1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
|
/* Copyright (c) 2011, 2025, Oracle and/or its affiliates.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is designed to work with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have either included with
the program or referenced in the documentation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
#include <gtest/gtest.h>
#include <string.h>
#define FRIEND_OF_GTID_SET class GroupTest_Group_containers_Test
#define FRIEND_OF_GROUP_CACHE class GroupTest_Group_containers_Test
#define FRIEND_OF_GROUP_LOG_STATE class GroupTest_Group_containers_Test
#define NON_DISABLED_UNITTEST_GTID
#include "binlog.h"
#include "my_thread.h"
#include "rpl_gtid.h"
#include "sql_class.h"
#define N_SIDS 16
#define ASSERT_OK(X) ASSERT_EQ(RETURN_STATUS_OK, X)
#define EXPECT_OK(X) EXPECT_EQ(RETURN_STATUS_OK, X)
#define EXPECT_NOK(X) EXPECT_NE(RETURN_STATUS_OK, X)
class GroupTest : public ::testing::Test {
public:
static const char *uuids[16];
rpl_sid sids[16];
unsigned int seed;
void SetUp() override {
seed = (unsigned int)time(nullptr);
printf("# seed = %u\n", seed);
srand(seed);
for (int i = 0; i < 16; i++) sids[i].parse(uuids[i]);
verbose = false;
errtext_stack_pos = 0;
errtext_stack[0] = 0;
append_errtext(__LINE__, "seed=%d", seed);
my_delete("sid-map-0", MYF(0));
my_delete("sid-map-1", MYF(0));
my_delete("sid-map-2", MYF(0));
}
void TearDown() {
my_delete("sid-map-0", MYF(0));
my_delete("sid-map-1", MYF(0));
my_delete("sid-map-2", MYF(0));
}
/*
Test that different, equivalent ways to construct a Gtid_set give
the same resulting Gtid_set. This is used to test Gtid_set,
Sid_map, Group_cache, Group_log_state, and Owned_groups.
We will generate sets of groups in *stages*. Each stage is
divided into a number of *sub-stages* (the number of substages is
taken uniformly at random from the set 1, 2, ..., 200). In each
sub-stage, we randomly sample one sub-group from a fixed set of
groups. The fixed set of groups consists of groups from 16
different SIDs. For the Nth SID (1 <= N <= 16), the fixed set of
groups contains all GNOS from the closed interval [N, N - 1 + N *
N]. The stage consists of the set of groups from all the
sub-stages.
*/
#define BEGIN_SUBSTAGE_LOOP(group_test, stage, do_errtext) \
(group_test)->push_errtext(); \
for (int substage_i = 0; substage_i < (stage)->n_substages; substage_i++) { \
Substage &substage = (stage)->substages[substage_i]; \
if (do_errtext) \
(group_test) \
->append_errtext(__LINE__, "sidno=%d group=%s substage_i=%d", \
substage.sidno, substage.gtid_str, substage_i);
#define END_SUBSTAGE_LOOP(group_test) \
} \
group_test->pop_errtext()
/**
A substage, i.e., one of the randomly generated groups.
*/
struct Substage {
rpl_sidno sidno;
rpl_gno gno;
const rpl_sid *sid;
char sid_str[binary_log::Uuid::TEXT_LENGTH + 1];
char gtid_str[binary_log::Uuid::TEXT_LENGTH + 1 + MAX_GNO_TEXT_LENGTH + 1];
bool is_first, is_last, is_auto;
#ifndef NO_DBUG
void print() const {
printf("%d/%s [first=%d last=%d auto=%d]", sidno, gtid_str, is_first,
is_last, is_auto);
}
#endif
};
/**
A stage, i.e., the sequence of randomly generated groups.
*/
struct Stage {
class GroupTest *group_test;
Sid_map *sid_map;
// List of groups added in the present stage.
static const int MAX_SUBSTAGES = 200;
Substage substages[MAX_SUBSTAGES];
int n_substages;
// Set of groups added in the present stage.
Gtid_set set;
int str_len;
char *str;
// The subset of groups that can be added as automatic groups.
Gtid_set automatic_groups;
// The subset of groups that cannot be added as automatic groups.
