1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536
|
/*
Copyright (c) 2002, 2025, Oracle and/or its affiliates.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is designed to work with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have either included with
the program or referenced in the documentation.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
#include "sql/sp_head.h"
#include <stdio.h>
#include <string.h>
#ifdef HAVE_SYS_TIME_H
#include <sys/time.h>
#endif
#include "my_config.h"
#include <algorithm>
#include <atomic>
#include <memory>
#include <new>
#include <utility>
#include "lex_string.h"
#include "m_ctype.h"
#include "m_string.h"
#include "my_alloc.h"
#include "my_bitmap.h"
#include "my_dbug.h"
#include "my_hostname.h"
#include "my_inttypes.h"
#include "my_pointer_arithmetic.h"
#include "my_systime.h"
#include "my_user.h" // parse_user
#include "mysql/components/services/bits/psi_error_bits.h"
#include "mysql/plugin.h"
#include "mysql/psi/mysql_error.h"
#include "mysql/psi/mysql_sp.h"
#include "mysql/psi/mysql_statement.h"
#include "mysql_com.h"
#include "prealloced_array.h"
#include "sql/auth/auth_acls.h"
#include "sql/auth/auth_common.h" // *_ACL
#include "sql/binlog.h"
#include "sql/check_stack.h"
#include "sql/dd/dd.h" // get_dictionary
#include "sql/dd/dictionary.h" // is_dd_table_access_allowed
#include "sql/derror.h" // ER_THD
#include "sql/discrete_interval.h"
#include "sql/field.h"
#include "sql/handler.h"
#include "sql/item.h"
#include "sql/locked_tables_list.h"
#include "sql/log_event.h" // append_query_string, Query_log_event
#include "sql/mdl.h"
#include "sql/mysqld.h" // atomic_global_query_id
#include "sql/opt_trace.h" // opt_trace_disable_etc
#include "sql/protocol.h"
#include "sql/protocol_classic.h"
#include "sql/psi_memory_key.h"
#include "sql/query_options.h"
#include "sql/session_tracker.h"
#include "sql/sp.h"
#include "sql/sp_instr.h"
#include "sql/sp_pcontext.h"
#include "sql/sp_rcontext.h"
#include "sql/sql_base.h" // close_thread_tables
#include "sql/sql_class.h"
#include "sql/sql_const.h"
#include "sql/sql_db.h" // mysql_opt_change_db, mysql_change_db
#include "sql/sql_digest_stream.h"
#include "sql/sql_error.h"
#include "sql/sql_parse.h" // cleanup_items
#include "sql/sql_profile.h"
#include "sql/sql_show.h" // append_identifier
#include "sql/thd_raii.h"
#include "sql/thr_malloc.h"
#include "sql/transaction.h" // trans_commit_stmt
#include "sql/trigger_def.h"
#include "sql_string.h"
#include "template_utils.h" // pointer_cast
#include "thr_lock.h"
/**
@page stored_programs Stored Programs
@section sp_overview Overview
Stored Programs in general refers to:
- <tt>PROCEDURE</tt>
- <tt>FUNCTION</tt>
- <tt>%TABLE TRIGGER</tt>
- <tt>EVENT</tt>
When developing, there are a couple of tools available in the server itself
that are helpful. These tools are only available in builds compiled with
debugging support:
- <tt>SHOW PROCEDURE CODE</tt>
- <tt>SHOW FUNCTION CODE</tt>
The equivalent for triggers or events is not available at this point.
The internal implementation of Stored Programs in the server
depends on several components:
- the storage layer, used to store in the database itself
a program (hence the name stored program)
- the internal memory representation of a Stored Program,
used within the server implementation
- the SQL parser, used to convert a Stored Program from
its persistent representation to its internal form
- a flow analyser, used to optimize the code representing a stored program
- various caches, used to improve performance by avoiding the need
to load and parse a stored program at every invocation
- the Stored Program runtime execution itself,
which interprets the code of the program and executes its statements
@section sp_storage Persistent Representation
Storage of Stored Programs is implemented using either
tables in the database (in the @c mysql schema), or physical files.
@subsection sp_storage_sp_sf Stored Procedure and Stored Function Storage
The table <tt>mysql.proc</tt> contains
one record per Stored Procedure or Stored Function.
Note that this table design is a mix of relational
and non relational (blob) content:
- Attributes that are part of the interface of a stored procedure
or function (like its name, return type, etc),
or that are global to the object (implementation language,
deterministic properties, security properties, sql mode, etc)
are stored with a dedicated column in table <tt>mysql.proc</tt>.
- The body of a stored procedure or function,
which consists of the original code expressed in SQL,
including user comments if any, is stored as-is preserving
the original indentation in blob column 'body'.
This design choice allows the various attributes to be
represented in a format that is easy to work with (relational model),
while allowing a lot of flexibility for the content of the body.
A minor exception to this is the storage of the parameters
of a stored procedure or function (which are part of its interface)
inside the blob column @c param_list (instead of using a child table @c
proc_param).
Table <tt>mysql.procs_priv</tt> describes privileges granted
for a given Stored Procedure or Stored Function in table <tt>mysql.proc</tt>.
The code used to encapsulate database access is:
- #sp_create_routine()
- #db_load_routine()
- #sp_drop_routine()
- #mysql_routine_grant()
- #grant_load()
- #grant_reload()
@subsection sp_storage_trigger Table Trigger Storage
Information for a given trigger is stored in the table mysql.triggers
of the Data Dictionary.
The code used to encapsulate access is:
- #Table_trigger_dispatcher::create_trigger()
- #Table_trigger_dispatcher::check_n_load()
See the C++ class #Table_trigger_dispatcher in general.
@warning The current implementation of the storage layer for table triggers
is considered private to the server,
and might change without warnings in future releases.
@subsection sp_storage_event Event Storage
%Events storage is very similar to Stored Procedure
and Stored Function storage, and shares the same design.
Since more attributes are needed to represent an event,
a different table is used: table <tt>mysql.event</tt>.
The code used to encapsulate the database access is:
- #Event_db_repository::create_event()
- #Event_db_repository::update_event()
- #Event_db_repository::drop_event()
See the C++ class #Event_db_repository in general.
@subsection sp_storage_derived Derived Attributes Storage
Some critical attributes, such as @c SQL_MODE,
are explicitly part of the storage format.
Other attributes, that also impact significantly the behavior
in general of Stored Programs, can be implicitly derived
from other properties of the storage layer.
In particular:
- The <tt>USE @<database@></tt> in effect for a stored program
is the schema the stored object belongs to.
- The statement <tt>DECLARE v CHAR(10)</tt> does not intrinsically convey
any notion of character set or collation.
The character set and collation of this local variable,
in a stored program, derives from the character set and collation
of the schema the stored object belongs to.
@section sp_internal Internal Representation
A Stored Program is represented in memory by two major parts:
- The code of the stored program, including SQL statements
and control flow logic (IF, WHILE, ...),
- A symbol table that describes all the local variables,
cursors, labels, conditions ... declared in the code.
Individual instructions of various kind are implemented by all
the C++ classes that inherit from class #sp_instr.
The symbol table ('symbol table' is a term used in conjunction
with compilers or interpreters,
in MySQL the term 'Parsing Context' is used instead)
is implemented by the C++ class #sp_pcontext.
A Stored Program as a whole is represented by the C++ class #sp_head,
which contains the instructions (array #sp_head::m_instructions)
and the root parsing context (member #sp_head::m_root_parsing_ctx).
@attention Class #sp_head contains concepts from different areas.
It represents both what a stored program @em is,
which is the topic of this section,
and how a stored program logic <em> is used </em> during runtime
interpretation, which is the subject of other sections.
@subsection sp_internal_instr Instructions
Data Definition Language and Data Manipulation Language SQL statements
are represented as-is, by a single instruction.
For flow control statements and exception handlers,
several instructions are used to implement in the low level
#sp_instr language the semantic of the SQL construct.
Let's see an example with a stored procedure:
@verbatim
delimiter $$
CREATE PROCEDURE proc_1(x int)
BEGIN
IF x < 0 THEN
INSERT INTO t1 VALUES ("negative");
ELSEIF x = 0 THEN
INSERT INTO t1 VALUES ("zero");
ELSE
INSERT INTO t1 VALUES ("positive");
END IF;
END$$
@endverbatim
The resulting code, displayed by <tt>SHOW PROCEDURE CODE</tt>, is:
@verbatim
SHOW PROCEDURE CODE proc_1;
Pos Instruction
0 jump_if_not 3(7) (x@0 < 0)
1 stmt 5 "INSERT INTO t1 VALUES ("negative")"
2 jump 7
3 jump_if_not 6(7) (x@0 = 0)
4 stmt 5 "INSERT INTO t1 VALUES ("zero")"
5 jump 7
6 stmt 5 "INSERT INTO t1 VALUES ("positive")"
@endverbatim
Instructions are numbered sequentially.
Position 0 is the start of the code.
The position 7 that is one past the last instruction
in this example represents the end of the code.
Note that the instruction jump_if_not 3(7) at position 0
can actually jump to three locations:
- When the evaluation of the condition "x < 0" is true,
the next instruction will be position 1 (the "then" branch),
- When the evaluation of the condition "x < 0" is false,
the next instruction will be position 3 (the "else" branch),
- When the evaluation of the condition "x < 0" results in an error,
and when a continue handler exists for the error,
the next instruction will be position 7,
known as the "continuation" destination.
Now, let's see how exception handlers are represented.
The following code contains just a very basic handler,
protecting a BEGIN/END block in the SQL logic:
@verbatim
CREATE PROCEDURE proc_2(x int)
BEGIN
SELECT "Start";
INSERT INTO t1 VALUES (1);
BEGIN
DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
BEGIN
SELECT "Oops";
END;
INSERT INTO t1 VALUES (2);
INSERT INTO t1 VALUES (2);
END;
INSERT INTO t1 VALUES (3);
SELECT "Finish";
END$$
@endverbatim
The internal instructions for this stored procedure are:
@verbatim
SHOW PROCEDURE CODE proc_2;
Pos Instruction
0 stmt 0 "SELECT "Start""
1 stmt 5 "INSERT INTO t1 VALUES (1)"
2 hpush_jump 5 1 CONTINUE
3 stmt 0 "SELECT "Oops""
4 hreturn 1
5 stmt 5 "INSERT INTO t1 VALUES (2)"
6 stmt 5 "INSERT INTO t1 VALUES (2)"
7 hpop 1
8 stmt 5 "INSERT INTO t1 VALUES (3)"
9 stmt 0 "SELECT "Finish""
@endverbatim
Note the flow of control in the code: there is not a single if.
The couple of @c hpush_jump / @c hpop represent the installation
and the removal of the exception handler.
The body of the exception handler starts at position 3,
whereas the code protected by the handler starts at position 5.
@c hpush_jump 5 1 means: add a handler for "1" condition (sqlexception),
where "1" stands for the index of declared conditions in the parsing context,
and execute the code starting at position "5".
@subsection sp_internal_pcontext Parsing Context
A parsing context is a tree of nodes,
where each node contains symbols (variables, cursors, labels, ...)
declared locally in the same name visibility scope.
For example, with the following SQL code:
@verbatim
CREATE PROCEDURE proc_3(x int, y int)
BEGIN
-- This is the root parsing context
DECLARE v1 INT;
DECLARE v2 INT;
DECLARE v3 INT;
IF (x > 0) THEN
BEGIN
-- This is the child context A
DECLARE v1 INT;
DECLARE v4 INT DEFAULT 100;
set v4:= 1;
set v1:= x;
END;
ELSE
BEGIN
-- This is the child context B
DECLARE v2 INT;
DECLARE v4 INT DEFAULT 200;
set v4:= 2;
set v2:= y;
set v3:= 3;
END;
END IF;
set v1 := 4;
END$$
@endverbatim
The parsing contexts match exactly the nesting of BEGIN/END blocks:
- The root parsing context contains parameters x, y,
and local variables v1, v2, v3,
- The BEGIN/END block in the THEN part defines a child parsing
context (let's call it 'A'), that contains local variables v1 and v4,
- Likewise, the ELSE block defines a parsing context
(let's call it 'B') which is a child of the root,
and contains local variables v2 and v4.
The total number of symbols is 9: 5 for the root + 2 for A + 2 for B.
All the symbols are numbered internally (starting at offset 0),
by walking the parsing context tree in a depth first manner,
resulting in the following:
- Root:x --> 0, Root:y --> 1, Root:v1 --> 2, Root:v2 --> 3, Root:v3 --> 4,
- A:v1 --> 5, A:v4 --> 6,
- B:v2 --> 7, B:v4 --> 8,
There is no tool to dump the parsing context tree explicitly.
However, the internal numbering of symbols is apparent when printing the code:
@verbatim
SHOW PROCEDURE CODE proc_3;
Pos Instruction
0 set v1@2 NULL
1 set v2@3 NULL
2 set v3@4 NULL
3 jump_if_not 9(14) (x@0 > 0)
4 set v1@5 NULL
5 set v4@6 100
6 set v4@6 1
7 set v1@5 x@0
8 jump 14
9 set v2@7 NULL
10 set v4@8 200
11 set v4@8 2
12 set v2@7 y@1
13 set v3@4 3
14 set v1@2 4
@endverbatim
The points of interest are that:
- There are two variables named v1,
where the variable v1 from block A (represented as v1@5)
eclipses the variable v1 from the root block (represented as v1@2).
- There are two variables named v4, which are independent.
The variable v4 from block A is represented as v4@6,
whereas the variable v4 from block B is represented as v4@8.
The parsing context C++ class, #sp_pcontext,
contains much more information related to each symbol,
notably data types of variables
(unfortunately not printable with SHOW PROCEDURE CODE).
@section sp_parser Stored Program Parser
There is no “Stored Program Parser” as such,
there is only one parser in the SQL layer in the server.
This parser is capable of understanding every SQL statement,
including statements related to Stored Programs.
The parser is implemented as an ascendant parser, using bison.
The source code is located in the file sql/sql_yacc.yy.
The parts of the parser dedicated more specially to
Stored Programs are starting at the following rules:
- <tt>CREATE PROCEDURE</tt> : see rule sp_tail,
- <tt>CREATE FUNCTION</tt> : see rule sp_tail,
- <tt>CREATE TRIGGER</tt> : see rule trigger_tail,
- <tt>CREATE EVENT</tt> : see rule event_tail.
In every case, the parser reads the SQL text stream that
represents the code as input, and creates an internal representation
of the Stored Program as output, with one C++ object of type #sp_head.
