File: rpl_group_set-t.cc

package info (click to toggle)
mysql-8.0 8.0.43-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,273,924 kB
  • sloc: cpp: 4,684,605; ansic: 412,450; pascal: 108,398; java: 83,641; perl: 30,221; cs: 27,067; sql: 26,594; sh: 24,181; python: 21,816; yacc: 17,169; php: 11,522; xml: 7,388; javascript: 7,076; makefile: 2,194; lex: 1,075; awk: 670; asm: 520; objc: 183; ruby: 97; lisp: 86
file content (912 lines) | stat: -rw-r--r-- 34,817 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
/* Copyright (c) 2011, 2025, Oracle and/or its affiliates.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License, version 2.0,
   as published by the Free Software Foundation.

   This program is designed to work with certain software (including
   but not limited to OpenSSL) that is licensed under separate terms,
   as designated in a particular file or component or in included license
   documentation.  The authors of MySQL hereby grant you an additional
   permission to link the program and your derivative works with the
   separately licensed software that they have either included with
   the program or referenced in the documentation.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License, version 2.0, for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301  USA */

#include <gtest/gtest.h>
#include <string.h>

#define FRIEND_OF_GTID_SET class GroupTest_Group_containers_Test
#define FRIEND_OF_GROUP_CACHE class GroupTest_Group_containers_Test
#define FRIEND_OF_GROUP_LOG_STATE class GroupTest_Group_containers_Test
#define NON_DISABLED_UNITTEST_GTID

#include "binlog.h"
#include "my_thread.h"
#include "rpl_gtid.h"
#include "sql_class.h"

#define N_SIDS 16

#define ASSERT_OK(X) ASSERT_EQ(RETURN_STATUS_OK, X)
#define EXPECT_OK(X) EXPECT_EQ(RETURN_STATUS_OK, X)
#define EXPECT_NOK(X) EXPECT_NE(RETURN_STATUS_OK, X)

class GroupTest : public ::testing::Test {
 public:
  static const char *uuids[16];
  rpl_sid sids[16];
  unsigned int seed;

  void SetUp() override {
    seed = (unsigned int)time(nullptr);
    printf("# seed = %u\n", seed);
    srand(seed);
    for (int i = 0; i < 16; i++) sids[i].parse(uuids[i]);

    verbose = false;
    errtext_stack_pos = 0;
    errtext_stack[0] = 0;
    append_errtext(__LINE__, "seed=%d", seed);
    my_delete("sid-map-0", MYF(0));
    my_delete("sid-map-1", MYF(0));
    my_delete("sid-map-2", MYF(0));
  }

  void TearDown() {
    my_delete("sid-map-0", MYF(0));
    my_delete("sid-map-1", MYF(0));
    my_delete("sid-map-2", MYF(0));
  }

  /*
    Test that different, equivalent ways to construct a Gtid_set give
    the same resulting Gtid_set.  This is used to test Gtid_set,
    Sid_map, Group_cache, Group_log_state, and Owned_groups.

    We will generate sets of groups in *stages*.  Each stage is
    divided into a number of *sub-stages* (the number of substages is
    taken uniformly at random from the set 1, 2, ..., 200).  In each
    sub-stage, we randomly sample one sub-group from a fixed set of
    groups.  The fixed set of groups consists of groups from 16
    different SIDs.  For the Nth SID (1 <= N <= 16), the fixed set of
    groups contains all GNOS from the closed interval [N, N - 1 + N *
    N].  The stage consists of the set of groups from all the
    sub-stages.
  */

#define BEGIN_SUBSTAGE_LOOP(group_test, stage, do_errtext)                    \
  (group_test)->push_errtext();                                               \
  for (int substage_i = 0; substage_i < (stage)->n_substages; substage_i++) { \
    Substage &substage = (stage)->substages[substage_i];                      \
    if (do_errtext)                                                           \
      (group_test)                                                            \
          ->append_errtext(__LINE__, "sidno=%d group=%s substage_i=%d",       \
                           substage.sidno, substage.gtid_str, substage_i);
#define END_SUBSTAGE_LOOP(group_test) \
  }                                   \
  group_test->pop_errtext()

  /**
    A substage, i.e., one of the randomly generated groups.
  */
  struct Substage {
    rpl_sidno sidno;
    rpl_gno gno;
    const rpl_sid *sid;
    char sid_str[binary_log::Uuid::TEXT_LENGTH + 1];
    char gtid_str[binary_log::Uuid::TEXT_LENGTH + 1 + MAX_GNO_TEXT_LENGTH + 1];
    bool is_first, is_last, is_auto;
#ifndef NO_DBUG
    void print() const {
      printf("%d/%s [first=%d last=%d auto=%d]", sidno, gtid_str, is_first,
             is_last, is_auto);
    }
#endif
  };