Gtid_set non_automatic_groups;
Stage(class GroupTest *gt, Sid_map *sm)
: group_test(gt),
sid_map(sm),
set(sm),
str_len(0),
str(nullptr),
automatic_groups(sm),
non_automatic_groups(sm) {
init(sm);
}
void init(Sid_map *sm) {
rpl_sidno max_sidno = sm->get_max_sidno();
ASSERT_OK(set.ensure_sidno(max_sidno));
ASSERT_OK(automatic_groups.ensure_sidno(max_sidno));
ASSERT_OK(non_automatic_groups.ensure_sidno(max_sidno));
}
~Stage() { free(str); }
void print() const {
printf("%d substages = {\n", n_substages);
for (int i = 0; i < n_substages; i++) {
printf(" substage[%d]: ", i);
substages[i].print();
printf("\n");
}
printf("\n");
}
/**
Generate the the random groups that constitute a stage.
@param done_groups The set of all groups added in previous
stages.
@param other_sm Sid_map to which groups should be added.
*/
void new_stage(const Gtid_set *done_groups, Sid_map *other_sm) {
set.clear();
automatic_groups.clear();
non_automatic_groups.clear();
n_substages = 1 + (rand() % MAX_SUBSTAGES);
BEGIN_SUBSTAGE_LOOP(group_test, this, false) {
// generate random GTID
substage.sidno = 1 + (rand() % N_SIDS);
substage.gno = 1 + (rand() % (substage.sidno * substage.sidno));
// compute alternative forms
substage.sid = sid_map->sidno_to_sid(substage.sidno);
ASSERT_NE((rpl_sid *)nullptr, substage.sid) << group_test->errtext;
substage.sid->to_string(substage.sid_str);
substage.sid->to_string(substage.gtid_str);
substage.gtid_str[rpl_sid.TEXT_LENGTH] = ':';
format_gno(substage.gtid_str + rpl_sid.TEXT_LENGTH + 1, substage.gno);
ASSERT_LE(1, other_sm->add_permanent(substage.sid))
<< group_test->errtext;
// check if this group could be added as an 'automatic' group
Gtid_set::Const_interval_iterator ivit(done_groups, substage.sidno);
const Gtid_set::Interval *iv = ivit.get();
substage.is_auto =
!set.contains_group(substage.sidno, substage.gno) &&
((iv == nullptr || iv->start > 1) ? substage.gno == 1
: substage.gno == iv->end);
// check if this sub-group is the first in its group in this
// stage, and add it to the set
substage.is_first = !set.contains_group(substage.sidno, substage.gno);
if (substage.is_first) ASSERT_OK(set.add(substage.gtid_str));
}
END_SUBSTAGE_LOOP(group_test);
// Iterate backwards so that we can detect when a subgroup is
// the last subgroup of its group.
set.clear();
for (int substage_i = n_substages - 1; substage_i >= 0; substage_i--) {
Substage &substage = substages[substage_i];
substage.is_last = !set.contains_group(substage.sidno, substage.gno);
if (substage.is_last) ASSERT_OK(set.add(substage.gtid_str));
}
str_len = set.get_string_length();
str = (char *)realloc(str, str_len + 1);
set.to_string(str);
}
};
/*
We maintain a text that contains the state of the test. We print
this text when a test assertion fails. The text is updated each
iteration of each loop, so that we can easier track the exact
point in time when an error occurs. Since loops may be nested, we
maintain a stack of offsets in the error text: before a new loop
is entered, the position of the end of the string is pushed to the
stack and the text appended in each iteration is added to that
position.
*/
char errtext[1000];
int errtext_stack[100];
int errtext_stack_pos;
bool verbose;
void append_errtext(int line, const char *fmt, ...)