A limiting consequence of this approach is that a stored program
does not support nesting: it is impossible to embed one
<tt>CREATE PROCEDURE</tt> into another,
since the parser currently may only support
one #sp_head object at a time.
@subsection sp_parser_structure Parser Structure
Conceptually, there are many different layers involved during parsing:
- Lexical analysis (making words or tokens from a character stream),
- Syntactic analysis (making "sentences" or an abstract syntax tree from the
tokens),
- Semantic analysis (making sure these sentences do make sense),
- Code generation (for compilers) or evaluation (for interpreters).
From the implementation point or view,
many different concepts from different layers actually collide
in the same code base, so that the actual code organization is as follows:
- The lexical analysis is implemented in sql/sql_lex.cc,
as when parsing regular statements.
- Syntactic analysis, semantic analysis,
and code generation -- all of them -- are done at once,
during parsing of the code.
From that perspective, the parser behaves as a single pass compiler.
In other words, both the code and the symbol table
for the final result are generated on the fly,
interleaved with syntactic analysis.
This is both very efficient from a performance point of view,
but difficult to understand, from a maintenance point of view.
Let's illustrate for example how the following SQL statement is parsed:
@code
DECLARE my_cursor CURSOR FOR SELECT col1 FROM t1;
@endcode
The corresponding part of the grammar in the parser
for DECLARE CURSOR statements is the following (with annotated line numbers):
@verbatim
[ 1] sp_decl:
[ 2] DECLARE_SYM ident CURSOR_SYM FOR_SYM sp_cursor_stmt
[ 3] {
[ 4] LEX *lex= Lex;
[ 5] sp_head *sp= lex->sphead;
[ 6] sp_pcontext *ctx= lex->spcont;
[ 7] uint offp;
[ 8] sp_instr_cpush *i;
[ 9]
[10] if (ctx->find_cursor(&$2, &offp, true))
[11] {
[12] my_error(ER_SP_DUP_CURS, MYF(0), $2.str);
[13] delete $5;
[14] MYSQL_YYABORT;
[15] }
[16] i= new sp_instr_cpush(sp->instructions(), ctx, $5,
[17] ctx->current_cursor_count());
[18] sp->add_instr(i);
[19] ctx->push_cursor(&$2);
[20] $$.vars= $$.conds= $$.hndlrs= 0;
[21] $$.curs= 1;
[22] }
[23] ;
@endverbatim
The lines [1], [2] and [23] are bison code
that express the structure of the grammar.
These lines belong to the syntactic parsing realm.
The lines [3] and [22] are bison delimiters
for the associated action to execute,
when parsing of the syntax succeeds.
Everything between lines [3] and [22] is C++ code,
executed when the parser finds a syntactically
correct DECLARE %CURSOR statement.
The lines [4] to [8] could be considered syntactic parsing:
what the code does is find what is the current
Stored Program being parsed,
find the associated part of the syntax tree under construction (#sp_head),
and find the associated current context
in the symbol table (#sp_pcontext).
Note that there is some black magic here:
since we are still currently parsing the content
of a Stored Program (the DECLARE %CURSOR statement),
the final “syntax” tree for the Stored Program (#sp_head)
is not supposed to exist yet. The reason the #sp_head object
is already available is that the actions in the
<tt>CREATE PROCEDURE</tt>, <tt>CREATE FUNCTION</tt>, <tt>CREATE TRIGGER</tt>,
or <tt>CREATE EVENT</tt> are implemented as a descendant parser
(it created an empty #sp_head object first, filling the content later).
Mixing code that way (descendant actions with ascendant parsing)
is extremely sensitive to changes.
The line [10] is a semantic check.
The statement might be syntactically correct (it parsed),
but to be semantically correct,
the name or the cursor must be unique in the symbol table.
Line [12] is reporting a semantic error back to the client (duplicate cursor).
The code at line [14] forces the syntactic parser (bison) to abort.
By line [16], we have verified that the code is syntactically valid,
and semantically valid: it's now time for code generation,
implemented by creating a new #sp_instr_cpush to represent
the cursor in the compiled code.
Note that variable allocation is done on the fly,
by looking up the current cursor count in the symbol table
(#sp_pcontext::current_cursor_count()).
Line [18] adds the generated code to the object
representing the stored program (code generation).
Line [19] maintains the symbol table (semantic parsing)
by adding the new cursor in the current local context.
Lines [20] and [21] return to bison a fragment of
a fake syntax tree, indicating that one cursor was found.
By looking at the complete implementation of this action in bison,
one should note that the target code was generated,
the symbol table for the Stored Program was looked up and updated,
while at no point in time a syntax node was even created.
Note that the #sp_instr_cpush object should really be considered generated
code: the fact that there is a one-to-one correspondence with the syntax is
incidental.
@subsection sp_parser_codegen Single-Pass Code Generation
All the code generated by the parser is emitted in a single pass.
For example, consider the following SQL logic:
@verbatim
CREATE FUNCTION func_4(i int)
RETURNS CHAR(10)
BEGIN
DECLARE str CHAR(10);
CASE i
WHEN 1 THEN SET str="1";
WHEN 2 THEN SET str="2";
WHEN 3 THEN SET str="3";
ELSE SET str="unknown";
END CASE;
RETURN str;
END$$
@endverbatim
The compiled program for this Stored Function is:
@verbatim
SHOW FUNCTION CODE func_4;
Pos Instruction
0 set str@1 NULL
1 set_case_expr (12) 0 i@0
2 jump_if_not 5(12) (case_expr@0 = 1)
3 set str@1 _latin1'1'
4 jump 12
5 jump_if_not 8(12) (case_expr@0 = 2)
6 set str@1 _latin1'2'
7 jump 12
8 jump_if_not 11(12) (case_expr@0 = 3)
9 set str@1 _latin1'3'
10 jump 12
11 set str@1 _latin1'unknown'
12 freturn 254 str@1
@endverbatim
Note the instruction at position 4: jump 12.
How can the compiler generate this instruction in a single pass,
when the destination (12) is not known yet ?
This instruction is a forward jump.
What happens during code generation is that,
by the time the compiler has generated the code
for positions [0] to [11], the generated code looks like this:
@verbatim
Pos Instruction
0 set str@1 NULL
1 set_case_expr ( ?? ) 0 i@0
2 jump_if_not 5( ?? ) (case_expr@0 = 1)
3 set str@1 _latin1'1'
4 jump ??
5 jump_if_not 8( ?? ) (case_expr@0 = 2)
6 set str@1 _latin1'2'
7 jump ??
8 jump_if_not 11( ?? ) (case_expr@0 = 3)
9 set str@1 _latin1'3'
10 jump ??
11 set str@1 _latin1'unknown'
...
@endverbatim
The final destination of the label for the END CASE is not known yet,
and the list of all the instructions (1, 2, 4, 5, 7, 8 and 10)
that need to point to this unknown destination (represented as ??)
is maintained in a temporary structure used during code generation only.
This structure is called the context back patch list.
When the destination label is finally resolved to a destination (12),
all the instructions pointing to that label,
which have been already generated (but with a bogus destination)
are back patched to point to the correct location.
See the comments marked @c BACKPATCH in the code for more details.
As a side note, this generated code also shows that
some temporary variables can be generated implicitly,
such as the operand of the CASE expression, labeled case_expr@0.
@attention Numbering of case expressions in the symbol table
uses a different name space than variables,
so that case_expr@0 and i@0 are two different variables,
even when both internally numbered with offset zero.
@section sp_optimizer Flow Analysis Optimizations
After code is generated, the low level sp_instr instructions are optimized.
The optimization focuses on two areas:
- Dead code removal,
- Jump shortcut resolution.
These two optimizations are performed together,
as they both are a problem involving flow analysis
in the graph that represents the generated code.
The code that implements these optimizations is #sp_head::optimize().
@attention Do not confuse #sp_head::optimize()
with the component named the optimizer,
as they are very different.
The former is specific to Stored Programs,
and focuses on improving the flow of statements,
whereas the latter is general to queries,
and focuses on finding the best execution plan when executing a single
statement. For the optimizer, see Optimization.
The (Stored Program) optimizer is invoked from only one place,
in the following code:
@code
db_load_routine(..., sp_head **sphp, ...)
{
...
(*sphp)->optimize();
...
}
@endcode
@note By disabling the call to #sp_head::optimize()
and recompiling the code,
SHOW PROCEDURE CODE will display the code before flow optimization.
@attention When investigating issues related to this area,
you may want to use a @c DBUG_EXECUTE_IF
to avoid recompiling the server with or without
flow optimization every time.
Be careful to shutdown and restart the server with or without
the call to #sp_head::optimize() for each test,
or you will find that caching of a Stored Program code does interfere.
@subsection sp_optimizer_dead Dead Code Removal
'Dead code' is also known as 'unreachable code':
code that cannot possibly be executed,
because no path in the logic leads to it.
For example, consider the following SQL code:
@verbatim
CREATE PROCEDURE proc_5()
BEGIN
DECLARE i INT DEFAULT 0;
again:
WHILE TRUE DO
BEGIN
set i:= i+1;
SELECT "This code is alive";
IF (i = 100) THEN
LEAVE again;
END IF;
ITERATE again;
SELECT "This code is dead";
END;
END WHILE;
END$$
@endverbatim
Before flow optimization, the compiled code is:
@verbatim
SHOW PROCEDURE CODE proc_5;
Pos Instruction
0 set i@0 0
1 jump_if_not 10(10) 1
2 set i@0 (i@0 + 1)
3 stmt 0 "SELECT "This code is alive""
4 jump_if_not 7(7) (i@0 = 100)
5 jump 10
6 jump 7
7 jump 1
8 stmt 0 "SELECT "This code is dead""
9 jump 1
@endverbatim
Note the instruction at position 8:
the previous instruction is an unconditional jump,
so the flow of control can never reach 8 by coming from 7.
Because there exists no jump in the entire code that leads to 8 either,
the instruction at 8 is unreachable.
By looking further in the flow,
because 8 is unreachable and there are no jumps to position 9,
the instruction at position 9 is also unreachable.
The instruction at position 6 is also unreachable,
for a similar reason: the THEN part of the if contains a jump,
due to the statement LEAVE again;,
so that the code never executes the jump generated by the compiler
to go from the end of the THEN block to the statement following the IF.
After detecting all the unreachable instructions,
and simplifying the code,
the result after flow optimization is:
@verbatim
SHOW PROCEDURE CODE proc_5;
Pos Instruction
0 set i@0 0
1 jump_if_not 10(10) 1
2 set i@0 (i@0 + 1)
3 stmt 0 "SELECT "This code is alive""
4 jump_if_not 1(1) (i@0 = 100)
5 jump 10
@endverbatim
The flow optimizer is good at detecting most of the dead code,
but has limitations.
For example, coding in SQL IF FALSE THEN ... END IF;
leads to code that can never be executed,
but since the flow optimizer does neither propagate constants
nor consider impossible conditional jumps, this code will not be removed.
The goal of the flow optimizer is mostly to perform
simple local optimizations with a low cost.
It's not a fully featured code optimizer,
and does not guard against poor SQL.
@subsection sp_optimizer_jump Jump Shortcut Resolution
The term jump shortcut refers to the following optimization:
when instruction A is a jump (conditional or not)
that goes to position B,
and when B is an unconditional jump to position C,
the code can be changed so that A can jump to C directly,
taking a shortcut to avoid the unnecessary B.
Consider the following SQL code:
@verbatim
CREATE PROCEDURE proc_6(x int, y int, z int)
BEGIN
SELECT "Start";
IF (x > 0)
THEN
BEGIN
SELECT "x looks ok";
IF (y > 0)
THEN
BEGIN
SELECT "so does y";
IF (z > 0)
THEN
SELECT "even z is fine";
ELSE
SELECT "bad z";
END IF;
END;
ELSE
SELECT "bad y";
END IF;
END;
ELSE
SELECT "bad x";
END IF;
SELECT "Finish";
END$$
@endverbatim
Before flow optimization, the compiled code is:
@verbatim
SHOW PROCEDURE CODE proc_6;
Pos Instruction
0 stmt 0 "SELECT "Start""
1 jump_if_not 12(13) (x@0 > 0)
2 stmt 0 "SELECT "x looks ok""
3 jump_if_not 10(11) (y@1 > 0)
4 stmt 0 "SELECT "so does y""
5 jump_if_not 8(9) (z@2 > 0)
6 stmt 0 "SELECT "even z is fine""
7 jump 9
8 stmt 0 "SELECT "bad z""
9 jump 11
10 stmt 0 "SELECT "bad y""
11 jump 13
12 stmt 0 "SELECT "bad x""
13 stmt 0 "SELECT "Finish""
@endverbatim
Note the jump 9 at position 7:
since the instruction at position 9 is jump 11,
the code at position 7 can be simplified to jump 11.
The optimization is also recursive:
since the instruction 11 is jump 13,
the final jump destination for the instruction at position 7 is jump 13.
Conditional jumps are optimized also,
so that the instruction 5: jump_if_not 8(9) can be optimized to jump_if_not
8(13).
After flow optimization, the compiled code is:
@verbatim
SHOW PROCEDURE CODE proc_6;
Pos Instruction
0 stmt 0 "SELECT "Start""
1 jump_if_not 12(13) (x@0 > 0)
2 stmt 0 "SELECT "x looks ok""
3 jump_if_not 10(13) (y@1 > 0)
4 stmt 0 "SELECT "so does y""
5 jump_if_not 8(13) (z@2 > 0)
6 stmt 0 "SELECT "even z is fine""
7 jump 13
8 stmt 0 "SELECT "bad z""
9 jump 13
10 stmt 0 "SELECT "bad y""
11 jump 13
12 stmt 0 "SELECT "bad x""
13 stmt 0 "SELECT "Finish""
@endverbatim
Note the differences with every jump instruction.
@attention For clarity, this example has been designed
to not involve dead code.
Note that in general, an instruction that was reachable
before taking a shortcut might become unreachable after the shortcut,
so that the optimizations for jump shortcuts
and dead code are tightly intertwined.
@section sp_cache Stored Program Caches
The goal of the Stored Program cache is to keep
a parsed sp_head in memory, for future reuse. Reuse means:
- To be able to execute concurrently the same
Stored Program in different THD threads,
- To be able to execute the same Stored Program
multiple times (for recursive calls) in the same THD thread.
To achieve this, the implementation of #sp_head must be
both thread-safe and stateless.
