1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
|
/* Copyright (c) 2011, 2025, Oracle and/or its affiliates.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is designed to work with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have either included with
the program or referenced in the documentation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
#include <assert.h>
#include <gtest/gtest.h>
#include <stddef.h>
#include <sys/types.h>
#include <sstream>
#include <string>
#include <vector>
#include "my_inttypes.h"
#include "sql/parse_tree_helpers.h"
#include "sql/range_optimizer/internal.h"
#include "sql/range_optimizer/range_analysis.h"
#include "sql/range_optimizer/range_optimizer.h"
#include "sql/range_optimizer/tree.h"
#include "unittest/gunit/fake_range_opt_param.h"
#include "unittest/gunit/fake_table.h"
#include "unittest/gunit/handler-t.h"
#include "unittest/gunit/mock_field_long.h"
#include "unittest/gunit/test_utils.h"
namespace opt_range_unittest {
using std::string;
using std::vector;
/**
Helper class to print which line a failing test was called from.
*/
class TestFailLinePrinter {
public:
explicit TestFailLinePrinter(int line) : m_line(line) {}
int m_line;
};
static std::ostream &operator<<(std::ostream &s, const TestFailLinePrinter &v) {
return s << "called from line " << v.m_line;
}
/**
Keep in mind the following boolean algebra definitions and rules
when reading the tests in this file:
Operators:
& (and)
| (or)
! (negation)
DeMorgans laws:
DM1: !(X & Y) <==> !X | !Y
DM2: !(X | Y) <==> !X & !Y
Boolean axioms:
A1 (associativity): X & (Y & Z) <==> (X & Y) & Z
X | (Y | Z) <==> (X | Y) | Z
A2 (commutativity): X & Y <==> Y & X
X | Y <==> Y | X
A3 (identity): X | false <==> X
X | true <==> true
X & false <==> false
X & true <==> X
A4 (distributivity): X | (Y & Z) <==> (X | Y) & (X | Z)
X & (Y | Z) <==> (X & Y) | (X & Z)
A5 (complements): X | !X <==> true
X & !X <==> false
A6 (idempotence of |): X | X <==> X
A7 (idempotence of &): X & X <==> X
Also note that the range optimizer follows a relaxed boolean algebra
where the result may be bigger than boolean algebra rules dictate.
@See get_mm_tree() for explanation.
*/
using my_testing::Server_initializer;
class OptRangeTest : public ::testing::Test {
protected:
OptRangeTest() : m_opt_param(nullptr) {}
void SetUp() override {
initializer.SetUp();
init_sql_alloc(PSI_NOT_INSTRUMENTED, &m_alloc,
thd()->variables.range_alloc_block_size);
}
void TearDown() override {
delete m_opt_param;
initializer.TearDown();
}
THD *thd() { return initializer.thd(); }
/**
Create a table with the requested number of fields. All fields are
indexed.
@param nbr_fields The number of fields in the table
*/
void create_table_singlecol_idx(int nbr_fields) {
create_table(nbr_fields);
for (int i = 0; i < nbr_fields; i++)
m_opt_param->add_key(m_opt_param->table->field[i]);
m_field = m_opt_param->table->field;
}
/**
Create a table with the requested number of fields without
creating indexes.
@param nbr_fields The number of fields in the table
*/
void create_table(int nbr_fields, bool columns_nullable) {
m_opt_param =
new Fake_RANGE_OPT_PARAM(thd(), &m_alloc, nbr_fields, columns_nullable);
m_field = m_opt_param->table->field;
if (nbr_fields != 0) {
m_current_table = m_opt_param->table->pos_in_table_list->map();
} else {
m_current_table = 1;
}
}
void create_table(int nbr_fields) { create_table(nbr_fields, false); }
/*
The new_item_xxx are convenience functions for creating Item_func
descendents from Field's and ints without having to wrap them in
Item's and resolving them.
*/
template <typename T>
T *new_item(Field *field, int value) {
T *item = new T(new Item_field(field), new Item_int(value));
Item *item_base = item;
item->fix_fields(thd(), &item_base);
return item;
}
Item_func_lt *new_item_lt(Field *field, int value) {
return new_item<Item_func_lt>(field, value);
}
Item_func_gt *new_item_gt(Field *field, int value) {
return new_item<Item_func_gt>(field, value);
}
Item_func_equal *new_item_equal(Field *field, int value) {
return new_item<Item_func_equal>(field, value);
}
Item_func_xor *new_item_xor(Field *field, int value) {
return new_item<Item_func_xor>(field, value);
}
Item_cond_and *new_item_between(Field *fld, int val1, int val2) {
return new Item_cond_and(new_item_gt(fld, val1), new_item_lt(fld, val2));
}
Item_cond_or *new_item_ne(Field *fld, int val1) {
return new Item_cond_or(new_item_lt(fld, val1), new_item_gt(fld, val1));
}
/**
Utility funtion used to simplify creation of SEL_TREEs with
specified range predicate operators and values. Also verifies that
the created SEL_TREE has the expected range conditions.
@param type The type of range predicate operator requested
@param fld The field used in the range predicate
@param val1 The first value used in the range predicate
@param val2 The second value used in the range predicate.
Only used for range predicates that takes two
values (BETWEEN).
@param expected_result The range conditions the created SEL_TREE
is expected to consist of. The format of this
string is what opt_range.cc print_tree() produces.
@return SEL_TREE that has been verified to have expected range conditions.
*/
// Undefined at end of this file
#define create_tree(i, er) do_create_tree(i, er, TestFailLinePrinter(__LINE__))
SEL_TREE *do_create_tree(Item *item, const char *expected_result,
TestFailLinePrinter called_from_line) {
/*
Controls whether or not ranges that do not have conditions on
the first keypart are removed before two trees are ORed in such
a way that index merge is required. The value of 'true' means
that such ranges are removed.
*/
const bool remove_jump_scans = true;
SEL_TREE *result = get_mm_tree(thd(), m_opt_param, 0, 0, m_current_table,
remove_jump_scans, item);
SCOPED_TRACE(called_from_line);
check_tree_result(result, SEL_TREE::KEY, expected_result);
return result;
}
/**
Utility funtion used to simplify creation of func items used as
range predicates.
@param type The type of range predicate operator requested
@param fld The field used in the range predicate
@param value The value used in the range predicate
@return Item for the specified range predicate
*/
Item_func *create_item(Item_func::Functype type, Field *fld, int value);
/**
Create instance of Xor Item_func.
@param item1 first item for xor condition.
@param item2 second item for xor condition.
@return pointer to newly created instance of Xor Item.
*/
Item_func_xor *create_xor_item(Item *item1, Item *item2);
/**
Check that the use_count of all SEL_ARGs in the SEL_TREE are
correct.
@param tree The SEL_TREE to check
*/
void check_use_count(SEL_TREE *tree);
/**
Verify that a SEL_TREE has the type and conditions we expect it to
have.
@param tree The SEL_TREE to check
@param expected_type The type 'tree' is expected to have
@param expected_result The range conditions 'tree' is expected
to consist of. The format of this string
is what opt_range.cc print_tree() produces.
*/
void check_tree_result(SEL_TREE *tree, const SEL_TREE::Type expected_type,
const char *expected_result);
/**
Perform OR between two SEL_TREEs and verify that the result of the
OR operation is as expected.
@param tree1 First SEL_TREE that will be ORed
@param tree2 Second SEL_TREE that will be ORed
@param expected_type The type the ORed result is expected to have
@param expected_result The range conditions the ORed result is expected
to consist of. The format of this string
is what opt_range.cc print_tree() produces.
@return SEL_TREE result of the OR operation between tree1 and
tree2 that has been verified to have expected range
conditions.
*/
// Undefined at end of this file
#define create_and_check_tree_or(t1, t2, et, er) \
do_create_and_check_tree_or(t1, t2, et, er, TestFailLinePrinter(__LINE__))
SEL_TREE *do_create_and_check_tree_or(SEL_TREE *tree1, SEL_TREE *tree2,
const SEL_TREE::Type expected_type,
const char *expected_result,
TestFailLinePrinter called_from_line);
/**
Perform AND between two SEL_TREEs and verify that the result of the
AND operation is as expected.
@param tree1 First SEL_TREE that will be ANDed
@param tree2 Second SEL_TREE that will be ANDed
@param expected_type The type the ANDed result is expected to have
@param expected_result The range conditions the ANDed result is expected
to consist of. The format of this string
is what opt_range.cc print_tree() produces.
@return SEL_TREE result of the AND operation between tree1 and
tree2 that has been verified to have expected range
conditions.
