File: temptable_allocator-t.cc

package info (click to toggle)
mysql-8.0 8.0.43-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,273,924 kB
  • sloc: cpp: 4,684,605; ansic: 412,450; pascal: 108,398; java: 83,641; perl: 30,221; cs: 27,067; sql: 26,594; sh: 24,181; python: 21,816; yacc: 17,169; php: 11,522; xml: 7,388; javascript: 7,076; makefile: 2,194; lex: 1,075; awk: 670; asm: 520; objc: 183; ruby: 97; lisp: 86
file content (1205 lines) | stat: -rw-r--r-- 49,545 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
/* Copyright (c) 2016, 2025, Oracle and/or its affiliates.

This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License, version 2.0, as published by the
Free Software Foundation.

This program is designed to work with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation.  The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have either included with
the program or referenced in the documentation.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License, version 2.0,
for more details.

You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301  USA */

#include <gtest/gtest.h>
#include <array>

#include "storage/temptable/include/temptable/allocator.h"
#include "storage/temptable/include/temptable/block.h"
#include "storage/temptable/include/temptable/constants.h"

namespace temptable_allocator_unittest {

// Needed for making it possible to use user-defined literals (e.g. 1_MiB) when
// instantiating (generating) test-cases below
using temptable::operator"" _KiB;
using temptable::operator"" _MiB;

/** GoogleTest macros for testing exceptions (EXPECT_THROW, EXPECT_NO_THROW,
 * EXPECT_ANY_THROW, etc.) do not provide direct means to inspect the value of
 * exception that has been thrown.
 *
 * Indirectly, it is possible to inspect the value but the test-body becomes
 * unnecessarily verbose, longer and more prone to introducing errors. E.g.
 *
 *    try {
 *        Foo foo;
 *        foo.bar();
 *        FAIL() << "We must not reach here. Expected std::out_of_range";
 *    }
 *    catch (const std::out_of_range& ex) {
 *        EXPECT_EQ(ex.what(), std::string("Out of range"));
 *    }
 *    catch (...) {
 *        FAIL() << "We must not reach here. Expected std::out_of_range";
 *    }
 *
 * Following set of macros extend GoogleTest set of macros and enables
 * us to express our intent in much more cleaner way. E.g.
 *
 *   Foo foo;
 *   EXPECT_THROW_WITH_VALUE_STR(foo.bar(), std::out_of_range, "Out of range");
 *
 * EXPECT_THROW_WITH_VALUE macro is for catching exceptions which are not
 * derived from std::exception and whose value can be inspected by a mere usage
 * of operator==.
 *
 * EXPECT_THROW_WITH_VALUE_STR macro is for catching exceptions which provide
 * ::what() interface to inspect the value, such as all exceptions which
 * are derived from std::exception.
 * */
#define EXPECT_THROW_WITH_VALUE(stmt, etype, value) \
  EXPECT_THROW(                                     \
      try { stmt; } catch (const etype &ex) {       \
        EXPECT_EQ(ex, value);                       \
        throw;                                      \
      },                                            \
      etype)
#define EXPECT_THROW_WITH_VALUE_STR(stmt, etype, str) \
  EXPECT_THROW(                                       \
      try { stmt; } catch (const etype &ex) {         \
        EXPECT_EQ(std::string(ex.what()), str);       \
        throw;                                        \
      },                                              \
      etype)

// A "probe" which gains us read-only access to temptable::MemoryMonitor.
// Necessary for implementing certain unit-tests.
struct MemoryMonitorReadOnlyProbe : public temptable::MemoryMonitor {
  static size_t ram_consumption() {
    return temptable::MemoryMonitor::RAM::consumption();
  }
  static size_t ram_threshold() {
    return temptable::MemoryMonitor::RAM::threshold();
  }
  static bool mmap_enabled() { return temptable_use_mmap; }
  static size_t mmap_consumption() {
    return temptable::MemoryMonitor::MMAP::consumption();
  }
  static size_t mmap_threshold() {
    return temptable::MemoryMonitor::MMAP::threshold();
  }
};

// A "probe" which enables us to hijack the temptable::MemoryMonitor.
// Necessary for implementing certain unit-tests.
struct MemoryMonitorHijackProbe : public MemoryMonitorReadOnlyProbe {
  static size_t ram_consumption_reset() {
    auto current_consumption = temptable::MemoryMonitor::RAM::consumption();
    return temptable::MemoryMonitor::RAM::decrease(current_consumption);
  }
  static size_t ram_consumption_set(size_t consumption) {
    MemoryMonitorHijackProbe::ram_consumption_reset();
    return temptable::MemoryMonitor::RAM::increase(consumption);
  }
  static size_t mmap_consumption_reset() {
    auto current_consumption = temptable::MemoryMonitor::MMAP::consumption();
    return temptable::MemoryMonitor::MMAP::decrease(current_consumption);
  }
  static void mmap_enable() { temptable_use_mmap = true; }
  static void mmap_disable() { temptable_use_mmap = false; }
  static void max_ram_set(size_t new_max_ram) {
    temptable_max_ram = new_max_ram;
  }
  static void max_mmap_set(size_t new_max_mmap) {
    temptable_max_mmap = new_max_mmap;
  }
};

class TempTableAllocator : public ::testing::Test {
 protected:
  void SetUp() override {
    // Enable MMAP by default. We need to set it first, so the mmap_threshold()
    // is not zero.
    MemoryMonitorHijackProbe::mmap_enable();

    // Store the default thresholds of RAM and MMAP so we can restore them to
    // the original values prior to starting a new test
    m_default_ram_threshold = MemoryMonitorHijackProbe::ram_threshold();
    m_default_mmap_threshold = MemoryMonitorHijackProbe::mmap_threshold();

    // Reset the RAM and MMAP consumption counters to zero
    EXPECT_EQ(MemoryMonitorHijackProbe::ram_consumption_reset(), 0);
    EXPECT_EQ(MemoryMonitorHijackProbe::mmap_consumption_reset(), 0);
  }

  void TearDown() override {
    // Check all memory was released.
    EXPECT_EQ(MemoryMonitorHijackProbe::ram_consumption(), 0);
    EXPECT_EQ(MemoryMonitorHijackProbe::mmap_consumption(), 0);

    // Restore the original RAM and MMAP thresholds
    MemoryMonitorHijackProbe::max_ram_set(m_default_ram_threshold);
    MemoryMonitorHijackProbe::max_mmap_set(m_default_mmap_threshold);
  }

  size_t m_default_ram_threshold;
  size_t m_default_mmap_threshold;
};