Unfortunately, it is neither:
- The class #sp_head is composed of #sp_instr instructions to represent the
code, and these instructions in turn depend on Item objects, used to represent
the internal structure of a statement. The various C++ Item classes are not
currently thread-safe, since the evaluation of an Item at runtime involves
methods like Item::fix_fields(), which modify the internal state of items,
making them impossible to safely evaluate concurrently.
- The class #sp_head itself contains attributes that describe
the SQL logic of a Stored Program (which are safe to share),
mixed with attributes that relate to the evaluation
of this logic in a given instance to a Stored Program call
(mostly the MEM_ROOT memory pool used during execution),
which by definition cannot be shared.
The consequence of these restrictions is less than optimal code.
What is currently implemented in the server
is detailed in the following subsections, to help maintenance.
@attention Needless to say, the current implementation
of Stored Program caching is by no mean final,
and could be re factored in future releases.
@subsection sp_cache_sp Stored Procedure Cache
The PROCEDURE cache is maintained on a per thread basis,
in #THD::sp_proc_cache.
The function used to lookup the cache is #sp_find_routine.
It relies on the C++ class #sp_cache for the low level implementation.
There is a global mechanism to invalidate all the caches
of all the THD threads at once,
implemented with the variable #atomic_Cversion in file sp_cache.cc,
which is incremented by function #sp_cache_invalidate().
This global invalidation is used when the server executes
DROP PROCEDURE or ALTER PROCEDURE statements.
Each entry in the cache is keyed by name,
and consists of a linked list of stored procedure instances
which are all duplicates of the same object.
The reason for the list is recursion,
when the runtime needs to evaluate several calls
to the same procedure at once.
The runtime behavior of this caching mechanism
has some limitations, and in particular:
- Each #THD has its own cache, so each separate client connection
to the server uses its own cache.
Multiple client connections calling the same Stored Procedure
will cause the parser to be invoked multiple times,
and memory to be consumed multiple times.
- If a given client constantly opens and closes
a new connection to the server,
and invokes Stored Procedures,
the cache will be always empty,
causing excessive parsing of used stored procedures on every invocation.
- If a given client constantly keeps an existing connection
to the server for a long time, and invokes Stored Procedures,
the cache size will grow, consuming and retaining memory.
In other words, memory limits or expulsion of cold members
of the stored procedure cache is not implemented.
- Calling #sp_cache_invalidate() does not reclaim the cache memory.
This memory will be reclaimed only if a Stored Procedure
is looked up in the cache again, causing the cache to flush.
@subsection sp_cache_sf Stored Function Cache
The FUNCTION cache is implemented exactly
like the PROCEDURE cache,
in the thread member in #THD::sp_func_cache.
Note that because #THD::sp_proc_cache and #THD::sp_func_cache are
both invalidated based on the same #atomic_Cversion counter,
executing DROP PROCEDURE happens to invalidate the FUNCTION cache as well,
while DROP FUNCTION also invalidates the PROCEDURE cache.
In practice, this has no consequences since DDL statements
like this are not executed typically while an application is running,
only when it is deployed.
@subsection sp_cache_trg Table Trigger Cache
For table triggers, all the triggers that relate to
a given table are grouped in the C++ class #Table_trigger_dispatcher,
which in particular contains the member sp_head
*bodies[TRG_EVENT_MAX][TRG_ACTION_MAX].
Note that at most one trigger per event (BEFORE, AFTER)
and per action (INSERT, UPDATE, DELETE) can be defined currently.
The #Table_trigger_dispatcher itself is a part of struct #TABLE.
As a result, each table trigger body is duplicated
in each table handle, which is necessary to properly evaluate them.
#TABLE handles are globally cached and reused across threads,
so the table triggers are effectively reused across different
clients connections manipulating the same physical table.
@subsection sp_cache_evt Events and Caching
For events, the #sp_head object that represents the body
of an EVENT is part of the C++ class #Event_parse_data.
There is no caching of #sp_head for multiple scheduling of an event.
The method #Event_job_data::execute() invokes the parser
every time an event is executed.
@section sp_execution Stored Program Execution
Executing a Stored Program consists of interpreting
the low level #sp_instr code.
The runtime interpreter itself is implemented
in the method #sp_head::execute().
Wrappers for different kinds of Stored Programs
are implemented in the following methods:
- @c PROCEDURE : see #sp_head::execute_procedure(),
- @c FUNCTION : see #sp_head::execute_function(),
- @c TRIGGER : see #sp_head::execute_trigger(),
- @c EVENT : see #Event_job_data::execute().
@subsection sp_exc_rcont Runtime Context
An interpreter needs to be able to represent the state
of the SQL program being executed:
this is the role of the C++ class #sp_rcontext, or runtime context.
@subsubsection sp_exec_rcont_var Local Variables
Values of local variables in an SQL Stored Program
are stored within the #sp_rcontext.
When the code enters a new scope,
the sp_instr contains explicit statements to initialize
the local variable DEFAULT value, if any.
Since initialization of values is done in the code,
and since no logic needs to be executed
when an SQL variable goes out of scope,
space allocation to represent the data does
not need to follow the nesting of BEGIN/END blocks during runtime.
Another important point regarding the representation
of local SQL variables is that, conceptually,
a local variable can be considered to be an SQL table
with a single column (of the variable type),
with a single row (to represent the value).
As a result, all the local variables of a Stored Program
are represented by a row in a table internally.
For example, consider the following SQL code:
@verbatim
CREATE PROCEDURE proc_7(x int)
BEGIN
DECLARE v1 INT;
DECLARE v2 VARCHAR(10);
DECLARE v3 TEXT;
IF (x > 0) THEN
BEGIN
DECLARE v4 BLOB;
DECLARE v5 VARCHAR(20);
END;
ELSE
BEGIN
DECLARE v6 DECIMAL(10, 2);
DECLARE v7 BIGINT;
END;
END IF;
END$$
@endverbatim
Internally, a temporary table is created, with the following structure:
@verbatim
CREATE TEMPORARY TABLE `proc_7_vars` (
`v1` int(11) DEFAULT NULL,
`v2` varchar(10) DEFAULT NULL,
`v3` text,
`v4` blob,
`v5` varchar(20) DEFAULT NULL,
`v6` decimal(10,2) DEFAULT NULL,
`v7` bigint(20) DEFAULT NULL
) ENGINE=MyISAM DEFAULT CHARSET=latin1
@endverbatim
The real name of the table and the columns are purely internal,
and the table is not accessible to regular statements
for DDL or DML operations:
proc_7_vars and v1 ... v7 are just a notation used in this example.
The #TABLE handle that implements all the local variable storage
is the member #sp_rcontext::m_var_table
Inside a statement, local variables in a Stored Program
are represented by the dedicated C++ class #Item_splocal.
#Item_splocal really is a proxy exposing the interface needed to support
#Item, which delegates to the underlying #sp_rcontext for reading or writing
local variable values. The coupling between #Item_splocal and #sp_rcontext is
based on #Item_splocal::m_var_idx, which is the variable index in the symbol
table computed by the parser, and maintained in #sp_pcontext.
@subsubsection sp_exec_rcont_cursor Cursors
Unlike local variables,
some action is needed in the interpreter
when a CURSOR goes out of scope:
the cursor must be closed,
to prevent leaks of the underlying TABLE resources.
As a result, cursor allocation
(and really, deallocation so they can be properly closed)
needs to follow tightly the BEGIN-END block structure of the code,
so a stack is used,
implemented by #sp_rcontext::m_cstack and #sp_rcontext::m_ccount.
@subsubsection sp_exec_rcont_case Case Expressions
For CASE expressions,
temporary variables are generated automatically.
Like CURSOR, there are some constraints that prevent
treating these special local variables like regular local variables.
The difficulty with CASE is that the real type
of the expression is only known when the case statement is executed,
so that allocating space in a statically computed TABLE is not practical.
For example, CASE (SELECT col1 FROM t1 WHERE ...)
is a case expression that involves a single row subselect.
During parsing, the table might not even exists,
so evaluating the type of col1 is impossible.
Creation of the table can be delayed until execution,
with statements like CREATE TEMPORARY TABLE.
Instead, an array of Item * is used,
implemented by #sp_rcontext::m_case_expr_holders.
The size of the array is static (it's the total number of cases),
but the content of each element is dynamic
(to account for the type of the case expression).
@attention Note the wording used here:
“static” means something that can be evaluated when compiling the code,
in the parser,
whereas “dynamic” means something that can be evaluated
only when interpreting the code, during runtime.
Of course, from a C++ coding point of view, everything is dynamic.
Inside a CASE statement, temporary local variables
in a Stored Program are represented by the dedicated C++ class
#Item_case_expr. The class #Item_case_expr is also a proxy, similar in nature to
#Item_splocal, and delegates to #sp_rcontext for accessing the underlying case
expression value. The coupling between #Item_case_expr and #sp_rcontext is based
on #Item_case_expr::m_case_expr_id, which is the case expression index in the
symbol table (see #sp_pcontext).
@subsubsection sp_exec_rcont_handler Exception Handlers
@todo Update the exception handler doc for SIGNAL, RESIGNAL and GET
DIAGNOSTICS.
When the code enters a block of logic guarded by an SQL exception handler,
the state or the runtime context in the interpreter changes,
to represent this fact.
The state change is not apparent immediately,
it will only become apparent if an exception is raised.
The internal runtime state of the engine also changes
when the code leaves a block that contains an exception handler.
How exception handlers work during runtime is the subject
of another section (“Exception Handling”).
What is described here is the state maintained internally,
to represent which HANDLER is currently “active”,
and what CONDITION is protected against.
The SQL precedence rules for HANDLER dictates that
the last installed (inner most) handler is always considered first,
so the natural structure to represent what handler is active is a stack,
implemented by #sp_rcontext::m_visible_handlers.
In addition, some extra information is required for
CONTINUE handlers: the “address” in the code,
or instruction pointer in the #sp_instr array,
of where to resume execution when the handler returns.
This data is maintained in #sp_rcontext::m_activated_handlers,
which again is a stack because exception handlers can be nested
(exceptions can be raised and trapped during the execution
of the body of an exception handler, too).
@subsection sp_exec_instr Executing One Instruction
Executing an instruction consists of calling
the virtual method #sp_instr::execute(),
which is implemented for each instruction.
For instructions that can be executed directly,
and don't depend on the evaluation of
a general SQL statement or expression,
the execution is very simple.
See for example #sp_instr_jump::execute(),
#sp_instr_hpush_jump::execute() or #sp_instr_hpop::execute().
In all cases, the implementation of the execute()
method is purely internal to the runtime interpreter.
For instructions that need to evaluate a general expression,
like #sp_instr_jump_if_not::execute(),
or general instructions that need to execute an SQL statement,
such as #sp_instr_stmt::execute(), things are more complex.
The implementation needs to leverage the existing code
that is already capable of evaluating an expression or executing a query,
and is implemented by the function #mysql_execute_command().
The function #mysql_execute_command(),
for historical reasons (it was implemented before Stored Programs),
is mostly designed to consume directly the result of the parser,
which is passed as input in #THD::lex.
To comply with this interface,
the runtime for stored program has to provide a THD::lex structure
before executing each instruction,
to prepare an execution environment which looks
as if the statement to execute was just parsed.
Dealing with the existing interface for re-entrant
execution of SQL statements is the role of the C++ class #sp_lex_instr.
The wrapper method to used to execute instructions
is #sp_lex_instr::reset_lex_and_exec_core(),
which ultimately invokes the #sp_lex_instr::exec_core() instructions
implementation.
@subsection sp_exec_flow Flow Control
Instructions are numbered sequentially,
and the current position in the code is represented
by an “instruction pointer”, which is just an integer.
In the main execution loop in #sp_head::execute(),
this instruction pointer is represented by the local variable ip.
When executing each instruction,
the method #sp_head::execute() is also responsible to
return the address of the next instruction to execute.
Most of the time,
this corresponds to the “next” instruction (implemented by m_ip+1),
except for absolute jumps (see #sp_instr_jump::execute())
or conditional jumps (see #sp_instr_jump_if_not::execute()).
@subsection sp_exec_handler Exception Handling
When the code enters a block protected by a HANDLER,
the execution leads to #sp_instr_hpush_jump::execute(),
which installs the exception handler in the runtime handler stack,
by calling #sp_rcontext::push_handler().
In a similar way, when the code leaves a block protected by a HANDLER,
#sp_instr_hpop::execute() removes the handlers installed
by the matching #sp_instr_hpush_jump,
by calling #sp_rcontext::pop_handlers().
During the execution of any statement,
different CONDITION can be raised at runtime,
which are reported by the implementation of each statement
by calling push_warning(), my_error() or similar functions.
All these entry points ultimately leads
to the error handler hook callback function
implemented by error_handler_hook in mysys/my_error.c.
In case of the server itself, this hook points to the function
#my_message_sql().
Under normal circumstances,
my_message_sql() just reports a warning or an error
to the client application, and for errors causes the query to abort.
When executing a stored program,
#THD::sp_runtime_ctx points to the runtime context
of the program currently executed.
When a HANDLER is active, the runtime context contains
in its handler stack the list of all the CONDITIONs currently trapped,
giving a chance to the call to #sp_rcontext::handle_sql_condition() to
intercept error handling.
If the condition reported does not match
any of the conditions for which an exception handler is active,
#sp_rcontext::handle_sql_condition() returns false,
and #my_message_sql() raises the error or warning as usual.
When the condition reported does match an active HANDLER,
that handler is called, but the technical nature of this call is special:
the call is asynchronous.
Instead of invoking the exception handler directly,
#sp_rcontext::handle_sql_condition() marks which exception handler is to be
called, by saving the activation on #sp_rcontext::m_activated_handlers, and then
returns true, so that #my_message_sql() returns without reporting anything: at
this point, the error condition has been totally masked, except for the fact
that #sp_rcontext::m_activated_handlers is set.
Once #my_message_sql() returns,
the implementation of a given statement continues,
either by proceeding if only a warning was reported,
or by aborting the current execution if an error was raised.
The execution of code in the server will eventually
return from the implementation of a statement,
and return from the call to #sp_instr::execute() for that statement,
returning control to the loop located in #sp_head::execute().
Note that during the execution of the code that follows a call to
#my_message_sql(), error conditions are propagated in the call stack though the
function's return value. It is transparent to the implementation of statements
in general whether an exception was caught by an error handler.
After an instruction is executed in #sp_head::execute(),
the main interpreter loop checks for any pending exception handler code to
call, by checking the thd error status. If an exception was caught,
#sp_rcontext::handle_sql_condition() is invoked.
In case of CONTINUE HANDLER,
the instruction to return to after the handler code is executed
needs to be saved in the runtime context.
