1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
|
/* Copyright (c) 2020, 2025, Oracle and/or its affiliates.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is designed to work with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have either included with
the program or referenced in the documentation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
#ifndef CONTAINER_INTEGRALS_LOCKFREE_QUEUE_INCLUDED
#define CONTAINER_INTEGRALS_LOCKFREE_QUEUE_INCLUDED
#include <algorithm>
#include <atomic>
#include <cmath>
#include <map>
#include <memory>
#include <sstream>
#include <thread>
#include <tuple>
#include "sql/containers/atomics_array.h"
#include "sql/memory/aligned_atomic.h"
#include "sql/memory/unique_ptr.h"
namespace container {
/**
Lock-free, fixed-size bounded, multiple-producer (MP), multiple-consumer
(MC), circular FIFO queue for integral elements.
Monotonically ever increasing virtual indexes are used to keep track of
the head and tail pointer for the size-bounded circular queue. Virtual
indexes are translated into memory indexes by calculating the remainder
of the integer division of the virtual index by the queue capacity. The
maximum value of a virtual index is 2^63 - 1.
Head is the pointer to the virtual index of the first position that holds
an element to be popped, if any.
Tail is the pointer to the virtual index of the first available position
to push an element to, if any.
Template parameters are as follows:
- `T`: The integral type for the queue elements.
- `Null`: Value of type `T`, that will be used to mark a queue position
as empty.
- `Erased`: Value of type `T`, that will be used to mark an queue
position as erased.
- `I`: Type of indexing to be used by the underlying array in the form of
a class. Available classes are `container::Padded_indexing` and
`container::Interleaved_indexing`, check the classes documentation
for further details. The parameter defaults to
`container::Padded_indexing`.
- `A`: Type of memory allocator to be used, in the form of a class
(defaults to no allocator).
All the available operations are thread-safe, in the strict sense of no
memory problems rise from multiple threads trying to perform operations
concurrently.
However, being a lock-free structure, the queue may be changing at the
same time as operations access both pointers and values or a client of
the API evaluates the result of the invoked operation. The operation
results and returning states are always based on the thread local view of
the queue state, which may be safe or unsafe to proceed with the given
operation. Therefore, extra validations, client-side serialization and/or
retry mechanisms may be needed while using the queue operations.
Available methods are:
- `pop`: if the head of the queue points to a virtual index different
from the one pointed by the tail of the queue, removes the
element pointed to by the head of the queue, points the head to
the next virtual index and returns the retrieved value. If head
and tail of the queue point to the same virtual index, the queue
is empty, `Null` is returned and the thread operation state is
set to `NO_MORE_ELEMENTS`.
- `push`: if the tail of the queue points to a virtual index different
from the one pointed by head-plus-queue-capacity, sets the
position pointed by tail with the provided element and points
the tail to the next virtual index. If tail and head plus queue
capacity point to the same virtual index, the queue is full, no
operation is performed and the thread operation state is set to
`NO_SPACE_AVAILABLE`.
- `capacity`: maximum number of elements allowed to coexist in the queue.
- `head`: pointer to the virtual index of the first available element, if
any.
- `tail`: pointer to the virtual index of the first available position to
add an element to. Additionally, the value returned by `tail()`
can also give an lower-than approximation of the total amount
of elements already pushed into the queue -in between reading
the virtual index tail is pointing to and evaluating it, some
more elements may have been pushed.
- `front`: the first available element. If none, `Null` is returned.
- `back`: the last available element. If none, `Null` is returned.
- `clear`: sets all positions of the underlying array to `Null` and
resets the virtual index pointed to by both the head and the
tail of the queue to `0`.
- `is_empty`: whether or not the head and tail of the queue point to the
same virtual index.
- `is_full`: whether or not the tail and head-plus-queue-capacity point
to the same virtual index.
- `erase_if`: traverses the queue, starting at the queue relative memory
index 0, stopping at the relative memory index
`capacity() - 1` and invoking the passed-on predicate over each
position value, while disregarding positions that have
`Null` or `Erased` values.
Note that, if `Null` and `Erased` hold the same value, the resulting class
will not include the `erase_if` method.