MY_ATTRIBUTE((format(printf, 3, 4))) {
va_list argp;
va_start(argp, fmt);
vsprintf(errtext + errtext_stack[errtext_stack_pos], fmt, argp);
if (verbose) printf("@line %d: %s\n", line, errtext);
va_end(argp);
}
void push_errtext() {
int old_len = errtext_stack[errtext_stack_pos];
int len = old_len + strlen(errtext + old_len);
strcpy(errtext + len, " | ");
errtext_stack[++errtext_stack_pos] = len + 3;
}
void pop_errtext() { errtext[errtext_stack[errtext_stack_pos--] - 3] = 0; }
void group_subset(Gtid_set *sub, Gtid_set *super, bool outcome, int line,
const char *desc) {
append_errtext(line, "%s", desc);
// check using is_subset
EXPECT_EQ(outcome, sub->is_subset(super)) << errtext;
// check using set subtraction
enum_return_status status;
Gtid_set sub_minus_super(sub, &status);
ASSERT_OK(status) << errtext;
ASSERT_OK(sub_minus_super.remove(super)) << errtext;
ASSERT_EQ(outcome, sub_minus_super.is_empty()) << errtext;
}
};
const char *GroupTest::uuids[16] = {
"00000000-0000-0000-0000-000000000000",
"11111111-1111-1111-1111-111111111111",
"22222222-2222-2222-2222-222222222222",
"33333333-3333-3333-3333-333333333333",
"44444444-4444-4444-4444-444444444444",
"55555555-5555-5555-5555-555555555555",
"66666666-6666-6666-6666-666666666666",
"77777777-7777-7777-7777-777777777777",
"88888888-8888-8888-8888-888888888888",
"99999999-9999-9999-9999-999999999999",
"aaaaAAAA-aaaa-AAAA-aaaa-aAaAaAaAaaaa",
"bbbbBBBB-bbbb-BBBB-bbbb-bBbBbBbBbbbb",
"ccccCCCC-cccc-CCCC-cccc-cCcCcCcCcccc",
"ddddDDDD-dddd-DDDD-dddd-dDdDdDdDdddd",
"eeeeEEEE-eeee-EEEE-eeee-eEeEeEeEeeee",
"ffffFFFF-ffff-FFFF-ffff-fFfFfFfFffff",
};
TEST_F(GroupTest, Uuid) {
Uuid u;
char buf[100];
// check that we get back the same UUID after parse + print
for (int i = 0; i < N_SIDS; i++) {
EXPECT_OK(u.parse(uuids[i])) << "i=" << i;
u.to_string(buf);
EXPECT_STRCASEEQ(uuids[i], buf) << "i=" << i;
}
// check error cases
EXPECT_OK(u.parse("ffffFFFF-ffff-FFFF-ffff-ffffffffFFFFf"));
EXPECT_NOK(u.parse("ffffFFFF-ffff-FFFF-ffff-ffffffffFFFg"));
EXPECT_NOK(u.parse("ffffFFFF-ffff-FFFF-ffff-ffffffffFFF"));
EXPECT_NOK(u.parse("ffffFFFF-ffff-FFFF-fff-fffffffffFFFF"));
EXPECT_NOK(u.parse("ffffFFFF-ffff-FFFF-ffff-ffffffffFFF-"));
EXPECT_NOK(u.parse(" ffffFFFF-ffff-FFFF-ffff-ffffffffFFFF"));
EXPECT_NOK(u.parse("ffffFFFFfffff-FFFF-ffff-ffffffffFFFF"));
}
TEST_F(GroupTest, Sid_map) {
Checkable_rwlock lock;
Sid_map sm(&lock);
lock.rdlock();
ASSERT_OK(sm.open("sid-map-0"));
// Add a random SID until we have N_SID SIDs in the map.
while (sm.get_max_sidno() < N_SIDS)
ASSERT_LE(1, sm.add_permanent(&sids[rand() % N_SIDS])) << errtext;
// Check that all N_SID SIDs are in the map, and that
// get_sorted_sidno() has the correct order. This implies that no
// SID was added twice.
for (int i = 0; i < N_SIDS; i++) {
rpl_sidno sidno = sm.get_sorted_sidno(i);
const rpl_sid *sid;
char buf[100];
EXPECT_NE((rpl_sid *)nullptr, sid = sm.sidno_to_sid(sidno)) << errtext;
const int max_len = binary_log::Uuid::TEXT_LENGTH;
EXPECT_EQ(max_len, sid->to_string(buf)) << errtext;
EXPECT_STRCASEEQ(uuids[i], buf) << errtext;
EXPECT_EQ(sidno, sm.sid_to_sidno(sid)) << errtext;
}
lock.unlock();
lock.assert_no_lock();
}
TEST_F(GroupTest, Group_containers) {
/*
In this test, we maintain 298 Gtid_sets. We add groups to these
Gtid_sets in stages, as described above. We add the groups to
each of the 298 Gtid_sets in different ways, as described below.
At the end of each stage, we check that all the 298 resulting
Gtid_sets are mutually equal.
We add groups in the two ways:
A. Test Gtid_sets and Sid_maps. We vary two parameters:
Parameter 1: vary the way that groups are added:
0. Add one group at a time, using add(sidno, gno).
1. Add one group at a time, using add(text).
2. Add all new groups at once, using add(gs_new).
3. add all new groups at once, using add(gs_new.to_string()).
4. Maintain a string that contains the concatenation of all
gs_new.to_string(). in each stage, we set gs[4] to a new
Gtid_set created from this string.