Finding the continuation destination is accomplished
by the call to #sp_instr::get_cont_dest() for the current instruction,
whereas preserving this destination is done
with a push on #sp_rcontext::m_activated_handlers.
The matching call to #sp_rcontext::pop_handler_frame(),
which is executed when the exception handler is done,
is located in #sp_instr_hreturn::execute().
@attention To integrate properly with exception handling in general,
the code should avoid testing for thd->net.report_error,
or worse inspecting the content of the error stack (displayed by SHOW ERRORS),
because doing this actually assumes
not only that an error was raised,
but also that it was not caught.
Instead, the proper way to implement error handling in the server
is to return error status values and check for them.
@subsection sp_exec_nest Call Nesting
In the following example,
the Stored Procedure proc_1 makes a nested call to proc_2.
@verbatim
CREATE TABLE my_debug(
seq int NOT NULL AUTO_INCREMENT,
msg varchar(80),
PRIMARY KEY(seq)
);
delimiter $$
CREATE PROCEDURE proc_1()
BEGIN
INSERT INTO my_debug(msg) VALUES ("entering p1");
CALL proc_2();
INSERT INTO my_debug(msg) VALUES ("leaving p1");
END$$
CREATE PROCEDURE proc_2()
BEGIN
INSERT INTO my_debug(msg) VALUES ("inside p2");
END$$
delimiter ;
CALL proc_1();
@endverbatim
@note We do not have a debugger,
so this is old school printf-like debugging into a table.
By setting a breakpoint in #Sql_cmd_insert_values::execute_inner in
the server, the current thread stack at the first insert will look like this:
@todo Refresh the stack
@verbatim
#0 mysql_insert () at sql_insert.cc:351
#1 in mysql_execute_command () at sql_parse.cc:2643
#2 in sp_instr_stmt::exec_core () at sp_head.cc:2609
#3 in sp_lex_keeper::reset_lex_and_exec_core () at sp_head.cc:2455
#4 in sp_instr_stmt::execute () at sp_head.cc:2560
#5 in sp_head::execute () at sp_head.cc:1077
#6 in sp_head::execute_procedure () at sp_head.cc:1726
#7 in mysql_execute_command () at sql_parse.cc:3807
#8 in dispatch_sql_command () at sql_parse.cc:5274
#9 in dispatch_command () at sql_parse.cc:896
#10 in do_command () at sql_parse.cc:662
#11 in handle_one_connection () at sql_connect.cc:1089
#12 in start_thread () from /lib/libpthread.so.0
#13 in clone () from /lib/libc.so.6
@endverbatim
By the time the second INSERT is executed, the stack will look like this:
@todo Refresh the stack
@verbatim
#0 mysql_insert () at sql_insert.cc:351
#1 in mysql_execute_command () at sql_parse.cc:2643
#2 in sp_instr_stmt::exec_core () at sp_head.cc:2609
#3 in sp_lex_keeper::reset_lex_and_exec_core () at sp_head.cc:2455
#4 in sp_instr_stmt::execute () at sp_head.cc:2560
#5 in sp_head::execute () at sp_head.cc:1077
#6 in sp_head::execute_procedure () at sp_head.cc:1726
#7 in mysql_execute_command () at sql_parse.cc:3807
#8 in sp_instr_stmt::exec_core () at sp_head.cc:2609
#9 in sp_lex_keeper::reset_lex_and_exec_core () at sp_head.cc:2455
#10 in sp_instr_stmt::execute () at sp_head.cc:2560
#11 in sp_head::execute () at sp_head.cc:1077
#12 in sp_head::execute_procedure () at sp_head.cc:1726
#13 in mysql_execute_command () at sql_parse.cc:3807
#14 in dispatch_sql_command () at sql_parse.cc:5274
#15 in dispatch_command () at sql_parse.cc:896
#16 in do_command () at sql_parse.cc:662
#17 in handle_one_connection () at sql_connect.cc:1089
#18 in start_thread () from /lib/libpthread.so.0
#19 in clone () from /lib/libc.so.6
@endverbatim
In this stack trace,
#sp_head::execute_procedure() at #12 corresponds to CALL proc_1();,
whereas #sp_head::execute_procedure() at #6 corresponds to CALL proc_2();.
In other words,
recursive calls in the user SQL code are implemented
by performing matching recursive calls in the system C++ code (the server).
This is actually a severe limitation of the implementation,
which causes problems for the following reasons:
- User logic can be arbitrarily nested,
with a long chain of Stored Programs calling other Stored Programs.
The total depth of calls can be greater than one would expect,
especially considering that a VIEW can invoke a FUNCTION,
and that a TRIGGER can also invoke other PROCEDURE,
FUNCTION, or TRIGGER objects.
- The amount of memory that can be consumed in the stack
for a thread is not infinite.
In fact, it's quite limited because
{MAX NUMBER OF THREADS} * {MAX THREAD STACK} = {TOTAL STACK}.
Note the catch in the equation here: @em MAX thread stack,
which is dependent on the nesting of stored program in the user SQL code,
for the worst case.
When MySQL does not use a thread pool and uses a @em big number of threads,
this can be a problem affecting scalability.
- As a result,
the Stored Program interpreter has to protect itself against stack overflow.
This is implemented by #check_stack_overrun()
What should be implemented instead,
is representing the user SQL stack on the C++ heap,
and have the interpreter loop instead of making recursive calls.
There are also other good reasons to use the heap.
For example, for error reporting,
the current implementation has no way to tell
that proc_2 was called from proc_1,
since this data is not available to the code; it's hidden in the C++ stack.
Nesting calls also has some impact on SQL exception handlers.
The member #THD::sp_runtime_ctx for the current thread
is not pointing to a single #sp_rcontext,
but to a stack of runtime contexts.
With the example used,
when the code is executing proc_1,
#THD::sp_runtime_ctx points to the runtime context for proc_1.
When the code is inside proc_2,
the current thread #THD::sp_runtime_ctx points to #sp_rcontext{proc_2}.
This pointer is saved and restored during each stored program execution.
*/
#ifdef HAVE_PSI_INTERFACE
void init_sp_psi_keys() {
const char *category = "sp";
mysql_statement_register(category, &sp_instr_stmt::psi_info, 1);
mysql_statement_register(category, &sp_instr_set::psi_info, 1);
mysql_statement_register(category, &sp_instr_set_trigger_field::psi_info, 1);
mysql_statement_register(category, &sp_instr_jump::psi_info, 1);
mysql_statement_register(category, &sp_instr_jump_if_not::psi_info, 1);
mysql_statement_register(category, &sp_instr_freturn::psi_info, 1);
mysql_statement_register(category, &sp_instr_hpush_jump::psi_info, 1);
mysql_statement_register(category, &sp_instr_hpop::psi_info, 1);
mysql_statement_register(category, &sp_instr_hreturn::psi_info, 1);
mysql_statement_register(category, &sp_instr_cpush::psi_info, 1);
mysql_statement_register(category, &sp_instr_cpop::psi_info, 1);
mysql_statement_register(category, &sp_instr_copen::psi_info, 1);
mysql_statement_register(category, &sp_instr_cclose::psi_info, 1);
mysql_statement_register(category, &sp_instr_cfetch::psi_info, 1);
mysql_statement_register(category, &sp_instr_error::psi_info, 1);
mysql_statement_register(category, &sp_instr_set_case_expr::psi_info, 1);
}
#endif
/**
SP_TABLE represents all instances of one table in an optimized multi-set of
tables used by a stored program.
*/
struct SP_TABLE {
/*
Multi-set key:
db_name\0table_name\0alias\0 - for normal tables
db_name\0table_name\0 - for temporary tables
Note that in both cases we don't take last '\0' into account when
we count length of key.
*/
LEX_STRING qname;
size_t db_length, table_name_length;
bool temp; /* true if corresponds to a temporary table */
thr_lock_type lock_type; /* lock type used for prelocking */
uint lock_count;
uint query_lock_count;
uint8 trg_event_map;
};
///////////////////////////////////////////////////////////////////////////
// Static function implementations.
///////////////////////////////////////////////////////////////////////////
/**
Helper function which operates on a THD object to set the query start_time to
the current time.
@param thd Thread context.
*/
static void reset_start_time_for_sp(THD *thd) {
if (thd->in_sub_stmt) return;
/*
First investigate if there is a cached time stamp
*/
if (thd->user_time.tv_sec || thd->user_time.tv_usec)
thd->start_time = thd->user_time;
else
my_micro_time_to_timeval(my_micro_time(), &thd->start_time);
}
/**
Merge contents of two hashes representing sets of routines used
by statements or by other routines.
@param dst hash to which elements should be added
@param src hash from which elements merged
@note
This procedure won't create new Sroutine_hash_entry objects,
instead it will simply add elements from source to destination
hash. Thus time of life of elements in destination hash becomes
dependent on time of life of elements from source hash. It also
won't touch lists linking elements in source and destination
hashes.
*/
static void sp_update_sp_used_routines(
malloc_unordered_map<std::string, Sroutine_hash_entry *> *dst,
const malloc_unordered_map<std::string, Sroutine_hash_entry *> &src) {
for (const auto &key_and_value : src) dst->insert(key_and_value);
}
///////////////////////////////////////////////////////////////////////////
// sp_name implementation.
///////////////////////////////////////////////////////////////////////////
/**
Create temporary sp_name object for Sroutine_hash_entry.
@note The lifetime of this object is bound to the lifetime of the
Sroutine_hash_entry object.
This should be fine as sp_name objects created by this constructor
are mainly used for SP-cache lookups.
@note Stored routine names are case insensitive. So for the proper key
comparison, routine name is converted to the lower case while
creating Sroutine_hash_entry. Hence the instance of sp_name created
from it has the routine name in lower case.
Since instances created by this constructor are mainly used for
SP-cache lookups, routine name in lower case should work fine.
@param rt Sroutine_hash_entry with key containing database and
routine name.
@param qname_buff Buffer to be used for storing quoted routine name
(should be at least 2*NAME_LEN+1+1 bytes).
*/
sp_name::sp_name(const Sroutine_hash_entry *rt, char *qname_buff) {
m_db.str = rt->db();
m_db.length = rt->db_length();
// Safe as sp_name is not changed in scenarios when this ctor is used.
m_name.str = const_cast<char *>(rt->name());
m_name.length = rt->name_length();
m_qname.str = qname_buff;
if (m_db.length) {
strxmov(qname_buff, m_db.str, ".", m_name.str, NullS);
m_qname.length = m_db.length + 1 + m_name.length;
} else {
my_stpcpy(qname_buff, m_name.str);
m_qname.length = m_name.length;
}
m_explicit_name = false;
}
/**
Init the qualified name from the db and name.
*/
void sp_name::init_qname(THD *thd) {
const uint dot = !!m_db.length;
/* m_qname format: [database + dot] + name + '\0' */
m_qname.length = m_db.length + dot + m_name.length;
if (!(m_qname.str = (char *)thd->alloc(m_qname.length + 1))) return;
sprintf(m_qname.str, "%.*s%.*s%.*s", (int)m_db.length,
(m_db.length ? m_db.str : ""), dot, ".", (int)m_name.length,
m_name.str);
}
///////////////////////////////////////////////////////////////////////////
// sp_head implementation.
///////////////////////////////////////////////////////////////////////////
void sp_head::destroy(sp_head *sp) {
if (!sp) return;
/* Pull out main_mem_root as free_root will free the sp */
MEM_ROOT own_root = std::move(sp->main_mem_root);
sp->~sp_head();
own_root.Clear();
}
sp_head::sp_head(MEM_ROOT &&mem_root, enum_sp_type type)
: m_type(type),
m_flags(0),
m_chistics(nullptr),
m_sql_mode(0),
m_explicit_name(false),
m_created(0),
m_modified(0),
m_recursion_level(0),
m_next_cached_sp(nullptr),
m_first_instance(nullptr),
m_first_free_instance(nullptr),
m_last_cached_sp(nullptr),
m_sroutines(key_memory_sp_head_main_root),
m_trg_list(nullptr),
main_mem_root(std::move(mem_root)),
m_root_parsing_ctx(nullptr),
m_instructions(&main_mem_root),
m_sptabs(system_charset_info, key_memory_sp_head_main_root),
m_sp_cache_version(0),
m_creation_ctx(nullptr),
unsafe_flags(0) {
m_first_instance = this;
m_first_free_instance = this;
m_last_cached_sp = this;
m_instructions.reserve(32);
m_return_field_def.charset = nullptr;
/*
FIXME: the only use case when name is NULL is events, and it should
be rewritten soon. Remove the else part and replace 'if' with
an assert when this is done.
*/
m_db = NULL_STR;
m_name = NULL_STR;
m_qname = NULL_STR;
m_params = NULL_STR;
m_defstr = NULL_STR;
m_body = NULL_CSTR;
m_body_utf8 = NULL_CSTR;
m_trg_chistics.ordering_clause = TRG_ORDER_NONE;
m_trg_chistics.anchor_trigger_name = NULL_CSTR;
}
void sp_head::init_sp_name(THD *thd, sp_name *spname) {
/* Must be initialized in the parser. */
assert(spname && spname->m_db.str && spname->m_db.length);
/* We have to copy strings to get them into the right memroot. */
m_db.length = spname->m_db.length;
m_db.str = strmake_root(thd->mem_root, spname->m_db.str, spname->m_db.length);
m_name.length = spname->m_name.length;
m_name.str =
strmake_root(thd->mem_root, spname->m_name.str, spname->m_name.length);
m_explicit_name = spname->m_explicit_name;
if (spname->m_qname.length == 0) spname->init_qname(thd);
m_qname.length = spname->m_qname.length;
m_qname.str = (char *)memdup_root(thd->mem_root, spname->m_qname.str,
spname->m_qname.length + 1);
}
void sp_head::set_body_start(THD *thd, const char *begin_ptr) {
m_parser_data.set_body_start_ptr(begin_ptr);
thd->m_parser_state->m_lip.body_utf8_start(thd, begin_ptr);
}
void sp_head::set_body_end(THD *thd) {
Lex_input_stream *lip = &thd->m_parser_state->m_lip; /* shortcut */
const char *end_ptr = lip->get_cpp_ptr(); /* shortcut */
/* Make the string of parameters. */
{
const char *p_start = m_parser_data.get_parameter_start_ptr();
const char *p_end = m_parser_data.get_parameter_end_ptr();
if (p_start && p_end) {
m_params.length = p_end - p_start;
m_params.str = thd->strmake(p_start, m_params.length);
}
}
/* Remember end pointer for further dumping of whole statement. */
thd->lex->stmt_definition_end = end_ptr;
/* Make the string of body (in the original character set). */
LEX_STRING body;
body.length = end_ptr - m_parser_data.get_body_start_ptr();
body.str = thd->strmake(m_parser_data.get_body_start_ptr(), body.length);
trim_whitespace(thd->charset(), &body);
m_body = to_lex_cstring(body);
/* Make the string of UTF-body. */
lip->body_utf8_append(end_ptr);
LEX_STRING body_utf8;
body_utf8.length = lip->get_body_utf8_length();
body_utf8.str = thd->strmake(lip->get_body_utf8_str(), body_utf8.length);
trim_whitespace(thd->charset(), &body_utf8);
m_body_utf8 = to_lex_cstring(body_utf8);
/*
Make the string of whole stored-program-definition query (in the
original character set).