*/
template <typename T, T Null = std::numeric_limits<T>::max(), T Erased = Null,
typename I = container::Padded_indexing<T>,
typename A = std::nullptr_t>
class Integrals_lockfree_queue {
static_assert(
std::is_integral<T>::value,
"class `Integrals_lockfree_queue` requires an integral type as a first "
"template parameter");
public:
using pointer_type = T *;
using const_pointer_type = T const *;
using reference_type = T &;
using const_reference_type = T const &;
using value_type = T;
using const_value_type = T const;
using element_type = std::atomic<T>;
using index_type = unsigned long long;
using array_type = container::Atomics_array<T, I, A>;
using atomic_type = memory::Aligned_atomic<index_type>;
static constexpr T null_value = Null;
static constexpr T erased_value = Erased;
static constexpr index_type set_bit = 1ULL << 63;
static constexpr index_type clear_bit = set_bit - 1;
enum class enum_queue_state : short {
SUCCESS = 0, // Last operation was successful
NO_MORE_ELEMENTS = -1, // Last operation was unsuccessful because there
// are no elements in the queue
NO_SPACE_AVAILABLE = -2 // Last operation was unsuccessful because there
// is no space available
};
/**
Iterator helper class to iterate over the queue staring at the virtual
index pointed to by the head, up until the virtual index pointed to by
the tail.
Being an iterator over a lock-free structure, it will not be
invalidated upon queue changes since operations are thread-safe and no
invalid memory access should stem from iterating over and changing the
queue, simultaneously.
However, the following possible iteration scenarios, not common in
non-thread-safe structures, should be taken into consideration and
analysed while using standard library features that use the `Iterator`
requirement, like `for_each` loops, `std::find`, `std::find_if`, etc:
a) The iteration never stops because there is always an element being
pushed before the queue `end()` method is invoked.
b) The iterator points to `Null` values at the beginning of the
iteration because elements were popped just after the queue `begin()`
method is invoked.
c) The iterator points to `Null` or `Erased` in between pointing to
values different from `Null` or `Erased`.
d) The iterator may point to values that do not correspond to the
virtual index being held by the iterator, in the case of the amount
of both pop and push operations between two iteration loops was
higher then the queue `capacity()`.
If one of the above scenarios is harmful to your use-case, an
additional serialization mechanism may be needed to iterate over the
queue. Or another type of structure may be more adequate.
Check C++ documentation for the definition of `Iterator` named
requirement for more information.
*/
class Iterator {
public:
using difference_type = std::ptrdiff_t;
using value_type = T;
using pointer = T *;
using reference = T;
using iterator_category = std::forward_iterator_tag;
explicit Iterator(
Integrals_lockfree_queue<T, Null, Erased, I, A> const &parent,
index_type position);
Iterator(const Iterator &rhs);
Iterator(Iterator &&rhs);
virtual ~Iterator() = default;
// BASIC ITERATOR METHODS //
Iterator &operator=(const Iterator &rhs);
Iterator &operator=(Iterator &&rhs);
Iterator &operator++();
reference operator*() const;
// END / BASIC ITERATOR METHODS //
// INPUT ITERATOR METHODS //
Iterator operator++(int);
pointer operator->() const;
bool operator==(Iterator const &rhs) const;
bool operator!=(Iterator const &rhs) const;
// END / INPUT ITERATOR METHODS //
// OUTPUT ITERATOR METHODS //
// reference operator*(); <- already defined
// iterator operator++(int); <- already defined
// END / OUTPUT ITERATOR METHODS //
// FORWARD ITERATOR METHODS //
// Enable support for both input and output iterator <- already enabled
// END / FORWARD ITERATOR METHODS //
/**
Sets the value of the element the iterator is pointing to the given
parameter.
@param new_value The new value to set the element to.
*/
void set(value_type new_value);
private:
/** The position of the element this iterator is pointing to. */
index_type m_current{std::numeric_limits<index_type>::max()};
/** The reference to the queue holding the elements. */
Integrals_lockfree_queue<T, Null, Erased, I, A> const *m_parent{nullptr};
};
/**
Constructor allowing a specific memory allocator and a specific queue
capacity.
The queue allocated memory may differ from `capacity() * sizeof(T)`
since additional space may be required to prevent false sharing between
threads.