*/
// Undefined at end of this file
#define create_and_check_tree_and(t1, t2, et, er) \
do_create_and_check_tree_and(t1, t2, et, er, TestFailLinePrinter(__LINE__))
SEL_TREE *do_create_and_check_tree_and(SEL_TREE *tree1, SEL_TREE *tree2,
const SEL_TREE::Type expected_type,
const char *expected_result,
TestFailLinePrinter called_from_line);
Server_initializer initializer;
MEM_ROOT m_alloc;
Fake_RANGE_OPT_PARAM *m_opt_param;
/*
Pointer to m_opt_param->table->field. Only valid if the table was
created by calling one of OptRangeTest::create_table*()
*/
Field **m_field;
table_map m_current_table;
};
Item_func *OptRangeTest::create_item(Item_func::Functype type, Field *fld,
int value) {
Item_func *result;
switch (type) {
case Item_func::GT_FUNC:
result = new Item_func_gt(new Item_field(fld), new Item_int(value));
break;
case Item_func::LT_FUNC:
result = new Item_func_lt(new Item_field(fld), new Item_int(value));
break;
case Item_func::MULT_EQUAL_FUNC:
result = new Item_equal(new Item_int(value), new Item_field(fld));
break;
case Item_func::XOR_FUNC:
result = new Item_func_xor(new Item_field(fld), new Item_int(value));
break;
default:
result = nullptr;
assert(false);
return result;
}
Item *itm = static_cast<Item *>(result);
result->fix_fields(thd(), &itm);
return result;
}
Item_func_xor *OptRangeTest::create_xor_item(Item *item1, Item *item2) {
Item_func_xor *xor_item = new Item_func_xor(item1, item2);
Item *itm = static_cast<Item *>(xor_item);
xor_item->fix_fields(thd(), &itm);
return xor_item;
}
void OptRangeTest::check_use_count(SEL_TREE *tree) {
for (uint i = 0; i < m_opt_param->keys; i++) {
SEL_ROOT *cur_range = tree->keys[i];
if (cur_range != nullptr) {
EXPECT_FALSE(cur_range->test_use_count(cur_range));
}
}
if (!tree->merges.is_empty()) {
List_iterator<SEL_IMERGE> it(tree->merges);
SEL_IMERGE *merge = it++;
for (SEL_TREE *current : merge->trees) check_use_count(current);
}
}
void OptRangeTest::check_tree_result(SEL_TREE *tree,
const SEL_TREE::Type expected_type,
const char *expected_result) {
EXPECT_EQ(expected_type, tree->type);
if (expected_type != SEL_TREE::KEY) return;
char buff[512];
String actual_result(buff, sizeof(buff), system_charset_info);
actual_result.set_charset(system_charset_info);
actual_result.length(0);
print_tree(&actual_result, "result", tree, m_opt_param, false);
EXPECT_STREQ(expected_result, actual_result.c_ptr());
SCOPED_TRACE("check_use_count");
check_use_count(tree);
}
SEL_TREE *OptRangeTest::do_create_and_check_tree_or(
SEL_TREE *tree1, SEL_TREE *tree2, const SEL_TREE::Type expected_type,
const char *expected_result, TestFailLinePrinter called_from_line) {
{
// Check that tree use counts are OK before OR'ing
SCOPED_TRACE(called_from_line);
check_use_count(tree1);
check_use_count(tree2);
}
SEL_TREE *result =
tree_or(m_opt_param, /*remove_jump_scans=*/true, tree1, tree2);
// Tree returned from tree_or()
SCOPED_TRACE(called_from_line);
check_tree_result(result, expected_type, expected_result);
return result;
}
SEL_TREE *OptRangeTest::do_create_and_check_tree_and(
SEL_TREE *tree1, SEL_TREE *tree2, const SEL_TREE::Type expected_type,
const char *expected_result, TestFailLinePrinter called_from_line) {
{
// Check that tree use counts are OK before AND'ing
SCOPED_TRACE(called_from_line);
check_use_count(tree1);
check_use_count(tree2);
}
SEL_TREE *result = tree_and(m_opt_param, tree1, tree2);
// Tree returned from tree_and()
SCOPED_TRACE(called_from_line);
check_tree_result(result, expected_type, expected_result);
return result;
}
/*
Experiment with these to measure performance of
'new (thd->mem_root)' Foo vs. 'new Foo'.
With gcc 4.4.2 I see ~4% difference (in optimized mode).
*/
const int num_iterations = 10;
const int num_allocs = 10;
TEST_F(OptRangeTest, AllocateExplicit) {
for (int ix = 0; ix < num_iterations; ++ix) {
thd()->mem_root->ClearForReuse();
for (int ii = 0; ii < num_allocs; ++ii) new (thd()->mem_root) SEL_ARG;
}
}
TEST_F(OptRangeTest, AllocateImplicit) {
for (int ix = 0; ix < num_iterations; ++ix) {
thd()->mem_root->ClearForReuse();
for (int ii = 0; ii < num_allocs; ++ii) new (thd()->mem_root) SEL_ARG;
}
}
/*
We cannot do EXPECT_NE(NULL, get_mm_tree(...))
because of limits in google test.
*/
const SEL_TREE *null_tree = nullptr;
const SEL_ROOT *null_root = nullptr;
const SEL_ARG *null_arg = nullptr;
static void print_selarg_ranges(String *s, SEL_ARG *sel_arg,
const KEY_PART_INFO *kpi) {
for (SEL_ARG *cur = sel_arg->first(); cur != opt_range::null_element;
cur = cur->right) {
String current_range;
append_range(¤t_range, kpi, cur->min_value, cur->max_value,
cur->min_flag | cur->max_flag);
if (s->length() > 0) s->append(STRING_WITH_LEN("\n"));
s->append(current_range);
}
}
TEST_F(OptRangeTest, SimpleCond) {
Fake_RANGE_OPT_PARAM opt_param(thd(), &m_alloc, 0, false);
EXPECT_NE(null_tree,
get_mm_tree(thd(), &opt_param, 0, 0, m_current_table,
/*remove_jump_scans=*/true, new Item_int(42)));
}
/*
Exercise range optimizer without adding indexes
*/
TEST_F(OptRangeTest, EqualCondNoIndexes) {
Fake_RANGE_OPT_PARAM opt_param(thd(), &m_alloc, 1, false);
SEL_TREE *tree = get_mm_tree(thd(), &opt_param, 0, 0, m_current_table,
/*remove_jump_scans=*/true,
new_item_equal(opt_param.table->field[0], 42));
EXPECT_EQ(null_tree, tree);
}
/*
Exercise range optimizer with xor operator.
*/
TEST_F(OptRangeTest, XorCondIndexes) {
create_table(1);
m_opt_param->add_key(m_field[0]);
/*
XOR is not range optimizible ATM and is treated as
always true. No SEL_TREE is therefore expected.
*/
SEL_TREE *tree =
get_mm_tree(thd(), m_opt_param, 0, 0, m_current_table,
/*remove_jump_scans=*/true, new_item_xor(m_field[0], 42));
EXPECT_EQ(null_tree, tree);
}
/*
Exercise range optimizer with xor and different type of operator.
*/
TEST_F(OptRangeTest, XorCondWithIndexes) {
create_table(5);
m_opt_param->add_key(m_field[0]);
m_opt_param->add_key(m_field[1]);
m_opt_param->add_key(m_field[2]);
m_opt_param->add_key(m_field[3]);
m_opt_param->add_key(m_field[4]);
/*
Create SEL_TREE from "field1=7 AND (field1 XOR 42)". Since XOR is
not range optimizible (treated as always true), we get a tree for
"field1=7" only.
*/
const char expected1[] = "result keys[0]: (field_1 = 7)\n";
SEL_TREE *tree = get_mm_tree(
thd(), m_opt_param, 0, 0, m_current_table, /*remove_jump_scans=*/true,
new Item_cond_and(new_item_xor(m_field[0], 42),
new_item_equal(m_field[0], 7)));
SCOPED_TRACE("");
check_tree_result(tree, SEL_TREE::KEY, expected1);
/*
Create SEL_TREE from "(field1 XOR 0) AND (field1>14)". Since XOR
is not range optimizible (treated as always true), we get a tree
for "field1>14" only.
*/
const char expected2[] = "result keys[0]: (14 < field_1)\n";
tree = get_mm_tree(thd(), m_opt_param, 0, 0, m_current_table,
/*remove_jump_scans=*/true,
new Item_cond_and(new_item_xor(m_field[0], 0),
new_item_gt(m_field[0], 14)));
SCOPED_TRACE("");
check_tree_result(tree, SEL_TREE::KEY, expected2);
/*
Create SEL_TREE from "(field1<0 AND field1>14) XOR
(field1>17)". Since XOR is not range optimizible (treated as
always true), we get a NULL tree.
