1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
|
/* Copyright (c) 2020, 2025, Oracle and/or its affiliates.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is designed to work with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have either included with
the program or referenced in the documentation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
#ifndef CONTAINER_ATOMIC_INTEGRALS_ARRAY
#define CONTAINER_ATOMIC_INTEGRALS_ARRAY
#include <algorithm>
#include <atomic>
#include <cmath>
#include <map>
#include <memory>
#include <sstream>
#include <thread>
#include <tuple>
#include "sql/containers/atomics_array_index_padding.h" // container::Padded_Indexing
#include "sql/memory/unique_ptr.h" // memory::Unique_ptr
namespace container {
/**
Array of `std::atomic` elements of type `T`.
An array of `std::atomic` elements implies, almost for sure, a
multi-threaded environment and concurrent access to the array may lead to
false sharing when consecutive elements are pulled into the same CPU
cache line. This class accepts, as a template parameter, a helper class
that is both an element storage index translator and element storage size
provider. Different strategies to prevent false sharing and the
subsequent cache invalidation and misses, may be applied. Amongst others,
padding each element of the array to the size of the cache line or use
index translation to interleave sequential indexes to leave enough space
for them not to be pulled into the same cache line. The two described
strategies are provided already with the `container::Padded_indexing` and
`container::Interleaved_indexing` classes.
Template parameters are as follows:
- `T`: the integral type for the array elements.
- `I`: type of indexing to be used by this array in the form of a
class. Available classes are `container::Padded_indexing` and
`container::Interleaved_indexing`. The parameter defaults to
`container::Padded_indexing`.
- `A`: type of memory allocator to be used, in the form of a class
(defaults to no allocator).
When and if deciding between interleaved or padded indexing, one could
take into consideration, amongst possibly others, the following
arguments:
- For arrays with random concurrent access patterns, interleaved indexing
doesn't ensure false-sharing prevention.
- For arrays with sequential concurrent access patterns, if it's needed
that interleaved indexing prevents false-sharing, consecutive array
indexes will need to be apart, physically, the size of a
cache-line. So, in a system with expectation of T threads accessing
concurrently an array of elements of size `E` and with a cache-line of
size `CL`, the array capacity should be at least `T * (CL / E)` for
interleaved indexing to prevent false-sharing.
- Padded indexing will always prevent false-sharing but it will consume
more memory in order to have the same array capacity as the interleaved
indexing.
*/
template <typename T, typename I = container::Padded_indexing<T>,
typename A = std::nullptr_t>
class Atomics_array {
public:
using pointer_type = T *;
using const_pointer_type = T const *;
using reference_type = T &;
using const_reference_type = T const &;
using value_type = T;
using const_value_type = T const;
using element_type = std::atomic<T>;
/**
Iterator helper class to iterate over the array, from 0 to the array
size.
Check C++ documentation on `Iterator named requirements` for more
information on the implementation.
*/
class Iterator {
public:
using difference_type = std::ptrdiff_t;
using value_type = T;
using pointer = T *;
using reference = T;
using iterator_category = std::forward_iterator_tag;
/**
*/
explicit Iterator(Atomics_array<T, I, A> const &parent, size_t position);
Iterator(const Iterator &rhs);
Iterator(Iterator &&rhs);
virtual ~Iterator() = default;
// BASIC ITERATOR METHODS //
Iterator &operator=(const Iterator &rhs);
Iterator &operator=(Iterator &&rhs);
Iterator &operator++();
reference operator*() const;
// END / BASIC ITERATOR METHODS //
// INPUT ITERATOR METHODS //
Iterator operator++(int);
pointer operator->() const;
bool operator==(Iterator const &rhs) const;
bool operator!=(Iterator const &rhs) const;
// END / INPUT ITERATOR METHODS //
// OUTPUT ITERATOR METHODS //
// reference operator*(); <- already defined
// iterator operator++(int); <- already defined
// END / OUTPUT ITERATOR METHODS //
// FORWARD ITERATOR METHODS //
// Enable support for both input and output iterator <- already enabled
// END / FORWARD ITERATOR METHODS //
private:
/** The position of the element this iterator is pointing to. */
size_t m_current{0};
/** The reference to the queue holding the elements. */
Atomics_array<T, I, A> const *m_parent{nullptr};
};
/**
Constructor allowing a specific memory allocator, a specific queue size
and the instance of `T` to initialize the array with.
@param alloc The memory allocator instance
@param size The desired size for the queue
@param init_value The instance of `T` to initialize the array with
*/
template <
typename D = T, typename J = I, typename B = A,
std::enable_if_t<!std::is_same<B, std::nullptr_t>::value> * = nullptr>
Atomics_array(A &alloc, size_t size, T init_value);
/**
Constructor allowing a specific queue size and the instance of `T` to
initialize the array with.