@param alloc The memory allocator instance
@param size The queue maximum capacity
*/
template <
typename D = T, T M = Null, T F = Erased, typename J = I, typename B = A,
std::enable_if_t<!std::is_same<B, std::nullptr_t>::value> * = nullptr>
Integrals_lockfree_queue(A &alloc, size_t size);
/**
Constructor allowing specific queue capacity.
The queue allocated memory may differ from `capacity() * sizeof(T)`
since additional space may be required to prevent false sharing between
threads.
@param size The queue maximum capacity
*/
template <
typename D = T, T M = Null, T F = Erased, typename J = I, typename B = A,
std::enable_if_t<std::is_same<B, std::nullptr_t>::value> * = nullptr>
Integrals_lockfree_queue(size_t size);
// Deleted copy and move constructors.
Integrals_lockfree_queue(
Integrals_lockfree_queue<T, Null, Erased, I, A> const &rhs) = delete;
Integrals_lockfree_queue(
Integrals_lockfree_queue<T, Null, Erased, I, A> &&rhs) = delete;
//
/**
Destructor for the class.
*/
virtual ~Integrals_lockfree_queue() = default;
// Deleted copy and move operators.
Integrals_lockfree_queue<T, Null, Erased, I, A> &operator=(
Integrals_lockfree_queue<T, Null, Erased, I, A> const &rhs) = delete;
Integrals_lockfree_queue<T, Null, Erased, I, A> &operator=(
Integrals_lockfree_queue<T, Null, Erased, I, A> &&rhs) = delete;
//
/**
Returns the underlying instance of `memory::Atomics_array` which holds
the allocated memory for the array of `std::atomic<T>` elements.
@return the underlying instance of `memory::Atomics_array`
*/
array_type &array();
/**
Sets all queue positions to `Null` and points the head and tail of the
queue to the `0` virtual index.
*/
void clear();
/**
Retrieves whether or not the head and tail of the queue are pointing to
the same virtual index.
No evaluation of the value held in the given position is made. If, for
instance, head and tail point to consecutive virtual indexes and the
value stored in the position pointed to by head is `Erased`, `is_empty`
will return false and `pop` will return `Null` and trigger a
`NO_MORE_ELEMENTS` state change.
@return true if there aren't more elements to be popped, false otherwise
*/
bool is_empty() const;
/**
Retrieves whether or not the tail of the queue is pointing to the same
virtual index as the computed by adding the queue `capacity()` to the
virtual index pointed to by the head of the queue.
No evaluation of the value held in the given position is made. If, for
instance, all the values stored in the positions between head and tail
are `Erased`, `is_full` will return true and `pop` will return `Null`
and trigger a `NO_MORE_ELEMENTS` state change.
@return true if there isn't space for more elements to be pushed, false
otherwise
*/
bool is_full() const;
/**
Retrieves the virtual index that the head of the queue is pointing to.
@return the virtual index the head of the queue is pointing to
*/
index_type head() const;
/**
Retrieves the virtual index that the tail of the queue is pointing to.
@return the virtual index the tail of the queue is pointing to
*/
index_type tail() const;
/**
Retrieves the element at the front of the queue, i.e. the value stored
in the virtual index pointed to by the head of the queue.
The returned value may be `Null`, `Erased` or whatever value that is
held by the given virtual index position at the moment it's accessed.
As this method is an alias for `array()[head()]`, the queue may be
changed concurrently and, because it is a circular queue, it is
possible for this method to return a value that has not been popped yet
and it will not be popped in the next call for `pop()` (the circular
queue logic made the tail to wrap and overlap the thread local value of
head).
@return the element at the front of the queue
*/
value_type front() const;
/**
Retrieves the value of the position at the back of the queue, i.e. the
value stored in the virtual index just prior to the virtual index
pointed to by the tail of the queue.
The returned value may be `Null` or `Erased`, whatever value that is
held by the given virtual index position.
As this method is an alias for `array()[tail()]`, the queue may be
changed concurrently and it is possible for this method to return a
value assigned to a position outside the bounds of the head and tail of
the queue (between thread-local fetch of the tail pointer and the
access to the position indexed by the local value, operations moved the
head to a virtual index higher than the locally stored). This means
that `Null` may be returned or that a value that is currently being
popped may be returned.