*/
tree = get_mm_tree(
thd(), m_opt_param, 0, 0, m_current_table, /*remove_jump_scans=*/true,
create_xor_item(new Item_cond_and(new_item_lt(m_field[0], 0),
new_item_gt(m_field[0], 14)),
new_item_gt(m_field[0], 17)));
SCOPED_TRACE("");
EXPECT_EQ(null_tree, tree);
/*
Create SEL_TREE from
(field1<0 AND field2>14) AND
((field3<0 and field4>14) XOR field5>17) ".
Since XOR is not range optimizible (treated as always true),
we get a tree for "field1<0 AND field2>14" only.
*/
const char expected3[] =
"result keys[0]: (field_1 < 0)\n"
"result keys[1]: (14 < field_2)\n";
tree = get_mm_tree(
thd(), m_opt_param, 0, 0, m_current_table, /*remove_jump_scans=*/true,
new Item_cond_and(
new Item_cond_and(new_item_lt(m_field[0], 0),
new_item_gt(m_field[1], 14)),
create_xor_item(new Item_cond_and(new_item_lt(m_field[2], 0),
new_item_gt(m_field[3], 14)),
new_item_gt(m_field[4], 17))));
SCOPED_TRACE("");
check_tree_result(tree, SEL_TREE::KEY, expected3);
}
/*
Exercise range optimizer with single column index
*/
TEST_F(OptRangeTest, GetMMTreeSingleColIndex) {
// Create a single-column table with index
create_table_singlecol_idx(1);
// Expected result of next test:
const char expected[] = "result keys[0]: (field_1 = 42)\n";
create_tree(new_item_equal(m_field[0], 42), expected);
// Expected result of next test:
const char expected2[] = "result keys[0]: (field_1 = 42) OR (field_1 = 43)\n";
SEL_TREE *tree = get_mm_tree(
thd(), m_opt_param, 0, 0, m_current_table, /*remove_jump_scans=*/true,
new Item_cond_or(new_item_equal(m_field[0], 42),
new_item_equal(m_field[0], 43)));
SCOPED_TRACE("");
check_tree_result(tree, SEL_TREE::KEY, expected2);
// Expected result of next test:
const char expected3[] =
"result keys[0]: "
"(field_1 = 1) OR (field_1 = 2) OR "
"(field_1 = 3) OR (field_1 = 4) OR "
"(field_1 = 5) OR (field_1 = 6) OR "
"(field_1 = 7) OR (field_1 = 8)\n";
List<Item> or_list1;
or_list1.push_back(new_item_equal(m_field[0], 1));
or_list1.push_back(new_item_equal(m_field[0], 2));
or_list1.push_back(new_item_equal(m_field[0], 3));
or_list1.push_back(new_item_equal(m_field[0], 4));
or_list1.push_back(new_item_equal(m_field[0], 5));
or_list1.push_back(new_item_equal(m_field[0], 6));
or_list1.push_back(new_item_equal(m_field[0], 7));
or_list1.push_back(new_item_equal(m_field[0], 8));
tree = get_mm_tree(thd(), m_opt_param, 0, 0, m_current_table,
/*remove_jump_scans=*/true, new Item_cond_or(or_list1));
check_tree_result(tree, SEL_TREE::KEY, expected3);
// Expected result of next test:
const char expected4[] = "result keys[0]: (field_1 = 7)\n";
tree = get_mm_tree(thd(), m_opt_param, 0, 0, m_current_table,
/*remove_jump_scans=*/true,
new Item_cond_and(new Item_cond_or(or_list1),
new_item_equal(m_field[0], 7)));
SCOPED_TRACE("");
check_tree_result(tree, SEL_TREE::KEY, expected4);
// Expected result of next test:
const char expected5[] =
"result keys[0]: "
"(field_1 = 1) OR (field_1 = 3) OR "
"(field_1 = 5) OR (field_1 = 7)\n";
List<Item> or_list2;
or_list2.push_back(new_item_equal(m_field[0], 1));
or_list2.push_back(new_item_equal(m_field[0], 3));
or_list2.push_back(new_item_equal(m_field[0], 5));
or_list2.push_back(new_item_equal(m_field[0], 7));
or_list2.push_back(new_item_equal(m_field[0], 9));
tree = get_mm_tree(thd(), m_opt_param, 0, 0, m_current_table,
/*remove_jump_scans=*/true,
new Item_cond_and(new Item_cond_or(or_list1),
new Item_cond_or(or_list2)));
SCOPED_TRACE("");
check_tree_result(tree, SEL_TREE::KEY, expected5);
}
/*
Exercise range optimizer with multiple column index
*/
TEST_F(OptRangeTest, GetMMTreeMultipleSingleColIndex) {
// Create a single-column table without index
create_table(1);
// Add two indexes covering the same field
m_opt_param->add_key(m_field[0]);
m_opt_param->add_key(m_field[0]);
char buff[512];
String range_string(buff, sizeof(buff), system_charset_info);
range_string.set_charset(system_charset_info);
// Expected result of next test:
const char expected[] =
"result keys[0]: (field_1 = 42)\n"
"result keys[1]: (field_1 = 42)\n";
create_tree(new_item_equal(m_field[0], 42), expected);
}
/*
Exercise range optimizer with multiple single column indexes
*/
TEST_F(OptRangeTest, GetMMTreeOneTwoColIndex) {
create_table(2);
m_opt_param->add_key(m_field[0], m_field[1]);
char buff[512];
String range_string(buff, sizeof(buff), system_charset_info);
range_string.set_charset(system_charset_info);
// Expected result of next test:
const char expected[] = "result keys[0]: (field_1 = 42)\n";
create_tree(new_item_equal(m_field[0], 42), expected);
// Expected result of next test:
const char expected2[] = "result keys[0]: (field_1 = 42 AND field_2 = 10)\n";
SEL_TREE *tree = get_mm_tree(
thd(), m_opt_param, 0, 0, m_current_table, /*remove_jump_scans=*/true,
new Item_cond_and(new_item_equal(m_field[0], 42),
new_item_equal(m_field[1], 10)));
range_string.length(0);
print_tree(&range_string, "result", tree, m_opt_param, false);
EXPECT_STREQ(expected2, range_string.c_ptr());
}
/*
Optimizer tracing should only print ranges for applicable keyparts,
except when argument for print_tree() parameter 'print_full' is true.
*/
TEST_F(OptRangeTest, GetMMTreeNonApplicableKeypart) {
create_table(3);
List<Field> index_list;
index_list.push_back(m_field[0]);
index_list.push_back(m_field[1]);
index_list.push_back(m_field[2]);
m_opt_param->add_key(index_list);
char buff[512];
String range_string(buff, sizeof(buff), system_charset_info);
range_string.set_charset(system_charset_info);
/*
Expected result is range only on first keypart. Third keypart is
not applicable because there are no predicates on the second
keypart.
*/
const char expected1[] = "result keys[0]: (field_1 = 42)\n";
SEL_TREE *tree = get_mm_tree(
thd(), m_opt_param, 0, 0, m_current_table, /*remove_jump_scans=*/true,
new Item_cond_and(new_item_equal(m_field[0], 42),
new_item_equal(m_field[2], 10)));
range_string.length(0);
print_tree(&range_string, "result", tree, m_opt_param, false);
EXPECT_STREQ(expected1, range_string.c_ptr());
/*
Same SEL_ARG tree, but print_full argument is now true.
Non-applicable key parts are also printed in this case.
*/
const char expected1_printfull[] =
"result keys[0]: (field_1 = 42 AND field_3 = 10)\n";
range_string.length(0);
print_tree(&range_string, "result", tree, m_opt_param, true);
EXPECT_STREQ(expected1_printfull, range_string.c_ptr());
/*
Expected result is range only on first keypart. Second keypart is
not applicable because the predicate on the first keypart does not
use an equality operator.
*/
const char expected2[] = "result keys[0]: (field_1 < 42)\n";
tree = get_mm_tree(thd(), m_opt_param, 0, 0, m_current_table,
/*remove_jump_scans=*/true,
new Item_cond_and(new_item_lt(m_field[0], 42),
new_item_equal(m_field[1], 10)));
range_string.length(0);
print_tree(&range_string, "result", tree, m_opt_param, false);
EXPECT_STREQ(expected2, range_string.c_ptr());
/*
Same SEL_ARG tree, but print_full argument is now true.
Non-applicable key parts are also printed in this case.