  /**
    A stage, i.e., the sequence of randomly generated groups.
  */
  struct Stage {
    class GroupTest *group_test;
    Sid_map *sid_map;

    // List of groups added in the present stage.
    static const int MAX_SUBSTAGES = 200;
    Substage substages[MAX_SUBSTAGES];
    int n_substages;

    // Set of groups added in the present stage.
    Gtid_set set;
    int str_len;
    char *str;

    // The subset of groups that can be added as automatic groups.
    Gtid_set automatic_groups;
    // The subset of groups that cannot be added as automatic groups.
    Gtid_set non_automatic_groups;

    Stage(class GroupTest *gt, Sid_map *sm)
        : group_test(gt),
          sid_map(sm),
          set(sm),
          str_len(0),
          str(nullptr),
          automatic_groups(sm),
          non_automatic_groups(sm) {
      init(sm);
    }

    void init(Sid_map *sm) {
      rpl_sidno max_sidno = sm->get_max_sidno();
      ASSERT_OK(set.ensure_sidno(max_sidno));
      ASSERT_OK(automatic_groups.ensure_sidno(max_sidno));
      ASSERT_OK(non_automatic_groups.ensure_sidno(max_sidno));
    }

    ~Stage() { free(str); }

    void print() const {
      printf("%d substages = {\n", n_substages);
      for (int i = 0; i < n_substages; i++) {
        printf("  substage[%d]: ", i);
        substages[i].print();
        printf("\n");
      }
      printf("\n");
    }

    /**
      Generate the the random groups that constitute a stage.

      @param done_groups The set of all groups added in previous
      stages.
      @param other_sm Sid_map to which groups should be added.
    */
    void new_stage(const Gtid_set *done_groups, Sid_map *other_sm) {
      set.clear();
      automatic_groups.clear();
      non_automatic_groups.clear();

      n_substages = 1 + (rand() % MAX_SUBSTAGES);
      BEGIN_SUBSTAGE_LOOP(group_test, this, false) {
        // generate random GTID
        substage.sidno = 1 + (rand() % N_SIDS);
        substage.gno = 1 + (rand() % (substage.sidno * substage.sidno));
        // compute alternative forms
        substage.sid = sid_map->sidno_to_sid(substage.sidno);
        ASSERT_NE((rpl_sid *)nullptr, substage.sid) << group_test->errtext;
        substage.sid->to_string(substage.sid_str);
        substage.sid->to_string(substage.gtid_str);
        substage.gtid_str[rpl_sid.TEXT_LENGTH] = ':';
        format_gno(substage.gtid_str + rpl_sid.TEXT_LENGTH + 1, substage.gno);

        ASSERT_LE(1, other_sm->add_permanent(substage.sid))
            << group_test->errtext;

        // check if this group could be added as an 'automatic' group
        Gtid_set::Const_interval_iterator ivit(done_groups, substage.sidno);
        const Gtid_set::Interval *iv = ivit.get();
        substage.is_auto =
            !set.contains_group(substage.sidno, substage.gno) &&
            ((iv == nullptr || iv->start > 1) ? substage.gno == 1
                                              : substage.gno == iv->end);

        // check if this sub-group is the first in its group in this
        // stage, and add it to the set
        substage.is_first = !set.contains_group(substage.sidno, substage.gno);
        if (substage.is_first) ASSERT_OK(set.add(substage.gtid_str));
      }
      END_SUBSTAGE_LOOP(group_test);

      // Iterate backwards so that we can detect when a subgroup is
      // the last subgroup of its group.
      set.clear();
      for (int substage_i = n_substages - 1; substage_i >= 0; substage_i--) {
        Substage &substage = substages[substage_i];
        substage.is_last = !set.contains_group(substage.sidno, substage.gno);
        if (substage.is_last) ASSERT_OK(set.add(substage.gtid_str));
      }

      str_len = set.get_string_length();
      str = (char *)realloc(str, str_len + 1);
      set.to_string(str);
    }
  };

  /*
    We maintain a text that contains the state of the test.  We print
    this text when a test assertion fails.  The text is updated each
    iteration of each loop, so that we can easier track the exact
    point in time when an error occurs.  Since loops may be nested, we
    maintain a stack of offsets in the error text: before a new loop
    is entered, the position of the end of the string is pushed to the
    stack and the text appended in each iteration is added to that
    position.
  */
  char errtext[1000];
  int errtext_stack[100];
  int errtext_stack_pos;
  bool verbose;

  void append_errtext(int line, const char *fmt, ...)
      MY_ATTRIBUTE((format(printf, 3, 4))) {
    va_list argp;
    va_start(argp, fmt);
    vsprintf(errtext + errtext_stack[errtext_stack_pos], fmt, argp);
    if (verbose) printf("@line %d: %s\n", line, errtext);
    va_end(argp);
  }