TEST_F(TempTableAllocator, basic) {
  temptable::TableResourceMonitor table_resource_monitor(16 * 1024 * 1024);
  temptable::Block shared_block;
  EXPECT_TRUE(shared_block.is_empty());
  temptable::Allocator<uint8_t> allocator(&shared_block,
                                          table_resource_monitor);

  constexpr size_t n_allocate = 128;
  std::array<uint8_t *, n_allocate> a;
  constexpr size_t n_elements = 16;

  for (size_t i = 0; i < n_allocate; ++i) {
    a[i] = allocator.allocate(n_elements);

    for (size_t j = 0; j < n_elements; ++j) {
      a[i][j] = 0xB;
    }
  }

  EXPECT_FALSE(shared_block.is_empty());

  for (size_t i = 0; i < n_allocate; ++i) {
    allocator.deallocate(a[i], n_elements);
  }

  // Physically deallocate the shared-block (allocator keeps it alive
  // intentionally)
  EXPECT_FALSE(shared_block.is_empty());
  temptable::Prefer_RAM_over_MMAP_policy::block_freed(shared_block.size(),
                                                      shared_block.type());
  shared_block.destroy();
  EXPECT_TRUE(shared_block.is_empty());
}

TEST_F(TempTableAllocator,
       allocation_successful_when_shared_block_is_not_available) {
  temptable::TableResourceMonitor table_resource_monitor(16 * 1024 * 1024);
  // No shared-block is available to be used by the allocator
  temptable::Allocator<uint8_t> allocator(nullptr, table_resource_monitor);
  uint32_t n_elements = 16;

  // Trigger the allocation
  uint8_t *chunk = nullptr;
  EXPECT_NO_THROW(chunk = allocator.allocate(n_elements));
  EXPECT_NE(chunk, nullptr);

  // Clean-up
  allocator.deallocate(chunk, n_elements);
}

TEST_F(TempTableAllocator, shared_block_is_kept_after_last_deallocation) {
  temptable::TableResourceMonitor table_resource_monitor(16 * 1024 * 1024);
  temptable::Block shared_block;
  EXPECT_TRUE(shared_block.is_empty());
  temptable::Allocator<uint8_t> allocator(&shared_block,
                                          table_resource_monitor);

  uint8_t *ptr = allocator.allocate(16);
  EXPECT_FALSE(shared_block.is_empty());

  allocator.deallocate(ptr, 16);

  // Physically deallocate the shared-block (allocator keeps it alive
  // intentionally)
  EXPECT_FALSE(shared_block.is_empty());
  temptable::Prefer_RAM_over_MMAP_policy::block_freed(shared_block.size(),
                                                      shared_block.type());
  shared_block.destroy();
  EXPECT_TRUE(shared_block.is_empty());
}

TEST_F(TempTableAllocator, rightmost_chunk_deallocated_reused_for_allocation) {
  temptable::TableResourceMonitor table_resource_monitor(16 * 1024 * 1024);
  temptable::Block shared_block;
  EXPECT_TRUE(shared_block.is_empty());
  temptable::Allocator<uint8_t> allocator(&shared_block,
                                          table_resource_monitor);

  // Allocate first Chunk which is less than the 1MB
  size_t first_chunk_size = 512 * 1024;
  uint8_t *first_chunk = allocator.allocate(first_chunk_size);

  // Calculate and allocate second chunk in such a way that
  // it lies within the block and fills it
  size_t first_chunk_actual_size =
      temptable::Chunk::size_hint(first_chunk_size);
  size_t space_left_in_block =
      shared_block.size() -
      temptable::Block::size_hint(first_chunk_actual_size);
  size_t second_chunk_size =
      space_left_in_block - (first_chunk_actual_size - first_chunk_size);
  uint8_t *second_chunk = allocator.allocate(second_chunk_size);

  // Make sure that pointers (Chunk's) are from same blocks
  EXPECT_EQ(temptable::Block(temptable::Chunk(first_chunk)),
            temptable::Block(temptable::Chunk(second_chunk)));

  EXPECT_FALSE(shared_block.can_accommodate(1));

  // Deallocate Second Chunk
  allocator.deallocate(second_chunk, second_chunk_size);

  // Allocate Second Chunk again
  second_chunk = allocator.allocate(second_chunk_size);

  // Make sure that pointers (Chunk's) are from same blocks
  EXPECT_EQ(temptable::Block(temptable::Chunk(first_chunk)),
            temptable::Block(temptable::Chunk(second_chunk)));

  // Deallocate Second Chunk
  allocator.deallocate(second_chunk, second_chunk_size);

  // Deallocate First Chunk
  allocator.deallocate(first_chunk, first_chunk_size);

  // Physically deallocate the shared-block (allocator keeps it alive
  // intentionally)
  EXPECT_FALSE(shared_block.is_empty());
  temptable::Prefer_RAM_over_MMAP_policy::block_freed(shared_block.size(),
                                                      shared_block.type());
  shared_block.destroy();
  EXPECT_TRUE(shared_block.is_empty());
}

TEST_F(TempTableAllocator,
       will_increment_ram_consumption_when_shared_block_is_allocated) {
  temptable::TableResourceMonitor table_resource_monitor(16 * 1024 * 1024);
  temptable::Block shared_block;
  EXPECT_TRUE(shared_block.is_empty());
  temptable::Allocator<uint8_t> allocator(&shared_block,
                                          table_resource_monitor);

  // RAM consumption is 0 at the start
  EXPECT_EQ(MemoryMonitorReadOnlyProbe::ram_consumption(), 0);

  // First allocation is fed from shared-block
  size_t shared_block_n_elements = 1024 * 1024;
  uint8_t *shared_block_ptr = allocator.allocate(shared_block_n_elements);
  EXPECT_FALSE(shared_block.is_empty());

  // RAM consumption should be greater or equal than
  // shared_block_n_elements bytes at this point
  EXPECT_GE(MemoryMonitorReadOnlyProbe::ram_consumption(),
            shared_block_n_elements);

  // Deallocate the shared-block
  allocator.deallocate(shared_block_ptr, shared_block_n_elements);

  // Physically deallocate the shared-block (allocator keeps it alive
  // intentionally)
  EXPECT_FALSE(shared_block.is_empty());
  temptable::Prefer_RAM_over_MMAP_policy::block_freed(shared_block.size(),
                                                      shared_block.type());
  shared_block.destroy();
  EXPECT_TRUE(shared_block.is_empty());
}

TEST_F(TempTableAllocator,
       will_not_decrement_ram_consumption_when_shared_block_is_deallocated) {
  temptable::TableResourceMonitor table_resource_monitor(16 * 1024 * 1024);
  temptable::Block shared_block;
  EXPECT_TRUE(shared_block.is_empty());
  temptable::Allocator<uint8_t> allocator(&shared_block,
                                          table_resource_monitor);

  // RAM consumption is 0 at the start
  EXPECT_EQ(MemoryMonitorReadOnlyProbe::ram_consumption(), 0);