Parameter 2: vary the Sid_map object:
0. Use a Sid_map that has all the SIDs in order.
1. Use a Sid_map where SIDs are added in the order they appear.
We vary these parameters in all combinations; thus we construct
10 Gtid_sets.
*/
enum enum_sets_method {
METHOD_SIDNO_GNO = 0,
METHOD_GROUP_TEXT,
METHOD_GTID_SET,
METHOD_GTID_SET_TEXT,
METHOD_ALL_TEXTS_CONCATENATED,
MAX_METHOD
};
enum enum_sets_sid_map { SID_MAP_0 = 0, SID_MAP_1, MAX_SID_MAP };
const int N_COMBINATIONS_SETS = MAX_METHOD * MAX_SID_MAP;
/*
B. Test Group_cache, Group_log_state, and Owned_groups. All
sub-groups for the stage are added to the Group_cache, the
Group_cache is flushed to the Group_log_state, and the
Gtid_set is extracted from the Group_log_state. We vary the
following parameters.
Parameter 1: type of statement:
0. Transactional replayed statement: add all groups to the
transaction group cache (which is flushed to a
Group_log_state at the end of the stage). Set
GTID_NEXT_LIST to the list of all groups in the stage.
1. Non-transactional replayed statement: add all groups to the
stmt group cache (which is flushed to the Group_log_state
at the end of each sub-stage). Set GTID_NEXT_LIST = NULL.
2. Randomize: for each sub-stage, choose 0 or 1 with 50%
chance. Set GTID_NEXT_LIST to the list of all groups in
the stage.
3. Automatic groups: add all groups to the stmt group cache,
but make the group automatic if possible, i.e., if the SID
and GNO are unlogged and there is no smaller unlogged GNO
for this SID. Set GTID_NEXT_LIST = NULL.
Parameter 2: ended or non-ended sub-groups:
0. All sub-groups are unended (except automatic sub-groups).
1. For each group, the last sub-group of the group in the
stage is ended. Don't add groups that are already ended in the
Group_log_state.
2. For each group in the stage, choose 0 or 1 with 50% chance.
Parameter 3: empty or normal sub-group:
0. Generate only normal (and possibly automatic) sub-groups.
1. Generate only empty (and possibly automatic) sub-groups.
2. Generate only empty (and possibly automatic) sub-groups.
Add the sub-groups implicitly: do not call
add_empty_subgroup(); instead rely on
gtid_before_flush_trx_cache() to add empty subgroups.
3. Choose 0 or 1 with 33% chance.
Parameter 4: insert anonymous sub-groups or not:
0. Do not generate anonymous sub-groups.
1. Generate an anomous sub-group before each sub-group with
50% chance and an anonymous group after each sub-group with
50% chance.
We vary these parameters in all combinations; thus we construct
4*3*4*2=96 Gtid_sets.
*/
enum enum_caches_type {
TYPE_TRX = 0,
TYPE_NONTRX,
TYPE_RANDOMIZE,
TYPE_AUTO,
MAX_TYPE
};
enum enum_caches_end { END_OFF = 0, END_ON, END_RANDOMIZE, MAX_END };
enum enum_caches_empty {
EMPTY_OFF = 0,
EMPTY_ON,
EMPTY_IMPLICIT,
EMPTY_RANDOMIZE,
MAX_EMPTY
};
enum enum_caches_anon { ANON_OFF = 0, ANON_ON, MAX_ANON };
const int N_COMBINATIONS_CACHES = MAX_TYPE * MAX_END * MAX_EMPTY * MAX_ANON;
const int N_COMBINATIONS = N_COMBINATIONS_SETS + N_COMBINATIONS_CACHES;
// Auxiliary macros to loop through all combinations of parameters.