  void push_errtext() {
    int old_len = errtext_stack[errtext_stack_pos];
    int len = old_len + strlen(errtext + old_len);
    strcpy(errtext + len, " | ");
    errtext_stack[++errtext_stack_pos] = len + 3;
  }

  void pop_errtext() { errtext[errtext_stack[errtext_stack_pos--] - 3] = 0; }

  void group_subset(Gtid_set *sub, Gtid_set *super, bool outcome, int line,
                    const char *desc) {
    append_errtext(line, "%s", desc);
    // check using is_subset
    EXPECT_EQ(outcome, sub->is_subset(super)) << errtext;
    // check using set subtraction
    enum_return_status status;
    Gtid_set sub_minus_super(sub, &status);
    ASSERT_OK(status) << errtext;
    ASSERT_OK(sub_minus_super.remove(super)) << errtext;
    ASSERT_EQ(outcome, sub_minus_super.is_empty()) << errtext;
  }
};

const char *GroupTest::uuids[16] = {
    "00000000-0000-0000-0000-000000000000",
    "11111111-1111-1111-1111-111111111111",
    "22222222-2222-2222-2222-222222222222",
    "33333333-3333-3333-3333-333333333333",
    "44444444-4444-4444-4444-444444444444",
    "55555555-5555-5555-5555-555555555555",
    "66666666-6666-6666-6666-666666666666",
    "77777777-7777-7777-7777-777777777777",
    "88888888-8888-8888-8888-888888888888",
    "99999999-9999-9999-9999-999999999999",
    "aaaaAAAA-aaaa-AAAA-aaaa-aAaAaAaAaaaa",
    "bbbbBBBB-bbbb-BBBB-bbbb-bBbBbBbBbbbb",
    "ccccCCCC-cccc-CCCC-cccc-cCcCcCcCcccc",
    "ddddDDDD-dddd-DDDD-dddd-dDdDdDdDdddd",
    "eeeeEEEE-eeee-EEEE-eeee-eEeEeEeEeeee",
    "ffffFFFF-ffff-FFFF-ffff-fFfFfFfFffff",
};

TEST_F(GroupTest, Uuid) {
  Uuid u;
  char buf[100];

  // check that we get back the same UUID after parse + print
  for (int i = 0; i < N_SIDS; i++) {
    EXPECT_OK(u.parse(uuids[i])) << "i=" << i;
    u.to_string(buf);
    EXPECT_STRCASEEQ(uuids[i], buf) << "i=" << i;
  }
  // check error cases
  EXPECT_OK(u.parse("ffffFFFF-ffff-FFFF-ffff-ffffffffFFFFf"));
  EXPECT_NOK(u.parse("ffffFFFF-ffff-FFFF-ffff-ffffffffFFFg"));
  EXPECT_NOK(u.parse("ffffFFFF-ffff-FFFF-ffff-ffffffffFFF"));
  EXPECT_NOK(u.parse("ffffFFFF-ffff-FFFF-fff-fffffffffFFFF"));
  EXPECT_NOK(u.parse("ffffFFFF-ffff-FFFF-ffff-ffffffffFFF-"));
  EXPECT_NOK(u.parse(" ffffFFFF-ffff-FFFF-ffff-ffffffffFFFF"));
  EXPECT_NOK(u.parse("ffffFFFFfffff-FFFF-ffff-ffffffffFFFF"));
}

TEST_F(GroupTest, Sid_map) {
  Checkable_rwlock lock;
  Sid_map sm(&lock);

  lock.rdlock();
  ASSERT_OK(sm.open("sid-map-0"));

  // Add a random SID until we have N_SID SIDs in the map.
  while (sm.get_max_sidno() < N_SIDS)
    ASSERT_LE(1, sm.add_permanent(&sids[rand() % N_SIDS])) << errtext;

  // Check that all N_SID SIDs are in the map, and that
  // get_sorted_sidno() has the correct order.  This implies that no
  // SID was added twice.
  for (int i = 0; i < N_SIDS; i++) {
    rpl_sidno sidno = sm.get_sorted_sidno(i);
    const rpl_sid *sid;
    char buf[100];
    EXPECT_NE((rpl_sid *)nullptr, sid = sm.sidno_to_sid(sidno)) << errtext;
    const int max_len = binary_log::Uuid::TEXT_LENGTH;
    EXPECT_EQ(max_len, sid->to_string(buf)) << errtext;
    EXPECT_STRCASEEQ(uuids[i], buf) << errtext;
    EXPECT_EQ(sidno, sm.sid_to_sidno(sid)) << errtext;
  }
  lock.unlock();
  lock.assert_no_lock();
}

TEST_F(GroupTest, Group_containers) {
  /*
    In this test, we maintain 298 Gtid_sets.  We add groups to these
    Gtid_sets in stages, as described above.  We add the groups to
    each of the 298 Gtid_sets in different ways, as described below.
    At the end of each stage, we check that all the 298 resulting
    Gtid_sets are mutually equal.