  // First allocation is fed from shared-block
  size_t shared_block_n_elements = 1024 * 1024;
  uint8_t *shared_block_ptr = allocator.allocate(shared_block_n_elements);
  EXPECT_FALSE(shared_block.is_empty());

  // RAM consumption should be greater or equal than
  // shared_block_n_elements bytes at this point
  EXPECT_GE(MemoryMonitorReadOnlyProbe::ram_consumption(),
            shared_block_n_elements);

  // Deallocate the shared-block
  allocator.deallocate(shared_block_ptr, shared_block_n_elements);

  // Physically deallocate the shared-block (allocator keeps it alive
  // intentionally)
  EXPECT_FALSE(shared_block.is_empty());
  temptable::Prefer_RAM_over_MMAP_policy::block_freed(shared_block.size(),
                                                      shared_block.type());
  shared_block.destroy();
  EXPECT_TRUE(shared_block.is_empty());

  EXPECT_EQ(MemoryMonitorReadOnlyProbe::ram_consumption(), 0);
}

TEST_F(
    TempTableAllocator,
    ram_consumption_does_not_drop_to_zero_when_last_non_shared_block_is_destroyed) {
  temptable::TableResourceMonitor table_resource_monitor(16 * 1024 * 1024);
  temptable::Block shared_block;
  EXPECT_TRUE(shared_block.is_empty());
  temptable::Allocator<uint8_t> allocator(&shared_block,
                                          table_resource_monitor);

  // RAM consumption should be greater or equal than
  // shared_block_n_elements bytes at this point
  EXPECT_EQ(MemoryMonitorReadOnlyProbe::ram_consumption(), 0);

  // Make sure we fill up the shared_block first
  // nr of elements must be >= 1MiB in size
  size_t shared_block_n_elements = 1024 * 1024 + 256;
  uint8_t *shared_block_ptr = allocator.allocate(shared_block_n_elements);
  EXPECT_FALSE(shared_block.is_empty());

  // Not even 1-byte should be able to fit anymore
  EXPECT_FALSE(shared_block.can_accommodate(1));

  // Now our next allocation should result in new block allocation ...
  size_t non_shared_block_n_elements = 2 * 1024;
  uint8_t *non_shared_block_ptr =
      allocator.allocate(non_shared_block_n_elements);

  // Make sure that pointers (Chunk's) are from different blocks
  EXPECT_NE(temptable::Block(temptable::Chunk(non_shared_block_ptr)),
            temptable::Block(temptable::Chunk(shared_block_ptr)));

  // RAM consumption should be greater or equal than
  // non_shared_block_n_elements bytes at this point
  EXPECT_GE(MemoryMonitorReadOnlyProbe::ram_consumption(),
            non_shared_block_n_elements);

  // Deallocate the non-shared block
  allocator.deallocate(non_shared_block_ptr, non_shared_block_n_elements);

  // RAM consumption should be greater or equal than
  // shared_block_n_elements bytes at this point
  EXPECT_GE(MemoryMonitorReadOnlyProbe::ram_consumption(),
            shared_block_n_elements);

  // Deallocate the shared-block
  allocator.deallocate(shared_block_ptr, shared_block_n_elements);

  // Physically deallocate the shared-block (allocator keeps it alive
  // intentionally)
  EXPECT_FALSE(shared_block.is_empty());
  temptable::Prefer_RAM_over_MMAP_policy::block_freed(shared_block.size(),
                                                      shared_block.type());
  shared_block.destroy();
  EXPECT_TRUE(shared_block.is_empty());
}

TEST_F(
    TempTableAllocator,
    shared_block_allocated_from_ram_when_ram_threshold_is_not_hit_for_given_block_size) {
  temptable::TableResourceMonitor table_resource_monitor(16 * 1024 * 1024);
  temptable::Block shared_block;
  EXPECT_TRUE(shared_block.is_empty());
  temptable::Allocator<uint8_t> allocator(&shared_block,
                                          table_resource_monitor);

  // Size of the shared_block we will request must fit (not hit the
  // threshold)
  size_t shared_block_n_elements = 1024;
  EXPECT_LE(MemoryMonitorReadOnlyProbe::ram_consumption() +
                temptable::Block::size_hint(shared_block_n_elements),
            MemoryMonitorReadOnlyProbe::ram_threshold());

  // First allocation is fed from shared-block
  uint8_t *shared_block_ptr = allocator.allocate(shared_block_n_elements);
  EXPECT_FALSE(shared_block.is_empty());

  // RAM consumption should be greater or equal than
  // shared_block_n_elements bytes at this point
  EXPECT_GE(MemoryMonitorReadOnlyProbe::ram_consumption(),
            shared_block_n_elements);

  // Deallocate the shared-block
  allocator.deallocate(shared_block_ptr, shared_block_n_elements);

  // Physically deallocate the shared-block (allocator keeps it alive
  // intentionally)
  EXPECT_FALSE(shared_block.is_empty());
  temptable::Prefer_RAM_over_MMAP_policy::block_freed(shared_block.size(),
                                                      shared_block.type());
  shared_block.destroy();
  EXPECT_TRUE(shared_block.is_empty());
}

TEST_F(
    TempTableAllocator,
    shared_block_allocated_from_mmap_when_ram_threshold_is_hit_for_given_block_size) {
  temptable::TableResourceMonitor table_resource_monitor(16 * 1024 * 1024);
  temptable::Block shared_block;
  EXPECT_TRUE(shared_block.is_empty());
  temptable::Allocator<uint8_t> allocator(&shared_block,
                                          table_resource_monitor);

  // Set some artificially low RAM threshold
  MemoryMonitorHijackProbe::max_ram_set(128);

  // Size of the shared_block we will request must exceed the RAM threshold
  size_t shared_block_n_elements = 1024;
  EXPECT_GT(MemoryMonitorReadOnlyProbe::ram_consumption() +
                temptable::Block::size_hint(shared_block_n_elements),
            MemoryMonitorReadOnlyProbe::ram_threshold());

  // First allocation is fed from shared-block
  uint8_t *shared_block_ptr = allocator.allocate(shared_block_n_elements);
  EXPECT_FALSE(shared_block.is_empty());

  // As we have no means to track MMAP consumption yet, we will have to deduce
  // information that shared_block was allocated from MMAP by checking if
  // RAM consumption remained the same (zero)
  EXPECT_EQ(MemoryMonitorReadOnlyProbe::ram_consumption(), 0);
  // Similarly we can check that we didn't get nullptr block
  EXPECT_TRUE(shared_block_ptr != nullptr);

  // Deallocate the shared-block
  allocator.deallocate(shared_block_ptr, shared_block_n_elements);

  // Physically deallocate the shared-block (allocator keeps it alive
  // intentionally)
  EXPECT_FALSE(shared_block.is_empty());
  temptable::Prefer_RAM_over_MMAP_policy::block_freed(shared_block.size(),
                                                      shared_block.type());
  shared_block.destroy();
  EXPECT_TRUE(shared_block.is_empty());
}