#define BEGIN_LOOP_A \
push_errtext(); \
for (int method_i = 0, combination_i = 0; method_i < MAX_METHOD; \
method_i++) { \
for (int sid_map_i = 0; sid_map_i < MAX_SID_MAP; \
sid_map_i++, combination_i++) { \
Gtid_set >id_set [[maybe_unused]] = \
containers[combination_i]->gtid_set; \
Sid_map *&sid_map [[maybe_unused]] = sid_maps[sid_map_i]; \
append_errtext(__LINE__, "sid_map_i=%d method_i=%d combination_i=%d", \
sid_map_i, method_i, combination_i);
#define END_LOOP_A \
} \
} \
pop_errtext()
#define BEGIN_LOOP_B \
push_errtext(); \
for (int type_i = 0, combination_i = N_COMBINATIONS_SETS; type_i < MAX_TYPE; \
type_i++) { \
for (int end_i = 0; end_i < MAX_END; end_i++) { \
for (int empty_i = 0; empty_i < MAX_EMPTY; empty_i++) { \
for (int anon_i = 0; anon_i < MAX_ANON; anon_i++, combination_i++) { \
Gtid_set >id_set [[maybe_unused]] = \
containers[combination_i]->gtid_set; \
Group_cache &stmt_cache [[maybe_unused]] = \
containers[combination_i]->stmt_cache; \
Group_cache &trx_cache [[maybe_unused]] = \
containers[combination_i]->trx_cache; \
Group_log_state &group_log_state [[maybe_unused]] = \
containers[combination_i]->group_log_state; \
append_errtext(__LINE__, \
"type_i=%d end_i=%d empty_i=%d " \
"anon_i=%d combination_i=%d", \
type_i, end_i, empty_i, anon_i, combination_i); \
// verbose= (combination_i == 108); /*todo*/
#define END_LOOP_B \
} \
} \
} \
} \
pop_errtext()
// Do not generate warnings (because that causes segfault when done
// from a unittest).
global_system_variables.log_error_verbosity = 1;
mysql_bin_log.server_uuid_sidno = 1;
// Create Sid_maps.
Checkable_rwlock &lock = mysql_bin_log.sid_lock;
Sid_map **sid_maps = new Sid_map *[2];
sid_maps[0] = &mysql_bin_log.sid_map;
sid_maps[1] = new Sid_map(&lock);
lock.rdlock();
ASSERT_OK(sid_maps[0]->open("sid-map-1"));
ASSERT_OK(sid_maps[1]->open("sid-map-2"));
/*
Make sid_maps[0] and sid_maps[1] different: sid_maps[0] is
generated in order; sid_maps[1] is generated in the order that
SIDS are inserted in the Gtid_set.
*/
for (int i = 0; i < N_SIDS; i++)
ASSERT_LE(1, sid_maps[0]->add_permanent(&sids[i])) << errtext;
// Create list of container objects. These are the objects that we
// test.
struct Containers {
Gtid_set gtid_set;
Group_cache stmt_cache;
Group_cache trx_cache;
Group_log_state group_log_state;
Containers(Checkable_rwlock *lock, Sid_map *sm)
: gtid_set(sm), group_log_state(lock, sm) {
init();
}
void init() { ASSERT_OK(group_log_state.ensure_sidno()); };
};
Containers **containers = new Containers *[N_COMBINATIONS];
BEGIN_LOOP_A { containers[combination_i] = new Containers(&lock, sid_map); }
END_LOOP_A;
BEGIN_LOOP_B {
containers[combination_i] = new Containers(&lock, sid_maps[0]);
}
END_LOOP_B;
/*
Construct a Gtid_set that contains the set of all groups from
which we sample.
*/
static char all_groups_str[100 * 100];
char *s = all_groups_str;
s += sprintf(s, "%s:1", uuids[0]);
for (rpl_sidno sidno = 2; sidno <= N_SIDS; sidno++)
s += sprintf(s, ",\n%s:1-%d", uuids[sidno - 1], sidno * sidno);
enum_return_status status;
Gtid_set all_groups(sid_maps[0], all_groups_str, &status);
ASSERT_OK(status) << errtext;
// The set of groups that were added in some previous stage.
Gtid_set done_groups(sid_maps[0]);
ASSERT_OK(done_groups.ensure_sidno(sid_maps[0]->get_max_sidno()));
/*
Iterate through stages. In each stage, create the "stage group
set" by generating up to 200 subgroups. Add this stage group set
to each of the group sets in different ways. Stop when the union
of all stage group sets is equal to the full set from which we
took the samples.
*/
char *done_str = nullptr;
int done_str_len = 0;
Stage stage(this, sid_maps[0]);
int stage_i = 0;
/*
We need a THD object only to read THD::variables.gtid_next,
THD::variables.gtid_end, THD::variables.gtid_next_list,
THD::thread_id, THD::server_status. We don't want to invoke the
THD constructor because that would require setting up mutexes,
etc. Hence we use malloc instead of new.