*/
m_defstr.length = end_ptr - lip->get_cpp_buf();
m_defstr.str = thd->strmake(lip->get_cpp_buf(), m_defstr.length);
trim_whitespace(thd->charset(), &m_defstr);
}
bool sp_head::setup_trigger_fields(THD *thd, Table_trigger_field_support *tfs,
GRANT_INFO *subject_table_grant,
bool need_fix_fields) {
for (SQL_I_List<Item_trigger_field> *trig_field_list =
m_list_of_trig_fields_item_lists.first;
trig_field_list;
trig_field_list = trig_field_list->first->next_trig_field_list) {
for (Item_trigger_field *f = trig_field_list->first; f;
f = f->next_trg_field) {
f->setup_field(tfs, subject_table_grant);
if (!need_fix_fields || f->fixed) continue;
Prepared_stmt_arena_holder ps_arena_holder(thd);
if (f->fix_fields(thd, nullptr)) return true;
}
}
return false;
}
void sp_head::mark_used_trigger_fields(TABLE *subject_table) {
for (SQL_I_List<Item_trigger_field> *trig_field_list =
m_list_of_trig_fields_item_lists.first;
trig_field_list;
trig_field_list = trig_field_list->first->next_trig_field_list) {
for (Item_trigger_field *f = trig_field_list->first; f;
f = f->next_trg_field) {
if (f->field_idx == (uint)-1) {
// We cannot mark fields which does not present in table.
continue;
}
bitmap_set_bit(subject_table->read_set, f->field_idx);
if (f->get_settable_routine_parameter())
bitmap_set_bit(subject_table->write_set, f->field_idx);
}
}
}
/**
Check whether any table's fields are used in trigger.
@param [in] used_fields bitmap of fields to check
@return Check result
@retval true Some table fields are used in trigger
@retval false None of table fields are used in trigger
*/
bool sp_head::has_updated_trigger_fields(const MY_BITMAP *used_fields) const {
for (SQL_I_List<Item_trigger_field> *trig_field_list =
m_list_of_trig_fields_item_lists.first;
trig_field_list;
trig_field_list = trig_field_list->first->next_trig_field_list) {
for (Item_trigger_field *f = trig_field_list->first; f;
f = f->next_trg_field) {
// We cannot check fields which does not present in table.
if (f->field_idx != (uint)-1) {
if (bitmap_is_set(used_fields, f->field_idx) &&
f->get_settable_routine_parameter())
return true;
}
}
}
return false;
}
sp_head::~sp_head() {
LEX *lex;
sp_instr *i;
// Parsing of SP-body must have been already finished.
assert(!m_parser_data.is_parsing_sp_body());
for (uint ip = 0; (i = get_instr(ip)); ip++) ::destroy(i);
::destroy(m_root_parsing_ctx);
/*
If we have non-empty LEX stack then we just came out of parser with
error. Now we should delete all auxiliary LEXes and restore original
THD::lex. It is safe to not update LEX::ptr because further query
string parsing and execution will be stopped anyway.
*/
while ((lex = m_parser_data.pop_lex())) {
THD *thd = lex->thd;
thd->lex->sphead = nullptr;
lex_end(thd->lex);
delete thd->lex;
thd->lex = lex;
}
sp_head::destroy(m_next_cached_sp);
}
Field *sp_head::create_result_field(THD *thd, size_t field_max_length,
const char *field_name_or_null,
TABLE *table) const {
assert(!m_return_field_def.is_array);
size_t field_length = !m_return_field_def.max_display_width_in_bytes()
? field_max_length
: m_return_field_def.max_display_width_in_bytes();
const char *field_name = field_name_or_null;
if (field_name == nullptr) {
// No field name was provided, so we use the name of the stored program. The
// sp_head could have a different lifespan than the Field, so we copy the
// name to the same MEM_ROOT as the Field to ensure that it stays alive as
// long as the Field itself.
field_name = thd->strmake(m_name.str, m_name.length);
if (field_name == nullptr) return nullptr;
}
// Add 1 for null byte.
table->record[0] =
thd->mem_root->ArrayAlloc<uchar>(m_return_field_def.pack_length() + 1);
if (table->record[0] == nullptr) return nullptr;
assert(m_return_field_def.auto_flags == Field::NONE);
Field *field =
make_field(m_return_field_def, table->s, field_name, field_length,
table->record[0] + 1, table->record[0], 0);
field->gcol_info = m_return_field_def.gcol_info;
field->m_default_val_expr = m_return_field_def.m_default_val_expr;
field->stored_in_db = m_return_field_def.stored_in_db;
if (field) field->init(table);
assert(field->pack_length() == m_return_field_def.pack_length());
return field;
}
void sp_head::returns_type(THD *thd, String *result) const {
assert(!m_return_field_def.is_array);
assert(m_return_field_def.auto_flags == Field::NONE);
TABLE table;
TABLE_SHARE share;
table.in_use = thd;
table.s = &share;
Field *field = make_field(m_return_field_def, &share, m_name.str,
m_return_field_def.max_display_width_in_bytes(),
nullptr, nullptr, 0);
field->init(&table);
field->sql_type(*result);
if (field->has_charset()) {
result->append(STRING_WITH_LEN(" CHARSET "));
result->append(m_return_field_def.charset->csname);
if (!(m_return_field_def.charset->state & MY_CS_PRIMARY)) {
result->append(STRING_WITH_LEN(" COLLATE "));
result->append(m_return_field_def.charset->m_coll_name);
}
}
::destroy(field);
}
bool sp_head::execute(THD *thd, bool merge_da_on_success) {
char saved_cur_db_name_buf[NAME_LEN + 1];
LEX_STRING saved_cur_db_name = {saved_cur_db_name_buf,
sizeof(saved_cur_db_name_buf)};
bool cur_db_changed = false;
bool err_status = false;
uint ip = 0;
sql_mode_t save_sql_mode;
Query_arena *old_arena;
/* per-instruction arena */
MEM_ROOT execute_mem_root(key_memory_sp_head_execute_root,
MEM_ROOT_BLOCK_SIZE);
Query_arena execute_arena(&execute_mem_root,
Query_arena::STMT_INITIALIZED_FOR_SP),
backup_arena;
query_id_t old_query_id;
LEX *old_lex;
Item_change_list old_change_list;
String old_packet;
Object_creation_ctx *saved_creation_ctx;
Diagnostics_area *caller_da = thd->get_stmt_da();
Diagnostics_area sp_da(false);
/*
Just reporting a stack overrun error
(@sa check_stack_overrun()) requires stack memory for error
message buffer. Thus, we have to put the below check
relatively close to the beginning of the execution stack,
where available stack margin is still big. As long as the check
has to be fairly high up the call stack, the amount of memory
we "book" for has to stay fairly high as well, and hence
not very accurate. The number below has been calculated
by trial and error, and reflects the amount of memory necessary
to execute a single stored procedure instruction, be it either
an SQL statement, or, heaviest of all, a CALL, which involves
parsing and loading of another stored procedure into the cache
(@sa db_load_routine() and Bug#10100).
TODO: that should be replaced by proper handling of stack overrun error.
Stack size depends on the platform:
- for most platforms (8 * STACK_MIN_SIZE) is enough;
- for Solaris SPARC 64 (10 * STACK_MIN_SIZE) is required.
- for clang and ASAN/UBSAN we need even more stack space.
*/
{
#if defined(__clang__) && defined(HAVE_ASAN)
const int sp_stack_size = 12 * STACK_MIN_SIZE;
#elif defined(__clang__) && defined(HAVE_UBSAN)
const int sp_stack_size = 16 * STACK_MIN_SIZE;
#else
const int sp_stack_size = 8 * STACK_MIN_SIZE;
#endif
if (check_stack_overrun(thd, sp_stack_size, (uchar *)&old_packet))
return true;
}
opt_trace_disable_if_no_security_context_access(thd);
assert(!(m_flags & IS_INVOKED));
m_flags |= IS_INVOKED;
m_first_instance->m_first_free_instance = m_next_cached_sp;
if (m_next_cached_sp) {
DBUG_PRINT("info", ("first free for %p ++: %p->%p level: %lu flags %x",
m_first_instance, this, m_next_cached_sp,
m_next_cached_sp->m_recursion_level,
m_next_cached_sp->m_flags));
}
/*
Check that if there are not any instances after this one then
pointer to the last instance points on this instance or if there are
some instances after this one then recursion level of next instance
greater then recursion level of current instance on 1
*/
assert((m_next_cached_sp == nullptr &&
m_first_instance->m_last_cached_sp == this) ||
(m_recursion_level + 1 == m_next_cached_sp->m_recursion_level));
/*
NOTE: The SQL Standard does not specify the context that should be
preserved for stored routines. However, at SAP/Walldorf meeting it was
decided that current database should be preserved.
*/
if (m_db.length && (err_status = mysql_opt_change_db(
thd, to_lex_cstring(m_db), &saved_cur_db_name, false,
&cur_db_changed))) {
goto done;
}
thd->is_slave_error = false;
old_arena = thd->stmt_arena;
/* Push a new Diagnostics Area. */
thd->push_diagnostics_area(&sp_da);
/*
Switch query context. This has to be done early as this is sometimes
allocated through sql_alloc
*/
saved_creation_ctx = m_creation_ctx->set_n_backup(thd);
/*
We have to save/restore this info when we are changing call level to
be able properly do close_thread_tables() in instructions.
*/
old_query_id = thd->query_id;
save_sql_mode = thd->variables.sql_mode;
thd->variables.sql_mode = m_sql_mode;
/**
When inside a substatement (a stored function or trigger
statement), clear the metadata observer in THD, if any.
Remember the value of the observer here, to be able
to restore it when leaving the substatement.
We reset the observer to suppress errors when a substatement
uses temporary tables. If a temporary table does not exist
at start of the main statement, it's not prelocked
and thus is not validated with other prelocked tables.
Later on, when the temporary table is opened, metadata
versions mismatch, expectedly.
The proper solution for the problem is to re-validate tables
of substatements (Bug#12257, Bug#27011, Bug#32868, Bug#33000),
but it's not implemented yet.
*/
thd->push_reprepare_observer(nullptr);
/*
It is also more efficient to save/restore current thd->lex once when
do it in each instruction
*/
old_lex = thd->lex;
/*
Save Item tree change list to avoid rollback something
too early in the calling query.
*/
thd->change_list.move_elements_to(&old_change_list);
if (thd->is_classic_protocol()) {
/*
Cursors will use thd->packet, so they may corrupt data which was
prepared for sending by upper level. OTOH cursors in the same routine
can share this buffer safely so let use use routine-local packet
instead of having own packet buffer for each cursor.
It is probably safe to use same thd->convert_buff everywhere.
*/
old_packet.swap(*thd->get_protocol_classic()->get_output_packet());
}
/*
Switch to per-instruction arena here. We can do it since we cleanup
arena after every instruction.
*/
thd->swap_query_arena(execute_arena, &backup_arena);
/*
Save callers arena in order to store instruction results and out
parameters in it later during sp_eval_func_item()
*/
thd->sp_runtime_ctx->callers_arena = &backup_arena;
#if defined(ENABLED_PROFILING)
/* Discard the initial part of executing routines. */
thd->profiling->discard_current_query();
#endif
do {
sp_instr *i;
#if defined(ENABLED_PROFILING)
/*
Treat each "instr" of a routine as discrete unit that could be profiled.
Profiling only records information for segments of code that set the
source of the query, and almost all kinds of instructions in s-p do not.
*/
thd->profiling->finish_current_query();
thd->profiling->start_new_query("continuing inside routine");
#endif
/* get_instr returns NULL when we're done. */
i = get_instr(ip);
if (i == nullptr) {
#if defined(ENABLED_PROFILING)
thd->profiling->discard_current_query();
#endif
break;
}
DBUG_PRINT("execute", ("Instruction %u", ip));
/*
We need to reset start_time to allow for time to flow inside a stored
procedure. This is only done for SP since time is suppose to be constant
during execution of triggers and functions.
*/
reset_start_time_for_sp(thd);
/*
We have to set thd->stmt_arena before executing the instruction
to store in the instruction item list all new items, created
during the first execution (for example expanding of '*' or the
items made during other permanent subquery transformations).
*/
thd->stmt_arena = &i->m_arena;
/*
Will write this SP statement into binlog separately.
TODO: consider changing the condition to "not inside event union".
*/
if (thd->locked_tables_mode <= LTM_LOCK_TABLES)
thd->user_var_events_alloc = thd->mem_root;
sql_digest_state digest_state;
sql_digest_state *parent_digest = thd->m_digest;
thd->m_digest = &digest_state;
mysql_thread_set_secondary_engine(false);
#ifdef HAVE_PSI_STATEMENT_INTERFACE
PSI_statement_locker_state psi_state;
PSI_statement_info *psi_info = i->get_psi_info();
PSI_statement_locker *parent_locker;
parent_locker = thd->m_statement_psi;
thd->m_statement_psi = MYSQL_START_STATEMENT(
&psi_state, psi_info->m_key, thd->db().str, thd->db().length,
thd->charset(), this->m_sp_share);
#endif
/*
For now, we're mostly concerned with sp_instr_stmt, but that's
likely to change in the future, so we'll do it right from the
start.
*/
if (thd->rewritten_query().length()) thd->reset_rewritten_query();
err_status = i->execute(thd, &ip);
#ifdef HAVE_PSI_STATEMENT_INTERFACE
MYSQL_END_STATEMENT(thd->m_statement_psi, thd->get_stmt_da());
thd->m_statement_psi = parent_locker;
#endif
thd->m_digest = parent_digest;
cleanup_items(i->m_arena.item_list());
/*
If we've set thd->user_var_events_alloc to mem_root of this SP
statement, clean all the events allocated in it.