TEST_F(TempTableAllocator, zero_size_allocation_returns_nullptr) {
  temptable::TableResourceMonitor table_resource_monitor(16 * 1024 * 1024);
  temptable::Allocator<uint8_t> allocator(nullptr, table_resource_monitor);
  EXPECT_EQ(nullptr, allocator.allocate(0));
}

TEST_F(TempTableAllocator, block_size_cap) {
  temptable::Block shared_block;
  EXPECT_TRUE(shared_block.is_empty());
  temptable::TableResourceMonitor table_resource_monitor(
      std::numeric_limits<size_t>::max());
  temptable::Allocator<uint8_t> allocator(&shared_block,
                                          table_resource_monitor);

  using namespace temptable;

  constexpr size_t alloc_size = 1_MiB;
  constexpr size_t n_allocate = ALLOCATOR_MAX_BLOCK_BYTES / alloc_size + 10;
  std::array<uint8_t *, n_allocate> a;

  for (size_t i = 0; i < n_allocate; ++i) {
    a[i] = allocator.allocate(alloc_size);
  }

  EXPECT_FALSE(shared_block.is_empty());

  for (size_t i = 0; i < n_allocate; ++i) {
    allocator.deallocate(a[i], alloc_size);
  }

  // Physically deallocate the shared-block (allocator keeps it alive
  // intentionally)
  EXPECT_FALSE(shared_block.is_empty());
  temptable::Prefer_RAM_over_MMAP_policy::block_freed(shared_block.size(),
                                                      shared_block.type());
  shared_block.destroy();
  EXPECT_TRUE(shared_block.is_empty());
}

TEST_F(
    TempTableAllocator,
    table_resource_monitor_increases_then_drops_to_0_when_allocation_is_backed_by_shared_block) {
  temptable::TableResourceMonitor table_resource_monitor(16_MiB);
  temptable::Block shared_block;
  EXPECT_TRUE(shared_block.is_empty());
  temptable::Allocator<uint8_t> allocator(&shared_block,
                                          table_resource_monitor);

  // Make sure table resource monitor is set
  EXPECT_EQ(table_resource_monitor.consumption(), 0);
  EXPECT_EQ(table_resource_monitor.threshold(), 16_MiB);

  // Allocate a chunk
  auto chunk_from_shared_block = allocator.allocate(5_KiB);

  // Make sure that the chunk is fed by the shared_block
  temptable::Block block =
      temptable::Block(temptable::Chunk(chunk_from_shared_block));
  EXPECT_EQ(block, shared_block);
  EXPECT_EQ(block.size(), shared_block.size());

  // Check that the table resource monitor increased accordingly
  EXPECT_EQ(table_resource_monitor.consumption(), 5_KiB);

  // Deallocate and check that the table resource monitor decreased accordingly
  allocator.deallocate(chunk_from_shared_block, 5_KiB);
  EXPECT_EQ(table_resource_monitor.consumption(), 0_KiB);

  // Physically deallocate the shared-block (allocator keeps it alive
  // intentionally)
  EXPECT_FALSE(shared_block.is_empty());
  temptable::Prefer_RAM_over_MMAP_policy::block_freed(shared_block.size(),
                                                      shared_block.type());
  shared_block.destroy();
  EXPECT_TRUE(shared_block.is_empty());
}

TEST_F(
    TempTableAllocator,
    table_resource_monitor_increases_then_drops_to_0_when_allocation_is_not_backed_by_shared_block) {
  temptable::TableResourceMonitor table_resource_monitor(16_MiB);
  temptable::Allocator<uint8_t> allocator(nullptr, table_resource_monitor);

  // Make sure table resource monitor is set
  EXPECT_EQ(table_resource_monitor.consumption(), 0);
  EXPECT_EQ(table_resource_monitor.threshold(), 16_MiB);

  // Allocate a chunk
  auto chunk = allocator.allocate(5_KiB);

  // Check that the table resource monitor increased accordingly
  EXPECT_EQ(table_resource_monitor.consumption(), 5_KiB);

  // Deallocate and check that the table resource monitor decreased accordingly
  allocator.deallocate(chunk, 5_KiB);
  EXPECT_EQ(table_resource_monitor.consumption(), 0_KiB);
}

TEST_F(
    TempTableAllocator,
    table_resource_monitor_increases_then_drops_to_0_when_there_are_multitude_of_allocations) {
  temptable::TableResourceMonitor table_resource_monitor(16_MiB);
  temptable::Block shared_block;
  EXPECT_TRUE(shared_block.is_empty());
  temptable::Allocator<uint8_t> allocator(&shared_block,
                                          table_resource_monitor);

  // Make sure table resource monitor is set
  EXPECT_EQ(table_resource_monitor.consumption(), 0);
  EXPECT_EQ(table_resource_monitor.threshold(), 16_MiB);

  // Allocate a chunk
  auto chunk1 = allocator.allocate(5_KiB);

  // Check that the table resource monitor increased accordingly
  EXPECT_EQ(table_resource_monitor.consumption(), 5_KiB);

  // Allocate another chunk
  auto chunk2 = allocator.allocate(10_KiB);

  // Check that the table resource monitor increased accordingly
  EXPECT_EQ(table_resource_monitor.consumption(), 15_KiB);

  // Deallocate the first chunk and check that the table resource monitor
  // decreased accordingly
  allocator.deallocate(chunk1, 5_KiB);
  EXPECT_EQ(table_resource_monitor.consumption(), 10_KiB);

  // Allocate another chunk
  auto chunk3 = allocator.allocate(50_KiB);

  // Check that the table resource monitor increased accordingly
  EXPECT_EQ(table_resource_monitor.consumption(), 60_KiB);

  // Deallocate the second chunk and check that the table resource monitor
  // decreased accordingly
  allocator.deallocate(chunk2, 10_KiB);
  EXPECT_EQ(table_resource_monitor.consumption(), 50_KiB);

  // Deallocate the third chunk and check that the table resource monitor
  // decreased accordingly
  allocator.deallocate(chunk3, 50_KiB);
  EXPECT_EQ(table_resource_monitor.consumption(), 0_KiB);

  // Physically deallocate the shared-block (allocator keeps it alive
  // intentionally)
  EXPECT_FALSE(shared_block.is_empty());
  temptable::Prefer_RAM_over_MMAP_policy::block_freed(shared_block.size(),
                                                      shared_block.type());
  shared_block.destroy();
  EXPECT_TRUE(shared_block.is_empty());
}

TEST_F(
    TempTableAllocator,
    table_resource_monitor_limit_is_respected_and_record_file_full_is_thrown) {
  temptable::TableResourceMonitor table_resource_monitor(2_MiB);
  temptable::Block shared_block;
  EXPECT_TRUE(shared_block.is_empty());
  temptable::Allocator<uint8_t> allocator(&shared_block,
                                          table_resource_monitor);