    We add groups in the two ways:

    A. Test Gtid_sets and Sid_maps.  We vary two parameters:

       Parameter 1: vary the way that groups are added:
        0. Add one group at a time, using add(sidno, gno).
        1. Add one group at a time, using add(text).
        2. Add all new groups at once, using add(gs_new).
        3. add all new groups at once, using add(gs_new.to_string()).
        4. Maintain a string that contains the concatenation of all
           gs_new.to_string(). in each stage, we set gs[4] to a new
           Gtid_set created from this string.

       Parameter 2: vary the Sid_map object:
        0. Use a Sid_map that has all the SIDs in order.
        1. Use a Sid_map where SIDs are added in the order they appear.

       We vary these parameters in all combinations; thus we construct
       10 Gtid_sets.
  */
  enum enum_sets_method {
    METHOD_SIDNO_GNO = 0,
    METHOD_GROUP_TEXT,
    METHOD_GTID_SET,
    METHOD_GTID_SET_TEXT,
    METHOD_ALL_TEXTS_CONCATENATED,
    MAX_METHOD
  };
  enum enum_sets_sid_map { SID_MAP_0 = 0, SID_MAP_1, MAX_SID_MAP };
  const int N_COMBINATIONS_SETS = MAX_METHOD * MAX_SID_MAP;
  /*
    B. Test Group_cache, Group_log_state, and Owned_groups.  All
       sub-groups for the stage are added to the Group_cache, the
       Group_cache is flushed to the Group_log_state, and the
       Gtid_set is extracted from the Group_log_state.  We vary the
       following parameters.

       Parameter 1: type of statement:
        0. Transactional replayed statement: add all groups to the
           transaction group cache (which is flushed to a
           Group_log_state at the end of the stage).  Set
           GTID_NEXT_LIST to the list of all groups in the stage.
        1. Non-transactional replayed statement: add all groups to the
           stmt group cache (which is flushed to the Group_log_state
           at the end of each sub-stage).  Set GTID_NEXT_LIST = NULL.
        2. Randomize: for each sub-stage, choose 0 or 1 with 50%
           chance.  Set GTID_NEXT_LIST to the list of all groups in
           the stage.
        3. Automatic groups: add all groups to the stmt group cache,
           but make the group automatic if possible, i.e., if the SID
           and GNO are unlogged and there is no smaller unlogged GNO
           for this SID.  Set GTID_NEXT_LIST = NULL.

       Parameter 2: ended or non-ended sub-groups:
        0. All sub-groups are unended (except automatic sub-groups).
        1. For each group, the last sub-group of the group in the
           stage is ended.  Don't add groups that are already ended in the
           Group_log_state.
        2. For each group in the stage, choose 0 or 1 with 50% chance.

       Parameter 3: empty or normal sub-group:
        0. Generate only normal (and possibly automatic) sub-groups.
        1. Generate only empty (and possibly automatic) sub-groups.
        2. Generate only empty (and possibly automatic) sub-groups.
           Add the sub-groups implicitly: do not call
           add_empty_subgroup(); instead rely on
           gtid_before_flush_trx_cache() to add empty subgroups.
        3. Choose 0 or 1 with 33% chance.

       Parameter 4: insert anonymous sub-groups or not:
        0. Do not generate anonymous sub-groups.
        1. Generate an anomous sub-group before each sub-group with
           50% chance and an anonymous group after each sub-group with
           50% chance.

       We vary these parameters in all combinations; thus we construct
       4*3*4*2=96 Gtid_sets.
  */
  enum enum_caches_type {
    TYPE_TRX = 0,
    TYPE_NONTRX,
    TYPE_RANDOMIZE,
    TYPE_AUTO,
    MAX_TYPE
  };
  enum enum_caches_end { END_OFF = 0, END_ON, END_RANDOMIZE, MAX_END };
  enum enum_caches_empty {
    EMPTY_OFF = 0,
    EMPTY_ON,
    EMPTY_IMPLICIT,
    EMPTY_RANDOMIZE,
    MAX_EMPTY
  };
  enum enum_caches_anon { ANON_OFF = 0, ANON_ON, MAX_ANON };
  const int N_COMBINATIONS_CACHES = MAX_TYPE * MAX_END * MAX_EMPTY * MAX_ANON;
  const int N_COMBINATIONS = N_COMBINATIONS_SETS + N_COMBINATIONS_CACHES;

  // Auxiliary macros to loop through all combinations of parameters.
#define BEGIN_LOOP_A                                                        \
  push_errtext();                                                           \
  for (int method_i = 0, combination_i = 0; method_i < MAX_METHOD;          \
       method_i++) {                                                        \
    for (int sid_map_i = 0; sid_map_i < MAX_SID_MAP;                        \
         sid_map_i++, combination_i++) {                                    \
      Gtid_set &gtid_set [[maybe_unused]] =                                 \
          containers[combination_i]->gtid_set;                              \
      Sid_map *&sid_map [[maybe_unused]] = sid_maps[sid_map_i];             \
      append_errtext(__LINE__, "sid_map_i=%d method_i=%d combination_i=%d", \
                     sid_map_i, method_i, combination_i);