*/
THD *thd = (THD *)malloc(sizeof(THD));
ASSERT_NE((THD *)nullptr, thd) << errtext;
Gtid_specification *gtid_next = &thd->variables.gtid_next;
thd->set_new_thread_id();
gtid_next->type = Gtid_specification::AUTOMATIC;
bool >id_end = thd->variables.gtid_end;
bool >id_commit = thd->variables.gtid_commit;
thd->server_status = 0;
thd->system_thread = NON_SYSTEM_THREAD;
thd->variables.gtid_next_list.gtid_set = &stage.set;
push_errtext();
while (!all_groups.equals(&done_groups)) {
stage_i++;
append_errtext(__LINE__, "stage_i=%d", stage_i);
stage.new_stage(&done_groups, sid_maps[1]);
if (verbose) {
printf("======== stage %d ========\n", stage_i);
stage.print();
}
// Create a string that contains all previous stage.str,
// concatenated.
done_str = (char *)realloc(done_str, done_str_len + 1 + stage.str_len + 1);
ASSERT_NE((char *)nullptr, done_str) << errtext;
done_str_len += sprintf(done_str + done_str_len, ",%s", stage.str);
// Add groups to Gtid_sets.
BEGIN_LOOP_A {
switch (method_i) {
case METHOD_SIDNO_GNO:
BEGIN_SUBSTAGE_LOOP(this, &stage, true) {
rpl_sidno sidno_1 = sid_map->sid_to_sidno(substage.sid);
ASSERT_LE(1, sidno_1) << errtext;
ASSERT_OK(gtid_set.ensure_sidno(sidno_1));
ASSERT_OK(gtid_set._add(sidno_1, substage.gno));
}
END_SUBSTAGE_LOOP(this);
break;
case METHOD_GROUP_TEXT:
BEGIN_SUBSTAGE_LOOP(this, &stage, true) {
ASSERT_OK(gtid_set.add(substage.gtid_str));
}
END_SUBSTAGE_LOOP(this);
break;
case METHOD_GTID_SET:
ASSERT_OK(gtid_set.add(&stage.set)) << errtext;
break;
case METHOD_GTID_SET_TEXT:
ASSERT_OK(gtid_set.add(stage.str)) << errtext;
break;
case METHOD_ALL_TEXTS_CONCATENATED:
gtid_set.clear();
ASSERT_OK(gtid_set.add(done_str)) << errtext;
case MAX_METHOD:
break;
}
}
END_LOOP_A;
// Add groups to Group_caches.
BEGIN_LOOP_B {
if (verbose) {
printf("======== stage=%d combination=%d ========\n", stage_i,
combination_i);
#ifndef NDEBUG
printf("group log state:\n");
group_log_state.print();
printf("trx cache:\n");
trx_cache.print(sid_maps[0]);
printf("stmt cache:\n");
stmt_cache.print(sid_maps[0]);
#endif // ifdef NDEBUG
}
Gtid_set ended_groups(sid_maps[0]);
bool trx_contains_logged_subgroup = false;
bool stmt_contains_logged_subgroup = false;
BEGIN_SUBSTAGE_LOOP(this, &stage, true) {
int type_j;
if (type_i == TYPE_RANDOMIZE)
type_j = rand() % 2;
else if (type_i == TYPE_AUTO && !substage.is_auto)
type_j = TYPE_NONTRX;
else
type_j = type_i;
int end_j;
if (substage.is_first &&
((end_i == END_RANDOMIZE && (rand() % 2)) || end_i == END_ON)) {
ASSERT_OK(ended_groups.ensure_sidno(substage.sidno));
ASSERT_OK(ended_groups._add(substage.sidno, substage.gno));
}
end_j = substage.is_last &&
ended_groups.contains_group(substage.sidno, substage.gno);
/*
In EMPTY_RANDOMIZE mode, we have to determine once *per
group* (not substage) if we use EMPTY_END or not. So we
determine this for the first subgroup of the group, and then
we memoize which groups use EMPTY_END using the Gtid_set
empty_end.