@return the element at the back of the queue
*/
value_type back() const;
/**
Retrieves the value at the virtual index pointed by the head of the
queue, clears that position, updates the virtual index stored in the
head and clears the value returned by `get_state()`, setting it to
`SUCCESS`.
If the head of the queue points to a virtual index that has no element
assigned (queue is empty), the operation fails, `Null` is stored in the
`out` parameter and the value returned by `get_state()` is
`NO_MORE_ELEMENTS`.
@param out The variable reference to store the value in.
@return The reference to `this` object, for chaining purposes.
*/
Integrals_lockfree_queue<T, Null, Erased, I, A> &operator>>(
reference_type out);
/**
Takes the value passed on as a parameter, stores it in the virtual
index pointed to by the tail of the queue, updates the virtual index
stored in the tail and clears the value returned by `get_state()`,
setting it to `SUCCESS`.
If the tail of the queue points to a virtual index that has already an
element assigned (queue is full), the operation fails and the value
returned by `get_state()` is `NO_SPACE AVAILABLE`.
@param to_push The value to push into the queue.
@return The reference to `this` object, for chaining purposes.
*/
Integrals_lockfree_queue<T, Null, Erased, I, A> &operator<<(
const_reference_type to_push);
/**
Retrieves the value at the virtual index pointed by the head of the
queue, clears that position, updates the virtual index stored in the
head and clears the value returned by `get_state()`, setting it to
`SUCCESS`.
If the head of the queue points to a virtual index that has no element
assigned yet (queue is empty), the operation returns `Null` and the
value returned by `get_state()` is `NO_MORE_ELEMENTS`.
@return The value retrieved from the queue or `Null` if no element is
available for popping
*/
value_type pop();
/**
Takes the value passed on as a parameter, stores it in the virtual
index pointed to by the tail of the queue, updates the virtual index
stored in the tail and clears the value returned by `get_state()`,
setting it to `SUCCESS`.
If the tail of the queue points to a virtual index that has already an
element assigned (queue is full), the operation fails and the value
returned by `get_state()` is `NO_SPACE AVAILABLE`.
@param to_push The value to push into the queue.
@return The reference to `this` object, for chaining purposes.
*/
Integrals_lockfree_queue<T, Null, Erased, I, A> &push(value_type to_push);
/**
Retrieves an iterator instance that points to the same position pointed
by the head of the queue.
Please, be aware that, while using standard library features that use
the `Iterator` requirement, like `for_each` loops, `std::find`,
`std::find_if`, etc:
- The iterator may point to `Null` values at the beginning of the
iteration because elements were popped just after the queue `begin()`
method is invoked, the moment when the iterator pointing to the same
virtual index as the head of the queue is computed.
@return An instance of an iterator instance that points to virtual
index pointed by the head of the queue
*/
Iterator begin() const;
/**
Retrieves an iterator instance that points to the same position pointed
by the tail of the queue.
Please, be aware that, while using standard library features that use
the `Iterator` requirement, like `for_each` loops, `std::find`,
`std::find_if`, etc:
- The iteration may never stop because there is always an element being
pushed before the queue `end()` method is invoked, the moment when
the iterator pointing to the same virtual index has the tail of the
queue is computed.
@return An instance of an iterator instance that points to virtual
index pointed by the tail of the queue
*/
Iterator end() const;
/**
Erases values from the queue. The traversing is linear and not in
between the virtual indexes pointed to by the head and the tail of the
queue but rather between 0 and `Integrals_lockfree_queue::capacity() -
1`.
An element may be conditionally erased according to the evaluation of
the predicate `predicate` which should be any predicate which is
translatable to `[](value_type value) -> bool`. If the predicate
evaluates to `true`, the value is replace by `Erased`.
If both `Null` and `Erased` evaluate to the same value, this method
will not be available after the template substitutions since erased
values must be identifiable by the pop and push operations.
Check C++ documentation for the definition of `Predicate` named
requirement for more information.
@param predicate The predicate invoked upon a given queue position and
if evaluated to `true` will force the removal of such
element.
@return The number of values erased.
