0], 42));
  EXPECT_EQ(null_tree, tree);
}

/*
  Exercise range optimizer with xor and different type of operator.
*/
TEST_F(OptRangeTest, XorCondWithIndexes) {
  create_table(5);

  m_opt_param->add_key(m_field[0]);
  m_opt_param->add_key(m_field[1]);
  m_opt_param->add_key(m_field[2]);
  m_opt_param->add_key(m_field[3]);
  m_opt_param->add_key(m_field[4]);

  /*
    Create SEL_TREE from "field1=7 AND (field1 XOR 42)". Since XOR is
    not range optimizible (treated as always true), we get a tree for
    "field1=7" only.
  */
  const char expected1[] = "result keys[0]: (field_1 = 7)\n";

  SEL_TREE *tree = get_mm_tree(
      thd(), m_opt_param, 0, 0, m_current_table, /*remove_jump_scans=*/true,
      new Item_cond_and(new_item_xor(m_field[0], 42),
                        new_item_equal(m_field[0], 7)));
  SCOPED_TRACE("");
  check_tree_result(tree, SEL_TREE::KEY, expected1);

  /*
    Create SEL_TREE from "(field1 XOR 0) AND (field1>14)". Since XOR
    is not range optimizible (treated as always true), we get a tree
    for "field1>14" only.
  */
  const char expected2[] = "result keys[0]: (14 < field_1)\n";

  tree = get_mm_tree(thd(), m_opt_param, 0, 0, m_current_table,
                     /*remove_jump_scans=*/true,
                     new Item_cond_and(new_item_xor(m_field[0], 0),
                                       new_item_gt(m_field[0], 14)));
  SCOPED_TRACE("");
  check_tree_result(tree, SEL_TREE::KEY, expected2);

  /*
    Create SEL_TREE from "(field1<0 AND field1>14) XOR
    (field1>17)". Since XOR is not range optimizible (treated as
    always true), we get a NULL tree.
  */
  tree = get_mm_tree(
      thd(), m_opt_param, 0, 0, m_current_table, /*remove_jump_scans=*/true,
      create_xor_item(new Item_cond_and(new_item_lt(m_field[0], 0),
                                        new_item_gt(m_field[0], 14)),
                      new_item_gt(m_field[0], 17)));
  SCOPED_TRACE("");
  EXPECT_EQ(null_tree, tree);

  /*
    Create SEL_TREE from
    (field1<0 AND field2>14) AND
    ((field3<0 and field4>14) XOR field5>17) ".
    Since XOR is not range optimizible (treated as always true),
    we get a tree for "field1<0 AND field2>14" only.
  */
  const char expected3[] =
      "result keys[0]: (field_1 < 0)\n"
      "result keys[1]: (14 < field_2)\n";

  tree = get_mm_tree(
      thd(), m_opt_param, 0, 0, m_current_table, /*remove_jump_scans=*/true,
      new Item_cond_and(
          new Item_cond_and(new_item_lt(m_field[0], 0),
                            new_item_gt(m_field[1], 14)),
          create_xor_item(new Item_cond_and(new_item_lt(m_field[2], 0),
                                            new_item_gt(m_field[3], 14)),
                          new_item_gt(m_field[4], 17))));
  SCOPED_TRACE("");
  check_tree_result(tree, SEL_TREE::KEY, expected3);
}

/*
  Exercise range optimizer with single column index
*/
TEST_F(OptRangeTest, GetMMTreeSingleColIndex) {
  // Create a single-column table with index
  create_table_singlecol_idx(1);

  // Expected result of next test:
  const char expected[] = "result keys[0]: (field_1 = 42)\n";
  create_tree(new_item_equal(m_field[0], 42), expected);

  // Expected result of next test:
  const char expected2[] = "result keys[0]: (field_1 = 42) OR (field_1 = 43)\n";
  SEL_TREE *tree = get_mm_tree(
      thd(), m_opt_param, 0, 0, m_current_table, /*remove_jump_scans=*/true,
      new Item_cond_or(new_item_equal(m_field[0], 42),
                       new_item_equal(m_field[0], 43)));

  SCOPED_TRACE("");
  check_tree_result(tree, SEL_TREE::KEY, expected2);

  // Expected result of next test:
  const char expected3[] =
      "result keys[0]: "
      "(field_1 = 1) OR (field_1 = 2) OR "
      "(field_1 = 3) OR (field_1 = 4) OR "
      "(field_1 = 5) OR (field_1 = 6) OR "
      "(field_1 = 7) OR (field_1 = 8)\n";
  List<Item> or_list1;
  or_list1.push_back(new_item_equal(m_field[0], 1));
  or_list1.push_back(new_item_equal(m_field[0], 2));
  or_list1.push_back(new_item_equal(m_field[0], 3));
  or_list1.push_back(new_item_equal(m_field[0], 4));
  or_list1.push_back(new_item_equal(m_field[0], 5));
  or_list1.push_back(new_item_equal(m_field[0], 6));
  or_list1.push_back(new_item_equal(m_field[0], 7));
  or_list1.push_back(new_item_equal(m_field[0], 8));

  tree = get_mm_tree(thd(), m_opt_param, 0, 0, m_current_table,
                     /*remove_jump_scans=*/true, new Item_cond_or(or_list1));
  check_tree_result(tree, SEL_TREE::KEY, expected3);

  // Expected result of next test:
  const char expected4[] = "result keys[0]: (field_1 = 7)\n";
  tree = get_mm_tree(thd(), m_opt_param, 0, 0, m_current_table,
                     /*remove_jump_scans=*/true,
                     new Item_cond_and(new Item_cond_or(or_list1),
                                       new_item_equal(m_field[0], 7)));
  SCOPED_TRACE("");
  check_tree_result(tree, SEL_TREE::KEY, expected4);

  // Expected result of next test:
  const char expected5[] =
      "result keys[0]: "
      "(field_1 = 1) OR (field_1 = 3) OR "
      "(field_1 = 5) OR (field_1 = 7)\n";
  List<Item> or_list2;
  or_list2.push_back(new_item_equal(m_field[0], 1));
  or_list2.push_back(new_item_equal(m_field[0], 3));
  or_list2.push_back(new_item_equal(m_field[0], 5));
  or_list2.push_back(new_item_equal(m_field[0], 7));
  or_list2.push_back(new_item_equal(m_field[0], 9));

  tree = get_mm_tree(thd(), m_opt_param, 0, 0, m_current_table,
                     /*remove_jump_scans=*/true,
                     new Item_cond_and(new Item_cond_or(or_list1),
                                       new Item_cond_or(or_list2)));
  SCOPED_TRACE("");
  check_tree_result(tree, SEL_TREE::KEY, expected5);
}

/*
  Exercise range optimizer with multiple column index
*/
TEST_F(OptRangeTest, GetMMTreeMultipleSingleColIndex) {
  // Create a single-column table without index
  create_table(1);

  // Add two indexes covering the same field
  m_opt_param->add_key(m_field[0]);
  m_opt_param->add_key(m_field[0]);

  char buff[512];
  String range_string(buff, sizeof(buff), system_charset_info);
  range_string.set_charset(system_charset_info);