  // Make sure table resource monitor is set
  EXPECT_EQ(table_resource_monitor.consumption(), 0);
  EXPECT_EQ(table_resource_monitor.threshold(), 2_MiB);

  // Allocate a chunk
  auto chunk1 = allocator.allocate(792_KiB);

  // Check that the table resource monitor increased accordingly
  EXPECT_EQ(table_resource_monitor.consumption(), 792_KiB);

  // Allocate another chunk
  auto chunk2 = allocator.allocate(512_KiB);

  // Check that the table resource monitor increased accordingly
  EXPECT_EQ(table_resource_monitor.consumption(), 792_KiB + 512_KiB);

  try {
    // Allocate another chunk
    auto chunk3 = allocator.allocate(520_KiB);
    (void)chunk3;
  } catch (std::exception &) {
    EXPECT_TRUE(false);
  } catch (temptable::Result r) {
    EXPECT_EQ(r, temptable::Result::RECORD_FILE_FULL);
  }

  // Deallocate the second chunk and check that the table resource monitor
  // decreased accordingly
  allocator.deallocate(chunk2, 512_KiB);
  EXPECT_EQ(table_resource_monitor.consumption(), 792_KiB);

  // Deallocate the third chunk and check that the table resource monitor
  // decreased accordingly
  allocator.deallocate(chunk1, 792_KiB);
  EXPECT_EQ(table_resource_monitor.consumption(), 0_KiB);

  // Physically deallocate the shared-block (allocator keeps it alive
  // intentionally)
  EXPECT_FALSE(shared_block.is_empty());
  temptable::Prefer_RAM_over_MMAP_policy::block_freed(shared_block.size(),
                                                      shared_block.type());
  shared_block.destroy();
  EXPECT_TRUE(shared_block.is_empty());
}

TEST_F(TempTableAllocator,
       shared_block_utilization_shall_not_impact_the_block_size_growth_policy) {
  temptable::TableResourceMonitor table_resource_monitor(16 * 1024 * 1024);
  temptable::Block shared_block;
  temptable::Allocator<uint8_t> a1(&shared_block, table_resource_monitor);
  temptable::Allocator<uint8_t> a2(&shared_block, table_resource_monitor);
  auto r11 = a1.allocate(512_KiB);
  temptable::Block b11 = temptable::Block(temptable::Chunk(r11));
  EXPECT_EQ(b11, shared_block);
  EXPECT_EQ(b11.size(), shared_block.size());
  EXPECT_EQ(b11.size(), 1_MiB);
  // ^^
  // 1. Allocator detects that shared_block is empty
  // 2. It uses the block-size growth policy to compute the block-size
  // 3. It allocates the block of 1MiB of size. Our shared_block is now 1MiB of
  // size big.
  // 4. Returns a pointer from shared_block.

  auto r12 = a1.allocate(256_KiB);
  temptable::Block b12 = temptable::Block(temptable::Chunk(r12));
  EXPECT_EQ(b12, shared_block);
  EXPECT_EQ(b12.size(), shared_block.size());
  // ^^
  // 1. Allocator detects that shared_block is not empty
  // 2. It detects that shared_block has enough space left (1MiB - 512KiB =
  // 512KiB) to accomodate the 256KiB request.
  // 3. Returns a pointer from shared_block.

  auto r13 = a1.allocate(512_KiB);
  temptable::Block b13 = temptable::Block(temptable::Chunk(r13));
  EXPECT_NE(b13, shared_block);
  EXPECT_NE(b13, b12);
  EXPECT_EQ(b13.size(), 1_MiB);
  // ^^
  // 1. Allocator detects that shared_block is not empty
  // 2. It detects that shared_block does not have enough space left (1MiB -
  // 512KiB - 256KiB = 256KiB) to accomodate the 512KiB request.
  // 3. It uses the block-size growth policy to compute the block-size.
  // 4. It allocates the block of 2MiB of size.
  // 5. Returns a pointer from new block.

  auto r21 = a2.allocate(512_KiB);
  temptable::Block b21 = temptable::Block(temptable::Chunk(r21));
  EXPECT_NE(b21, shared_block);
  EXPECT_EQ(b21.size(), 1_MiB);
  // ^^^^
  // 1. Allocator detects that shared_block is not empty.
  // 2. It detects that shared_block does not have enough space left (1MiB -
  // 512KiB - 256KiB = 256KiB) to accomodate the 512KiB request.
  // 3. It uses the block-size growth policy to compute the block-size.
  // 4. It allocates the block of 1MiB of size.
  // 5. Returns a pointer from new block.

  auto r14 = a1.allocate(128_KiB);
  temptable::Block b14 = temptable::Block(temptable::Chunk(r14));
  EXPECT_EQ(b14, shared_block);
  EXPECT_EQ(b14.size(), shared_block.size());
  // ^^
  // 1. Allocator detects that shared_block is not empty
  // 2. It detects that shared_block has enough space left (1MiB - 512KiB -
  // 256KiB = 256KiB) to accomodate the 128KiB request.
  // 3. Returns a pointer from shared_block.

  auto r15 = a1.allocate(1_MiB - 512_KiB);
  temptable::Block b15 = temptable::Block(temptable::Chunk(r15));
  EXPECT_NE(b15, shared_block);
  EXPECT_EQ(b15.size(), 2_MiB);
  // ^^
  // 1. Allocator detects that shared_block is not empty.
  // 2. It detects that shared_block does not have enough space left (1MiB -
  // 512KiB - 256KiB - 128KiB = 128KiB) to accomodate the 1.5MiB request.
  // 3. It also checks if there is enough space left in secondly instantiated
  // 1MiB block (see (B)) to accomodate the 1.5MiB. It does not.
  // 4. It allocates the block of 2MiB of size.
  // 3. Returns a pointer from new block.

  auto r22 = a2.allocate(1_MiB);
  temptable::Block b22 = temptable::Block(temptable::Chunk(r22));
  EXPECT_NE(b22, shared_block);
  EXPECT_EQ(b22.size(), 2_MiB);
  // 1. Allocator detects that shared_block is not empty.
  // 2. It detects that shared_block does not have enough space left (1MiB -
  // 512KiB - 256KiB - 128KiB = 128KiB) to accomodate the 1MiB request.
  // 3. It uses the block-size growth policy to compute the block-size.
  // 4. It allocates the block of 2MiB of size.
  // 5. Returns a pointer from new block.

  a1.deallocate(r11, 512_KiB);
  a1.deallocate(r12, 256_KiB);
  a1.deallocate(r13, 512_KiB);
  a1.deallocate(r14, 128_KiB);
  a1.deallocate(r15, 1_MiB - 512_KiB);
  a2.deallocate(r21, 512_KiB);
  a2.deallocate(r22, 1_MiB);