*/
const char expected2_printfull[] =
"result keys[0]: (field_1 < 42 AND field_2 = 10)\n";
range_string.length(0);
print_tree(&range_string, "result", tree, m_opt_param, true);
EXPECT_STREQ(expected2_printfull, range_string.c_ptr());
}
/*
Exercise range optimizer with three single column indexes
*/
TEST_F(OptRangeTest, treeAndSingleColIndex1) {
create_table_singlecol_idx(3);
// Expected outputs
// Single-field range predicates
const char expected_fld1[] = "result keys[0]: (10 < field_1 < 13)\n";
const char expected_fld2_1[] = "result keys[1]: (field_2 < 11)\n";
const char expected_fld2_2[] = "result keys[1]: (8 < field_2)\n";
const char expected_fld3[] = "result keys[2]: (20 < field_3 < 30)\n";
/*
Expected result when performing AND of:
"(field_1 BETWEEN 10 AND 13) & (field_2 < 11)"
*/
const char expected_and1[] =
"result keys[0]: (10 < field_1 < 13)\n"
"result keys[1]: (field_2 < 11)\n";
/*
Expected result when performing AND of:
"((field_1 BETWEEN 10 AND 13) & (field_2 < 11))
&
(field_3 BETWEEN 20 AND 30)"
*/
const char expected_and2[] =
"result keys[0]: (10 < field_1 < 13)\n"
"result keys[1]: (field_2 < 11)\n"
"result keys[2]: (20 < field_3 < 30)\n";
/*
Expected result when performing AND of:
"((field_1 BETWEEN 10 AND 13) &
(field_2 < 11) &
(field_3 BETWEEN 20 AND 30)
)
&
field_2 > 8"
*/
const char expected_and3[] =
"result keys[0]: (10 < field_1 < 13)\n"
"result keys[1]: (8 < field_2 < 11)\n" // <- notice lower bound
"result keys[2]: (20 < field_3 < 30)\n";
SEL_TREE *tree_and = create_and_check_tree_and(
create_and_check_tree_and(
create_tree(new_item_between(m_field[0], 10, 13), expected_fld1),
create_tree(new_item_lt(m_field[1], 11), expected_fld2_1),
SEL_TREE::KEY, expected_and1),
create_tree(new_item_between(m_field[2], 20, 30), expected_fld3),
SEL_TREE::KEY, expected_and2);
/*
Testing Axiom 7: AND'ing a predicate already part of a SEL_TREE
has no effect.
*/
create_and_check_tree_and(
tree_and,
create_tree(new_item_between(m_field[2], 20, 30), expected_fld3),
SEL_TREE::KEY, expected_and2 // conditions did not change
);
create_and_check_tree_and(
tree_and, create_tree(new_item_gt(m_field[1], 8), expected_fld2_2),
SEL_TREE::KEY, expected_and3);
}
/*
Exercise range optimizer with three single column indexes
*/
TEST_F(OptRangeTest, treeOrSingleColIndex1) {
create_table_singlecol_idx(3);
// Expected outputs
// Single-field range predicates
const char expected_fld1[] = "result keys[0]: (10 < field_1 < 13)\n";
const char expected_fld2_1[] = "result keys[1]: (field_2 < 11)\n";
const char expected_fld2_2[] = "result keys[1]: (8 < field_2)\n";
const char expected_fld3[] = "result keys[2]: (20 < field_3 < 30)\n";
/*
Expected result when performing OR of:
"(field_1 Item_func::BETWEEN 10 AND 13) | (field_2 < 11)"
*/
const char expected_or1[] =
"result contains the following merges\n"
"--- alternative 1 ---\n"
" merge_tree keys[0]: (10 < field_1 < 13)\n"
" merge_tree keys[1]: (field_2 < 11)\n";
/*
Expected result when performing OR of:
"((field_1 BETWEEN 10 AND 13) | (field_2 < 11))
|
(field_3 BETWEEN 20 AND 30)"
*/
const char expected_or2[] =
"result contains the following merges\n"
"--- alternative 1 ---\n"
" merge_tree keys[0]: (10 < field_1 < 13)\n"
" merge_tree keys[1]: (field_2 < 11)\n"
" merge_tree keys[2]: (20 < field_3 < 30)\n";
SEL_TREE *tree_or2 = create_and_check_tree_or(
create_and_check_tree_or(
create_tree(new_item_between(m_field[0], 10, 13), expected_fld1),
create_tree(new_item_lt(m_field[1], 11), expected_fld2_1),
SEL_TREE::KEY, expected_or1),
create_tree(new_item_between(m_field[2], 20, 30), expected_fld3),
SEL_TREE::KEY, expected_or2);
/*
Testing Axiom 6: OR'ing a predicate already part of a SEL_TREE
has no effect.
*/
SEL_TREE *tree_or3 = create_and_check_tree_or(
tree_or2,
create_tree(new_item_between(m_field[2], 20, 30), expected_fld3),
SEL_TREE::KEY, expected_or2);
/*
Perform OR of:
"((field_1 BETWEEN 10 AND 13) |
(field_2 < 11) |
(field_3 BETWEEN 20 AND 30)
) |
(field_2 > 8)"
This is always TRUE due to
(field_2 < 11) | (field_2 > 8) <==> true
*/
create_and_check_tree_or(
tree_or3, create_tree(new_item_gt(m_field[1], 8), expected_fld2_2),
SEL_TREE::ALWAYS, "");
}
/*
Exercise range optimizer with three single column indexes
*/
TEST_F(OptRangeTest, treeAndOrComboSingleColIndex1) {
create_table_singlecol_idx(3);
// Expected outputs
// Single-field range predicates
const char exected_fld1[] = "result keys[0]: (10 < field_1 < 13)\n";
const char exected_fld2[] = "result keys[1]: (field_2 < 11)\n";
const char exected_fld3[] = "result keys[2]: (20 < field_3 < 30)\n";
// What "exected_fld1 & exected_fld2" should produce
const char expected_and[] =
"result keys[0]: (10 < field_1 < 13)\n"
"result keys[1]: (field_2 < 11)\n";
/*
What "(exected_fld1 & exected_fld2) | exected_fld3" should
produce.
By Axiom 4 (see above), we have that
X | (Y & Z) <==> (X | Y) & (X | Z)
Thus:
((field_1 BETWEEN 10 AND 13) & field_2 < 11) |
(field_3 BETWEEN 20 AND 30)
<==> (Axiom 4)
(field_1 BETWEEN ... | field_3 BETWEEN ...) &
(field_2 < ... | field_3 BETWEEN ...)
But the result above is not created. Instead the following, which
is incorrect (reads more rows than necessary), is the result:
(field_1 BETWEEN ... | field_2 < 11 | field_3 BETWEEN ...)
*/
const char expected_incorrect_or[] =
"result contains the following merges\n"
"--- alternative 1 ---\n"
" merge_tree keys[0]: (10 < field_1 < 13)\n"
" merge_tree keys[1]: (field_2 < 11)\n"
" merge_tree keys[2]: (20 < field_3 < 30)\n";
create_and_check_tree_or(
create_and_check_tree_and(
create_tree(new_item_between(m_field[0], 10, 13), exected_fld1),
create_tree(new_item_lt(m_field[1], 11), exected_fld2), SEL_TREE::KEY,
expected_and),
create_tree(new_item_between(m_field[2], 20, 30), exected_fld3),
SEL_TREE::KEY, expected_incorrect_or);
}
/**
Test for BUG#16164031
*/
TEST_F(OptRangeTest, treeAndOrComboSingleColIndex2) {
create_table_singlecol_idx(3);
// Single-index predicates
const char exp_f2_eq1[] = "result keys[1]: (field_2 = 1)\n";
const char exp_f2_eq2[] = "result keys[1]: (field_2 = 2)\n";
const char exp_f3_eq[] = "result keys[2]: (field_3 = 1)\n";
const char exp_f1_lt1[] = "result keys[0]: (field_1 < 256)\n";
// OR1: Result of OR'ing f2_eq with f3_eq
const char exp_or1[] =
"result contains the following merges\n"
"--- alternative 1 ---\n"
" merge_tree keys[1]: (field_2 = 1)\n"
" merge_tree keys[2]: (field_3 = 1)\n";
// OR2: Result of OR'ing f1_lt with f2_eq
const char exp_or2[] =
"result contains the following merges\n"
"--- alternative 1 ---\n"
" merge_tree keys[0]: (field_1 < 256)\n"
" merge_tree keys[1]: (field_2 = 2)\n";
// AND1: Result of "OR1 & OR2"
const char exp_and1[] =
"result contains the following merges\n"
"--- alternative 1 ---\n"