  // Expected result of next test:
  const char expected[] =
      "result keys[0]: (field_1 = 42)\n"
      "result keys[1]: (field_1 = 42)\n";
  create_tree(new_item_equal(m_field[0], 42), expected);
}

/*
  Exercise range optimizer with multiple single column indexes
*/
TEST_F(OptRangeTest, GetMMTreeOneTwoColIndex) {
  create_table(2);

  m_opt_param->add_key(m_field[0], m_field[1]);

  char buff[512];
  String range_string(buff, sizeof(buff), system_charset_info);
  range_string.set_charset(system_charset_info);

  // Expected result of next test:
  const char expected[] = "result keys[0]: (field_1 = 42)\n";
  create_tree(new_item_equal(m_field[0], 42), expected);

  // Expected result of next test:
  const char expected2[] = "result keys[0]: (field_1 = 42 AND field_2 = 10)\n";
  SEL_TREE *tree = get_mm_tree(
      thd(), m_opt_param, 0, 0, m_current_table, /*remove_jump_scans=*/true,
      new Item_cond_and(new_item_equal(m_field[0], 42),
                        new_item_equal(m_field[1], 10)));

  range_string.length(0);
  print_tree(&range_string, "result", tree, m_opt_param, false);
  EXPECT_STREQ(expected2, range_string.c_ptr());
}

/*
  Optimizer tracing should only print ranges for applicable keyparts,
  except when argument for print_tree() parameter 'print_full' is true.
*/
TEST_F(OptRangeTest, GetMMTreeNonApplicableKeypart) {
  create_table(3);

  List<Field> index_list;
  index_list.push_back(m_field[0]);
  index_list.push_back(m_field[1]);
  index_list.push_back(m_field[2]);
  m_opt_param->add_key(index_list);

  char buff[512];
  String range_string(buff, sizeof(buff), system_charset_info);
  range_string.set_charset(system_charset_info);

  /*
    Expected result is range only on first keypart. Third keypart is
    not applicable because there are no predicates on the second
    keypart.
  */
  const char expected1[] = "result keys[0]: (field_1 = 42)\n";
  SEL_TREE *tree = get_mm_tree(
      thd(), m_opt_param, 0, 0, m_current_table, /*remove_jump_scans=*/true,
      new Item_cond_and(new_item_equal(m_field[0], 42),
                        new_item_equal(m_field[2], 10)));
  range_string.length(0);
  print_tree(&range_string, "result", tree, m_opt_param, false);
  EXPECT_STREQ(expected1, range_string.c_ptr());

  /*
    Same SEL_ARG tree, but print_full argument is now true.
    Non-applicable key parts are also printed in this case.
  */
  const char expected1_printfull[] =
      "result keys[0]: (field_1 = 42 AND field_3 = 10)\n";

  range_string.length(0);
  print_tree(&range_string, "result", tree, m_opt_param, true);
  EXPECT_STREQ(expected1_printfull, range_string.c_ptr());

  /*
    Expected result is range only on first keypart. Second keypart is
    not applicable because the predicate on the first keypart does not
    use an equality operator.
  */
  const char expected2[] = "result keys[0]: (field_1 < 42)\n";

  tree = get_mm_tree(thd(), m_opt_param, 0, 0, m_current_table,
                     /*remove_jump_scans=*/true,
                     new Item_cond_and(new_item_lt(m_field[0], 42),
                                       new_item_equal(m_field[1], 10)));

  range_string.length(0);
  print_tree(&range_string, "result", tree, m_opt_param, false);
  EXPECT_STREQ(expected2, range_string.c_ptr());

  /*
    Same SEL_ARG tree, but print_full argument is now true.
    Non-applicable key parts are also printed in this case.
  */
  const char expected2_printfull[] =
      "result keys[0]: (field_1 < 42 AND field_2 = 10)\n";
  range_string.length(0);
  print_tree(&range_string, "result", tree, m_opt_param, true);
  EXPECT_STREQ(expected2_printfull, range_string.c_ptr());
}

/*
  Exercise range optimizer with three single column indexes
*/
TEST_F(OptRangeTest, treeAndSingleColIndex1) {
  create_table_singlecol_idx(3);

  // Expected outputs
  // Single-field range predicates
  const char expected_fld1[] = "result keys[0]: (10 < field_1 < 13)\n";
  const char expected_fld2_1[] = "result keys[1]: (field_2 < 11)\n";
  const char expected_fld2_2[] = "result keys[1]: (8 < field_2)\n";
  const char expected_fld3[] = "result keys[2]: (20 < field_3 < 30)\n";

  /*
    Expected result when performing AND of:
      "(field_1 BETWEEN 10 AND 13) & (field_2 < 11)"
  */
  const char expected_and1[] =
      "result keys[0]: (10 < field_1 < 13)\n"
      "result keys[1]: (field_2 < 11)\n";

  /*
    Expected result when performing AND of:
      "((field_1 BETWEEN 10 AND 13) & (field_2 < 11))
       &
       (field_3 BETWEEN 20 AND 30)"
  */
  const char expected_and2[] =
      "result keys[0]: (10 < field_1 < 13)\n"
      "result keys[1]: (field_2 < 11)\n"
      "result keys[2]: (20 < field_3 < 30)\n";

  /*
    Expected result when performing AND of:
      "((field_1 BETWEEN 10 AND 13) &
        (field_2 < 11) &
        (field_3 BETWEEN 20 AND 30)
       )
       &
       field_2 > 8"
  */
  const char expected_and3[] =
      "result keys[0]: (10 < field_1 < 13)\n"
      "result keys[1]: (8 < field_2 < 11)\n"  // <- notice lower bound
      "result keys[2]: (20 < field_3 < 30)\n";

  SEL_TREE *tree_and = create_and_check_tree_and(
      create_and_check_tree_and(
          create_tree(new_item_between(m_field[0], 10, 13), expected_fld1),
          create_tree(new_item_lt(m_field[1], 11), expected_fld2_1),
          SEL_TREE::KEY, expected_and1),
      create_tree(new_item_between(m_field[2], 20, 30), expected_fld3),
      SEL_TREE::KEY, expected_and2);

  /*
    Testing Axiom 7: AND'ing a predicate already part of a SEL_TREE
    has no effect.
  */
  create_and_check_tree_and(
      tree_and,
      create_tree(new_item_between(m_field[2], 20, 30), expected_fld3),
      SEL_TREE::KEY, expected_and2  // conditions did not change
  );

  create_and_check_tree_and(
      tree_and, create_tree(new_item_gt(m_field[1], 8), expected_fld2_2),
      SEL_TREE::KEY, expected_and3);
}

/*
  Exercise range optimizer with three single column indexes
*/
TEST_F(OptRangeTest, treeOrSingleColIndex1) {
  create_table_singlecol_idx(3);

  // Expected outputs
  // Single-field range predicates
  const char expected_fld1[] = "result keys[0]: (10 < field_1 < 13)\n";
  const char expected_fld2_1[] = "result keys[1]: (field_2 < 11)\n";
  const char expected_fld2_2[] = "result keys[1]: (8 < field_2)\n";
  const char expected_fld3[] = "result keys[2]: (20 < field_3 < 30)\n";