  // Physically deallocate the shared-block (allocator keeps it alive
  // intentionally)
  EXPECT_FALSE(shared_block.is_empty());
  temptable::Prefer_RAM_over_MMAP_policy::block_freed(shared_block.size(),
                                                      shared_block.type());
  shared_block.destroy();
  EXPECT_TRUE(shared_block.is_empty());
}

TEST_F(
    TempTableAllocator,
    repeated_allocation_followed_by_deallocation_does_not_create_new_blocks) {
  temptable::TableResourceMonitor table_resource_monitor(16 * 1024 * 1024);
  {
    temptable::Block shared_block;
    ;
    temptable::Allocator<uint8_t> allocator(&shared_block,
                                            table_resource_monitor);
    // RAM consumption is 0 at the start
    EXPECT_EQ(MemoryMonitorReadOnlyProbe::ram_consumption(), 0);

    auto r1 = allocator.allocate(800_KiB);
    temptable::Block b1 = temptable::Block(temptable::Chunk(r1));
    EXPECT_EQ(b1, shared_block);
    EXPECT_EQ(b1.size(), shared_block.size());
    EXPECT_EQ(b1.size(), 1_MiB);
    // ^^
    // 1. Allocator detects that shared_block is empty
    // 2. It uses the block-size growth policy to compute the block-size
    // 3. It allocates the block of 1MiB of size. Our shared_block is now 1MiB
    // of size big.
    // 4. Returns a pointer from shared_block.

    auto r2 = allocator.allocate(800_KiB);
    temptable::Block b2 = temptable::Block(temptable::Chunk(r2));
    EXPECT_NE(b2, shared_block);
    EXPECT_EQ(b2.size(), 1_MiB);
    EXPECT_EQ(MemoryMonitorReadOnlyProbe::ram_consumption(), 2_MiB);
    // ^^
    // 1. Allocator detects that shared_block is not empty, but it can't use it
    // to allocate new chunk.
    // 2. It allocates a new block of 1MiB of size.
    // 3. Returns a pointer from a new block.

    {
      auto r3 = allocator.allocate(800_KiB);
      temptable::Block b3 = temptable::Block(temptable::Chunk(r3));
      EXPECT_NE(b3, shared_block);
      EXPECT_EQ(b3.size(), 2_MiB);
      EXPECT_EQ(MemoryMonitorReadOnlyProbe::ram_consumption(), 4_MiB);
      // ^^
      // 1. Allocator detects that shared_block is not empty, but it can't use
      // it to allocate new chunk.
      // 2. Neither the current block can be used.
      // 3. It allocates a new block of 1MiB of size.
      // 4. Returns a pointer from a new block.

      allocator.deallocate(r3, 800_KiB);
      EXPECT_EQ(MemoryMonitorReadOnlyProbe::ram_consumption(), 4_MiB);
      // ^^
      // 1. Allocator removes the chunk from the current block.
      // 2. It sees it is now empty, but caches it and does not deallocate it.
      // 3. The consumption stays at 4MiB.
    }

    {
      auto r3 = allocator.allocate(800_KiB);
      temptable::Block b3 = temptable::Block(temptable::Chunk(r3));
      EXPECT_NE(b3, shared_block);
      EXPECT_EQ(b3.size(), 2_MiB);
      EXPECT_EQ(MemoryMonitorReadOnlyProbe::ram_consumption(), 4_MiB);
      // ^^
      // 1. Allocator detects that shared_block is not empty, but it can't use
      // it to allocate new chunk.
      // 2. The current block can be used as it empty now.
      // 3. It allocates a new block of 1MiB of size.
      // 4. Returns a pointer from a new block.

      allocator.deallocate(r3, 800_KiB);
      EXPECT_EQ(MemoryMonitorReadOnlyProbe::ram_consumption(), 4_MiB);
      // ^^
      // 1. Allocator removes the chunk from the current block.
      // 2. It sees it is now empty, but caches it and does not deallocate it.
      // 3. The consumption stays at 4MiB.
    }
    allocator.deallocate(r2, 800_KiB);
    EXPECT_EQ(MemoryMonitorReadOnlyProbe::ram_consumption(), 3_MiB);
    // ^^
    // 1. Allocator removes the chunk from old block.
    // 2. It sees it is now empty, and is not the current one and deallocates
    // it.
    // 3. The consumption drops to 2MiB.
    allocator.deallocate(r1, 800_KiB);

    // Physically deallocate the shared-block (allocator keeps it alive
    // intentionally)
    EXPECT_FALSE(shared_block.is_empty());
    temptable::Prefer_RAM_over_MMAP_policy::block_freed(shared_block.size(),
                                                        shared_block.type());
    shared_block.destroy();
    EXPECT_TRUE(shared_block.is_empty());

    EXPECT_EQ(MemoryMonitorReadOnlyProbe::ram_consumption(), 2_MiB);
    // ^^
    // 1. Shared block is deallocated.
    // 2. Allocator still holds the current block alive.
    // 3. The consumption should drop by the 1MiB used by the shared block.
  }
  EXPECT_EQ(MemoryMonitorReadOnlyProbe::ram_consumption(), 0_MiB);
  // ^^
  // 1. Allocator is destroyed.
  // 2. It sees it has an empty current block and deallocates it.
  // 3. The consumption should drop by the 2MiB used by the current block.
}

// Create some aliases to make our life easier when generating the test-cases
// down below.
using max_ram = decltype(temptable_max_ram);
using max_mmap = decltype(temptable_max_mmap);
using use_mmap = decltype(temptable_use_mmap);
using n_elements = uint32_t;
using is_ram_expected_to_be_increased = bool;
using is_mmap_expected_to_be_increased = bool;

// Parametrized test for testing successful allocation patterns
class AllocatesSuccessfully
    : public TempTableAllocator,
      public ::testing::WithParamInterface<std::tuple<
          max_ram, max_mmap, use_mmap, n_elements,
          is_ram_expected_to_be_increased, is_mmap_expected_to_be_increased>> {
};

// Parametrized test for testing allocation patterns which should yield
// RecordFileFull exception
class ThrowsRecordFileFull
    : public TempTableAllocator,
      public ::testing::WithParamInterface<
          std::tuple<max_ram, max_mmap, use_mmap, n_elements>> {};

// Implementation of parametrized test-cases which tests successful allocation
// patterns
TEST_P(AllocatesSuccessfully,
       for_various_allocation_patterns_and_configurations) {
  auto max_ram = std::get<0>(GetParam());
  auto max_mmap = std::get<1>(GetParam());
  auto mmap_enabled = std::get<2>(GetParam());
  auto n_elements = std::get<3>(GetParam());
  auto ram_expected_to_be_increased = std::get<4>(GetParam());
  auto mmap_expected_to_be_increased = std::get<5>(GetParam());