*/
template <typename D = T, T M = Null, T F = Erased, typename J = I,
typename B = A, typename Pred, std::enable_if_t<M != F> * = nullptr>
size_t erase_if(Pred predicate);
/**
Returns the maximum number of elements allowed to coexist in the queue.
@return The maximum number of elements allowed to coexist in the queue
*/
size_t capacity() const;
/**
Returns the amount of bytes needed to store the maximum number of
elements allowed to coexist in the queue.
@return the amount of bytes needed to store the maximum number of
elements allowed to coexist in th queue
*/
size_t allocated_size() const;
/**
Clears the error state of the last performed operations, if any. The
operation state is a thread storage duration variable, making it a
per-thread state.
@return The reference to `this` object, for chaining purposes.
*/
Integrals_lockfree_queue<T, Null, Erased, I, A> &clear_state();
/**
Retrieves the error/success state of the last performed operation. The
operation state is a thread storage duration variable, making it a
per-thread state.
Possible values are:
- `SUCCESS` if the operation was successful
- `NO_MORE_ELEMENTS` if there are no more elements to pop
- `NO_SPACE_AVAILABLE` if there is no more room for pushing elements
State may be changed by any of the `pop`, `push` operations.
@return the error/success state of the invoking thread last operation.
*/
enum_queue_state get_state() const;
/**
Return `this` queue textual representation.
@return the textual representation for `this` queue.
*/
std::string to_string() const;
friend std::ostream &operator<<(
std::ostream &out,
Integrals_lockfree_queue<T, Null, Erased, I, A> const &in) {
out << in.to_string() << std::flush;
return out;
}
private:
/** The maximum allowed number of element allowed to coexist in the queue */
size_t m_capacity{0};
/** The array of atomics in which the elements will be stored */
array_type m_array;
/** The virtual index being pointed to by the head of the queue */
atomic_type m_head{0};
/** The virtual index being pointed to by the tail of the queue */
atomic_type m_tail{0};
/**
Translates a virtual monotonically increasing index into an index bounded to
the queue capacity.
*/
size_t translate(index_type from) const;
/**
Retrieves the thread storage duration operation state variable.
*/
enum_queue_state &state() const;
};
} // namespace container
#ifndef IN_DOXYGEN // Doxygen doesn't understand this construction.
template <typename T, T Null, T Erased, typename I, typename A>
container::Integrals_lockfree_queue<T, Null, Erased, I, A>::Iterator::Iterator(
Integrals_lockfree_queue<T, Null, Erased, I, A> const &parent,
Integrals_lockfree_queue<T, Null, Erased, I, A>::index_type position)
: m_current{position}, m_parent{&parent} {}
#endif
template <typename T, T Null, T Erased, typename I, typename A>
container::Integrals_lockfree_queue<T, Null, Erased, I, A>::Iterator::Iterator(
const Iterator &rhs)
: m_current{rhs.m_current}, m_parent{rhs.m_parent} {}
template <typename T, T Null, T Erased, typename I, typename A>
container::Integrals_lockfree_queue<T, Null, Erased, I, A>::Iterator::Iterator(
Iterator &&rhs)
: m_current{rhs.m_current}, m_parent{rhs.m_parent} {
rhs.m_current = std::numeric_limits<index_type>::max();
rhs.m_parent = nullptr;
}
template <typename T, T Null, T Erased, typename I, typename A>
typename container::Integrals_lockfree_queue<T, Null, Erased, I, A>::Iterator &
container::Integrals_lockfree_queue<T, Null, Erased, I, A>::Iterator::operator=(
const Iterator &rhs) {
this->m_current = rhs.m_current;
this->m_parent = rhs.m_parent;
return (*this);
}
template <typename T, T Null, T Erased, typename I, typename A>
typename container::Integrals_lockfree_queue<T, Null, Erased, I, A>::Iterator &
container::Integrals_lockfree_queue<T, Null, Erased, I, A>::Iterator::operator=(
Iterator &&rhs) {
this->m_current = rhs.m_current;