  /*
    Expected result when performing OR of:
      "(field_1 Item_func::BETWEEN 10 AND 13) | (field_2 < 11)"
  */
  const char expected_or1[] =
      "result contains the following merges\n"
      "--- alternative 1 ---\n"
      "  merge_tree keys[0]: (10 < field_1 < 13)\n"
      "  merge_tree keys[1]: (field_2 < 11)\n";

  /*
    Expected result when performing OR of:
      "((field_1 BETWEEN 10 AND 13) | (field_2 < 11))
       |
       (field_3 BETWEEN 20 AND 30)"
  */
  const char expected_or2[] =
      "result contains the following merges\n"
      "--- alternative 1 ---\n"
      "  merge_tree keys[0]: (10 < field_1 < 13)\n"
      "  merge_tree keys[1]: (field_2 < 11)\n"
      "  merge_tree keys[2]: (20 < field_3 < 30)\n";

  SEL_TREE *tree_or2 = create_and_check_tree_or(
      create_and_check_tree_or(
          create_tree(new_item_between(m_field[0], 10, 13), expected_fld1),
          create_tree(new_item_lt(m_field[1], 11), expected_fld2_1),
          SEL_TREE::KEY, expected_or1),
      create_tree(new_item_between(m_field[2], 20, 30), expected_fld3),
      SEL_TREE::KEY, expected_or2);

  /*
    Testing Axiom 6: OR'ing a predicate already part of a SEL_TREE
    has no effect.
  */
  SEL_TREE *tree_or3 = create_and_check_tree_or(
      tree_or2,
      create_tree(new_item_between(m_field[2], 20, 30), expected_fld3),
      SEL_TREE::KEY, expected_or2);

  /*
    Perform OR of:
      "((field_1 BETWEEN 10 AND 13) |
        (field_2 < 11) |
        (field_3 BETWEEN 20 AND 30)
       ) |
       (field_2 > 8)"

    This is always TRUE due to
       (field_2 < 11) | (field_2 > 8)  <==> true
  */
  create_and_check_tree_or(
      tree_or3, create_tree(new_item_gt(m_field[1], 8), expected_fld2_2),
      SEL_TREE::ALWAYS, "");
}

/*
  Exercise range optimizer with three single column indexes
*/
TEST_F(OptRangeTest, treeAndOrComboSingleColIndex1) {
  create_table_singlecol_idx(3);

  // Expected outputs
  // Single-field range predicates
  const char exected_fld1[] = "result keys[0]: (10 < field_1 < 13)\n";
  const char exected_fld2[] = "result keys[1]: (field_2 < 11)\n";
  const char exected_fld3[] = "result keys[2]: (20 < field_3 < 30)\n";

  // What "exected_fld1 & exected_fld2" should produce
  const char expected_and[] =
      "result keys[0]: (10 < field_1 < 13)\n"
      "result keys[1]: (field_2 < 11)\n";

  /*
    What "(exected_fld1 & exected_fld2) | exected_fld3" should
    produce.

    By Axiom 4 (see above), we have that
       X | (Y & Z)  <==>  (X | Y) & (X | Z)

    Thus:

       ((field_1 BETWEEN 10 AND 13) & field_2 < 11) |
       (field_3 BETWEEN 20 AND 30)

         <==> (Axiom 4)

       (field_1 BETWEEN ... | field_3 BETWEEN ...) &
       (field_2 < ...       | field_3 BETWEEN ...)

    But the result above is not created. Instead the following, which
    is incorrect (reads more rows than necessary), is the result:

       (field_1 BETWEEN ... | field_2 < 11 | field_3 BETWEEN ...)
  */
  const char expected_incorrect_or[] =
      "result contains the following merges\n"
      "--- alternative 1 ---\n"
      "  merge_tree keys[0]: (10 < field_1 < 13)\n"
      "  merge_tree keys[1]: (field_2 < 11)\n"
      "  merge_tree keys[2]: (20 < field_3 < 30)\n";

  create_and_check_tree_or(
      create_and_check_tree_and(
          create_tree(new_item_between(m_field[0], 10, 13), exected_fld1),
          create_tree(new_item_lt(m_field[1], 11), exected_fld2), SEL_TREE::KEY,
          expected_and),
      create_tree(new_item_between(m_field[2], 20, 30), exected_fld3),
      SEL_TREE::KEY, expected_incorrect_or);
}

/**
  Test for BUG#16164031
*/
TEST_F(OptRangeTest, treeAndOrComboSingleColIndex2) {
  create_table_singlecol_idx(3);

  // Single-index predicates
  const char exp_f2_eq1[] = "result keys[1]: (field_2 = 1)\n";
  const char exp_f2_eq2[] = "result keys[1]: (field_2 = 2)\n";
  const char exp_f3_eq[] = "result keys[2]: (field_3 = 1)\n";
  const char exp_f1_lt1[] = "result keys[0]: (field_1 < 256)\n";

  // OR1: Result of OR'ing f2_eq with f3_eq
  const char exp_or1[] =
      "result contains the following merges\n"
      "--- alternative 1 ---\n"
      "  merge_tree keys[1]: (field_2 = 1)\n"
      "  merge_tree keys[2]: (field_3 = 1)\n";

  // OR2: Result of OR'ing f1_lt with f2_eq
  const char exp_or2[] =
      "result contains the following merges\n"
      "--- alternative 1 ---\n"
      "  merge_tree keys[0]: (field_1 < 256)\n"
      "  merge_tree keys[1]: (field_2 = 2)\n";

  // AND1: Result of "OR1 & OR2"
  const char exp_and1[] =
      "result contains the following merges\n"
      "--- alternative 1 ---\n"
      "  merge_tree keys[1]: (field_2 = 1)\n"
      "  merge_tree keys[2]: (field_3 = 1)\n\n"
      "--- alternative 2 ---\n"
      "  merge_tree keys[0]: (field_1 < 256)\n"
      "  merge_tree keys[1]: (field_2 = 2)\n";

  SEL_TREE *tree_and1 = create_and_check_tree_and(
      create_and_check_tree_or(
          create_tree(new_item_equal(m_field[1], 1), exp_f2_eq1),
          create_tree(new_item_equal(m_field[2], 1), exp_f3_eq), SEL_TREE::KEY,
          exp_or1),
      create_and_check_tree_or(
          create_tree(new_item_lt(m_field[0], 256), exp_f1_lt1),
          create_tree(new_item_equal(m_field[1], 2), exp_f2_eq2), SEL_TREE::KEY,
          exp_or2),
      SEL_TREE::KEY, exp_and1);

  // OR3: Result of "AND1 | field3 = 1"
  const char exp_or3[] =
      "result contains the following merges\n"
      "--- alternative 1 ---\n"
      "  merge_tree keys[1]: (field_2 = 1)\n"
      "  merge_tree keys[2]: (field_3 = 1)\n\n"
      "--- alternative 2 ---\n"
      "  merge_tree keys[0]: (field_1 < 256)\n"
      "  merge_tree keys[1]: (field_2 = 2)\n"
      "  merge_tree keys[2]: (field_3 = 1)\n";

  SEL_TREE *tree_or3 = create_and_check_tree_or(
      tree_and1, create_tree(new_item_equal(m_field[2], 1), exp_f3_eq),
      SEL_TREE::KEY, exp_or3);