*/
if (thd->locked_tables_mode <= LTM_LOCK_TABLES) {
thd->user_var_events.clear();
thd->user_var_events_alloc = nullptr; // DEBUG
}
// Free items created when executing the instruction, etc.
thd->cleanup_after_query();
// Release memory allocated during execution of the instruction
execute_mem_root.ClearForReuse();
/*
Find and process SQL handlers unless it is a fatal error (fatal
errors are not catchable by SQL handlers) or the connection has been
killed during execution.
*/
#ifdef HAVE_PSI_ERROR_INTERFACE
uint error_num = 0;
if (thd->is_error()) error_num = thd->get_stmt_da()->mysql_errno();
#endif
if (!thd->is_fatal_error() && !thd->killed &&
thd->sp_runtime_ctx->handle_sql_condition(thd, &ip, i)) {
err_status = false;
#ifdef HAVE_PSI_ERROR_INTERFACE
if (error_num) MYSQL_LOG_ERROR(error_num, PSI_ERROR_OPERATION_HANDLED);
#endif
}
/* Reset sp_rcontext::end_partial_result_set flag. */
thd->sp_runtime_ctx->end_partial_result_set = false;
} while (!err_status && !thd->killed && !thd->is_fatal_error());
#if defined(ENABLED_PROFILING)
thd->profiling->finish_current_query();
thd->profiling->start_new_query("tail end of routine");
#endif
// Restore query context.
m_creation_ctx->restore_env(thd, saved_creation_ctx);
// Restore arena.
thd->swap_query_arena(backup_arena, &execute_arena);
// Delete all cursors allocated during execution
thd->sp_runtime_ctx->pop_all_cursors();
if (thd->is_classic_protocol()) /* Restore all saved */
old_packet.swap(*thd->get_protocol_classic()->get_output_packet());
assert(thd->change_list.is_empty());
old_change_list.move_elements_to(&thd->change_list);
thd->lex = old_lex;
thd->set_query_id(old_query_id);
thd->variables.sql_mode = save_sql_mode;
thd->pop_reprepare_observer();
thd->stmt_arena = old_arena;
if (err_status && thd->is_error() && !caller_da->is_error()) {
/*
If the SP ended with an exception, transfer the exception condition
information to the Diagnostics Area of the caller.
Note that no error might be set yet in the case of kill.
It will be set later by mysql_execute_command() / execute_trigger().
In the case of multi update, it is possible that we can end up
executing a trigger after the update has failed. In this case,
keep the exception condition from the caller_da and don't transfer.
*/
caller_da->set_error_status(thd->get_stmt_da()->mysql_errno(),
thd->get_stmt_da()->message_text(),
thd->get_stmt_da()->returned_sqlstate());
}
/*
- conditions generated during trigger execution should not be
propagated to the caller on success; (merge_da_on_success)
- if there was an exception during execution, conditions should be
propagated to the caller in any case. (err_status)
*/
if (err_status || merge_da_on_success) {
/*
If a routine body is empty or if a routine did not generate any
conditions, do not duplicate our own contents by appending the contents
of the called routine. We know that the called routine did not change its
Diagnostics Area.
On the other hand, if the routine body is not empty and some statement
in the routine generates a condition, Diagnostics Area is guaranteed to
have changed. In this case we know that the routine Diagnostics Area
contains only new conditions, and thus we perform a copy.
We don't use push_warning() here as to avoid invocation of
condition handlers or escalation of warnings to errors.
*/
if (!err_status && thd->get_stmt_da() != &sp_da) {
/*
If we are RETURNing directly from a handler and the handler has
executed successfully, only transfer the conditions that were
raised during handler execution. Conditions that were present
when the handler was activated, are considered handled.
*/
caller_da->copy_new_sql_conditions(thd, thd->get_stmt_da());
} else // err_status || thd->get_stmt_da() == sp_da
{
/*
If we ended with an exception, or the SP exited without any handler
active, transfer all conditions to the Diagnostics Area of the caller.
*/
caller_da->copy_sql_conditions_from_da(thd, thd->get_stmt_da());
}
}
// Restore the caller's original Diagnostics Area.
while (thd->get_stmt_da() != &sp_da) thd->pop_diagnostics_area();
thd->pop_diagnostics_area();
assert(thd->get_stmt_da() == caller_da);
done:
DBUG_PRINT(
"info",
("err_status: %d killed: %d is_slave_error: %d report_error: %d",
err_status, thd->killed.load(), thd->is_slave_error, thd->is_error()));
if (thd->killed) err_status = true;
/*
If the DB has changed, the pointer has changed too, but the
original thd->db will then have been freed
*/
if (cur_db_changed && thd->killed != THD::KILL_CONNECTION) {
/*
Force switching back to the saved current database, because it may be
NULL. In this case, mysql_change_db() would generate an error.
*/
err_status |= mysql_change_db(thd, to_lex_cstring(saved_cur_db_name), true);
}
m_flags &= ~IS_INVOKED;
DBUG_PRINT("info", ("first free for %p --: %p->%p, level: %lu, flags %x",
m_first_instance, m_first_instance->m_first_free_instance,
this, m_recursion_level, m_flags));
/*
Check that we have one of following:
1) there are not free instances which means that this instance is last
in the list of instances (pointer to the last instance point on it and
there are not other instances after this one in the list)
2) There are some free instances which mean that first free instance
should go just after this one and recursion level of that free instance
should be on 1 more then recursion level of this instance.
*/
assert((m_first_instance->m_first_free_instance == nullptr &&
this == m_first_instance->m_last_cached_sp &&
m_next_cached_sp == nullptr) ||
(m_first_instance->m_first_free_instance != nullptr &&
m_first_instance->m_first_free_instance == m_next_cached_sp &&
m_first_instance->m_first_free_instance->m_recursion_level ==
m_recursion_level + 1));
m_first_instance->m_first_free_instance = this;
return err_status;
}
bool sp_head::execute_trigger(THD *thd, const LEX_CSTRING &db_name,
const LEX_CSTRING &table_name,
GRANT_INFO *grant_info) {
sp_rcontext *parent_sp_runtime_ctx = thd->sp_runtime_ctx;
bool err_status = false;
/*
Prepare arena and memroot for objects which lifetime is whole
duration of trigger call (sp_rcontext, it's tables and items,
sp_cursor and Item_cache holders for case expressions). We can't
use caller's arena/memroot for those objects because in this case
some fixed amount of memory will be consumed for each trigger
invocation and so statements which involve lot of them will hog
memory.
TODO: we should create sp_rcontext once per command and reuse it
on subsequent executions of a trigger.
*/
MEM_ROOT call_mem_root(key_memory_sp_head_call_root, MEM_ROOT_BLOCK_SIZE);
Query_arena call_arena(&call_mem_root, Query_arena::STMT_INITIALIZED_FOR_SP);
Query_arena backup_arena;
DBUG_TRACE;
DBUG_PRINT("info", ("trigger %s", m_name.str));
Security_context *save_ctx = nullptr;
LEX_CSTRING definer_user = {m_definer_user.str, m_definer_user.length};
LEX_CSTRING definer_host = {m_definer_host.str, m_definer_host.length};
/*
While parsing CREATE TRIGGER statement or loading trigger metadata from
the Data Dictionary we guarantee that definer hasn't empty value.
It means, that trigger can't never be NOT-SUID.
*/
assert(m_chistics->suid != SP_IS_NOT_SUID);
if (m_security_ctx.change_security_context(thd, definer_user, definer_host,
m_db.str, &save_ctx))
return true;
/*
Fetch information about table-level privileges for subject table into
GRANT_INFO instance. The access check itself will happen in
Item_trigger_field, where this information will be used along with
information about column-level privileges.
*/
fill_effective_table_privileges(thd, grant_info, db_name.str, table_name.str);
/* Check that the definer has TRIGGER privilege on the subject table. */
if (!(grant_info->privilege & TRIGGER_ACL)) {
char priv_desc[128];
get_privilege_desc(priv_desc, sizeof(priv_desc), TRIGGER_ACL);
my_error(ER_TABLEACCESS_DENIED_ERROR, MYF(0), priv_desc,
thd->security_context()->priv_user().str,
thd->security_context()->host_or_ip().str, table_name.str);
m_security_ctx.restore_security_context(thd, save_ctx);
return true;
}
/*
Optimizer trace note: we needn't explicitly test here that the connected
user has TRIGGER privilege: assume he doesn't have it; two possibilities:
- connected user == definer: then we threw an error just above;
- connected user != definer: then in sp_head::execute(), when checking the
security context we will disable tracing.
*/
thd->swap_query_arena(call_arena, &backup_arena);
sp_rcontext *trigger_runtime_ctx =
sp_rcontext::create(thd, m_root_parsing_ctx, nullptr);
if (!trigger_runtime_ctx) {
err_status = true;
goto err_with_cleanup;
}
trigger_runtime_ctx->sp = this;
thd->sp_runtime_ctx = trigger_runtime_ctx;
#ifdef HAVE_PSI_SP_INTERFACE
PSI_sp_locker_state psi_state;
PSI_sp_locker *locker;
locker = MYSQL_START_SP(&psi_state, m_sp_share);
#endif
err_status = execute(thd, false);
#ifdef HAVE_PSI_SP_INTERFACE
MYSQL_END_SP(locker);
#endif
err_with_cleanup:
thd->swap_query_arena(backup_arena, &call_arena);
m_security_ctx.restore_security_context(thd, save_ctx);
::destroy(trigger_runtime_ctx);
call_arena.free_items();
thd->sp_runtime_ctx = parent_sp_runtime_ctx;
if (thd->killed) thd->send_kill_message();
return err_status;
}
bool sp_head::execute_function(THD *thd, Item **argp, uint argcount,
Field *return_value_fld) {
ulonglong binlog_save_options = 0;
bool need_binlog_call = false;
uint arg_no;
sp_rcontext *parent_sp_runtime_ctx = thd->sp_runtime_ctx;
char buf[STRING_BUFFER_USUAL_SIZE];
String binlog_buf(buf, sizeof(buf), &my_charset_bin);
bool err_status = false;
/*
Prepare arena and memroot for objects which lifetime is whole
duration of function call (sp_rcontext, it's tables and items,
sp_cursor and Item_cache holders for case expressions).
We can't use caller's arena/memroot for those objects because
in this case some fixed amount of memory will be consumed for
each function/trigger invocation and so statements which involve
lot of them will hog memory.
TODO: we should create sp_rcontext once per command and reuse
it on subsequent executions of a function/trigger.
*/
MEM_ROOT call_mem_root(key_memory_sp_head_call_root, MEM_ROOT_BLOCK_SIZE);
Query_arena call_arena(&call_mem_root, Query_arena::STMT_INITIALIZED_FOR_SP);
Query_arena backup_arena;
DBUG_TRACE;
DBUG_PRINT("info", ("function %s", m_name.str));
// Resetting THD::where to its default value
thd->where = THD::DEFAULT_WHERE;
/*
Re-validate the argument count to verify the Stored Function definition has
not changed since preparation.
*/
uint params = m_root_parsing_ctx->context_var_count();
if (argcount != params) {
my_error(ER_SP_WRONG_NO_OF_ARGS, MYF(0), "FUNCTION", m_qname.str, params,
argcount);
return true;
}
thd->swap_query_arena(call_arena, &backup_arena);
sp_rcontext *func_runtime_ctx =
sp_rcontext::create(thd, m_root_parsing_ctx, return_value_fld);
if (!func_runtime_ctx) {
thd->swap_query_arena(backup_arena, &call_arena);
err_status = true;
goto err_with_cleanup;
}
func_runtime_ctx->sp = this;
/*
We have to switch temporarily back to callers arena/memroot.
Function arguments belong to the caller and so the may reference
memory which they will allocate during calculation long after
this function call will be finished (e.g. in Item::cleanup()).
*/
thd->swap_query_arena(backup_arena, &call_arena);
/*
Pass arguments.
Note, THD::sp_runtime_ctx must not be switched before the arguments are
passed. Values are taken from the caller's runtime context and set to the
runtime context of this function.
*/
for (arg_no = 0; arg_no < argcount; arg_no++) {
/* Arguments must be fixed in Item_func_sp::fix_fields */
assert(argp[arg_no]->fixed);
err_status =
func_runtime_ctx->set_variable(thd, false, arg_no, &(argp[arg_no]));
if (err_status) goto err_with_cleanup;
}
/*
If row-based binlogging, we don't need to binlog the function's call, let
each substatement be binlogged its way.
*/
need_binlog_call = mysql_bin_log.is_open() &&
(thd->variables.option_bits & OPTION_BIN_LOG) &&
!thd->is_current_stmt_binlog_format_row();
/*
Remember the original arguments for unrolled replication of functions
before they are changed by execution.
Note, THD::sp_runtime_ctx must not be switched before the arguments are
logged. Values are taken from the caller's runtime context.
*/
if (need_binlog_call) {
binlog_buf.length(0);
binlog_buf.append(STRING_WITH_LEN("SELECT "));
append_identifier(thd, &binlog_buf, m_db.str, m_db.length);
binlog_buf.append('.');
append_identifier(thd, &binlog_buf, m_name.str, m_name.length);
binlog_buf.append('(');
for (arg_no = 0; arg_no < argcount; arg_no++) {
String str_value_holder;
String *str_value;
if (arg_no) binlog_buf.append(',');
str_value = sp_get_item_value(thd, func_runtime_ctx->get_item(arg_no),
&str_value_holder);
if (str_value)
binlog_buf.append(*str_value);
else
binlog_buf.append(STRING_WITH_LEN("NULL"));
}
binlog_buf.append(')');
}
thd->sp_runtime_ctx = func_runtime_ctx;
Security_context *save_security_ctx;
if (set_security_ctx(thd, &save_security_ctx)) {
err_status = true;
goto err_with_cleanup;
}
if (need_binlog_call) {
query_id_t q;
thd->user_var_events.clear();
/*
In case of artificially constructed events for function calls
we have separate union for each such event and hence can't use
query_id of real calling statement as the start of all these
unions (this will break logic of replication of user-defined
variables). So we use artificial value which is guaranteed to
be greater than all query_id's of all statements belonging
to previous events/unions.
Possible alternative to this is logging of all function invocations
as one select and not resetting THD::user_var_events before
each invocation.
*/
q = atomic_global_query_id;
mysql_bin_log.start_union_events(thd, q + 1);
binlog_save_options = thd->variables.option_bits;
thd->variables.option_bits &= ~OPTION_BIN_LOG;
}
opt_trace_disable_if_no_stored_proc_func_access(thd, this);
/*
Switch to call arena/mem_root so objects like sp_cursor or
Item_cache holders for case expressions can be allocated on it.