#define END_LOOP_A \
  }                \
  }                \
  pop_errtext()

#define BEGIN_LOOP_B                                                           \
  push_errtext();                                                              \
  for (int type_i = 0, combination_i = N_COMBINATIONS_SETS; type_i < MAX_TYPE; \
       type_i++) {                                                             \
    for (int end_i = 0; end_i < MAX_END; end_i++) {                            \
      for (int empty_i = 0; empty_i < MAX_EMPTY; empty_i++) {                  \
        for (int anon_i = 0; anon_i < MAX_ANON; anon_i++, combination_i++) {   \
          Gtid_set &gtid_set [[maybe_unused]] =                                \
              containers[combination_i]->gtid_set;                             \
          Group_cache &stmt_cache [[maybe_unused]] =                           \
              containers[combination_i]->stmt_cache;                           \
          Group_cache &trx_cache [[maybe_unused]] =                            \
              containers[combination_i]->trx_cache;                            \
          Group_log_state &group_log_state [[maybe_unused]] =                  \
              containers[combination_i]->group_log_state;                      \
          append_errtext(__LINE__,                                             \
                         "type_i=%d end_i=%d empty_i=%d "                      \
                         "anon_i=%d combination_i=%d",                         \
                         type_i, end_i, empty_i, anon_i, combination_i);       \
  // verbose= (combination_i == 108); /*todo*/

#define END_LOOP_B \
  }                \
  }                \
  }                \
  }                \
  pop_errtext()

  // Do not generate warnings (because that causes segfault when done
  // from a unittest).
  global_system_variables.log_error_verbosity = 1;

  mysql_bin_log.server_uuid_sidno = 1;

  // Create Sid_maps.
  Checkable_rwlock &lock = mysql_bin_log.sid_lock;
  Sid_map **sid_maps = new Sid_map *[2];
  sid_maps[0] = &mysql_bin_log.sid_map;
  sid_maps[1] = new Sid_map(&lock);

  lock.rdlock();
  ASSERT_OK(sid_maps[0]->open("sid-map-1"));
  ASSERT_OK(sid_maps[1]->open("sid-map-2"));
  /*
    Make sid_maps[0] and sid_maps[1] different: sid_maps[0] is
    generated in order; sid_maps[1] is generated in the order that
    SIDS are inserted in the Gtid_set.
  */
  for (int i = 0; i < N_SIDS; i++)
    ASSERT_LE(1, sid_maps[0]->add_permanent(&sids[i])) << errtext;

  // Create list of container objects.  These are the objects that we
  // test.
  struct Containers {
    Gtid_set gtid_set;
    Group_cache stmt_cache;
    Group_cache trx_cache;
    Group_log_state group_log_state;
    Containers(Checkable_rwlock *lock, Sid_map *sm)
        : gtid_set(sm), group_log_state(lock, sm) {
      init();
    }
    void init() { ASSERT_OK(group_log_state.ensure_sidno()); };
  };
  Containers **containers = new Containers *[N_COMBINATIONS];
  BEGIN_LOOP_A { containers[combination_i] = new Containers(&lock, sid_map); }
  END_LOOP_A;
  BEGIN_LOOP_B {
    containers[combination_i] = new Containers(&lock, sid_maps[0]);
  }
  END_LOOP_B;

  /*
    Construct a Gtid_set that contains the set of all groups from
    which we sample.
  */
  static char all_groups_str[100 * 100];
  char *s = all_groups_str;
  s += sprintf(s, "%s:1", uuids[0]);
  for (rpl_sidno sidno = 2; sidno <= N_SIDS; sidno++)
    s += sprintf(s, ",\n%s:1-%d", uuids[sidno - 1], sidno * sidno);
  enum_return_status status;
  Gtid_set all_groups(sid_maps[0], all_groups_str, &status);
  ASSERT_OK(status) << errtext;

  // The set of groups that were added in some previous stage.
  Gtid_set done_groups(sid_maps[0]);
  ASSERT_OK(done_groups.ensure_sidno(sid_maps[0]->get_max_sidno()));

  /*
    Iterate through stages. In each stage, create the "stage group
    set" by generating up to 200 subgroups.  Add this stage group set
    to each of the group sets in different ways.  Stop when the union
    of all stage group sets is equal to the full set from which we
    took the samples.
  */
  char *done_str = nullptr;
  int done_str_len = 0;
  Stage stage(this, sid_maps[0]);
  int stage_i = 0;