  // More single-index predicates
  const char exp_f1_lt2[] = "result keys[0]: (field_1 < 35)\n";
  const char exp_f1_gt2[] = "result keys[0]: (257 < field_1)\n";
  const char exp_f1_or[] =
      "result keys[0]: (field_1 < 35) OR (257 < field_1)\n";

  // OR4: Result of "OR3 | exp_f1_or"
  const char exp_or4[] =
      "result contains the following merges\n"
      "--- alternative 1 ---\n"
      "  merge_tree keys[1]: (field_2 = 1)\n"
      "  merge_tree keys[2]: (field_3 = 1)\n"
      "  merge_tree keys[0]: (field_1 < 35) OR (257 < field_1)\n\n"
      "--- alternative 2 ---\n"
      "  merge_tree keys[0]: (field_1 < 256) OR (257 < field_1)\n"
      "  merge_tree keys[1]: (field_2 = 2)\n"
      "  merge_tree keys[2]: (field_3 = 1)\n";

  SEL_TREE *tree_or4 = create_and_check_tree_or(
      tree_or3,
      create_and_check_tree_or(
          create_tree(new_item_lt(m_field[0], 35), exp_f1_lt2),
          create_tree(new_item_gt(m_field[0], 257), exp_f1_gt2), SEL_TREE::KEY,
          exp_f1_or),
      SEL_TREE::KEY, exp_or4);

  // More single-index predicates
  const char exp_f1_neq[] =
      "result keys[0]: (field_1 < 255) OR (255 < field_1)\n";
  const char exp_f2_eq3[] = "result keys[1]: (field_2 = 3)\n";

  // AND2: Result of ANDing these two ^
  const char exp_and2[] =
      "result keys[0]: (field_1 < 255) OR (255 < field_1)\n"
      "result keys[1]: (field_2 = 3)\n";

  // OR5: Result of "OR4 | AND3"
  /*
    "(field_1 < 255) OR (255 < field_1)" is lost when performing this
    OR. This results in a bigger set than correct boolean algebra
    rules dictate. @See note about relaxed boolean algebra in
    get_mm_tree().
  */
  const char exp_or5[] =
      "result contains the following merges\n"
      "--- alternative 1 ---\n"
      "  merge_tree keys[1]: (field_2 = 1) OR (field_2 = 3)\n"
      "  merge_tree keys[2]: (field_3 = 1)\n"
      "  merge_tree keys[0]: (field_1 < 35) OR (257 < field_1)\n";

  create_and_check_tree_or(
      tree_or4,
      create_and_check_tree_and(
          create_tree(new_item_ne(m_field[0], 255), exp_f1_neq),
          create_tree(new_item_equal(m_field[1], 3), exp_f2_eq3), SEL_TREE::KEY,
          exp_and2),
      SEL_TREE::KEY, exp_or5);
}

/**
  Test for BUG#16241773
*/
TEST_F(OptRangeTest, treeAndOrComboSingleColIndex3) {
  create_table_singlecol_idx(2);

  // Single-index predicates
  const char exp_f1_eq10[] = "result keys[0]: (field_1 = 10)\n";
  const char exp_f2_gtr20[] = "result keys[1]: (20 < field_2)\n";

  const char exp_f1_eq11[] = "result keys[0]: (field_1 = 11)\n";
  const char exp_f2_gtr10[] = "result keys[1]: (10 < field_2)\n";

  // OR1: Result of ORing f1_eq10 and f2_gtr20
  const char exp_or1[] =
      "result contains the following merges\n"
      "--- alternative 1 ---\n"
      "  merge_tree keys[0]: (field_1 = 10)\n"
      "  merge_tree keys[1]: (20 < field_2)\n";

  // OR2: Result of ORing f1_eq11 and f2_gtr10
  const char exp_or2[] =
      "result contains the following merges\n"
      "--- alternative 1 ---\n"
      "  merge_tree keys[0]: (field_1 = 11)\n"
      "  merge_tree keys[1]: (10 < field_2)\n";

  // AND1: Result of ANDing OR1 and OR2
  const char exp_and1[] =
      "result contains the following merges\n"
      "--- alternative 1 ---\n"
      "  merge_tree keys[0]: (field_1 = 10)\n"
      "  merge_tree keys[1]: (20 < field_2)\n\n"
      "--- alternative 2 ---\n"
      "  merge_tree keys[0]: (field_1 = 11)\n"
      "  merge_tree keys[1]: (10 < field_2)\n";

  SEL_TREE *tree_and1 = create_and_check_tree_and(
      create_and_check_tree_or(
          create_tree(new_item_equal(m_field[0], 10), exp_f1_eq10),
          create_tree(new_item_gt(m_field[1], 20), exp_f2_gtr20), SEL_TREE::KEY,
          exp_or1),
      create_and_check_tree_or(
          create_tree(new_item_equal(m_field[0], 11), exp_f1_eq11),
          create_tree(new_item_gt(m_field[1], 10), exp_f2_gtr10), SEL_TREE::KEY,
          exp_or2),
      SEL_TREE::KEY, exp_and1);

  const char exp_f2_eq5[] = "result keys[1]: (field_2 = 5)\n";
  // OR3: Result of OR'ing AND1 with f2_eq5
  const char exp_or3[] =
      "result contains the following merges\n"
      "--- alternative 1 ---\n"
      "  merge_tree keys[0]: (field_1 = 10)\n"
      "  merge_tree keys[1]: (field_2 = 5) OR (20 < field_2)\n\n"
      "--- alternative 2 ---\n"
      "  merge_tree keys[0]: (field_1 = 11)\n"
      "  merge_tree keys[1]: (field_2 = 5) OR (10 < field_2)\n";
  SEL_TREE *tree_or3 = create_and_check_tree_or(
      tree_and1, create_tree(new_item_equal(m_field[1], 5), exp_f2_eq5),
      SEL_TREE::KEY, exp_or3);

  const char exp_f2_lt2[] = "result keys[1]: (field_2 < 2)\n";
  // OR4: Result of OR'ing OR3 with f2_lt2
  const char exp_or4[] =
      "result contains the following merges\n"
      "--- alternative 1 ---\n"
      "  merge_tree keys[0]: (field_1 = 10)\n"
      "  merge_tree keys[1]: (field_2 < 2) OR "
      "(field_2 = 5) OR (20 < field_2)\n\n"
      "--- alternative 2 ---\n"
      "  merge_tree keys[0]: (field_1 = 11)\n"
      "  merge_tree keys[1]: (field_2 < 2) OR "
      "(field_2 = 5) OR (10 < field_2)\n";

  create_and_check_tree_or(tree_or3,
                           create_tree(new_item_lt(m_field[1], 2), exp_f2_lt2),
                           SEL_TREE::KEY, exp_or4);
}

/*
  Create SelArg with various single valued predicate
*/
TEST_F(OptRangeTest, SelArgOnevalue) {
  Fake_TABLE fake_table({7}, false);
  Field *field_long7 = fake_table.field[0];

  KEY_PART_INFO kpi;
  kpi.init_from_field(field_long7);

  uchar range_val7[Fake_TABLE::DEFAULT_PACK_LENGTH];
  field_long7->get_key_image(range_val7, kpi.length, Field::itRAW);