*/
int empty_j;
if (empty_i == EMPTY_RANDOMIZE)
empty_j = rand() % 3;
else
empty_j = empty_i;
int anon_j1, anon_j2;
if (type_j != TYPE_TRX || anon_i == ANON_OFF)
anon_j1 = anon_j2 = ANON_OFF;
else {
anon_j1 = rand() % 2;
anon_j2 = rand() % 2;
}
if (verbose)
printf("type_j=%d end_j=%d empty_j=%d anon_j1=%d anon_j2=%d\n",
type_j, end_j, empty_j, anon_j1, anon_j2);
thd->variables.gtid_next_list.is_non_null =
(type_i == TYPE_NONTRX || type_i == TYPE_AUTO) ? 0 : 1;
gtid_commit = (substage_i == stage.n_substages - 1) ||
!thd->variables.gtid_next_list.is_non_null;
if (type_j == TYPE_AUTO) {
gtid_next->type = Gtid_specification::AUTOMATIC;
gtid_next->group.sidno = substage.sidno;
gtid_next->group.gno = 0;
gtid_end = false;
lock.unlock();
lock.assert_no_lock();
gtid_before_statement(thd, &lock, &group_log_state, &stmt_cache,
&trx_cache);
lock.rdlock();
stmt_cache.add_logged_subgroup(thd, 20 + rand() % 100 /*binlog_len*/);
stmt_contains_logged_subgroup = true;
} else {
Group_cache &cache = type_j == TYPE_TRX ? trx_cache : stmt_cache;
if (anon_j1) {
gtid_next->type = Gtid_specification::ANONYMOUS;
gtid_next->group.sidno = 0;
gtid_next->group.gno = 0;
gtid_end = false;
lock.unlock();
lock.assert_no_lock();
gtid_before_statement(thd, &lock, &group_log_state, &stmt_cache,
&trx_cache);
lock.rdlock();
cache.add_logged_subgroup(thd, 20 + rand() % 100 /*binlog_len*/);
trx_contains_logged_subgroup = true;
}
gtid_next->type = Gtid_specification::GTID;
gtid_next->group.sidno = substage.sidno;
gtid_next->group.gno = substage.gno;
gtid_end = (end_j == END_ON) ? true : false;
lock.unlock();
lock.assert_no_lock();
gtid_before_statement(thd, &lock, &group_log_state, &stmt_cache,
&trx_cache);
lock.rdlock();
if (!group_log_state.is_ended(substage.sidno, substage.gno)) {
switch (empty_j) {
case EMPTY_OFF:
cache.add_logged_subgroup(thd,
20 + rand() % 100 /*binlog_len*/);
if (type_j == TYPE_TRX)
trx_contains_logged_subgroup = true;
else
stmt_contains_logged_subgroup = true;
break;
case EMPTY_ON:
cache.add_empty_subgroup(substage.sidno, substage.gno,
end_j ? true : false);
break;
case EMPTY_IMPLICIT:
break; // do nothing
default:
assert(0);
}
}
if (anon_j2) {
gtid_next->type = Gtid_specification::ANONYMOUS;
gtid_next->group.sidno = 0;
gtid_next->group.gno = 0;
gtid_end = false;
lock.unlock();
lock.assert_no_lock();
gtid_before_statement(thd, &lock, &group_log_state, &stmt_cache,
&trx_cache);
lock.rdlock();
cache.add_logged_subgroup(thd, 20 + rand() % 100 /*binlog_len*/);
trx_contains_logged_subgroup = true;
}
}
#ifndef NDEBUG
if (verbose) {
printf("stmt_cache:\n");
stmt_cache.print(sid_maps[0]);
}
#endif // ifndef NDEBUG
if (!stmt_cache.is_empty())
gtid_flush_group_cache(
thd, &lock, &group_log_state, nullptr /*group log*/, &stmt_cache,
&trx_cache, 1 /*binlog_no*/, 1 /*binlog_pos*/,
stmt_contains_logged_subgroup ? 20 + rand() % 99 : -1
/*offset_after_last_statement*/);
stmt_contains_logged_subgroup = false;
gtid_before_flush_trx_cache(thd, &lock, &group_log_state, &trx_cache);
if (gtid_commit) {
// simulate gtid_after_flush_trx_cache() but don't
// execute a COMMIT statement
thd->variables.gtid_has_ongoing_super_group = 0;
#ifndef NDEBUG
if (verbose) {
printf("trx_cache:\n");
trx_cache.print(sid_maps[0]);
printf(
"trx_cache.is_empty=%d n_subgroups=%d "
"trx_contains_logged_subgroup=%d\n",
trx_cache.is_empty(), trx_cache.get_n_subgroups(),
trx_contains_logged_subgroup);
}
#endif // ifndef NDEBUG
if (!trx_cache.is_empty())
gtid_flush_group_cache(