TODO: In future we should associate call arena/mem_root with
sp_rcontext and allocate all these objects (and sp_rcontext
itself) on it directly rather than juggle with arenas.
*/
thd->swap_query_arena(call_arena, &backup_arena);
#ifdef HAVE_PSI_SP_INTERFACE
PSI_sp_locker_state psi_state;
PSI_sp_locker *locker;
locker = MYSQL_START_SP(&psi_state, m_sp_share);
#endif
err_status = execute(thd, true);
#ifdef HAVE_PSI_SP_INTERFACE
MYSQL_END_SP(locker);
#endif
thd->swap_query_arena(backup_arena, &call_arena);
if (need_binlog_call) {
mysql_bin_log.stop_union_events(thd);
thd->variables.option_bits = binlog_save_options;
if (thd->binlog_evt_union.unioned_events) {
int errcode = query_error_code(thd, thd->killed == THD::NOT_KILLED);
Query_log_event qinfo(thd, binlog_buf.ptr(), binlog_buf.length(),
thd->binlog_evt_union.unioned_events_trans, false,
false, errcode);
if (mysql_bin_log.write_event(&qinfo) &&
thd->binlog_evt_union.unioned_events_trans) {
push_warning(thd, Sql_condition::SL_WARNING, ER_UNKNOWN_ERROR,
"Invoked ROUTINE modified a transactional table but MySQL "
"failed to reflect this change in the binary log");
err_status = true;
}
thd->user_var_events.clear();
/* Forget those values, in case more function calls are binlogged: */
thd->stmt_depends_on_first_successful_insert_id_in_prev_stmt = false;
thd->auto_inc_intervals_in_cur_stmt_for_binlog.clear();
}
}
if (!err_status) {
/* We need result only in function but not in trigger */
if (!thd->sp_runtime_ctx->is_return_value_set()) {
my_error(ER_SP_NORETURNEND, MYF(0), m_name.str);
err_status = true;
}
}
m_security_ctx.restore_security_context(thd, save_security_ctx);
err_with_cleanup:
::destroy(func_runtime_ctx);
call_arena.free_items();
call_mem_root.Clear();
thd->sp_runtime_ctx = parent_sp_runtime_ctx;
/*
If not inside a procedure and a function printing warning
messages.
*/
if (need_binlog_call && thd->sp_runtime_ctx == nullptr &&
!thd->binlog_evt_union.do_union)
thd->issue_unsafe_warnings();
return err_status;
}
bool sp_head::execute_procedure(THD *thd, mem_root_deque<Item *> *args) {
bool err_status = false;
uint params = m_root_parsing_ctx->context_var_count();
/* Query start time may be reset in a multi-stmt SP; keep this for later. */
ulonglong lock_usec_before_sp_exec;
thd->push_lock_usec(lock_usec_before_sp_exec);
sp_rcontext *parent_sp_runtime_ctx = thd->sp_runtime_ctx;
sp_rcontext *sp_runtime_ctx_saved = thd->sp_runtime_ctx;
bool save_enable_slow_log = false;
bool save_log_general = false;
DBUG_TRACE;
DBUG_PRINT("info", ("procedure %s", m_name.str));
/*
Re-validate the argument count to verify the Stored Procedure definition has
not changed since preparation.
*/
uint argcount = args != nullptr ? args->size() : 0;
if (argcount != params) {
my_error(ER_SP_WRONG_NO_OF_ARGS, MYF(0), "PROCEDURE", m_qname.str, params,
argcount);
return true;
}
if (!parent_sp_runtime_ctx) {
// Create a temporary old context. We need it to pass OUT-parameter values.
parent_sp_runtime_ctx =
sp_rcontext::create(thd, m_root_parsing_ctx, nullptr);
if (!parent_sp_runtime_ctx) return true;
parent_sp_runtime_ctx->sp = nullptr;
thd->sp_runtime_ctx = parent_sp_runtime_ctx;
/* set callers_arena to thd, for upper-level function to work */
thd->sp_runtime_ctx->callers_arena = thd;
}
sp_rcontext *proc_runtime_ctx =
sp_rcontext::create(thd, m_root_parsing_ctx, nullptr);
if (proc_runtime_ctx == nullptr) {
thd->sp_runtime_ctx = sp_runtime_ctx_saved;
if (sp_runtime_ctx_saved == nullptr) {
::destroy(parent_sp_runtime_ctx);
}
return true;
}
proc_runtime_ctx->sp = this;
if (params > 0) {
auto it_args = args->begin();
DBUG_PRINT("info", (" %.*s: eval args", (int)m_name.length, m_name.str));
for (uint i = 0; i < params; ++i, ++it_args) {
Item *arg_item = *it_args;
if (arg_item == nullptr) break;
sp_variable *spvar = m_root_parsing_ctx->find_variable(i);
if (spvar == nullptr) continue;
if (spvar->mode != sp_variable::MODE_IN) {
Settable_routine_parameter *srp =
arg_item->get_settable_routine_parameter();
if (srp == nullptr) {
my_error(ER_SP_NOT_VAR_ARG, MYF(0), i + 1, m_qname.str);
err_status = true;
break;
}
}
if (spvar->mode == sp_variable::MODE_OUT) {
Item *null_item = new Item_null();
if (null_item == nullptr) {
err_status = true;
break;
}
if (proc_runtime_ctx->set_variable(thd, false, i, &null_item)) {
err_status = true;
break;
}
} else {
if (proc_runtime_ctx->set_variable(thd, false, i, &*it_args)) {
err_status = true;
break;
}
}
if (thd->variables.session_track_transaction_info > TX_TRACK_NONE) {
TX_TRACKER_GET(tst);
tst->add_trx_state_from_thd(thd);
}
}
/*
Okay, got values for all arguments. Close tables that might be used by
arguments evaluation. If arguments evaluation required prelocking mode,
we'll leave it here.
*/
thd->lex->cleanup(true);
if (!thd->in_sub_stmt) {
thd->get_stmt_da()->set_overwrite_status(true);
thd->is_error() ? trans_rollback_stmt(thd) : trans_commit_stmt(thd);
thd->get_stmt_da()->set_overwrite_status(false);
}
thd_proc_info(thd, "closing tables");
close_thread_tables(thd);
thd_proc_info(thd, nullptr);
if (!thd->in_sub_stmt) {
if (thd->transaction_rollback_request) {
trans_rollback_implicit(thd);
thd->mdl_context.release_transactional_locks();
} else if (!thd->in_multi_stmt_transaction_mode())
thd->mdl_context.release_transactional_locks();
else
thd->mdl_context.release_statement_locks();
}
thd->rollback_item_tree_changes();
DBUG_PRINT("info",
(" %.*s: eval args done", (int)m_name.length, m_name.str));
}
if (!(m_flags & LOG_SLOW_STATEMENTS) && thd->enable_slow_log) {
DBUG_PRINT("info", ("Disabling slow log for the execution"));
save_enable_slow_log = true;
thd->enable_slow_log = false;
}
if (!(m_flags & LOG_GENERAL_LOG) &&
!(thd->variables.option_bits & OPTION_LOG_OFF)) {
DBUG_PRINT("info", ("Disabling general log for the execution"));
save_log_general = true;
/* disable this bit */
thd->variables.option_bits |= OPTION_LOG_OFF;
}
thd->sp_runtime_ctx = proc_runtime_ctx;
Security_context *save_security_ctx = nullptr;
if (!err_status) err_status = set_security_ctx(thd, &save_security_ctx);
opt_trace_disable_if_no_stored_proc_func_access(thd, this);
#ifdef HAVE_PSI_SP_INTERFACE
PSI_sp_locker_state psi_state;
PSI_sp_locker *locker;
locker = MYSQL_START_SP(&psi_state, m_sp_share);
#endif
if (!err_status) err_status = execute(thd, true);
#ifdef HAVE_PSI_SP_INTERFACE
MYSQL_END_SP(locker);
#endif
if (save_log_general) thd->variables.option_bits &= ~OPTION_LOG_OFF;
if (save_enable_slow_log) thd->enable_slow_log = true;
/*
In the case when we weren't able to employ reuse mechanism for
OUT/INOUT parameters, we should reallocate memory. This
allocation should be done on the arena which will live through
all execution of calling routine.
*/
thd->sp_runtime_ctx->callers_arena = parent_sp_runtime_ctx->callers_arena;
if (!err_status && params > 0) {
auto it_args = args->cbegin();
/*
Copy back all OUT or INOUT values to the previous frame, or
set global user variables
*/
for (uint i = 0; i < params; i++) {
Item *arg_item = *it_args++;
if (!arg_item) break;
sp_variable *spvar = m_root_parsing_ctx->find_variable(i);
if (spvar->mode == sp_variable::MODE_IN) continue;
Settable_routine_parameter *srp =
arg_item->get_settable_routine_parameter();
assert(srp);
if (srp->set_value(thd, parent_sp_runtime_ctx,
proc_runtime_ctx->get_item_addr(i))) {
err_status = true;
break;
}
Send_field *out_param_info = new (thd->mem_root) Send_field();
proc_runtime_ctx->get_item(i)->make_field(out_param_info);
out_param_info->db_name = m_db.str;
out_param_info->table_name = m_name.str;
out_param_info->org_table_name = m_name.str;
out_param_info->col_name = spvar->name.str;
out_param_info->org_col_name = spvar->name.str;
srp->set_out_param_info(out_param_info);
}
}
if (save_security_ctx)
m_security_ctx.restore_security_context(thd, save_security_ctx);
if (!sp_runtime_ctx_saved) ::destroy(parent_sp_runtime_ctx);
::destroy(proc_runtime_ctx);
thd->sp_runtime_ctx = sp_runtime_ctx_saved;
thd->pop_lock_usec(lock_usec_before_sp_exec);
/*
If not inside a procedure and a function printing warning
messages.
*/
bool need_binlog_call = mysql_bin_log.is_open() &&
(thd->variables.option_bits & OPTION_BIN_LOG) &&
!thd->is_current_stmt_binlog_format_row();
if (need_binlog_call && thd->sp_runtime_ctx == nullptr &&
!thd->binlog_evt_union.do_union)
thd->issue_unsafe_warnings();
return err_status;
}
bool sp_head::reset_lex(THD *thd) {
LEX *oldlex = thd->lex;
LEX *sublex = new (thd->mem_root) st_lex_local;
if (!sublex) return true;
thd->lex = sublex;
m_parser_data.push_lex(oldlex);
/* Reset most stuff. */
lex_start(thd);
/* And keep the SP stuff too */
sublex->sphead = oldlex->sphead;
sublex->set_sp_current_parsing_ctx(oldlex->get_sp_current_parsing_ctx());
sublex->sp_lex_in_use = false;
/* Reset part of parser state which needs this. */
thd->m_parser_state->m_yacc.reset_before_substatement();
return false;
}
bool sp_head::restore_lex(THD *thd) {
LEX *sublex = thd->lex;
sublex->set_trg_event_type_for_tables();
LEX *oldlex = m_parser_data.pop_lex();
if (!oldlex) return false; // Nothing to restore
/* If this substatement is unsafe, the entire routine is too. */
DBUG_PRINT("info", ("lex->get_stmt_unsafe_flags: 0x%x",
thd->lex->get_stmt_unsafe_flags()));
unsafe_flags |= sublex->get_stmt_unsafe_flags();
/*
Add routines which are used by statement to respective set for
this routine.
*/
if (sublex->sroutines != nullptr)
sp_update_sp_used_routines(&m_sroutines, *sublex->sroutines);
/* If this substatement is a update query, then mark MODIFIES_DATA */
if (is_update_query(sublex->sql_command)) m_flags |= MODIFIES_DATA;
/*
Merge tables used by this statement (but not by its functions or
procedures) to multiset of tables used by this routine.
*/
merge_table_list(thd, sublex->query_tables, sublex);
/* Update m_sptabs_sorted to be in sync with m_sptabs. */
m_sptabs_sorted.clear();
for (auto &key_and_value : m_sptabs) {
m_sptabs_sorted.push_back(key_and_value.second);
}
std::sort(m_sptabs_sorted.begin(), m_sptabs_sorted.end(),
[](const SP_TABLE *a, const SP_TABLE *b) {
return to_string(a->qname) < to_string(b->qname);
});
if (!sublex->sp_lex_in_use) {
sublex->sphead = nullptr;
lex_end(sublex);
delete sublex;
}
thd->lex = oldlex;
return false;
}
void sp_head::set_info(longlong created, longlong modified,
st_sp_chistics *chistics, sql_mode_t sql_mode) {
m_created = created;
m_modified = modified;
m_chistics = (st_sp_chistics *)memdup_root(&main_mem_root, (char *)chistics,
sizeof(*chistics));
if (m_chistics->comment.length == 0)
m_chistics->comment.str = nullptr;
else
m_chistics->comment.str = strmake_root(
&main_mem_root, m_chistics->comment.str, m_chistics->comment.length);
m_sql_mode = sql_mode;
}
void sp_head::set_definer(const char *definer, size_t definerlen) {
char user_name_holder[USERNAME_LENGTH + 1];
LEX_CSTRING user_name = {user_name_holder, USERNAME_LENGTH};
char host_name_holder[HOSTNAME_LENGTH + 1];
LEX_CSTRING host_name = {host_name_holder, HOSTNAME_LENGTH};
parse_user(definer, definerlen, user_name_holder, &user_name.length,
host_name_holder, &host_name.length);
set_definer(user_name, host_name);
}
void sp_head::set_definer(const LEX_CSTRING &user_name,
const LEX_CSTRING &host_name) {
m_definer_user.str =
strmake_root(&main_mem_root, user_name.str, user_name.length);
m_definer_user.length = user_name.length;
m_definer_host.str =
strmake_root(&main_mem_root, host_name.str, host_name.length);
m_definer_host.length = host_name.length;
}
bool sp_head::add_instr(THD *thd, sp_instr *instr) {
m_parser_data.process_new_sp_instr(thd, instr);
if (m_type == enum_sp_type::TRIGGER &&
m_cur_instr_trig_field_items.elements) {
SQL_I_List<Item_trigger_field> *instr_trig_fld_list;
/*
Move all the Item_trigger_field from "sp_head::
m_cur_instr_trig_field_items" to the per instruction Item_trigger_field
list "sp_lex_instr::m_trig_field_list" and clear "sp_head::
m_cur_instr_trig_field_items".