" merge_tree keys[1]: (field_2 = 1)\n"
" merge_tree keys[2]: (field_3 = 1)\n\n"
"--- alternative 2 ---\n"
" merge_tree keys[0]: (field_1 < 256)\n"
" merge_tree keys[1]: (field_2 = 2)\n";
SEL_TREE *tree_and1 = create_and_check_tree_and(
create_and_check_tree_or(
create_tree(new_item_equal(m_field[1], 1), exp_f2_eq1),
create_tree(new_item_equal(m_field[2], 1), exp_f3_eq), SEL_TREE::KEY,
exp_or1),
create_and_check_tree_or(
create_tree(new_item_lt(m_field[0], 256), exp_f1_lt1),
create_tree(new_item_equal(m_field[1], 2), exp_f2_eq2), SEL_TREE::KEY,
exp_or2),
SEL_TREE::KEY, exp_and1);
// OR3: Result of "AND1 | field3 = 1"
const char exp_or3[] =
"result contains the following merges\n"
"--- alternative 1 ---\n"
" merge_tree keys[1]: (field_2 = 1)\n"
" merge_tree keys[2]: (field_3 = 1)\n\n"
"--- alternative 2 ---\n"
" merge_tree keys[0]: (field_1 < 256)\n"
" merge_tree keys[1]: (field_2 = 2)\n"
" merge_tree keys[2]: (field_3 = 1)\n";
SEL_TREE *tree_or3 = create_and_check_tree_or(
tree_and1, create_tree(new_item_equal(m_field[2], 1), exp_f3_eq),
SEL_TREE::KEY, exp_or3);
// More single-index predicates
const char exp_f1_lt2[] = "result keys[0]: (field_1 < 35)\n";
const char exp_f1_gt2[] = "result keys[0]: (257 < field_1)\n";
const char exp_f1_or[] =
"result keys[0]: (field_1 < 35) OR (257 < field_1)\n";
// OR4: Result of "OR3 | exp_f1_or"
const char exp_or4[] =
"result contains the following merges\n"
"--- alternative 1 ---\n"
" merge_tree keys[1]: (field_2 = 1)\n"
" merge_tree keys[2]: (field_3 = 1)\n"
" merge_tree keys[0]: (field_1 < 35) OR (257 < field_1)\n\n"
"--- alternative 2 ---\n"
" merge_tree keys[0]: (field_1 < 256) OR (257 < field_1)\n"
" merge_tree keys[1]: (field_2 = 2)\n"
" merge_tree keys[2]: (field_3 = 1)\n";
SEL_TREE *tree_or4 = create_and_check_tree_or(
tree_or3,
create_and_check_tree_or(
create_tree(new_item_lt(m_field[0], 35), exp_f1_lt2),
create_tree(new_item_gt(m_field[0], 257), exp_f1_gt2), SEL_TREE::KEY,
exp_f1_or),
SEL_TREE::KEY, exp_or4);
// More single-index predicates
const char exp_f1_neq[] =
"result keys[0]: (field_1 < 255) OR (255 < field_1)\n";
const char exp_f2_eq3[] = "result keys[1]: (field_2 = 3)\n";
// AND2: Result of ANDing these two ^
const char exp_and2[] =
"result keys[0]: (field_1 < 255) OR (255 < field_1)\n"
"result keys[1]: (field_2 = 3)\n";
// OR5: Result of "OR4 | AND3"
/*
"(field_1 < 255) OR (255 < field_1)" is lost when performing this
OR. This results in a bigger set than correct boolean algebra
rules dictate. @See note about relaxed boolean algebra in
get_mm_tree().
*/
const char exp_or5[] =
"result contains the following merges\n"
"--- alternative 1 ---\n"
" merge_tree keys[1]: (field_2 = 1) OR (field_2 = 3)\n"
" merge_tree keys[2]: (field_3 = 1)\n"
" merge_tree keys[0]: (field_1 < 35) OR (257 < field_1)\n";
create_and_check_tree_or(
tree_or4,
create_and_check_tree_and(
create_tree(new_item_ne(m_field[0], 255), exp_f1_neq),
create_tree(new_item_equal(m_field[1], 3), exp_f2_eq3), SEL_TREE::KEY,
exp_and2),
SEL_TREE::KEY, exp_or5);
}
/**
Test for BUG#16241773
*/
TEST_F(OptRangeTest, treeAndOrComboSingleColIndex3) {
create_table_singlecol_idx(2);
// Single-index predicates
const char exp_f1_eq10[] = "result keys[0]: (field_1 = 10)\n";
const char exp_f2_gtr20[] = "result keys[1]: (20 < field_2)\n";
const char exp_f1_eq11[] = "result keys[0]: (field_1 = 11)\n";
const char exp_f2_gtr10[] = "result keys[1]: (10 < field_2)\n";
// OR1: Result of ORing f1_eq10 and f2_gtr20
const char exp_or1[] =
"result contains the following merges\n"
"--- alternative 1 ---\n"
" merge_tree keys[0]: (field_1 = 10)\n"
" merge_tree keys[1]: (20 < field_2)\n";
// OR2: Result of ORing f1_eq11 and f2_gtr10
const char exp_or2[] =
"result contains the following merges\n"
"--- alternative 1 ---\n"
" merge_tree keys[0]: (field_1 = 11)\n"
" merge_tree keys[1]: (10 < field_2)\n";
// AND1: Result of ANDing OR1 and OR2
const char exp_and1[] =
"result contains the following merges\n"
"--- alternative 1 ---\n"
" merge_tree keys[0]: (field_1 = 10)\n"
" merge_tree keys[1]: (20 < field_2)\n\n"
"--- alternative 2 ---\n"
" merge_tree keys[0]: (field_1 = 11)\n"
" merge_tree keys[1]: (10 < field_2)\n";
SEL_TREE *tree_and1 = create_and_check_tree_and(
create_and_check_tree_or(
create_tree(new_item_equal(m_field[0], 10), exp_f1_eq10),
create_tree(new_item_gt(m_field[1], 20), exp_f2_gtr20), SEL_TREE::KEY,
exp_or1),
create_and_check_tree_or(
create_tree(new_item_equal(m_field[0], 11), exp_f1_eq11),
create_tree(new_item_gt(m_field[1], 10), exp_f2_gtr10), SEL_TREE::KEY,
exp_or2),
SEL_TREE::KEY, exp_and1);
const char exp_f2_eq5[] = "result keys[1]: (field_2 = 5)\n";
// OR3: Result of OR'ing AND1 with f2_eq5
const char exp_or3[] =
"result contains the following merges\n"
"--- alternative 1 ---\n"
" merge_tree keys[0]: (field_1 = 10)\n"
" merge_tree keys[1]: (field_2 = 5) OR (20 < field_2)\n\n"
"--- alternative 2 ---\n"
" merge_tree keys[0]: (field_1 = 11)\n"
" merge_tree keys[1]: (field_2 = 5) OR (10 < field_2)\n";
SEL_TREE *tree_or3 = create_and_check_tree_or(
tree_and1, create_tree(new_item_equal(m_field[1], 5), exp_f2_eq5),
SEL_TREE::KEY, exp_or3);
const char exp_f2_lt2[] = "result keys[1]: (field_2 < 2)\n";
// OR4: Result of OR'ing OR3 with f2_lt2
const char exp_or4[] =
"result contains the following merges\n"
"--- alternative 1 ---\n"
" merge_tree keys[0]: (field_1 = 10)\n"
" merge_tree keys[1]: (field_2 < 2) OR "
"(field_2 = 5) OR (20 < field_2)\n\n"
"--- alternative 2 ---\n"
" merge_tree keys[0]: (field_1 = 11)\n"
" merge_tree keys[1]: (field_2 < 2) OR "
"(field_2 = 5) OR (10 < field_2)\n";
create_and_check_tree_or(tree_or3,
create_tree(new_item_lt(m_field[1], 2), exp_f2_lt2),
SEL_TREE::KEY, exp_or4);
}
/*
Create SelArg with various single valued predicate
*/
TEST_F(OptRangeTest, SelArgOnevalue) {
Fake_TABLE fake_table({7}, false);
Field *field_long7 = fake_table.field[0];
KEY_PART_INFO kpi;
kpi.init_from_field(field_long7);
uchar range_val7[Fake_TABLE::DEFAULT_PACK_LENGTH];
field_long7->get_key_image(range_val7, kpi.length, Field::itRAW);
SEL_ARG sel_arg7(field_long7, range_val7, range_val7, true);
String range_string;
print_selarg_ranges(&range_string, &sel_arg7, &kpi);
const char expected[] = "field_1 = 7";
EXPECT_STREQ(expected, range_string.c_ptr());
sel_arg7.min_flag |= NO_MIN_RANGE;
range_string.length(0);
print_selarg_ranges(&range_string, &sel_arg7, &kpi);
const char expected2[] = "field_1 <= 7";
EXPECT_STREQ(expected2, range_string.c_ptr());
sel_arg7.max_flag = NEAR_MAX;
range_string.length(0);
print_selarg_ranges(&range_string, &sel_arg7, &kpi);
const char expected3[] = "field_1 < 7";
EXPECT_STREQ(expected3, range_string.c_ptr());
sel_arg7.min_flag = NEAR_MIN;
sel_arg7.max_flag = NO_MAX_RANGE;