  MemoryMonitorHijackProbe::max_ram_set(max_ram);
  MemoryMonitorHijackProbe::max_mmap_set(max_mmap);
  mmap_enabled ? MemoryMonitorHijackProbe::mmap_enable()
               : MemoryMonitorHijackProbe::mmap_disable();

  // Trigger the allocation
  temptable::TableResourceMonitor table_resource_monitor(16 * 1024 * 1024);
  temptable::Allocator<uint8_t> allocator(nullptr, table_resource_monitor);
  uint8_t *chunk = nullptr;
  EXPECT_NO_THROW(chunk = allocator.allocate(n_elements));
  EXPECT_NE(chunk, nullptr);

  // After successful allocation, and depending on the use-case, RAM and MMAP
  // consumption should increase or stay at the same level accordingly
  if (ram_expected_to_be_increased) {
    EXPECT_GE(MemoryMonitorReadOnlyProbe::ram_consumption(),
              n_elements * sizeof(uint8_t));
  } else {
    EXPECT_EQ(MemoryMonitorReadOnlyProbe::ram_consumption(), 0);
  }
  if (mmap_expected_to_be_increased) {
    EXPECT_GE(MemoryMonitorReadOnlyProbe::mmap_consumption(),
              n_elements * sizeof(uint8_t));
  } else {
    EXPECT_EQ(MemoryMonitorReadOnlyProbe::mmap_consumption(), 0);
  }

  // Clean-up
  allocator.deallocate(chunk, n_elements);
}

// Implementation of parametrized test-cases which tests allocation patterns
// yielding RecordFileFull exception
TEST_P(ThrowsRecordFileFull,
       for_various_allocation_patterns_and_configurations) {
  auto max_ram = std::get<0>(GetParam());
  auto max_mmap = std::get<1>(GetParam());
  auto mmap_enabled = std::get<2>(GetParam());
  auto n_elements = std::get<3>(GetParam());

  MemoryMonitorHijackProbe::max_ram_set(max_ram);
  MemoryMonitorHijackProbe::max_mmap_set(max_mmap);
  mmap_enabled ? MemoryMonitorHijackProbe::mmap_enable()
               : MemoryMonitorHijackProbe::mmap_disable();

  // Trigger the allocation
  temptable::TableResourceMonitor table_resource_monitor(16 * 1024 * 1024);
  temptable::Allocator<uint8_t> allocator(nullptr, table_resource_monitor);
  uint8_t *chunk = nullptr;
  EXPECT_THROW_WITH_VALUE(chunk = allocator.allocate(n_elements),
                          temptable::Result,
                          temptable::Result::RECORD_FILE_FULL);
  EXPECT_EQ(chunk, nullptr);
  // After allocation failure, RAM consumption must remain intact (zero)
  EXPECT_EQ(MemoryMonitorReadOnlyProbe::ram_consumption(), 0);
  // Ditto for MMAP
  EXPECT_EQ(MemoryMonitorReadOnlyProbe::mmap_consumption(), 0);
}

// Generate tests for all of the test-case scenarios which should yield
// RecordFileFull exception
INSTANTIATE_TEST_SUITE_P(
    TempTableAllocator, ThrowsRecordFileFull,
    ::testing::Values(
        // ram threshold reached, mmap threshold not reached, mmap disabled
        std::make_tuple(1_MiB, 2_MiB, false, 1_MiB + 1),
        // ram threshold reached, mmap threshold reached, mmap disabled
        std::make_tuple(1_MiB, 1_MiB, false, 2_MiB),
        // ram threshold reached, mmap threshold reached, mmap enabled
        std::make_tuple(1_MiB, 1_MiB, true, 2_MiB),
        // ram threshold reached, mmap threshold reached (but set to 0), mmap
        // disabled
        std::make_tuple(1_MiB, 0_MiB, false, 2_MiB),
        // ram threshold reached, mmap threshold reached (but set to 0), mmap
        // enabled
        std::make_tuple(1_MiB, 0_MiB, true, 2_MiB)));

// Generate tests for all of the test-case scenarios which should result with a
// successful allocation
INSTANTIATE_TEST_SUITE_P(
    TempTableAllocator, AllocatesSuccessfully,
    ::testing::Values(
        // ram threshold not reached, mmap threshold not reached (but set to 0),
        // mmap disabled
        std::make_tuple(1_MiB, 0_MiB, false, 2_KiB, true, false),
        // ram threshold not reached, mmap threshold not reached (but set to 0),
        // mmap enabled
        std::make_tuple(1_MiB, 0_MiB, true, 2_KiB, true, false),
        // ram threshold not reached, mmap threshold not reached, mmap disabled
        std::make_tuple(1_MiB, 1_MiB, true, 2_KiB, true, false),
        // ram threshold not reached, mmap threshold not reached, mmap enabled
        std::make_tuple(1_MiB, 1_MiB, true, 2_KiB, true, false),
        // ram threshold reached, mmap threshold not reached, mmap enabled
        std::make_tuple(1_MiB, 4_MiB, true, 2_MiB, false, true)));

// Create some aliases to make our life easier when generating the test-cases
// down below.
using block_size_expected = size_t;
using block_size = uint32_t;
using number_of_blocks = size_t;
using n_bytes_requested = size_t;
using ram_consumption = uint32_t;
using ram_threshold = uint32_t;
using mmap_threshold = uint32_t;
using exception_will_be_thrown = bool;
using expected_source = temptable::Source;

// Parameterized test for testing Exponential_policy behavior in cases when
// requested block size is smaller than the power to the two number which
// will be internally picked up by the policy.
class ExponentialPolicyReturnsPowerToTheTwoBlockSize
    : public TempTableAllocator,
      public ::testing::WithParamInterface<std::tuple<
          number_of_blocks, n_bytes_requested, block_size_expected>> {};

// Implementation of parameterized test-cases which test for correct block sizes
// returned by policy.
TEST_P(ExponentialPolicyReturnsPowerToTheTwoBlockSize,
       when_actual_block_size_is_smaller_than_that_power_to_the_two_number) {
  auto number_of_blocks = std::get<0>(GetParam());
  auto n_bytes_requested = std::get<1>(GetParam());
  auto block_size_expected = std::get<2>(GetParam());

  EXPECT_EQ(block_size_expected, temptable::Exponential_policy::block_size(
                                     number_of_blocks, n_bytes_requested));
}