@param size The desired size for the queue
@param init_value The instance of `T` to initialize the array with
*/
template <
typename D = T, typename J = I, typename B = A,
std::enable_if_t<std::is_same<B, std::nullptr_t>::value> * = nullptr>
Atomics_array(size_t size, T init_value);
// Deleted copy and move constructors.
Atomics_array(Atomics_array<T, I, A> const &rhs) = delete;
Atomics_array(Atomics_array<T, I, A> &&rhs) = delete;
//
/**
Destructor for the class.
*/
virtual ~Atomics_array() = default;
// Deleted copy and move operators.
Atomics_array<T, I, A> &operator=(Atomics_array<T, I, A> const &rhs) = delete;
Atomics_array<T, I, A> &operator=(Atomics_array<T, I, A> &&rhs) = delete;
//
/**
Retrieves the value stored in a specific index of the array.
@param index The index of the element to retrieve the value for
@return the value of the element at index `index`
*/
element_type &operator[](size_t index) const;
/**
Retrieves an iterator instance that points to the beginning of the
array.
@return An instance of an iterator pointing to the beginning of the
array.
*/
Iterator begin() const;
/**
Retrieves an iterator instance that points to the end of the underlying
array.
@return An instance of an iterator pointing to the end of the underlying
array.
*/
Iterator end() const;
/**
Finds a value in the queue according to the evaluation of `predicate`
by traversing the array from `start_from` to the array size.
The find condition is given according to the predicate `predicate` which
should be any predicate which translatable to `[](value_type value,
size_t index) -> bool`. If the predicate evaluates to `true`, the value
and respective index are returned as an `std::tuple`.
Check C++ documentation for the definition of `Predicate` named requirement
for more information.
@param predicate The predicate to be evaluated
@param start_from The index to start the search at
@return A tuple holding the value and the index of the first element
for which the predicate evaluated to true. If the predicate
doesn't evaluate to true for any of the elements, it returns a
pair holding the default value for `T` and the size of the
array.
*/
template <typename Pred>
std::tuple<T, size_t> find_if(Pred predicate, size_t start_from = 0) const;
/**
First the first occurrence of `to_find`, starting at `start_from` index.
@param to_find the value to find
@param start_from the index to start the search from
@return the index of the the first element that matches the `to_find`
value or the array size if no element matches.
*/
size_t find(T to_find, size_t start_from = 0) const;
/**
Returns the size of the array.
@return The size of the array
*/
size_t size() const;
/**
Returns the number of bytes used to allocate the array.
@return The number of bytes used to allocate the array
*/
size_t allocated_size() const;
/**
Return `this` queue textual representation.
@return The textual representation for `this` queue.
*/
std::string to_string() const;
friend std::ostream &operator<<(std::ostream &out,
Atomics_array<T, I, A> &in) {
out << in.to_string(true) << std::flush;
return out;
}
private:
/** The index translation object to be used */
I m_index;
/** The byte array in which the elements will be stored */
memory::Unique_ptr<unsigned char[], A> m_array;
/**
Initializes the array.
@return The reference to `this` object, for chaining purposes.
*/
container::Atomics_array<T, I, A> &init(T init_value);
};
} // namespace container
template <typename T, typename I, typename A>
container::Atomics_array<T, I, A>::Iterator::Iterator(
Atomics_array<T, I, A> const &parent, size_t position)
: m_current{position}, m_parent{&parent} {}
template <typename T, typename I, typename A>
container::Atomics_array<T, I, A>::Iterator::Iterator(Iterator const &rhs)
: m_current{rhs.m_current}, m_parent{rhs.m_parent} {}
template <typename T, typename I, typename A>
container::Atomics_array<T, I, A>::Iterator::Iterator(Iterator &&rhs)
: m_current{rhs.m_current}, m_parent{rhs.m_parent} {
rhs.m_current = 0;
rhs.m_parent = nullptr;
}
template <typename T, typename I, typename A>
typename container::Atomics_array<T, I, A>::Iterator &
container::Atomics_array<T, I, A>::Iterator::operator=(Iterator const &rhs) {
this->m_current = rhs.m_current;
this->m_parent = rhs.m_parent;
return (*this);
}
template <typename T, typename I, typename A>
typename container::Atomics_array<T, I, A>::Iterator &
container::Atomics_array<T, I, A>::Iterator::operator=(Iterator &&rhs) {
this->m_current = rhs.m_current;