range_string.length(0);
print_selarg_ranges(&range_string, &sel_arg7, &kpi);
const char expected4[] = "7 < field_1";
EXPECT_STREQ(expected4, range_string.c_ptr());
sel_arg7.min_flag = 0;
range_string.length(0);
print_selarg_ranges(&range_string, &sel_arg7, &kpi);
const char expected5[] = "7 <= field_1";
EXPECT_STREQ(expected5, range_string.c_ptr());
}
/*
Create SelArg with a between predicate
*/
TEST_F(OptRangeTest, SelArgBetween) {
Fake_TABLE fake_table({3, 5}, false);
Field *field_long3 = fake_table.field[0];
Field *field_long5 = fake_table.field[1];
KEY_PART_INFO kpi;
kpi.init_from_field(field_long3);
uchar range_val3[Fake_TABLE::DEFAULT_PACK_LENGTH];
field_long3->get_key_image(range_val3, kpi.length, Field::itRAW);
uchar range_val5[Fake_TABLE::DEFAULT_PACK_LENGTH];
field_long5->get_key_image(range_val5, kpi.length, Field::itRAW);
SEL_ARG sel_arg35(field_long3, range_val3, range_val5, true);
String range_string;
print_selarg_ranges(&range_string, &sel_arg35, &kpi);
const char expected[] = "3 <= field_1 <= 5";
EXPECT_STREQ(expected, range_string.c_ptr());
range_string.length(0);
sel_arg35.min_flag = NEAR_MIN;
print_selarg_ranges(&range_string, &sel_arg35, &kpi);
const char expected2[] = "3 < field_1 <= 5";
EXPECT_STREQ(expected2, range_string.c_ptr());
range_string.length(0);
sel_arg35.max_flag = NEAR_MAX;
print_selarg_ranges(&range_string, &sel_arg35, &kpi);
const char expected3[] = "3 < field_1 < 5";
EXPECT_STREQ(expected3, range_string.c_ptr());
range_string.length(0);
sel_arg35.min_flag = 0;
print_selarg_ranges(&range_string, &sel_arg35, &kpi);
const char expected4[] = "3 <= field_1 < 5";
EXPECT_STREQ(expected4, range_string.c_ptr());
range_string.length(0);
sel_arg35.min_flag = NO_MIN_RANGE;
sel_arg35.max_flag = 0;
print_selarg_ranges(&range_string, &sel_arg35, &kpi);
const char expected5[] = "field_1 <= 5";
EXPECT_STREQ(expected5, range_string.c_ptr());
range_string.length(0);
sel_arg35.min_flag = 0;
sel_arg35.max_flag = NO_MAX_RANGE;
print_selarg_ranges(&range_string, &sel_arg35, &kpi);
const char expected6[] = "3 <= field_1";
EXPECT_STREQ(expected6, range_string.c_ptr());
}
/*
Test SelArg::CopyMax
*/
TEST_F(OptRangeTest, CopyMax) {
Fake_TABLE fake_table({3, 5}, false);
Field *field_long3 = fake_table.field[0];
Field *field_long5 = fake_table.field[1];
KEY_PART_INFO kpi;
kpi.init_from_field(field_long3);
uchar range_val3[Fake_TABLE::DEFAULT_PACK_LENGTH];
field_long3->get_key_image(range_val3, kpi.length, Field::itRAW);
uchar range_val5[Fake_TABLE::DEFAULT_PACK_LENGTH];
field_long5->get_key_image(range_val5, kpi.length, Field::itRAW);
SEL_ARG sel_arg3(field_long3, range_val3, range_val3, true);
sel_arg3.min_flag = NO_MIN_RANGE;
SEL_ARG sel_arg5(field_long5, range_val5, range_val5, true);
sel_arg5.min_flag = NO_MIN_RANGE;
String range_string;
print_selarg_ranges(&range_string, &sel_arg3, &kpi);
const char expected[] = "field_1 <= 3";
EXPECT_STREQ(expected, range_string.c_ptr());
range_string.length(0);
print_selarg_ranges(&range_string, &sel_arg5, &kpi);
const char expected2[] = "field_1 <= 5";
EXPECT_STREQ(expected2, range_string.c_ptr());
/*
Ranges now:
-inf ----------------3-5----------- +inf
sel_arg3: [-------------------->
sel_arg5: [---------------------->
Below: merge these two ranges into sel_arg3 using copy_max()
*/
bool full_range = sel_arg3.copy_max(&sel_arg5);
// The merged range does not cover all possible values
EXPECT_FALSE(full_range);
range_string.length(0);
print_selarg_ranges(&range_string, &sel_arg3, &kpi);
const char expected3[] = "field_1 <= 5";
EXPECT_STREQ(expected3, range_string.c_ptr());
range_string.length(0);
sel_arg5.min_flag = 0;
sel_arg5.max_flag = NO_MAX_RANGE;
print_selarg_ranges(&range_string, &sel_arg5, &kpi);
const char expected4[] = "5 <= field_1";
EXPECT_STREQ(expected4, range_string.c_ptr());
/*
Ranges now:
-inf ----------------3-5----------- +inf
sel_arg3: [---------------------->
sel_arg5: <---------------]
Below: merge these two ranges into sel_arg3 using copy_max()
*/
full_range = sel_arg3.copy_max(&sel_arg5);
// The new range covers all possible values
EXPECT_TRUE(full_range);
range_string.length(0);
print_selarg_ranges(&range_string, &sel_arg3, &kpi);
const char expected5[] = "field_1";
EXPECT_STREQ(expected5, range_string.c_ptr());
}
/*
Test SelArg::CopyMin
*/
TEST_F(OptRangeTest, CopyMin) {
Fake_TABLE fake_table({3, 5}, false);
Field *field_long3 = fake_table.field[0];
Field *field_long5 = fake_table.field[1];
KEY_PART_INFO kpi;
kpi.init_from_field(field_long3);
uchar range_val3[Fake_TABLE::DEFAULT_PACK_LENGTH];
field_long3->get_key_image(range_val3, kpi.length, Field::itRAW);
uchar range_val5[Fake_TABLE::DEFAULT_PACK_LENGTH];
field_long5->get_key_image(range_val5, kpi.length, Field::itRAW);
SEL_ARG sel_arg3(field_long3, range_val3, range_val3, true);
sel_arg3.max_flag = NO_MAX_RANGE;
SEL_ARG sel_arg5(field_long5, range_val5, range_val5, true);
sel_arg5.max_flag = NO_MAX_RANGE;
String range_string;
print_selarg_ranges(&range_string, &sel_arg3, &kpi);
const char expected[] = "3 <= field_1";
EXPECT_STREQ(expected, range_string.c_ptr());
range_string.length(0);
print_selarg_ranges(&range_string, &sel_arg5, &kpi);
const char expected2[] = "5 <= field_1";
EXPECT_STREQ(expected2, range_string.c_ptr());
/*
Ranges now:
-inf ----------------3-5----------- +inf
sel_arg3: <-----------------]
sel_arg5: <---------------]
Below: merge these two ranges into sel_arg3 using copy_max()
*/
bool full_range = sel_arg5.copy_min(&sel_arg3);
// The merged range does not cover all possible values
EXPECT_FALSE(full_range);
range_string.length(0);
print_selarg_ranges(&range_string, &sel_arg5, &kpi);
const char expected3[] = "3 <= field_1";
EXPECT_STREQ(expected3, range_string.c_ptr());
range_string.length(0);
sel_arg3.max_flag = 0;
sel_arg3.min_flag = NO_MIN_RANGE;
print_selarg_ranges(&range_string, &sel_arg3, &kpi);
const char expected4[] = "field_1 <= 3";
EXPECT_STREQ(expected4, range_string.c_ptr());
/*
Ranges now:
-inf ----------------3-5----------- +inf
sel_arg3: [-------------------->
sel_arg5: <-----------------]
Below: merge these two ranges into sel_arg5 using copy_min()
*/
full_range = sel_arg5.copy_min(&sel_arg3);
// The new range covers all possible values
EXPECT_TRUE(full_range);
range_string.length(0);
print_selarg_ranges(&range_string, &sel_arg5, &kpi);
const char expected5[] = "field_1";
EXPECT_STREQ(expected5, range_string.c_ptr());
}
/*
Test SelArg::KeyOr
*/
TEST_F(OptRangeTest, KeyOr1) {
Fake_RANGE_OPT_PARAM opt_param(thd(), &m_alloc, 0, false);
Fake_TABLE fake_table({3, 4}, false);
Field *field_long3 = fake_table.field[0];
Field *field_long4 = fake_table.field[1];
KEY_PART_INFO kpi;
kpi.init_from_field(field_long3);
uchar range_val3[Fake_TABLE::DEFAULT_PACK_LENGTH];