this->m_parent = rhs.m_parent;
rhs.m_current = std::numeric_limits<index_type>::max();
rhs.m_parent = nullptr;
return (*this);
}
template <typename T, T Null, T Erased, typename I, typename A>
typename container::Integrals_lockfree_queue<T, Null, Erased, I, A>::Iterator &
container::Integrals_lockfree_queue<T, Null, Erased, I,
A>::Iterator::operator++() {
++this->m_current;
return (*this);
}
template <typename T, T Null, T Erased, typename I, typename A>
typename container::Integrals_lockfree_queue<T, Null, Erased, I,
A>::Iterator::reference
container::Integrals_lockfree_queue<T, Null, Erased, I,
A>::Iterator::operator*() const {
return this->m_parent->m_array[this->m_parent->translate(this->m_current)];
}
template <typename T, T Null, T Erased, typename I, typename A>
typename container::Integrals_lockfree_queue<T, Null, Erased, I, A>::Iterator
container::Integrals_lockfree_queue<T, Null, Erased, I,
A>::Iterator::operator++(int) {
auto to_return = (*this);
++(*this);
return to_return;
}
template <typename T, T Null, T Erased, typename I, typename A>
typename container::Integrals_lockfree_queue<T, Null, Erased, I,
A>::Iterator::pointer
container::Integrals_lockfree_queue<T, Null, Erased, I,
A>::Iterator::operator->() const {
return &(this->m_parent->m_array[this->m_parent->translate(this->m_current)]);
}
template <typename T, T Null, T Erased, typename I, typename A>
bool container::Integrals_lockfree_queue<
T, Null, Erased, I, A>::Iterator::operator==(Iterator const &rhs) const {
return this->m_current == rhs.m_current && this->m_parent == rhs.m_parent;
}
template <typename T, T Null, T Erased, typename I, typename A>
bool container::Integrals_lockfree_queue<
T, Null, Erased, I, A>::Iterator::operator!=(Iterator const &rhs) const {
return !((*this) == rhs);
}
template <typename T, T Null, T Erased, typename I, typename A>
void container::Integrals_lockfree_queue<T, Null, Erased, I, A>::Iterator::set(
value_type new_value) {
this->m_parent->m_array[this->m_parent->translate(this->m_current)].store(
new_value);
}
template <typename T, T Null, T Erased, typename I, typename A>
template <typename D, T M, T F, typename J, typename B,
std::enable_if_t<!std::is_same<B, std::nullptr_t>::value> *>
container::Integrals_lockfree_queue<T, Null, Erased, I,
A>::Integrals_lockfree_queue(A &alloc,
size_t size)
: m_capacity{size},
m_array{alloc, size, null_value},
m_head{0},
m_tail{0} {}
template <typename T, T Null, T Erased, typename I, typename A>
template <typename D, T M, T F, typename J, typename B,
std::enable_if_t<std::is_same<B, std::nullptr_t>::value> *>
container::Integrals_lockfree_queue<T, Null, Erased, I,
A>::Integrals_lockfree_queue(size_t size)
: m_capacity{size}, m_array{size, null_value}, m_head{0}, m_tail{0} {}
template <typename T, T Null, T Erased, typename I, typename A>
typename container::Integrals_lockfree_queue<T, Null, Erased, I,
A>::array_type &
container::Integrals_lockfree_queue<T, Null, Erased, I, A>::array() {
return this->m_array;
}
template <typename T, T Null, T Erased, typename I, typename A>
void container::Integrals_lockfree_queue<T, Null, Erased, I, A>::clear() {
this->clear_state();
for (size_t idx = 0; idx != this->m_array.size(); ++idx)
this->m_array[idx].store(Null);
this->m_head->store(0);
this->m_tail->store(0);
}
template <typename T, T Null, T Erased, typename I, typename A>
bool container::Integrals_lockfree_queue<T, Null, Erased, I, A>::is_empty()
const {
auto head = this->m_head->load(std::memory_order_acquire) & clear_bit;
auto tail = this->m_tail->load(std::memory_order_acquire) & clear_bit;
return head == tail;
}
template <typename T, T Null, T Erased, typename I, typename A>
bool container::Integrals_lockfree_queue<T, Null, Erased, I, A>::is_full()
const {
auto tail = this->m_tail->load(std::memory_order_acquire) & clear_bit;