  SEL_ARG sel_arg7(field_long7, range_val7, range_val7, true);
  String range_string;
  print_selarg_ranges(&range_string, &sel_arg7, &kpi);
  const char expected[] = "field_1 = 7";
  EXPECT_STREQ(expected, range_string.c_ptr());

  sel_arg7.min_flag |= NO_MIN_RANGE;
  range_string.length(0);
  print_selarg_ranges(&range_string, &sel_arg7, &kpi);
  const char expected2[] = "field_1 <= 7";
  EXPECT_STREQ(expected2, range_string.c_ptr());

  sel_arg7.max_flag = NEAR_MAX;
  range_string.length(0);
  print_selarg_ranges(&range_string, &sel_arg7, &kpi);
  const char expected3[] = "field_1 < 7";
  EXPECT_STREQ(expected3, range_string.c_ptr());

  sel_arg7.min_flag = NEAR_MIN;
  sel_arg7.max_flag = NO_MAX_RANGE;
  range_string.length(0);
  print_selarg_ranges(&range_string, &sel_arg7, &kpi);
  const char expected4[] = "7 < field_1";
  EXPECT_STREQ(expected4, range_string.c_ptr());

  sel_arg7.min_flag = 0;
  range_string.length(0);
  print_selarg_ranges(&range_string, &sel_arg7, &kpi);
  const char expected5[] = "7 <= field_1";
  EXPECT_STREQ(expected5, range_string.c_ptr());
}

/*
  Create SelArg with a between predicate
*/
TEST_F(OptRangeTest, SelArgBetween) {
  Fake_TABLE fake_table({3, 5}, false);
  Field *field_long3 = fake_table.field[0];
  Field *field_long5 = fake_table.field[1];

  KEY_PART_INFO kpi;
  kpi.init_from_field(field_long3);

  uchar range_val3[Fake_TABLE::DEFAULT_PACK_LENGTH];
  field_long3->get_key_image(range_val3, kpi.length, Field::itRAW);

  uchar range_val5[Fake_TABLE::DEFAULT_PACK_LENGTH];
  field_long5->get_key_image(range_val5, kpi.length, Field::itRAW);

  SEL_ARG sel_arg35(field_long3, range_val3, range_val5, true);

  String range_string;
  print_selarg_ranges(&range_string, &sel_arg35, &kpi);
  const char expected[] = "3 <= field_1 <= 5";
  EXPECT_STREQ(expected, range_string.c_ptr());

  range_string.length(0);
  sel_arg35.min_flag = NEAR_MIN;
  print_selarg_ranges(&range_string, &sel_arg35, &kpi);
  const char expected2[] = "3 < field_1 <= 5";
  EXPECT_STREQ(expected2, range_string.c_ptr());

  range_string.length(0);
  sel_arg35.max_flag = NEAR_MAX;
  print_selarg_ranges(&range_string, &sel_arg35, &kpi);
  const char expected3[] = "3 < field_1 < 5";
  EXPECT_STREQ(expected3, range_string.c_ptr());

  range_string.length(0);
  sel_arg35.min_flag = 0;
  print_selarg_ranges(&range_string, &sel_arg35, &kpi);
  const char expected4[] = "3 <= field_1 < 5";
  EXPECT_STREQ(expected4, range_string.c_ptr());

  range_string.length(0);
  sel_arg35.min_flag = NO_MIN_RANGE;
  sel_arg35.max_flag = 0;
  print_selarg_ranges(&range_string, &sel_arg35, &kpi);
  const char expected5[] = "field_1 <= 5";
  EXPECT_STREQ(expected5, range_string.c_ptr());

  range_string.length(0);
  sel_arg35.min_flag = 0;
  sel_arg35.max_flag = NO_MAX_RANGE;
  print_selarg_ranges(&range_string, &sel_arg35, &kpi);
  const char expected6[] = "3 <= field_1";
  EXPECT_STREQ(expected6, range_string.c_ptr());
}

/*
  Test SelArg::CopyMax
*/
TEST_F(OptRangeTest, CopyMax) {
  Fake_TABLE fake_table({3, 5}, false);
  Field *field_long3 = fake_table.field[0];
  Field *field_long5 = fake_table.field[1];

  KEY_PART_INFO kpi;
  kpi.init_from_field(field_long3);

  uchar range_val3[Fake_TABLE::DEFAULT_PACK_LENGTH];
  field_long3->get_key_image(range_val3, kpi.length, Field::itRAW);

  uchar range_val5[Fake_TABLE::DEFAULT_PACK_LENGTH];
  field_long5->get_key_image(range_val5, kpi.length, Field::itRAW);

  SEL_ARG sel_arg3(field_long3, range_val3, range_val3, true);
  sel_arg3.min_flag = NO_MIN_RANGE;
  SEL_ARG sel_arg5(field_long5, range_val5, range_val5, true);
  sel_arg5.min_flag = NO_MIN_RANGE;

  String range_string;
  print_selarg_ranges(&range_string, &sel_arg3, &kpi);
  const char expected[] = "field_1 <= 3";
  EXPECT_STREQ(expected, range_string.c_ptr());

  range_string.length(0);
  print_selarg_ranges(&range_string, &sel_arg5, &kpi);
  const char expected2[] = "field_1 <= 5";
  EXPECT_STREQ(expected2, range_string.c_ptr());

  /*
    Ranges now:
                       -inf ----------------3-5----------- +inf
    sel_arg3:          [-------------------->
    sel_arg5:          [---------------------->
    Below: merge these two ranges into sel_arg3 using copy_max()
  */
  bool full_range = sel_arg3.copy_max(&sel_arg5);
  // The merged range does not cover all possible values
  EXPECT_FALSE(full_range);

  range_string.length(0);
  print_selarg_ranges(&range_string, &sel_arg3, &kpi);
  const char expected3[] = "field_1 <= 5";
  EXPECT_STREQ(expected3, range_string.c_ptr());

  range_string.length(0);
  sel_arg5.min_flag = 0;
  sel_arg5.max_flag = NO_MAX_RANGE;
  print_selarg_ranges(&range_string, &sel_arg5, &kpi);
  const char expected4[] = "5 <= field_1";
  EXPECT_STREQ(expected4, range_string.c_ptr());

  /*
    Ranges now:
                       -inf ----------------3-5----------- +inf
    sel_arg3:          [---------------------->
    sel_arg5:                                 <---------------]
    Below: merge these two ranges into sel_arg3 using copy_max()
  */

  full_range = sel_arg3.copy_max(&sel_arg5);
  // The new range covers all possible values
  EXPECT_TRUE(full_range);

  range_string.length(0);
  print_selarg_ranges(&range_string, &sel_arg3, &kpi);
  const char expected5[] = "field_1";
  EXPECT_STREQ(expected5, range_string.c_ptr());
}

/*
  Test SelArg::CopyMin
*/
TEST_F(OptRangeTest, CopyMin) {
  Fake_TABLE fake_table({3, 5}, false);
  Field *field_long3 = fake_table.field[0];
  Field *field_long5 = fake_table.field[1];

  KEY_PART_INFO kpi;
  kpi.init_from_field(field_long3);

  uchar range_val3[Fake_TABLE::DEFAULT_PACK_LENGTH];
  field_long3->get_key_image(range_val3, kpi.length, Field::itRAW);

  uchar range_val5[Fake_TABLE::DEFAULT_PACK_LENGTH];
  field_long5->get_key_image(range_val5, kpi.length, Field::itRAW);