this->m_parent = rhs.m_parent;
rhs.m_current = 0;
rhs.m_parent = nullptr;
return (*this);
}
template <typename T, typename I, typename A>
typename container::Atomics_array<T, I, A>::Iterator &
container::Atomics_array<T, I, A>::Iterator::operator++() {
if (this->m_current < this->m_parent->m_index.size()) {
++this->m_current;
}
return (*this);
}
template <typename T, typename I, typename A>
typename container::Atomics_array<T, I, A>::Iterator::reference
container::Atomics_array<T, I, A>::Iterator::operator*() const {
return (*this->m_parent)[this->m_current];
}
template <typename T, typename I, typename A>
typename container::Atomics_array<T, I, A>::Iterator
container::Atomics_array<T, I, A>::Iterator::operator++(int) {
auto to_return = (*this);
++(*this);
return to_return;
}
template <typename T, typename I, typename A>
typename container::Atomics_array<T, I, A>::Iterator::pointer
container::Atomics_array<T, I, A>::Iterator::operator->() const {
return &((*this->m_parent)[this->m_current]);
}
template <typename T, typename I, typename A>
bool container::Atomics_array<T, I, A>::Iterator::operator==(
Iterator const &rhs) const {
return this->m_current == rhs.m_current && this->m_parent == rhs.m_parent;
}
template <typename T, typename I, typename A>
bool container::Atomics_array<T, I, A>::Iterator::operator!=(
Iterator const &rhs) const {
return !((*this) == rhs);
}
template <typename T, typename I, typename A>
template <typename D, typename J, typename B,
std::enable_if_t<!std::is_same<B, std::nullptr_t>::value> *>
container::Atomics_array<T, I, A>::Atomics_array(A &alloc, size_t size,
T init_value)
: m_index{size},
m_array{alloc, static_cast<size_t>(m_index.size()) * I::element_size()} {
this->init(init_value);
}
template <typename T, typename I, typename A>
template <typename D, typename J, typename B,
std::enable_if_t<std::is_same<B, std::nullptr_t>::value> *>
container::Atomics_array<T, I, A>::Atomics_array(size_t size, T init_value)
: m_index{size},
m_array{memory::make_unique<unsigned char[]>(
static_cast<size_t>(m_index.size()) * I::element_size())} {
this->init(init_value);
}
template <typename T, typename I, typename A>
typename container::Atomics_array<T, I, A>::element_type &
container::Atomics_array<T, I, A>::operator[](size_t index) const {
return reinterpret_cast<Atomics_array::element_type &>(
this->m_array[this->m_index.translate(index)]);
}
template <typename T, typename I, typename A>
typename container::Atomics_array<T, I, A>::Iterator
container::Atomics_array<T, I, A>::begin() const {
return Iterator{*this, 0};
}
template <typename T, typename I, typename A>
typename container::Atomics_array<T, I, A>::Iterator
container::Atomics_array<T, I, A>::end() const {
return Iterator{*this, this->m_index.size()};
}
template <typename T, typename I, typename A>
template <typename Pred>
std::tuple<T, size_t> container::Atomics_array<T, I, A>::find_if(
Pred predicate, size_t start_from) const {
for (size_t idx = start_from; idx != this->m_index.size(); ++idx) {
auto ¤t = (*this)[idx];
T value = current.load(std::memory_order_relaxed);
if (predicate(value, idx)) {
return std::make_tuple(value, idx);
}
}
return std::make_tuple(std::numeric_limits<T>::max(), this->m_index.size());
}
template <typename T, typename I, typename A>
size_t container::Atomics_array<T, I, A>::find(T to_find,
size_t start_from) const {
for (size_t idx = start_from; idx != this->m_index.size(); ++idx) {
auto ¤t = (*this)[idx];
T value = current.load(std::memory_order_relaxed);
if (value == to_find) {
return idx;
}
}
return this->m_index.size();
}
template <typename T, typename I, typename A>
size_t container::Atomics_array<T, I, A>::size() const {
return this->m_index.size();
}
template <typename T, typename I, typename A>
size_t container::Atomics_array<T, I, A>::allocated_size() const {
return this->m_index.size() * I::element_size();
}
template <typename T, typename I, typename A>
std::string container::Atomics_array<T, I, A>::to_string() const {
std::ostringstream out;
for (auto value : (*this)) {
out << std::to_string(value) << ", ";
}
out << "EOF" << std::flush;
return out.str();
}
template <typename T, typename I, typename A>
container::Atomics_array<T, I, A> &container::Atomics_array<T, I, A>::init(
T init_value) {
for (size_t idx = 0; idx != this->m_index.size(); ++idx) {
::new (&this->m_array[this->m_index.translate(idx)])
element_type(init_value);
}
return (*this);
}
#endif // CONTAINER_ATOMIC_INTEGRALS_ARRAY
|