auto head = this->m_head->load(std::memory_order_acquire) & clear_bit;
return tail == head + this->capacity();
}
template <typename T, T Null, T Erased, typename I, typename A>
typename container::Integrals_lockfree_queue<T, Null, Erased, I, A>::index_type
container::Integrals_lockfree_queue<T, Null, Erased, I, A>::head() const {
return this->m_head->load(std::memory_order_seq_cst) & clear_bit;
}
template <typename T, T Null, T Erased, typename I, typename A>
typename container::Integrals_lockfree_queue<T, Null, Erased, I, A>::index_type
container::Integrals_lockfree_queue<T, Null, Erased, I, A>::tail() const {
return this->m_tail->load(std::memory_order_seq_cst) & clear_bit;
}
template <typename T, T Null, T Erased, typename I, typename A>
typename container::Integrals_lockfree_queue<T, Null, Erased, I, A>::value_type
container::Integrals_lockfree_queue<T, Null, Erased, I, A>::front() const {
auto head = this->head();
auto to_return =
this->m_array[this->translate(head)].load(std::memory_order_seq_cst);
return to_return == Erased ? Null : to_return;
}
template <typename T, T Null, T Erased, typename I, typename A>
typename container::Integrals_lockfree_queue<T, Null, Erased, I, A>::value_type
container::Integrals_lockfree_queue<T, Null, Erased, I, A>::back() const {
auto tail = this->tail();
if (tail == 0) return Null;
auto to_return =
this->m_array[this->translate(tail - 1)].load(std::memory_order_seq_cst);
return to_return == Erased ? Null : to_return;
}
template <typename T, T Null, T Erased, typename I, typename A>
container::Integrals_lockfree_queue<T, Null, Erased, I, A>
&container::Integrals_lockfree_queue<T, Null, Erased, I, A>::operator>>(
reference_type out) {
out = this->pop();
return (*this);
}
template <typename T, T Null, T Erased, typename I, typename A>
container::Integrals_lockfree_queue<T, Null, Erased, I, A>
&container::Integrals_lockfree_queue<T, Null, Erased, I, A>::operator<<(
const_reference_type to_push) {
return this->push(to_push);
}
template <typename T, T Null, T Erased, typename I, typename A>
T container::Integrals_lockfree_queue<T, Null, Erased, I, A>::pop() {
this->clear_state();
for (; true;) {
auto head = this->m_head->load(std::memory_order_acquire) & clear_bit;
auto tail = this->m_tail->load(std::memory_order_relaxed) & clear_bit;
if (head == tail) {
this->state() = enum_queue_state::NO_MORE_ELEMENTS;
break;
}
auto new_head = head + 1;
new_head |= set_bit; // Set the occupied bit
if (this->m_head->compare_exchange_strong(
head, new_head, // Concurrent pop may have reached the CAS first
// or the occupied bit hasn't been unset yet
std::memory_order_release)) {
auto ¤t = this->m_array[this->translate(head)];
for (; true;) {
value_type value = current.load();
if (value != Null && // It may be `Null` if some concurrent push
// operation hasn't finished setting the
// element value
current.compare_exchange_strong(
value, Null, // It may have been set to `Erased` concurrently
std::memory_order_release)) {
new_head &= clear_bit; // Unset the occupied bit, signaling that
// finished popping
this->m_head->store(new_head, std::memory_order_seq_cst);
if (value == Erased) { // If the element was `Erased`, try to
// pop again
break;
}
return value;
}
std::this_thread::yield();
}
}
std::this_thread::yield();
}
return Null;
}
template <typename T, T Null, T Erased, typename I, typename A>
container::Integrals_lockfree_queue<T, Null, Erased, I, A>
&container::Integrals_lockfree_queue<T, Null, Erased, I, A>::push(
value_type to_push) {
assert(to_push != Null && to_push != Erased);
this->clear_state();
for (; true;) {
auto tail = this->m_tail->load(std::memory_order_acquire) & clear_bit;
auto head = this->m_head->load(std::memory_order_relaxed) & clear_bit;
if (tail == head + this->m_capacity) {
this->state() = enum_queue_state::NO_SPACE_AVAILABLE;
return (*this);
}
auto new_tail = tail + 1;