thd, &lock, &group_log_state, nullptr /*group log*/, &trx_cache,
&trx_cache, 1 /*binlog_no*/, 1 /*binlog_pos*/,
trx_contains_logged_subgroup ? 20 + rand() % 99 : -1
/*offset_after_last_statement*/);
trx_contains_logged_subgroup = false;
}
}
END_SUBSTAGE_LOOP(this);
gtid_set.clear();
ASSERT_OK(group_log_state.owned_groups.get_partial_groups(>id_set));
ASSERT_OK(gtid_set.add(&group_log_state.ended_groups));
}
END_LOOP_B;
// add stage.set to done_groups
Gtid_set old_done_groups(&done_groups, &status);
ASSERT_OK(status);
ASSERT_OK(done_groups.add(&stage.set));
// check the Gtid_set::remove and Gtid_set::is_subset functions
Gtid_set diff(&done_groups, &status);
ASSERT_OK(status);
ASSERT_OK(diff.remove(&old_done_groups));
Gtid_set not_new(&stage.set, &status);
ASSERT_OK(status);
ASSERT_OK(not_new.remove(&diff));
#define GROUP_SUBSET(gs1, gs2, outcome) \
group_subset(&gs1, &gs2, outcome, __LINE__, #gs1 " <= " #gs2);
push_errtext();
GROUP_SUBSET(not_new, not_new, true);
GROUP_SUBSET(not_new, diff, not_new.is_empty());
GROUP_SUBSET(not_new, stage.set, true);
GROUP_SUBSET(not_new, done_groups, true);
GROUP_SUBSET(not_new, old_done_groups, true);
GROUP_SUBSET(diff, not_new, diff.is_empty());
GROUP_SUBSET(diff, diff, true);
GROUP_SUBSET(diff, stage.set, true);
GROUP_SUBSET(diff, done_groups, true);
GROUP_SUBSET(diff, old_done_groups, diff.is_empty());
GROUP_SUBSET(stage.set, not_new, diff.is_empty());
GROUP_SUBSET(stage.set, diff, not_new.is_empty());
GROUP_SUBSET(stage.set, stage.set, true);
GROUP_SUBSET(stage.set, done_groups, true);
GROUP_SUBSET(stage.set, old_done_groups, diff.is_empty());
// GROUP_SUBSET(done_groups, not_new, ???);
GROUP_SUBSET(done_groups, diff, old_done_groups.is_empty());
GROUP_SUBSET(done_groups, stage.set, done_groups.equals(&stage.set));
GROUP_SUBSET(done_groups, done_groups, true);
GROUP_SUBSET(done_groups, old_done_groups, diff.is_empty());
GROUP_SUBSET(old_done_groups, not_new, old_done_groups.equals(¬_new));
GROUP_SUBSET(old_done_groups, diff, old_done_groups.is_empty());
// GROUP_SUBSET(old_done_groups, stage.set, ???);
GROUP_SUBSET(old_done_groups, done_groups, true);
GROUP_SUBSET(old_done_groups, old_done_groups, true);
pop_errtext();
/*
Verify that all group sets are equal. We test both a.equals(b)
and b.equals(a) and a.equals(a), because we want to verify that
Gtid_set::equals is correct too. We compare both the sets
using Gtid_set::equals, and the output of to_string() using
EXPECT_STREQ.
*/
BEGIN_LOOP_A {
char *buf1 = new char[gtid_set.get_string_length() + 1];
gtid_set.to_string(buf1);
for (int i = 0; i < N_COMBINATIONS_SETS; i++) {
Gtid_set >id_set_2 = containers[i]->gtid_set;
if (combination_i < i) {
char *buf2 = new char[gtid_set_2.get_string_length() + 1];
gtid_set_2.to_string(buf2);
EXPECT_STREQ(buf1, buf2) << errtext << " i=" << i;
delete buf2;
}
EXPECT_EQ(true, gtid_set.equals(>id_set_2)) << errtext << " i=" << i;
}
delete buf1;
}
END_LOOP_A;
BEGIN_LOOP_B {
EXPECT_EQ(true, containers[combination_i]->gtid_set.equals(&done_groups))
<< errtext;
}
END_LOOP_B;
}
pop_errtext();
// Finally, verify that the string representations of
// done_groups is as expected
static char buf[100 * 100];
done_groups.to_string(buf);
EXPECT_STRCASEEQ(all_groups_str, buf) << errtext;
lock.unlock();
lock.assert_no_lock();
// Clean up.
free(done_str);
for (int i = 0; i < N_COMBINATIONS; i++) delete containers[i];
delete containers;
delete sid_maps[1];
delete sid_maps;
free(thd);
mysql_bin_log.sid_lock.assert_no_lock();
}
|