field_long3->get_key_image(range_val3, kpi.length, Field::itRAW);
uchar range_val4[Fake_TABLE::DEFAULT_PACK_LENGTH];
field_long4->get_key_image(range_val4, kpi.length, Field::itRAW);
SEL_ARG sel_arg_lt3(field_long3, range_val3, range_val3, true);
sel_arg_lt3.part = 0;
sel_arg_lt3.min_flag = NO_MIN_RANGE;
sel_arg_lt3.max_flag = NEAR_MAX;
SEL_ARG sel_arg_gt3(field_long3, range_val3, range_val3, true);
sel_arg_gt3.part = 0;
sel_arg_gt3.min_flag = NEAR_MIN;
sel_arg_gt3.max_flag = NO_MAX_RANGE;
SEL_ARG sel_arg_lt4(field_long4, range_val4, range_val4, true);
sel_arg_lt4.part = 0;
sel_arg_lt4.min_flag = NO_MIN_RANGE;
sel_arg_lt4.max_flag = NEAR_MAX;
String range_string;
print_selarg_ranges(&range_string, &sel_arg_lt3, &kpi);
const char expected_lt3[] = "field_1 < 3";
EXPECT_STREQ(expected_lt3, range_string.c_ptr());
range_string.length(0);
print_selarg_ranges(&range_string, &sel_arg_gt3, &kpi);
const char expected_gt3[] = "3 < field_1";
EXPECT_STREQ(expected_gt3, range_string.c_ptr());
range_string.length(0);
print_selarg_ranges(&range_string, &sel_arg_lt4, &kpi);
const char expected_lt4[] = "field_1 < 4";
EXPECT_STREQ(expected_lt4, range_string.c_ptr());
/*
Ranges now:
-inf ----------------34----------- +inf
sel_arg_lt3: [-------------------->
sel_arg_gt3: <---------------]
sel_arg_lt4: [--------------------->
*/
SEL_ROOT *tmp =
key_or(&opt_param, new (thd()->mem_root) SEL_ROOT(&sel_arg_lt3),
new (thd()->mem_root) SEL_ROOT(&sel_arg_gt3));
/*
Ranges now:
-inf ----------------34----------- +inf
tmp: [--------------------><---------------]
sel_arg_lt4: [--------------------->
*/
range_string.length(0);
print_selarg_ranges(&range_string, tmp->root, &kpi);
const char expected_merged[] =
"field_1 < 3\n"
"3 < field_1";
EXPECT_STREQ(expected_merged, range_string.c_ptr());
SEL_ROOT *tmp2 =
key_or(&opt_param, tmp, new (thd()->mem_root) SEL_ROOT(&sel_arg_lt4));
EXPECT_EQ(null_root, tmp2);
}
/*
Test SelArg::KeyOr (BUG#17619119)
*/
TEST_F(OptRangeTest, KeyOr2) {
create_table(2);
m_opt_param->add_key(m_field[1]);
m_opt_param->add_key(m_field[0], m_field[1]);
SEL_TREE *fld1_20 = create_tree(new_item_equal(m_field[0], 20),
"result keys[1]: (field_1 = 20)\n");
/*
Expected result when performing AND of:
"(field_1 = 20) TREE_AND (field_2 = 1)"
*/
SEL_TREE *tree_and1 = create_and_check_tree_and(
fld1_20,
create_tree(new_item_equal(m_field[1], 1),
"result keys[0]: (field_2 = 1)\n" // range idx #1
"result keys[1]: (field_2 = 1)\n"), // range idx #2
SEL_TREE::KEY,
"result keys[0]: (field_2 = 1)\n" // idx #1
"result keys[1]: (field_1 = 20 AND field_2 = 1)\n" // idx #2
);
/*
Expected result when performing AND of:
"(field_1 = 4) TREE_AND (field_2 = 42)"
*/
SEL_TREE *tree_and2 = create_and_check_tree_and(
create_tree(new_item_equal(m_field[0], 4),
"result keys[1]: (field_1 = 4)\n"),
create_tree(new_item_equal(m_field[1], 42),
"result keys[0]: (field_2 = 42)\n" // range idx #1
"result keys[1]: (field_2 = 42)\n"), // range idx #2
SEL_TREE::KEY,
"result keys[0]: (field_2 = 42)\n" // idx #1
"result keys[1]: (field_1 = 4 AND field_2 = 42)\n" // idx #2
);
/*
Expected result when performing OR of:
"((field_1 = 20) AND (field_2 = 1))
TREE_OR
((field_1 = 4) AND (field_2 = 42))"
*/
SEL_TREE *tree_or1 = create_and_check_tree_or(
tree_and1, tree_and2, SEL_TREE::KEY,
"result keys[0]: (field_2 = 1) OR (field_2 = 42)\n"
"result keys[1]: "
"(field_1 = 4 AND field_2 = 42) OR "
"(field_1 = 20 AND field_2 = 1)\n");
/*
Expected result when performing OR of:
"(field_1 > 13) TREE_OR (field_2 = 14)"
NOTE: if m_opt_param->remove_jump_scans was 'false', the merge
would contain another alternative with this range as well:
" merge_tree keys[1]: (14 <= field_2 <= 14)\n";
*/
SEL_TREE *tree_or2 = create_and_check_tree_or(
create_tree(new_item_gt(m_field[0], 13),
"result keys[1]: (13 < field_1)\n"),
create_tree(new_item_equal(m_field[1], 14),
"result keys[0]: (field_2 = 14)\n" // range idx #1
"result keys[1]: (field_2 = 14)\n"), // range idx #2
SEL_TREE::KEY,
"result contains the following merges\n"
"--- alternative 1 ---\n"
" merge_tree keys[1]: (13 < field_1)\n"
" merge_tree keys[0]: (field_2 = 14)\n");
/*
Expected result when performing OR of:
((field_1 = 4) AND (field_2 = 42)) OR ((field_1 = 20) AND (field_2 = 1))
TREE_OR
((field_1 > 13) OR (field_2 = 14)) <- merge
"field_1=20 AND field_2=1" from the first tree is removed by
key_or() since it is covered by "field_1 > 13" from the second tree.
*/
const char exp_or3[] =
"result contains the following merges\n"
"--- alternative 1 ---\n"
" merge_tree keys[1]: (field_1 = 4 AND field_2 = 42) OR "
"(13 < field_1)\n"
" merge_tree keys[0]: (field_2 = 14)\n";
create_and_check_tree_or(tree_or1, tree_or2, SEL_TREE::KEY, exp_or3);
/*
fld1_20 was modified to reflect the AND in tree_and1 (and these
trees are the same). They are no longer used, and trashed.
*/
EXPECT_EQ(fld1_20, tree_and1);
}
class Mock_SEL_ARG : public SEL_ARG {
public:
Mock_SEL_ARG(SEL_ROOT *next_key_part_ptr) {
next_key_part = next_key_part_ptr;
make_root();
}
Mock_SEL_ARG() {
make_root();
part = 1;
min_flag = 0;
max_flag = 0;
maybe_flag = false;
}
};
/**
@todo
- Move some place it can be reused
- Use varargs instead of copy-paste.
*/
static Item_row *new_Item_row(int a, int b) {
/*
The Item_row CTOR doesn't store the reference to the list, hence
it can live on the stack.
*/
mem_root_deque<Item *> items(*THR_MALLOC);
items.push_back(new Item_int(b));
return new Item_row(POS(), new Item_int(a), items);
}
static Item_row *new_Item_row(int a, int b, int c) {
/*
The Item_row CTOR doesn't store the reference to the list, hence
it can live on the stack.
*/
mem_root_deque<Item *> items(*THR_MALLOC);
items.push_back(new Item_int(b));
items.push_back(new Item_int(c));
return new Item_row(POS(), new Item_int(a), items);
}
/// @todo Move some place it can be reused.
static Item_row *new_Item_row(Field **fields, int count) {
/*
The Item_row CTOR doesn't store the reference to the list, hence
it can live on the stack.
*/
mem_root_deque<Item *> items(*THR_MALLOC);
for (int i = count - 1; i > 0; --i)
items.push_front(new Item_field(fields[i]));
return new Item_row(POS(), new Item_field(fields[0]), items);
}
TEST_F(OptRangeTest, RowConstructorIn2) {
create_table(2);
m_opt_param->add_key();
// We build the expression (field_1, field_2) IN ((3, 4), (1, 2)) ...
PT_item_list *all_args = new (current_thd->mem_root) PT_item_list;
all_args->push_front(new_Item_row(1, 2));
all_args->push_front(new_Item_row(3, 4));
all_args->push_front(new_Item_row(m_opt_param->table->field, 2));
Item *cond = new Item_func_in(POS(), all_args, false);
Parse_context pc(thd(), thd()->lex->current_query_block());
EXPECT_FALSE(cond->itemize(&pc, &cond));
// ... and resolve it.