new_tail |= set_bit; // Set the occupied bit
if (this->m_tail->compare_exchange_strong(
tail, new_tail, // Concurrent push may have reached the CAS first
// or the occupied bit hasn't been unset yet
std::memory_order_release)) {
auto ¤t = this->m_array[this->translate(tail)];
for (; true;) {
T null_ref{Null};
if (current.compare_exchange_strong(
null_ref, to_push, // It may not be `Null` if some concurrent
// pop operation hasn't finished setting the
// element value to `Null
std::memory_order_acquire)) {
new_tail &= clear_bit; // Unset the occupied bit, signaling that
// finished pushing
this->m_tail->store(new_tail, std::memory_order_seq_cst);
break;
}
std::this_thread::yield();
}
break;
}
std::this_thread::yield();
}
return (*this);
}
template <typename T, T Null, T Erased, typename I, typename A>
typename container::Integrals_lockfree_queue<T, Null, Erased, I, A>::Iterator
container::Integrals_lockfree_queue<T, Null, Erased, I, A>::begin() const {
return Iterator{*this, this->head()};
}
template <typename T, T Null, T Erased, typename I, typename A>
typename container::Integrals_lockfree_queue<T, Null, Erased, I, A>::Iterator
container::Integrals_lockfree_queue<T, Null, Erased, I, A>::end() const {
return Iterator{*this, this->tail()};
}
template <typename T, T Null, T Erased, typename I, typename A>
template <typename D, T M, T F, typename J, typename B, typename Pred,
std::enable_if_t<M != F> *>
size_t container::Integrals_lockfree_queue<T, Null, Erased, I, A>::erase_if(
Pred predicate) {
this->clear_state();
size_t erased{0};
for (size_t idx = 0; idx != this->m_capacity; ++idx) {
auto ¤t = this->m_array[idx];
T value = current.load(std::memory_order_acquire);
if (value != Null && value != Erased && predicate(value)) {
if (current.compare_exchange_strong(value, Erased,
std::memory_order_release)) {
++erased;
}
}
}
return erased;
}
template <typename T, T Null, T Erased, typename I, typename A>
size_t container::Integrals_lockfree_queue<T, Null, Erased, I, A>::capacity()
const {
return this->m_capacity;
}
template <typename T, T Null, T Erased, typename I, typename A>
size_t container::Integrals_lockfree_queue<T, Null, Erased, I,
A>::allocated_size() const {
return this->m_array.allocated_size();
}
template <typename T, T Null, T Erased, typename I, typename A>
container::Integrals_lockfree_queue<T, Null, Erased, I, A>
&container::Integrals_lockfree_queue<T, Null, Erased, I, A>::clear_state() {
this->state() = enum_queue_state::SUCCESS;
return (*this);
}
template <typename T, T Null, T Erased, typename I, typename A>
typename container::Integrals_lockfree_queue<T, Null, Erased, I,
A>::enum_queue_state
container::Integrals_lockfree_queue<T, Null, Erased, I, A>::get_state() const {
return this->state();
}
template <typename T, T Null, T Erased, typename I, typename A>
std::string
container::Integrals_lockfree_queue<T, Null, Erased, I, A>::to_string() const {
std::ostringstream out;
for (auto value : (*this)) {
out << (value == Null
? "Null"
: (value == Erased ? "Erased" : std::to_string(value)))
<< ", ";
}
out << "EOF" << std::flush;
return out.str();
}
template <typename T, T Null, T Erased, typename I, typename A>
size_t container::Integrals_lockfree_queue<T, Null, Erased, I, A>::translate(
index_type from) const {
return static_cast<size_t>(from % static_cast<index_type>(this->m_capacity));
}
template <typename T, T Null, T Erased, typename I, typename A>
typename container::Integrals_lockfree_queue<T, Null, Erased, I,
A>::enum_queue_state &
container::Integrals_lockfree_queue<T, Null, Erased, I, A>::state() const {
// TODO: garbage collect this if queues start to be used more dynamically
static thread_local std::map<
container::Integrals_lockfree_queue<T, Null, Erased, I, A> const *,
enum_queue_state>
state;
return state[this];
}
#endif // CONTAINER_INTEGRALS_LOCKFREE_QUEUE_INCLUDED
|