  SEL_ARG sel_arg3(field_long3, range_val3, range_val3, true);
  sel_arg3.max_flag = NO_MAX_RANGE;
  SEL_ARG sel_arg5(field_long5, range_val5, range_val5, true);
  sel_arg5.max_flag = NO_MAX_RANGE;

  String range_string;
  print_selarg_ranges(&range_string, &sel_arg3, &kpi);
  const char expected[] = "3 <= field_1";
  EXPECT_STREQ(expected, range_string.c_ptr());

  range_string.length(0);
  print_selarg_ranges(&range_string, &sel_arg5, &kpi);
  const char expected2[] = "5 <= field_1";
  EXPECT_STREQ(expected2, range_string.c_ptr());

  /*
    Ranges now:
                       -inf ----------------3-5----------- +inf
    sel_arg3:                               <-----------------]
    sel_arg5:                                 <---------------]
    Below: merge these two ranges into sel_arg3 using copy_max()
  */
  bool full_range = sel_arg5.copy_min(&sel_arg3);
  // The merged range does not cover all possible values
  EXPECT_FALSE(full_range);

  range_string.length(0);
  print_selarg_ranges(&range_string, &sel_arg5, &kpi);
  const char expected3[] = "3 <= field_1";
  EXPECT_STREQ(expected3, range_string.c_ptr());

  range_string.length(0);
  sel_arg3.max_flag = 0;
  sel_arg3.min_flag = NO_MIN_RANGE;
  print_selarg_ranges(&range_string, &sel_arg3, &kpi);
  const char expected4[] = "field_1 <= 3";
  EXPECT_STREQ(expected4, range_string.c_ptr());

  /*
    Ranges now:
                       -inf ----------------3-5----------- +inf
    sel_arg3:          [-------------------->
    sel_arg5:                               <-----------------]
    Below: merge these two ranges into sel_arg5 using copy_min()
  */

  full_range = sel_arg5.copy_min(&sel_arg3);
  // The new range covers all possible values
  EXPECT_TRUE(full_range);

  range_string.length(0);
  print_selarg_ranges(&range_string, &sel_arg5, &kpi);
  const char expected5[] = "field_1";
  EXPECT_STREQ(expected5, range_string.c_ptr());
}

/*
  Test SelArg::KeyOr
*/
TEST_F(OptRangeTest, KeyOr1) {
  Fake_RANGE_OPT_PARAM opt_param(thd(), &m_alloc, 0, false);

  Fake_TABLE fake_table({3, 4}, false);
  Field *field_long3 = fake_table.field[0];
  Field *field_long4 = fake_table.field[1];

  KEY_PART_INFO kpi;
  kpi.init_from_field(field_long3);

  uchar range_val3[Fake_TABLE::DEFAULT_PACK_LENGTH];
  field_long3->get_key_image(range_val3, kpi.length, Field::itRAW);

  uchar range_val4[Fake_TABLE::DEFAULT_PACK_LENGTH];
  field_long4->get_key_image(range_val4, kpi.length, Field::itRAW);

  SEL_ARG sel_arg_lt3(field_long3, range_val3, range_val3, true);
  sel_arg_lt3.part = 0;
  sel_arg_lt3.min_flag = NO_MIN_RANGE;
  sel_arg_lt3.max_flag = NEAR_MAX;

  SEL_ARG sel_arg_gt3(field_long3, range_val3, range_val3, true);
  sel_arg_gt3.part = 0;
  sel_arg_gt3.min_flag = NEAR_MIN;
  sel_arg_gt3.max_flag = NO_MAX_RANGE;

  SEL_ARG sel_arg_lt4(field_long4, range_val4, range_val4, true);
  sel_arg_lt4.part = 0;
  sel_arg_lt4.min_flag = NO_MIN_RANGE;
  sel_arg_lt4.max_flag = NEAR_MAX;

  String range_string;
  print_selarg_ranges(&range_string, &sel_arg_lt3, &kpi);
  const char expected_lt3[] = "field_1 < 3";
  EXPECT_STREQ(expected_lt3, range_string.c_ptr());

  range_string.length(0);
  print_selarg_ranges(&range_string, &sel_arg_gt3, &kpi);
  const char expected_gt3[] = "3 < field_1";
  EXPECT_STREQ(expected_gt3, range_string.c_ptr());

  range_string.length(0);
  print_selarg_ranges(&range_string, &sel_arg_lt4, &kpi);
  const char expected_lt4[] = "field_1 < 4";
  EXPECT_STREQ(expected_lt4, range_string.c_ptr());

  /*
    Ranges now:
                       -inf ----------------34----------- +inf
    sel_arg_lt3:       [-------------------->
    sel_arg_gt3:                             <---------------]
    sel_arg_lt4:       [--------------------->
  */

  SEL_ROOT *tmp =
      key_or(&opt_param, new (thd()->mem_root) SEL_ROOT(&sel_arg_lt3),
             new (thd()->mem_root) SEL_ROOT(&sel_arg_gt3));

  /*
    Ranges now:
                       -inf ----------------34----------- +inf
    tmp:               [--------------------><---------------]
    sel_arg_lt4:       [--------------------->
  */
  range_string.length(0);
  print_selarg_ranges(&range_string, tmp->root, &kpi);
  const char expected_merged[] =
      "field_1 < 3\n"
      "3 < field_1";
  EXPECT_STREQ(expected_merged, range_string.c_ptr());

  SEL_ROOT *tmp2 =
      key_or(&opt_param, tmp, new (thd()->mem_root) SEL_ROOT(&sel_arg_lt4));
  EXPECT_EQ(null_root, tmp2);
}

/*
  Test SelArg::KeyOr (BUG#17619119)
*/
TEST_F(OptRangeTest, KeyOr2) {
  create_table(2);

  m_opt_param->add_key(m_field[1]);
  m_opt_param->add_key(m_field[0], m_field[1]);

  SEL_TREE *fld1_20 = create_tree(new_item_equal(m_field[0], 20),
                                  "result keys[1]: (field_1 = 20)\n");

  /*
    Expected result when performing AND of:
      "(field_1 = 20) TREE_AND (field_2 = 1)"
  */
  SEL_TREE *tree_and1 = create_and_check_tree_and(
      fld1_20,
      create_tree(new_item_equal(m_field[1], 1),
                  "result keys[0]: (field_2 = 1)\n"    // range idx #1
                  "result keys[1]: (field_2 = 1)\n"),  // range idx #2
      SEL_TREE::KEY,
      "result keys[0]: (field_2 = 1)\n"                   // idx #1
      "result keys[1]: (field_1 = 20 AND field_2 = 1)\n"  // idx #2
  );

  /*
    Expected result when performing AND of:
      "(field_1 = 4) TREE_AND (field_2 = 42)"
  */
  SEL_TREE *tree_and2 = create_and_check_tree_and(
      create_tree(new_item_equal(m_field[0], 4),
                  "result keys[1]: (field_1 = 4)\n"),
      create_tree(new_item_equal(m_field[1], 42),
                  "result keys[0]: (field_2 = 42)\n"    // range idx #1
                  "result keys[1]: (field_2 = 42)\n"),  // range idx #2
      SEL_TREE::KEY,
      "result keys[0]: (field_2 = 42)\n"                  // idx #1
      "result keys[1]: (field_1 = 4 AND field_2 = 42)\n"  // idx #2
  );