  /*
    We need a THD object only to read THD::variables.gtid_next,
    THD::variables.gtid_end, THD::variables.gtid_next_list,
    THD::thread_id, THD::server_status.  We don't want to invoke the
    THD constructor because that would require setting up mutexes,
    etc.  Hence we use malloc instead of new.
  */
  THD *thd = (THD *)malloc(sizeof(THD));
  ASSERT_NE((THD *)nullptr, thd) << errtext;
  Gtid_specification *gtid_next = &thd->variables.gtid_next;
  thd->set_new_thread_id();
  gtid_next->type = Gtid_specification::AUTOMATIC;
  bool &gtid_end = thd->variables.gtid_end;
  bool &gtid_commit = thd->variables.gtid_commit;
  thd->server_status = 0;
  thd->system_thread = NON_SYSTEM_THREAD;
  thd->variables.gtid_next_list.gtid_set = &stage.set;

  push_errtext();
  while (!all_groups.equals(&done_groups)) {
    stage_i++;
    append_errtext(__LINE__, "stage_i=%d", stage_i);
    stage.new_stage(&done_groups, sid_maps[1]);

    if (verbose) {
      printf("======== stage %d ========\n", stage_i);
      stage.print();
    }

    // Create a string that contains all previous stage.str,
    // concatenated.
    done_str = (char *)realloc(done_str, done_str_len + 1 + stage.str_len + 1);
    ASSERT_NE((char *)nullptr, done_str) << errtext;
    done_str_len += sprintf(done_str + done_str_len, ",%s", stage.str);

    // Add groups to Gtid_sets.
    BEGIN_LOOP_A {
      switch (method_i) {
        case METHOD_SIDNO_GNO:
          BEGIN_SUBSTAGE_LOOP(this, &stage, true) {
            rpl_sidno sidno_1 = sid_map->sid_to_sidno(substage.sid);
            ASSERT_LE(1, sidno_1) << errtext;
            ASSERT_OK(gtid_set.ensure_sidno(sidno_1));
            ASSERT_OK(gtid_set._add(sidno_1, substage.gno));
          }
          END_SUBSTAGE_LOOP(this);
          break;
        case METHOD_GROUP_TEXT:
          BEGIN_SUBSTAGE_LOOP(this, &stage, true) {
            ASSERT_OK(gtid_set.add(substage.gtid_str));
          }
          END_SUBSTAGE_LOOP(this);
          break;
        case METHOD_GTID_SET:
          ASSERT_OK(gtid_set.add(&stage.set)) << errtext;
          break;
        case METHOD_GTID_SET_TEXT:
          ASSERT_OK(gtid_set.add(stage.str)) << errtext;
          break;
        case METHOD_ALL_TEXTS_CONCATENATED:
          gtid_set.clear();
          ASSERT_OK(gtid_set.add(done_str)) << errtext;
        case MAX_METHOD:
          break;
      }
    }
    END_LOOP_A;

    // Add groups to Group_caches.
    BEGIN_LOOP_B {
      if (verbose) {
        printf("======== stage=%d combination=%d ========\n", stage_i,
               combination_i);
#ifndef NDEBUG
        printf("group log state:\n");
        group_log_state.print();
        printf("trx cache:\n");
        trx_cache.print(sid_maps[0]);
        printf("stmt cache:\n");
        stmt_cache.print(sid_maps[0]);
#endif  // ifdef NDEBUG
      }

      Gtid_set ended_groups(sid_maps[0]);
      bool trx_contains_logged_subgroup = false;
      bool stmt_contains_logged_subgroup = false;
      BEGIN_SUBSTAGE_LOOP(this, &stage, true) {
        int type_j;
        if (type_i == TYPE_RANDOMIZE)
          type_j = rand() % 2;
        else if (type_i == TYPE_AUTO && !substage.is_auto)
          type_j = TYPE_NONTRX;
        else
          type_j = type_i;
        int end_j;
        if (substage.is_first &&
            ((end_i == END_RANDOMIZE && (rand() % 2)) || end_i == END_ON)) {
          ASSERT_OK(ended_groups.ensure_sidno(substage.sidno));
          ASSERT_OK(ended_groups._add(substage.sidno, substage.gno));
        }
        end_j = substage.is_last &&
                ended_groups.contains_group(substage.sidno, substage.gno);