*/
if ((instr_trig_fld_list = instr->get_instr_trig_field_list()) != nullptr) {
m_cur_instr_trig_field_items.save_and_clear(instr_trig_fld_list);
m_list_of_trig_fields_item_lists.link_in_list(
instr_trig_fld_list,
&instr_trig_fld_list->first->next_trig_field_list);
}
}
/*
Memory root of every instruction is designated for permanent
transformations (optimizations) made on the parsed tree during
the first execution. It points to the memory root of the
entire stored procedure, as their life span is equal.
*/
instr->m_arena.mem_root = get_persistent_mem_root();
return m_instructions.push_back(instr);
}
void sp_head::optimize() {
List<sp_branch_instr> bp;
sp_instr *i;
uint src, dst;
opt_mark();
bp.clear();
src = dst = 0;
while ((i = get_instr(src))) {
if (!i->opt_is_marked()) {
::destroy(i);
src += 1;
} else {
if (src != dst) {
m_instructions[dst] = i;
/* Move the instruction and update prev. jumps */
sp_branch_instr *ibp;
List_iterator_fast<sp_branch_instr> li(bp);
while ((ibp = li++)) ibp->set_destination(src, dst);
}
i->opt_move(dst, &bp);
src += 1;
dst += 1;
}
}
m_instructions.resize(dst);
bp.clear();
}
void sp_head::add_mark_lead(uint ip, List<sp_instr> *leads) {
sp_instr *i = get_instr(ip);
if (i && !i->opt_is_marked()) leads->push_front(i);
}
void sp_head::opt_mark() {
uint ip;
sp_instr *i;
List<sp_instr> leads;
/*
Forward flow analysis algorithm in the instruction graph:
- first, add the entry point in the graph (the first instruction) to the
'leads' list of paths to explore.
- while there are still leads to explore:
- pick one lead, and follow the path forward. Mark instruction reached.
Stop only if the end of the routine is reached, or the path converge
to code already explored (marked).
- while following a path, collect in the 'leads' list any fork to
another path (caused by conditional jumps instructions), so that these
paths can be explored as well.
*/
/* Add the entry point */
i = get_instr(0);
leads.push_front(i);
/* For each path of code ... */
while (leads.elements != 0) {
i = leads.pop();
/* Mark the entire path, collecting new leads. */
while (i && !i->opt_is_marked()) {
ip = i->opt_mark(this, &leads);
i = get_instr(ip);
}
}
}
#ifndef NDEBUG
bool sp_head::show_routine_code(THD *thd) {
Protocol *protocol = thd->get_protocol();
char buff[2048];
String buffer(buff, sizeof(buff), system_charset_info);
sp_instr *i;
bool full_access;
bool res = false;
uint ip;
if (check_show_access(thd, &full_access) || !full_access) return true;
mem_root_deque<Item *> field_list(thd->mem_root);
field_list.push_back(new Item_uint(NAME_STRING("Pos"), 0, 9));
// 1024 is for not to confuse old clients
field_list.push_back(new Item_empty_string(
"Instruction", std::max<size_t>(buffer.length(), 1024U)));
if (thd->send_result_metadata(field_list,
Protocol::SEND_NUM_ROWS | Protocol::SEND_EOF))
return true;
for (ip = 0; (i = get_instr(ip)); ip++) {
/*
Consistency check. If these are different something went wrong
during optimization.
*/
if (ip != i->get_ip()) {
char tmp[64 + 2 * MY_INT32_NUM_DECIMAL_DIGITS];
snprintf(tmp, sizeof(tmp), "Instruction at position %u has m_ip=%u", ip,
i->get_ip());
/*
Since this is for debugging purposes only, we don't bother to
introduce a special error code for it.
*/
push_warning(thd, Sql_condition::SL_WARNING, ER_UNKNOWN_ERROR, tmp);
}
protocol->start_row();
protocol->store((longlong)ip);
buffer.set("", 0, system_charset_info);
i->print(thd, &buffer);
protocol->store_string(buffer.ptr(), buffer.length(), system_charset_info);
if ((res = protocol->end_row())) break;
}
if (!res) my_eof(thd);
return res;
}
#endif // ifndef NDEBUG
bool sp_head::merge_table_list(THD *thd, Table_ref *table,
LEX *lex_for_tmp_check) {
if (lex_for_tmp_check->sql_command == SQLCOM_DROP_TABLE &&
lex_for_tmp_check->drop_temporary)
return true;
for (auto &key_and_value : m_sptabs) {
key_and_value.second->query_lock_count = 0;
}
for (; table; table = table->next_global)
if (!table->is_internal() && !table->schema_table) {
/* Fail if this is an inaccessible DD table. */
const dd::Dictionary *dictionary = dd::get_dictionary();
if (dictionary &&
!dictionary->is_dd_table_access_allowed(
thd->is_dd_system_thread(),
table->mdl_request.is_ddl_or_lock_tables_lock_request(),
table->db, table->db_length, table->table_name)) {
my_error(ER_NO_SYSTEM_TABLE_ACCESS, MYF(0),
ER_THD_NONCONST(thd, dictionary->table_type_error_code(
table->db, table->table_name)),
table->db, table->table_name);
return true;
}
/*
Structure of key for the multi-set is "db\0table\0alias\0".
Since "alias" part can have arbitrary length we use String
object to construct the key. By default String will use
buffer allocated on stack with NAME_LEN bytes reserved for
alias, since in most cases it is going to be smaller than
NAME_LEN bytes.
*/
char tname_buff[(NAME_LEN + 1) * 3];
String tname(tname_buff, sizeof(tname_buff), &my_charset_bin);
size_t temp_table_key_length;
tname.length(0);
tname.append(table->db, table->db_length);
tname.append('\0');
tname.append(table->table_name, table->table_name_length);
tname.append('\0');
temp_table_key_length = tname.length();
tname.append(table->alias);
tname.append('\0');
/*
We ignore alias when we check if table was already marked as temporary
(and therefore should not be prelocked). Otherwise we will erroneously
treat table with same name but with different alias as non-temporary.
*/
SP_TABLE *tab;
if ((tab = find_or_nullptr(m_sptabs,
std::string(tname.ptr(), tname.length()))) ||
((tab = find_or_nullptr(
m_sptabs, std::string(tname.ptr(), temp_table_key_length))) &&
tab->temp)) {
if (tab->lock_type < table->lock_descriptor().type)
tab->lock_type =
table->lock_descriptor()
.type; // Use the table with the highest lock type
tab->query_lock_count++;
if (tab->query_lock_count > tab->lock_count) tab->lock_count++;
tab->trg_event_map |= table->trg_event_map;
} else {
if (!(tab = (SP_TABLE *)thd->mem_calloc(sizeof(SP_TABLE))))
return false;
if (lex_for_tmp_check->sql_command == SQLCOM_CREATE_TABLE &&
lex_for_tmp_check->query_tables == table &&
lex_for_tmp_check->create_info->options & HA_LEX_CREATE_TMP_TABLE) {
tab->temp = true;
tab->qname.length = temp_table_key_length;
} else
tab->qname.length = tname.length();
tab->qname.str = (char *)thd->memdup(tname.ptr(), tab->qname.length);
if (!tab->qname.str) return false;
tab->table_name_length = table->table_name_length;
tab->db_length = table->db_length;
tab->lock_type = table->lock_descriptor().type;
tab->lock_count = tab->query_lock_count = 1;
tab->trg_event_map = table->trg_event_map;
if (!m_sptabs.emplace(to_string(tab->qname), tab).second) return false;
}
}
return true;
}
void sp_head::add_used_tables_to_table_list(THD *thd,
Table_ref ***query_tables_last_ptr,
enum_sql_command sql_command,
Table_ref *belong_to_view) {
/*
Use persistent arena for table list allocation to be PS/SP friendly.
Note that we also have to copy database/table names and alias to PS/SP
memory since current instance of sp_head object can pass away before
next execution of PS/SP for which tables are added to prelocking list.
This will be fixed by introducing of proper invalidation mechanism
once new TDC is ready.
*/
Prepared_stmt_arena_holder ps_arena_holder(thd);
for (SP_TABLE *stab : m_sptabs_sorted) {
if (stab->temp || stab->lock_type == TL_IGNORE) continue;
char *tab_buff = static_cast<char *>(
thd->alloc(ALIGN_SIZE(sizeof(Table_ref)) * stab->lock_count));
char *key_buff =
static_cast<char *>(thd->memdup(stab->qname.str, stab->qname.length));
if (!tab_buff || !key_buff) return;
for (uint j = 0; j < stab->lock_count; j++) {
/*
Since we don't allow DDL on base tables in prelocked mode it
is safe to infer the type of metadata lock from the type of
table lock.
*/
enum_mdl_type mdl_lock_type;
if (sql_command == SQLCOM_LOCK_TABLES) {
/*
We are building a table list for LOCK TABLES. We need to
acquire "strong" locks to ensure that LOCK TABLES properly
works for storage engines which don't use THR_LOCK locks.
*/
mdl_lock_type = (stab->lock_type >= TL_WRITE_ALLOW_WRITE)
? MDL_SHARED_NO_READ_WRITE
: MDL_SHARED_READ_ONLY;
} else {
/*
For other statements "normal" locks can be acquired.
Let us respect explicit LOW_PRIORITY clause if was used
in the routine.
*/
mdl_lock_type = mdl_type_for_dml(stab->lock_type);
}
Table_ref *table = new (tab_buff) Table_ref(
key_buff, stab->db_length, key_buff + stab->db_length + 1,
stab->table_name_length,
key_buff + stab->db_length + 1 + stab->table_name_length + 1,
stab->lock_type, mdl_lock_type);
table->is_system_view = dd::get_dictionary()->is_system_view_name(
table->db, table->table_name);
table->cacheable_table = true;
table->prelocking_placeholder = true;
table->belong_to_view = belong_to_view;
table->trg_event_map = stab->trg_event_map;
/* Everything else should be zeroed */
**query_tables_last_ptr = table;
table->prev_global = *query_tables_last_ptr;
*query_tables_last_ptr = &table->next_global;
tab_buff += ALIGN_SIZE(sizeof(Table_ref));
}
}
}
bool sp_head::check_show_access(THD *thd, bool *full_access) {
/*
Check if user has full access to the routine properties (i.e including
stored routine code), or partial access (i.e to view its other properties).
*/
*full_access = has_full_view_routine_access(thd, m_db.str, m_definer_user.str,
m_definer_host.str);
return *full_access ? false
: !has_partial_view_routine_access(
thd, m_db.str, m_name.str,
m_type == enum_sp_type::PROCEDURE);
}
bool sp_head::set_security_ctx(THD *thd, Security_context **save_ctx) {
*save_ctx = nullptr;
LEX_CSTRING definer_user = {m_definer_user.str, m_definer_user.length};
LEX_CSTRING definer_host = {m_definer_host.str, m_definer_host.length};
if (m_chistics->suid != SP_IS_NOT_SUID &&
m_security_ctx.change_security_context(thd, definer_user, definer_host,
m_db.str, save_ctx)) {
return true;
}
/*
If we changed context to run as another user, we need to check the
access right for the new context again as someone may have revoked
the right to use the procedure from this user.
*/
if (*save_ctx &&
check_routine_access(thd, EXECUTE_ACL, m_db.str, m_name.str,
m_type == enum_sp_type::PROCEDURE, false)) {
m_security_ctx.restore_security_context(thd, *save_ctx);
*save_ctx = nullptr;
return true;
}
return false;
}
///////////////////////////////////////////////////////////////////////////
// sp_parser_data implementation.
///////////////////////////////////////////////////////////////////////////
void sp_parser_data::start_parsing_sp_body(THD *thd, sp_head *sp) {
m_saved_memroot = thd->mem_root;
m_saved_item_list = thd->item_list();
thd->mem_root = sp->get_persistent_mem_root();
thd->mem_root->set_max_capacity(m_saved_memroot->get_max_capacity());
thd->mem_root->set_error_for_capacity_exceeded(
m_saved_memroot->get_error_for_capacity_exceeded());
thd->reset_item_list();
}
void sp_parser_data::finish_parsing_sp_body(THD *thd) {
/*
In some cases the parser detects a syntax error and calls
THD::cleanup_after_parse_error() method only after finishing parsing
the whole routine. In such a situation sp_head::restore_thd_mem_root()
will be called twice - the first time as part of normal parsing process
and the second time by cleanup_after_parse_error().
To avoid ruining active arena/mem_root state in this case we skip
restoration of old arena/mem_root if this method has been already called
for this routine.
*/
if (!is_parsing_sp_body()) return;
thd->free_items();
thd->mem_root = m_saved_memroot;
thd->set_item_list(m_saved_item_list);
m_saved_memroot = nullptr;
m_saved_item_list = nullptr;
}
bool sp_parser_data::add_backpatch_entry(sp_branch_instr *i, sp_label *label) {
Backpatch_info *bp =
(Backpatch_info *)(*THR_MALLOC)->Alloc(sizeof(Backpatch_info));
if (!bp) return true;
bp->label = label;
bp->instr = i;
return m_backpatch.push_front(bp);
}
void sp_parser_data::do_backpatch(sp_label *label, uint dest) {
Backpatch_info *bp;
List_iterator_fast<Backpatch_info> li(m_backpatch);
while ((bp = li++)) {
if (bp->label == label) bp->instr->backpatch(dest);
}
}
bool sp_parser_data::add_cont_backpatch_entry(sp_lex_branch_instr *i) {
i->set_cont_dest(m_cont_level);
return m_cont_backpatch.push_front(i);
}
void sp_parser_data::do_cont_backpatch(uint dest) {
sp_lex_branch_instr *i;
while ((i = m_cont_backpatch.head()) && i->get_cont_dest() == m_cont_level) {
i->set_cont_dest(dest);
m_cont_backpatch.pop();
}
--m_cont_level;
}
void sp_parser_data::process_new_sp_instr(THD *thd, sp_instr *i) {
/*
thd->m_item_list should be cleaned here because it's implicitly expected
that that process_new_sp_instr() (called from sp_head::add_instr) is
called as the last action after parsing the SP-instruction's SQL query.
Thus, at this point THD's item list contains all Item-objects, created for
this SP-instruction.
Next SP-instruction should start its own free-list from the scratch.
*/
i->m_arena.set_item_list(thd->item_list());
thd->reset_item_list();
}
Stored_program_creation_ctx::Stored_program_creation_ctx(THD *thd)
: Default_object_creation_ctx(thd),
m_db_cl(thd->variables.collation_database) {}
void Stored_program_creation_ctx::change_env(THD *thd) const {
thd->variables.collation_database = m_db_cl;
Default_object_creation_ctx::change_env(thd);
}
|