  /*
    Expected result when performing OR of:
      "((field_1 = 20) AND (field_2 = 1))
          TREE_OR
       ((field_1 = 4) AND (field_2 = 42))"
  */
  SEL_TREE *tree_or1 = create_and_check_tree_or(
      tree_and1, tree_and2, SEL_TREE::KEY,
      "result keys[0]: (field_2 = 1) OR (field_2 = 42)\n"
      "result keys[1]: "
      "(field_1 = 4 AND field_2 = 42) OR "
      "(field_1 = 20 AND field_2 = 1)\n");

  /*
    Expected result when performing OR of:
      "(field_1 > 13) TREE_OR (field_2 = 14)"

    NOTE: if m_opt_param->remove_jump_scans was 'false', the merge
    would contain another alternative with this range as well:
        "  merge_tree keys[1]: (14 <= field_2 <= 14)\n";
  */
  SEL_TREE *tree_or2 = create_and_check_tree_or(
      create_tree(new_item_gt(m_field[0], 13),
                  "result keys[1]: (13 < field_1)\n"),
      create_tree(new_item_equal(m_field[1], 14),
                  "result keys[0]: (field_2 = 14)\n"    // range idx #1
                  "result keys[1]: (field_2 = 14)\n"),  // range idx #2
      SEL_TREE::KEY,
      "result contains the following merges\n"
      "--- alternative 1 ---\n"
      "  merge_tree keys[1]: (13 < field_1)\n"
      "  merge_tree keys[0]: (field_2 = 14)\n");

  /*
    Expected result when performing OR of:
    ((field_1 = 4) AND (field_2 = 42)) OR ((field_1 = 20) AND (field_2 = 1))
       TREE_OR
    ((field_1 > 13) OR (field_2 = 14))      <- merge

    "field_1=20 AND field_2=1" from the first tree is removed by
    key_or() since it is covered by "field_1 > 13" from the second tree.
  */
  const char exp_or3[] =
      "result contains the following merges\n"
      "--- alternative 1 ---\n"
      "  merge_tree keys[1]: (field_1 = 4 AND field_2 = 42) OR "
      "(13 < field_1)\n"
      "  merge_tree keys[0]: (field_2 = 14)\n";
  create_and_check_tree_or(tree_or1, tree_or2, SEL_TREE::KEY, exp_or3);

  /*
    fld1_20 was modified to reflect the AND in tree_and1 (and these
    trees are the same). They are no longer used, and trashed.
  */
  EXPECT_EQ(fld1_20, tree_and1);
}

class Mock_SEL_ARG : public SEL_ARG {
 public:
  Mock_SEL_ARG(SEL_ROOT *next_key_part_ptr) {
    next_key_part = next_key_part_ptr;
    make_root();
  }

  Mock_SEL_ARG() {
    make_root();
    part = 1;
    min_flag = 0;
    max_flag = 0;
    maybe_flag = false;
  }
};

/**
  @todo
  - Move some place it can be reused
  - Use varargs instead of copy-paste.
*/
static Item_row *new_Item_row(int a, int b) {
  /*
    The Item_row CTOR doesn't store the reference to the list, hence
    it can live on the stack.
  */
  mem_root_deque<Item *> items(*THR_MALLOC);
  items.push_back(new Item_int(b));
  return new Item_row(POS(), new Item_int(a), items);
}

static Item_row *new_Item_row(int a, int b, int c) {
  /*
    The Item_row CTOR doesn't store the reference to the list, hence
    it can live on the stack.
  */
  mem_root_deque<Item *> items(*THR_MALLOC);
  items.push_back(new Item_int(b));
  items.push_back(new Item_int(c));
  return new Item_row(POS(), new Item_int(a), items);
}

/// @todo Move some place it can be reused.
static Item_row *new_Item_row(Field **fields, int count) {
  /*
    The Item_row CTOR doesn't store the reference to the list, hence
    it can live on the stack.
  */
  mem_root_deque<Item *> items(*THR_MALLOC);
  for (int i = count - 1; i > 0; --i)
    items.push_front(new Item_field(fields[i]));
  return new Item_row(POS(), new Item_field(fields[0]), items);
}

TEST_F(OptRangeTest, RowConstructorIn2) {
  create_table(2);

  m_opt_param->add_key();

  // We build the expression (field_1, field_2) IN ((3, 4), (1, 2)) ...
  PT_item_list *all_args = new (current_thd->mem_root) PT_item_list;
  all_args->push_front(new_Item_row(1, 2));
  all_args->push_front(new_Item_row(3, 4));
  all_args->push_front(new_Item_row(m_opt_param->table->field, 2));
  Item *cond = new Item_func_in(POS(), all_args, false);
  Parse_context pc(thd(), thd()->lex->current_query_block());
  EXPECT_FALSE(cond->itemize(&pc, &cond));

  // ... and resolve it.
  Item *item = cond;
  cond->fix_fields(thd(), &item);

  SEL_TREE *sel_tree = get_mm_tree(thd(), m_opt_param, 0, 0, m_current_table,
                                   /*remove_jump_scans=*/true, cond);

  EXPECT_FALSE(sel_tree == nullptr);
  EXPECT_EQ(Key_map(1), sel_tree->keys_map);

  const char *expected =
      "result keys[0]: "
      "(field_1 = 1 AND field_2 = 2) OR "
      "(field_1 = 3 AND field_2 = 4)\n";
  check_tree_result(sel_tree, SEL_TREE::KEY, expected);
}

TEST_F(OptRangeTest, RowConstructorIn3) {
  create_table(3);

  m_opt_param->add_key();

  // We build the expression (field_1, field_2) IN ((3, 4), (1, 2)) ...
  PT_item_list *all_args = new (current_thd->mem_root) PT_item_list;
  all_args->push_front(new_Item_row(1, 2, 3));
  all_args->push_front(new_Item_row(4, 5, 6));
  all_args->push_front(new_Item_row(m_opt_param->table->field, 3));
  Item *cond = new Item_func_in(POS(), all_args, false);
  Parse_context pc(thd(), thd()->lex->current_query_block());
  EXPECT_FALSE(cond->itemize(&pc, &cond));

  // ... and resolve it.
  Item *item = cond;
  cond->fix_fields(thd(), &item);

  SEL_TREE *sel_tree = get_mm_tree(thd(), m_opt_param, 0, 0, m_current_table,
                                   /*remove_jump_scans=*/true, cond);

  EXPECT_FALSE(sel_tree == nullptr);
  EXPECT_EQ(Key_map(1), sel_tree->keys_map);

  const char *expected =
      "result keys[0]: "
      "(field_1 = 1 AND field_2 = 2 AND field_3 = 3) OR "
      "(field_1 = 4 AND field_2 = 5 AND field_3 = 6)\n";

  check_tree_result(sel_tree, SEL_TREE::KEY, expected);
}

TEST_F(OptRangeTest, CombineAlways) {
  RANGE_OPT_PARAM param;  // Not really used
  {
    Mock_SEL_ARG always_root;
    always_root.min_flag = NO_MIN_RANGE;
    always_root.max_flag = NO_MAX_RANGE;
    SEL_ROOT always(&always_root);