        /*
          In EMPTY_RANDOMIZE mode, we have to determine once *per
          group* (not substage) if we use EMPTY_END or not. So we
          determine this for the first subgroup of the group, and then
          we memoize which groups use EMPTY_END using the Gtid_set
          empty_end.
        */
        int empty_j;
        if (empty_i == EMPTY_RANDOMIZE)
          empty_j = rand() % 3;
        else
          empty_j = empty_i;
        int anon_j1, anon_j2;
        if (type_j != TYPE_TRX || anon_i == ANON_OFF)
          anon_j1 = anon_j2 = ANON_OFF;
        else {
          anon_j1 = rand() % 2;
          anon_j2 = rand() % 2;
        }
        if (verbose)
          printf("type_j=%d end_j=%d empty_j=%d anon_j1=%d anon_j2=%d\n",
                 type_j, end_j, empty_j, anon_j1, anon_j2);

        thd->variables.gtid_next_list.is_non_null =
            (type_i == TYPE_NONTRX || type_i == TYPE_AUTO) ? 0 : 1;
        gtid_commit = (substage_i == stage.n_substages - 1) ||
                      !thd->variables.gtid_next_list.is_non_null;

        if (type_j == TYPE_AUTO) {
          gtid_next->type = Gtid_specification::AUTOMATIC;
          gtid_next->group.sidno = substage.sidno;
          gtid_next->group.gno = 0;
          gtid_end = false;
          lock.unlock();
          lock.assert_no_lock();
          gtid_before_statement(thd, &lock, &group_log_state, &stmt_cache,
                                &trx_cache);
          lock.rdlock();
          stmt_cache.add_logged_subgroup(thd, 20 + rand() % 100 /*binlog_len*/);
          stmt_contains_logged_subgroup = true;
        } else {
          Group_cache &cache = type_j == TYPE_TRX ? trx_cache : stmt_cache;

          if (anon_j1) {
            gtid_next->type = Gtid_specification::ANONYMOUS;
            gtid_next->group.sidno = 0;
            gtid_next->group.gno = 0;
            gtid_end = false;
            lock.unlock();
            lock.assert_no_lock();
            gtid_before_statement(thd, &lock, &group_log_state, &stmt_cache,
                                  &trx_cache);
            lock.rdlock();
            cache.add_logged_subgroup(thd, 20 + rand() % 100 /*binlog_len*/);
            trx_contains_logged_subgroup = true;
          }

          gtid_next->type = Gtid_specification::GTID;
          gtid_next->group.sidno = substage.sidno;
          gtid_next->group.gno = substage.gno;
          gtid_end = (end_j == END_ON) ? true : false;
          lock.unlock();
          lock.assert_no_lock();
          gtid_before_statement(thd, &lock, &group_log_state, &stmt_cache,
                                &trx_cache);
          lock.rdlock();
          if (!group_log_state.is_ended(substage.sidno, substage.gno)) {
            switch (empty_j) {
              case EMPTY_OFF:
                cache.add_logged_subgroup(thd,
                                          20 + rand() % 100 /*binlog_len*/);
                if (type_j == TYPE_TRX)
                  trx_contains_logged_subgroup = true;
                else
                  stmt_contains_logged_subgroup = true;
                break;
              case EMPTY_ON:
                cache.add_empty_subgroup(substage.sidno, substage.gno,
                                         end_j ? true : false);
                break;
              case EMPTY_IMPLICIT:
                break;  // do nothing
              default:
                assert(0);
            }
          }

          if (anon_j2) {
            gtid_next->type = Gtid_specification::ANONYMOUS;
            gtid_next->group.sidno = 0;
            gtid_next->group.gno = 0;
            gtid_end = false;
            lock.unlock();
            lock.assert_no_lock();
            gtid_before_statement(thd, &lock, &group_log_state, &stmt_cache,
                                  &trx_cache);
            lock.rdlock();
            cache.add_logged_subgroup(thd, 20 + rand() % 100 /*binlog_len*/);
            trx_contains_logged_subgroup = true;
          }
        }

#ifndef NDEBUG
        if (verbose) {
          printf("stmt_cache:\n");
          stmt_cache.print(sid_maps[0]);
        }
#endif  // ifndef NDEBUG
        if (!stmt_cache.is_empty())
          gtid_flush_group_cache(
              thd, &lock, &group_log_state, nullptr /*group log*/, &stmt_cache,
              &trx_cache, 1 /*binlog_no*/, 1 /*binlog_pos*/,
              stmt_contains_logged_subgroup ? 20 + rand() % 99 : -1
              /*offset_after_last_statement*/);
        stmt_contains_logged_subgroup = false;
        gtid_before_flush_trx_cache(thd, &lock, &group_log_state, &trx_cache);
        if (gtid_commit) {
          // simulate gtid_after_flush_trx_cache() but don't
          // execute a COMMIT statement
          thd->variables.gtid_has_ongoing_super_group = 0;

#ifndef NDEBUG
          if (verbose) {
            printf("trx_cache:\n");
            trx_cache.print(sid_maps[0]);
            printf(
                "trx_cache.is_empty=%d n_subgroups=%d "
                "trx_contains_logged_subgroup=%d\n",
                trx_cache.is_empty(), trx_cache.get_n_subgroups(),
                trx_contains_logged_subgroup);
          }
#endif  // ifndef NDEBUG

          if (!trx_cache.is_empty())
            gtid_flush_group_cache(
                thd, &lock, &group_log_state, nullptr /*group log*/, &trx_cache,
                &trx_cache, 1 /*binlog_no*/, 1 /*binlog_pos*/,
                trx_contains_logged_subgroup ? 20 + rand() % 99 : -1
                /*offset_after_last_statement*/);
          trx_contains_logged_subgroup = false;
        }
      }
      END_SUBSTAGE_LOOP(this);

      gtid_set.clear();
      ASSERT_OK(group_log_state.owned_groups.get_partial_groups(&gtid_set));
      ASSERT_OK(gtid_set.add(&group_log_state.ended_groups));
    }
    END_LOOP_B;