Item *item = cond;
cond->fix_fields(thd(), &item);
SEL_TREE *sel_tree = get_mm_tree(thd(), m_opt_param, 0, 0, m_current_table,
/*remove_jump_scans=*/true, cond);
EXPECT_FALSE(sel_tree == nullptr);
EXPECT_EQ(Key_map(1), sel_tree->keys_map);
const char *expected =
"result keys[0]: "
"(field_1 = 1 AND field_2 = 2) OR "
"(field_1 = 3 AND field_2 = 4)\n";
check_tree_result(sel_tree, SEL_TREE::KEY, expected);
}
TEST_F(OptRangeTest, RowConstructorIn3) {
create_table(3);
m_opt_param->add_key();
// We build the expression (field_1, field_2) IN ((3, 4), (1, 2)) ...
PT_item_list *all_args = new (current_thd->mem_root) PT_item_list;
all_args->push_front(new_Item_row(1, 2, 3));
all_args->push_front(new_Item_row(4, 5, 6));
all_args->push_front(new_Item_row(m_opt_param->table->field, 3));
Item *cond = new Item_func_in(POS(), all_args, false);
Parse_context pc(thd(), thd()->lex->current_query_block());
EXPECT_FALSE(cond->itemize(&pc, &cond));
// ... and resolve it.
Item *item = cond;
cond->fix_fields(thd(), &item);
SEL_TREE *sel_tree = get_mm_tree(thd(), m_opt_param, 0, 0, m_current_table,
/*remove_jump_scans=*/true, cond);
EXPECT_FALSE(sel_tree == nullptr);
EXPECT_EQ(Key_map(1), sel_tree->keys_map);
const char *expected =
"result keys[0]: "
"(field_1 = 1 AND field_2 = 2 AND field_3 = 3) OR "
"(field_1 = 4 AND field_2 = 5 AND field_3 = 6)\n";
check_tree_result(sel_tree, SEL_TREE::KEY, expected);
}
TEST_F(OptRangeTest, CombineAlways) {
RANGE_OPT_PARAM param; // Not really used
{
Mock_SEL_ARG always_root;
always_root.min_flag = NO_MIN_RANGE;
always_root.max_flag = NO_MAX_RANGE;
SEL_ROOT always(&always_root);
Mock_SEL_ARG key_range_root;
SEL_ROOT key_range(&key_range_root);
EXPECT_TRUE(key_or(¶m, &always, &key_range) == &always);
}
{
Mock_SEL_ARG always_root;
always_root.min_flag = NO_MIN_RANGE;
always_root.max_flag = NO_MAX_RANGE;
SEL_ROOT always(&always_root);
Mock_SEL_ARG key_range_root;
SEL_ROOT key_range(&key_range_root);
EXPECT_TRUE(key_or(¶m, &key_range, &always) == &always);
}
{
Mock_SEL_ARG always1_root;
always1_root.min_flag = NO_MIN_RANGE;
always1_root.max_flag = NO_MAX_RANGE;
SEL_ROOT always1(&always1_root);
Mock_SEL_ARG always2_root;
always2_root.min_flag = NO_MIN_RANGE;
always2_root.max_flag = NO_MAX_RANGE;
SEL_ROOT always2(&always2_root);
EXPECT_TRUE(key_or(¶m, &always1, &always2) == &always1);
}
{
Mock_SEL_ARG always_root;
always_root.min_flag = NO_MIN_RANGE;
always_root.max_flag = NO_MAX_RANGE;
SEL_ROOT always(&always_root);
Mock_SEL_ARG key_range_root;
SEL_ROOT key_range(&key_range_root);
EXPECT_TRUE(key_and(¶m, &key_range, &always) == &key_range);
}
{
Mock_SEL_ARG always_root;
always_root.min_flag = NO_MIN_RANGE;
always_root.max_flag = NO_MAX_RANGE;
SEL_ROOT always(&always_root);
Mock_SEL_ARG key_range_root;
SEL_ROOT key_range(&key_range_root);
EXPECT_TRUE(key_and(¶m, &always, &key_range) == &key_range);
}
}
TEST_F(OptRangeTest, CombineAlways2) {
class Fake_sel_arg : public SEL_ARG {
public:
Fake_sel_arg() {
part = 0;
left = nullptr;
next = nullptr;
min_flag = max_flag = maybe_flag = false;
set_endpoints(1, 2);
next_key_part = nullptr;
make_root();
}
void add_next_key_part(SEL_ROOT *next_arg) {
set_next_key_part(next_arg);
next_arg->root->part = part + 1;
}
private:
void set_endpoints(int min, int max) {
set_endpoint(min, min_value_buff, &min_value);
set_endpoint(max, max_value_buff, &max_value);
}
void set_endpoint(int value, char *buff, uchar **variable) {
buff[0] = value;
buff[1] = 0;
*variable = reinterpret_cast<uchar *>(buff);
}
char min_value_buff[10], max_value_buff[10];
};
class Fake_key_part_info : public KEY_PART_INFO {
public:
Fake_key_part_info(Mock_field_long *field_arg) {
field = field_arg;
length = 1;
store_length = sizeof(long);
}
};
RANGE_OPT_PARAM param;
Fake_sel_arg always_root, key_range_root;
always_root.min_flag = NO_MIN_RANGE;
always_root.max_flag = NO_MAX_RANGE;
SEL_ROOT always(&always_root), key_range(&key_range_root);
Mock_field_long field1("col_1", false, false);
Mock_field_long field2("col_2", false, false);
Fake_TABLE table(&field1, &field2);
String res(1000), so_far(1000);
Fake_key_part_info key_part_info[] = {Fake_key_part_info(&field1),
Fake_key_part_info(&field2)};
Fake_sel_arg other_root;
other_root.add_next_key_part(&key_range);
SEL_ROOT other(&other_root);
append_range_all_keyparts(nullptr, &res, &so_far, &other, key_part_info,
true);
// Let's make sure we built the expression we expected ...
EXPECT_STREQ("(1 <= col_1 <= 2 AND 1 <= col_2 <= 2)", res.ptr());
EXPECT_TRUE(key_or(¶m, &always, &other) == &always);
}
TEST_F(OptRangeTest, AppendRange) {
String out(100);
Mock_field_long field("my_field", false, false);
Fake_TABLE table(&field);
KEY_PART_INFO kp;
kp.field = &field;
kp.length = 1;
uchar min_value = 42;
uchar max_value = 45;
append_range(&out, &kp, &min_value, &max_value, NEAR_MIN | NEAR_MAX);
EXPECT_STREQ("42 < my_field < 45", out.c_ptr());
}
TEST_F(OptRangeTest, TreeRootGetsUpdated) {
/*
Create a bunch of SEL_ARGs (from 0 up to 10). The simplest way
of creating them seems to just be calling get_mm_tree() and deleting
the resulting SEL_ARG.
*/
Fake_RANGE_OPT_PARAM opt_param(thd(), &m_alloc, 1, false);
opt_param.add_key(opt_param.table->field[0]);
std::vector<SEL_ARG *> args;
for (int i = 0; i < 10; ++i) {
SEL_TREE *tree = get_mm_tree(thd(), &opt_param, 0, 0,
opt_param.table->pos_in_table_list->map(),
/*remove_jump_scans=*/true,
new_item_equal(opt_param.table->field[0], i));
ASSERT_NE(nullptr, tree);
SEL_ROOT *root = tree->keys[0];
ASSERT_EQ(1, root->elements);
SEL_ARG *arg = root->root;
root->tree_delete(arg);
args.push_back(arg);
}
// Make a SEL_ROOT with the first element in it.
SEL_ROOT root(args[0]);
EXPECT_EQ(args[0], root.root);
/*
Now insert the nine others; since they're all bigger, the root should
be a different one in any reasonably balanced tree, so we can verify
this works as it should.
*/
for (int i = 1; i < 10; ++i) {
root.insert(args[i]);
}
EXPECT_EQ(args.size(), root.elements);
EXPECT_NE(args[0], root.root);
}
TEST_F(OptRangeTest, CloneSpatialKey) {
Fake_RANGE_OPT_PARAM param(thd(), &m_alloc, 2, false);
Mock_SEL_ARG key1, key2;
key1.min_flag |= GEOM_FLAG;
key1.rkey_func_flag = HA_READ_MBR_CONTAIN;
SEL_ROOT key1_root(&key1), key2_root(&key2);
key1_root.use_count = 2;
key1_root.elements = 2;
key2_root.type = SEL_ROOT::Type::MAYBE_KEY;
// check if tree is cloned along with gis flag.
SEL_ROOT *cloned_key1 = key_and(¶m, &key1_root, &key2_root);
EXPECT_NE(cloned_key1, &key1_root);
EXPECT_EQ(cloned_key1->root->rkey_func_flag, key1_root.root->rkey_func_flag);
key1_root.use_count = 0;
}
} // namespace opt_range_unittest
#undef create_tree
#undef create_and_check_tree_and
#undef create_and_check_tree_or
|