    Mock_SEL_ARG key_range_root;
    SEL_ROOT key_range(&key_range_root);

    EXPECT_TRUE(key_or(&param, &always, &key_range) == &always);
  }
  {
    Mock_SEL_ARG always_root;
    always_root.min_flag = NO_MIN_RANGE;
    always_root.max_flag = NO_MAX_RANGE;
    SEL_ROOT always(&always_root);

    Mock_SEL_ARG key_range_root;
    SEL_ROOT key_range(&key_range_root);

    EXPECT_TRUE(key_or(&param, &key_range, &always) == &always);
  }
  {
    Mock_SEL_ARG always1_root;
    always1_root.min_flag = NO_MIN_RANGE;
    always1_root.max_flag = NO_MAX_RANGE;
    SEL_ROOT always1(&always1_root);

    Mock_SEL_ARG always2_root;
    always2_root.min_flag = NO_MIN_RANGE;
    always2_root.max_flag = NO_MAX_RANGE;
    SEL_ROOT always2(&always2_root);

    EXPECT_TRUE(key_or(&param, &always1, &always2) == &always1);
  }
  {
    Mock_SEL_ARG always_root;
    always_root.min_flag = NO_MIN_RANGE;
    always_root.max_flag = NO_MAX_RANGE;
    SEL_ROOT always(&always_root);

    Mock_SEL_ARG key_range_root;
    SEL_ROOT key_range(&key_range_root);

    EXPECT_TRUE(key_and(&param, &key_range, &always) == &key_range);
  }
  {
    Mock_SEL_ARG always_root;
    always_root.min_flag = NO_MIN_RANGE;
    always_root.max_flag = NO_MAX_RANGE;
    SEL_ROOT always(&always_root);

    Mock_SEL_ARG key_range_root;
    SEL_ROOT key_range(&key_range_root);

    EXPECT_TRUE(key_and(&param, &always, &key_range) == &key_range);
  }
}

TEST_F(OptRangeTest, CombineAlways2) {
  class Fake_sel_arg : public SEL_ARG {
   public:
    Fake_sel_arg() {
      part = 0;
      left = nullptr;
      next = nullptr;
      min_flag = max_flag = maybe_flag = false;
      set_endpoints(1, 2);
      next_key_part = nullptr;
      make_root();
    }

    void add_next_key_part(SEL_ROOT *next_arg) {
      set_next_key_part(next_arg);
      next_arg->root->part = part + 1;
    }

   private:
    void set_endpoints(int min, int max) {
      set_endpoint(min, min_value_buff, &min_value);
      set_endpoint(max, max_value_buff, &max_value);
    }
    void set_endpoint(int value, char *buff, uchar **variable) {
      buff[0] = value;
      buff[1] = 0;
      *variable = reinterpret_cast<uchar *>(buff);
    }
    char min_value_buff[10], max_value_buff[10];
  };

  class Fake_key_part_info : public KEY_PART_INFO {
   public:
    Fake_key_part_info(Mock_field_long *field_arg) {
      field = field_arg;
      length = 1;
      store_length = sizeof(long);
    }
  };

  RANGE_OPT_PARAM param;
  Fake_sel_arg always_root, key_range_root;
  always_root.min_flag = NO_MIN_RANGE;
  always_root.max_flag = NO_MAX_RANGE;
  SEL_ROOT always(&always_root), key_range(&key_range_root);
  Mock_field_long field1("col_1", false, false);
  Mock_field_long field2("col_2", false, false);
  Fake_TABLE table(&field1, &field2);
  String res(1000), so_far(1000);
  Fake_key_part_info key_part_info[] = {Fake_key_part_info(&field1),
                                        Fake_key_part_info(&field2)};

  Fake_sel_arg other_root;
  other_root.add_next_key_part(&key_range);
  SEL_ROOT other(&other_root);
  append_range_all_keyparts(nullptr, &res, &so_far, &other, key_part_info,
                            true);

  // Let's make sure we built the expression we expected ...
  EXPECT_STREQ("(1 <= col_1 <= 2 AND 1 <= col_2 <= 2)", res.ptr());

  EXPECT_TRUE(key_or(&param, &always, &other) == &always);
}

TEST_F(OptRangeTest, AppendRange) {
  String out(100);
  Mock_field_long field("my_field", false, false);
  Fake_TABLE table(&field);
  KEY_PART_INFO kp;
  kp.field = &field;
  kp.length = 1;
  uchar min_value = 42;
  uchar max_value = 45;
  append_range(&out, &kp, &min_value, &max_value, NEAR_MIN | NEAR_MAX);
  EXPECT_STREQ("42 < my_field < 45", out.c_ptr());
}

TEST_F(OptRangeTest, TreeRootGetsUpdated) {
  /*
    Create a bunch of SEL_ARGs (from 0 up to 10). The simplest way
    of creating them seems to just be calling get_mm_tree() and deleting
    the resulting SEL_ARG.
  */
  Fake_RANGE_OPT_PARAM opt_param(thd(), &m_alloc, 1, false);
  opt_param.add_key(opt_param.table->field[0]);
  std::vector<SEL_ARG *> args;
  for (int i = 0; i < 10; ++i) {
    SEL_TREE *tree = get_mm_tree(thd(), &opt_param, 0, 0,
                                 opt_param.table->pos_in_table_list->map(),
                                 /*remove_jump_scans=*/true,
                                 new_item_equal(opt_param.table->field[0], i));
    ASSERT_NE(nullptr, tree);
    SEL_ROOT *root = tree->keys[0];
    ASSERT_EQ(1, root->elements);
    SEL_ARG *arg = root->root;
    root->tree_delete(arg);
    args.push_back(arg);
  }

  // Make a SEL_ROOT with the first element in it.
  SEL_ROOT root(args[0]);
  EXPECT_EQ(args[0], root.root);

  /*
    Now insert the nine others; since they're all bigger, the root should
    be a different one in any reasonably balanced tree, so we can verify
    this works as it should.
  */
  for (int i = 1; i < 10; ++i) {
    root.insert(args[i]);
  }
  EXPECT_EQ(args.size(), root.elements);
  EXPECT_NE(args[0], root.root);
}

TEST_F(OptRangeTest, CloneSpatialKey) {
  Fake_RANGE_OPT_PARAM param(thd(), &m_alloc, 2, false);
  Mock_SEL_ARG key1, key2;
  key1.min_flag |= GEOM_FLAG;
  key1.rkey_func_flag = HA_READ_MBR_CONTAIN;
  SEL_ROOT key1_root(&key1), key2_root(&key2);
  key1_root.use_count = 2;
  key1_root.elements = 2;
  key2_root.type = SEL_ROOT::Type::MAYBE_KEY;
  // check if tree is cloned along with gis flag.
  SEL_ROOT *cloned_key1 = key_and(&param, &key1_root, &key2_root);
  EXPECT_NE(cloned_key1, &key1_root);
  EXPECT_EQ(cloned_key1->root->rkey_func_flag, key1_root.root->rkey_func_flag);
  key1_root.use_count = 0;
}

}  // namespace opt_range_unittest

#undef create_tree
#undef create_and_check_tree_and
#undef create_and_check_tree_or