    // add stage.set to done_groups
    Gtid_set old_done_groups(&done_groups, &status);
    ASSERT_OK(status);
    ASSERT_OK(done_groups.add(&stage.set));

    // check the Gtid_set::remove and Gtid_set::is_subset functions
    Gtid_set diff(&done_groups, &status);
    ASSERT_OK(status);
    ASSERT_OK(diff.remove(&old_done_groups));
    Gtid_set not_new(&stage.set, &status);
    ASSERT_OK(status);
    ASSERT_OK(not_new.remove(&diff));

#define GROUP_SUBSET(gs1, gs2, outcome) \
  group_subset(&gs1, &gs2, outcome, __LINE__, #gs1 " <= " #gs2);
    push_errtext();
    GROUP_SUBSET(not_new, not_new, true);
    GROUP_SUBSET(not_new, diff, not_new.is_empty());
    GROUP_SUBSET(not_new, stage.set, true);
    GROUP_SUBSET(not_new, done_groups, true);
    GROUP_SUBSET(not_new, old_done_groups, true);

    GROUP_SUBSET(diff, not_new, diff.is_empty());
    GROUP_SUBSET(diff, diff, true);
    GROUP_SUBSET(diff, stage.set, true);
    GROUP_SUBSET(diff, done_groups, true);
    GROUP_SUBSET(diff, old_done_groups, diff.is_empty());

    GROUP_SUBSET(stage.set, not_new, diff.is_empty());
    GROUP_SUBSET(stage.set, diff, not_new.is_empty());
    GROUP_SUBSET(stage.set, stage.set, true);
    GROUP_SUBSET(stage.set, done_groups, true);
    GROUP_SUBSET(stage.set, old_done_groups, diff.is_empty());

    // GROUP_SUBSET(done_groups, not_new, ???);
    GROUP_SUBSET(done_groups, diff, old_done_groups.is_empty());
    GROUP_SUBSET(done_groups, stage.set, done_groups.equals(&stage.set));
    GROUP_SUBSET(done_groups, done_groups, true);
    GROUP_SUBSET(done_groups, old_done_groups, diff.is_empty());

    GROUP_SUBSET(old_done_groups, not_new, old_done_groups.equals(&not_new));
    GROUP_SUBSET(old_done_groups, diff, old_done_groups.is_empty());
    // GROUP_SUBSET(old_done_groups, stage.set, ???);
    GROUP_SUBSET(old_done_groups, done_groups, true);
    GROUP_SUBSET(old_done_groups, old_done_groups, true);
    pop_errtext();

    /*
      Verify that all group sets are equal.  We test both a.equals(b)
      and b.equals(a) and a.equals(a), because we want to verify that
      Gtid_set::equals is correct too.  We compare both the sets
      using Gtid_set::equals, and the output of to_string() using
      EXPECT_STREQ.
    */
    BEGIN_LOOP_A {
      char *buf1 = new char[gtid_set.get_string_length() + 1];
      gtid_set.to_string(buf1);
      for (int i = 0; i < N_COMBINATIONS_SETS; i++) {
        Gtid_set &gtid_set_2 = containers[i]->gtid_set;
        if (combination_i < i) {
          char *buf2 = new char[gtid_set_2.get_string_length() + 1];
          gtid_set_2.to_string(buf2);
          EXPECT_STREQ(buf1, buf2) << errtext << " i=" << i;
          delete buf2;
        }
        EXPECT_EQ(true, gtid_set.equals(&gtid_set_2)) << errtext << " i=" << i;
      }
      delete buf1;
    }
    END_LOOP_A;
    BEGIN_LOOP_B {
      EXPECT_EQ(true, containers[combination_i]->gtid_set.equals(&done_groups))
          << errtext;
    }
    END_LOOP_B;
  }
  pop_errtext();

  // Finally, verify that the string representations of
  // done_groups is as expected
  static char buf[100 * 100];
  done_groups.to_string(buf);
  EXPECT_STRCASEEQ(all_groups_str, buf) << errtext;
  lock.unlock();
  lock.assert_no_lock();

  // Clean up.
  free(done_str);
  for (int i = 0; i < N_COMBINATIONS; i++) delete containers[i];
  delete containers;
  delete sid_maps[1];
  delete sid_maps;
  free(thd);

  mysql_bin_log.sid_lock.assert_no_lock();
}