// Generate the test-case scenarios.
INSTANTIATE_TEST_SUITE_P(
    TempTableBlockSizePolicy1, ExponentialPolicyReturnsPowerToTheTwoBlockSize,
    ::testing::Values(
        // First and smallest block size returned is always 1 MiB
        // (unless requested size is larger than 1 MiB)
        std::make_tuple(0, 1_KiB, 1_MiB),
        // ...
        std::make_tuple(0, 5_KiB, 1_MiB),
        // ...
        std::make_tuple(0, 128_KiB, 1_MiB),
        // ...
        std::make_tuple(0, 512_KiB, 1_MiB),
        // ...
        std::make_tuple(0, 786_KiB, 1_MiB),
        // Block size returned will grow exponentially if we continue
        // increasing number of blocks (first) parameter
        std::make_tuple(1, 1_KiB, 2_MiB),
        // ...
        std::make_tuple(2, 1_KiB, 4_MiB),
        // ...
        std::make_tuple(3, 1_KiB, 8_MiB),
        // ...
        std::make_tuple(4, 1_KiB, 16_MiB),
        // ...
        std::make_tuple(5, 1_KiB, 32_MiB),
        // ...
        std::make_tuple(6, 1_KiB, 64_MiB),
        // ...
        std::make_tuple(7, 1_KiB, 128_MiB),
        // ...
        std::make_tuple(8, 1_KiB, 256_MiB),
        // Once number of blocks hits the
        // temptable::ALLOCATOR_MAX_BLOCK_MB_EXP threshold, block size of
        // temptable::ALLOCATOR_MAX_BLOCK_BYTES will be returned if
        // requested size is not bigger than that
        std::make_tuple(temptable::ALLOCATOR_MAX_BLOCK_MB_EXP, 1_MiB,
                        temptable::ALLOCATOR_MAX_BLOCK_BYTES)));

// Parameterized test for testing Exponential_policy behavior in cases when
// requested block size is larger than the power to the two number which
// would be otherwise internally picked up by the policy.
class ExponentialPolicyReturnsExactBlockSize
    : public TempTableAllocator,
      public ::testing::WithParamInterface<std::tuple<
          number_of_blocks, n_bytes_requested, block_size_expected>> {};

// Implementation of parameterized test-cases which test for correct block sizes
// returned by policy.
TEST_P(
    ExponentialPolicyReturnsExactBlockSize,
    when_actual_block_size_is_larger_than_the_power_to_the_two_number_which_would_be_otherwise_used) {
  auto number_of_blocks = std::get<0>(GetParam());
  auto n_bytes_requested = std::get<1>(GetParam());
  auto block_size_expected = std::get<2>(GetParam());

  EXPECT_EQ(block_size_expected, temptable::Exponential_policy::block_size(
                                     number_of_blocks, n_bytes_requested));
}

// Generate the test-case scenarios.
INSTANTIATE_TEST_SUITE_P(
    TempTableBlockSizePolicy2, ExponentialPolicyReturnsExactBlockSize,
    ::testing::Values(
        // If requested size is larger than 1 MiB, then returned size must match
        // the expected size and not the number which is power to the 2
        std::make_tuple(0, 1_MiB, temptable::Block::size_hint(1_MiB)),
        // Same for any other combination of number of blocks input
        std::make_tuple(4, 32_MiB, temptable::Block::size_hint(32_MiB)),
        // ...
        std::make_tuple(6, 256_MiB, temptable::Block::size_hint(256_MiB)),
        // Once number of blocks hits the
        // temptable::ALLOCATOR_MAX_BLOCK_MB_EXP threshold, and requested
        // block size is larger than temptable::ALLOCATOR_MAX_BLOCK_BYTES,
        // big enough block size shall be returned.
        std::make_tuple(temptable::ALLOCATOR_MAX_BLOCK_MB_EXP,
                        temptable::ALLOCATOR_MAX_BLOCK_BYTES,
                        temptable::Block::size_hint(
                            temptable::ALLOCATOR_MAX_BLOCK_BYTES))));

// Parameterized test for testing Prefer_RAM_over_MMAP_policy behavior.
class PreferRamOverMmapPolicy
    : public TempTableAllocator,
      public ::testing::WithParamInterface<
          std::tuple<block_size, ram_consumption, ram_threshold, mmap_threshold,
                     exception_will_be_thrown, expected_source>> {};

// Implementation of parameterized test-cases which test for correct block
// source returned by policy.
TEST_P(
    PreferRamOverMmapPolicy,
    selects_ram_or_mmap_when_requested_block_size_fits_otherwise_throws_an_exception) {
  auto block_size = std::get<0>(GetParam());
  auto ram_consumption = std::get<1>(GetParam());
  auto ram_threshold = std::get<2>(GetParam());
  auto mmap_threshold = std::get<3>(GetParam());
  auto exception_will_be_thrown = std::get<4>(GetParam());
  auto source_expected = std::get<5>(GetParam());

  MemoryMonitorHijackProbe::max_ram_set(ram_threshold);
  MemoryMonitorHijackProbe::max_mmap_set(mmap_threshold);
  MemoryMonitorHijackProbe::ram_consumption_set(ram_consumption);

  if (exception_will_be_thrown) {
    EXPECT_THROW_WITH_VALUE(
        temptable::Prefer_RAM_over_MMAP_policy::block_source(block_size),
        temptable::Result, temptable::Result::RECORD_FILE_FULL);
  } else {
    EXPECT_EQ(source_expected,
              temptable::Prefer_RAM_over_MMAP_policy::block_source(block_size));
    // A block source was successfully provisioned, and the usage was recorded.
    // Test the accounting when the block is freed.
    temptable::Prefer_RAM_over_MMAP_policy::block_freed(block_size,
                                                        source_expected);
  }

  // Reset the usage and check it is back to where we started.
  EXPECT_EQ(temptable::MemoryMonitor::RAM::consumption(), ram_consumption);
  MemoryMonitorHijackProbe::ram_consumption_reset();
}

// Generate the test-case scenarios.
INSTANTIATE_TEST_SUITE_P(
    TempTableBlockSourcePolicy, PreferRamOverMmapPolicy,
    ::testing::Values(
        // RAM threshold not reached, block size will fit, source is RAM
        std::make_tuple(1_MiB, 1_MiB, 2_MiB, 2_MiB, false,
                        temptable::Source::RAM),
        // RAM threshold not reached, block size will hit the threshold (by only
        // 1 byte), source is MMAP
        std::make_tuple(1_MiB + 1, 1_MiB, 2_MiB, 2_MiB, false,
                        temptable::Source::MMAP_FILE),
        // RAM threshold not reached, block size will hit the threshold (by
        // 1 MiB), source is MMAP
        std::make_tuple(2_MiB, 1_MiB, 2_MiB, 2_MiB, false,
                        temptable::Source::MMAP_FILE),
        // block does not fit nor in RAM or MMAP, exception will be thrown
        std::make_tuple(3_MiB, 1_MiB, 2_MiB, 2_MiB, true,
                        temptable::Source::MMAP_FILE)));

} /* namespace temptable_allocator_unittest */