File: ddl0ctx.cc

package info (click to toggle)
mysql-8.0 8.0.44-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,272,892 kB
  • sloc: cpp: 4,685,345; ansic: 412,712; pascal: 108,395; java: 83,641; perl: 30,221; cs: 27,067; sql: 26,594; python: 21,816; sh: 17,285; yacc: 17,169; php: 11,522; xml: 7,388; javascript: 7,083; makefile: 1,793; lex: 1,075; awk: 670; asm: 520; objc: 183; ruby: 97; lisp: 86
file content (580 lines) | stat: -rw-r--r-- 16,692 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
/*****************************************************************************

Copyright (c) 2020, 2025, Oracle and/or its affiliates.

This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License, version 2.0, as published by the
Free Software Foundation.

This program is designed to work with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation.  The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have either included with
the program or referenced in the documentation.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License, version 2.0,
for more details.

You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301  USA

*****************************************************************************/

/** @file ddl/ddl0ctx.cc
 DDL context implementation.
Created 2020-11-01 by Sunny Bains. */

#include "btr0load.h"
#include "clone0api.h"
#include "ddl0fts.h"
#include "ddl0impl-builder.h"
#include "ddl0impl-cursor.h"
#include "ddl0impl-loader.h"
#include "ddl0impl-merge.h"
#include "dict0dd.h"
#include "ha_prototypes.h"
#include "handler0alter.h"
#include "row0log.h"

namespace ddl {

Context::Context(trx_t *trx, dict_table_t *old_table, dict_table_t *new_table,
                 bool online, dict_index_t **indexes, const ulint *key_numbers,
                 size_t n_indexes, TABLE *table, const dtuple_t *add_cols,
                 const ulint *col_map, size_t add_autoinc,
                 ddl::Sequence &sequence, bool skip_pk_sort, Alter_stage *stage,
                 const dict_add_v_col_t *add_v, TABLE *eval_table,
                 size_t max_buffer_size, size_t max_threads) noexcept
    : m_trx(trx),
      m_fts(ddl::fts_parser_threads),
      m_old_table(old_table),
      m_new_table(new_table),
      m_online(online),
      m_table(table),
      m_add_cols(add_cols),
      m_col_map(col_map),
      m_add_autoinc(add_autoinc),
      m_sequence(sequence),
      m_stage(stage),
      m_add_v(add_v),
      m_eval_table(eval_table),
      m_skip_pk_sort(skip_pk_sort),
      m_max_buffer_size(max_buffer_size),
      m_max_threads(max_threads) {
  ut_a(max_threads > 0);

  ut_a(!m_online ||
       trx->isolation_level == trx_t::isolation_level_t::REPEATABLE_READ);

  /* Check if we need a flush observer to flush dirty pages.
  Since we disable redo logging in bulk load, so we should flush
  dirty pages before online log apply, because online log apply enables
  redo logging (we can do further optimization here).

  1. Online add index: flush dirty pages right before row_log_apply().
  2. Table rebuild: flush dirty pages before row_log_table_apply().

  We use bulk load to create all types of indexes except spatial index,
  for which redo logging is enabled. If we create only spatial indexes,
  we don't need to flush dirty pages at all. */
  m_need_observer = m_old_table != m_new_table;

  for (size_t i = 0; i < n_indexes; ++i) {
    m_indexes.push_back(indexes[i]);

    if (i == 0) {
      ut_a(!m_skip_pk_sort || m_indexes.back()->is_clustered());
      m_n_uniq = dict_index_get_n_unique(m_indexes.back());
    }

    if (!dict_index_is_spatial(m_indexes.back())) {
      m_need_observer = true;
    }
    m_key_numbers.push_back(key_numbers[i]);
  }

  ut_a(m_trx->mysql_thd != nullptr);
  ut_a(m_add_cols == nullptr || m_col_map != nullptr);
  ut_a((m_old_table == m_new_table) == (m_col_map == nullptr));

  trx_start_if_not_started_xa(m_trx, true, UT_LOCATION_HERE);

  if (m_need_observer) {
    const auto space_id = m_new_table->space;

    auto observer = ut::new_withkey<Flush_observer>(
        ut::make_psi_memory_key(mem_key_ddl), space_id, m_trx, m_stage);

    trx_set_flush_observer(m_trx, observer);
  }

  mutex_create(LATCH_ID_DDL_AUTOINC, &m_autoinc_mutex);

  m_trx->error_key_num = ULINT_UNDEFINED;

  if (m_add_cols != nullptr) {
    m_dtuple_heap = mem_heap_create(512, UT_LOCATION_HERE);
    ut_a(m_dtuple_heap != nullptr);
  }
}

Context::~Context() noexcept {
  if (m_dtuple_heap != nullptr) {
    ut_a(m_add_cols != nullptr);
    mem_heap_free(m_dtuple_heap);
  }
  mutex_destroy(&m_autoinc_mutex);
}

Context::FTS::Sequence::~Sequence() noexcept {}

Flush_observer *Context::flush_observer() noexcept {
  return m_trx->flush_observer;
}

THD *Context::thd() noexcept {
  ut_a(m_trx->mysql_thd != nullptr);
  return m_trx->mysql_thd;
}

const dict_index_t *Context::index() const noexcept {
  return m_old_table->first_index();
}

Context::Scan_buffer_size Context::scan_buffer_size(
    size_t n_threads) const noexcept {
  ut_a(n_threads > 0);
  auto n_buffers{n_threads};

  /* If there is an FTS index being built, take that into account. */
  if (m_fts.m_ptr != nullptr) {
    n_buffers *= FTS_NUM_AUX_INDEX;
  } else {
    n_buffers *= m_indexes.size();
  }

  /* The maximum size of the record is considered to be srv_page_size/2,
  because one B-tree node should be able to hold at least 2 records. But there
  is also an i/o alignment requirement of IO_BLOCK_SIZE.  This means that the
  min io buffer size should be the sum of these two.  Refer to
  Key_sort_buffer::serialize() function and its write() lambda function to
  understand the reasoning behind this.  */
  const auto min_io_size = (srv_page_size / 2) + IO_BLOCK_SIZE;

  /* A single row *must* fit into an IO block. The IO buffer should be
  greater than the IO physical size buffer makes it easier to handle
  FS block aligned writes. */
  const auto io_block_size = IO_BLOCK_SIZE + ((IO_BLOCK_SIZE * 25) / 100);
  const auto io_size = std::max(size_t(min_io_size), io_block_size);

  Scan_buffer_size size{m_max_buffer_size / n_buffers, io_size};

  if (size.first <= 64 * 1024) {
    if (size.first < srv_page_size) {
      size.first = srv_page_size;
    } else if (size.first >= size.second * 2) {
      size.first -= size.second;
    }
  } else {
    if (size.first >= 2 * 1024 * 1024) {
      size.second = 1024 * 1024;
    } else if (size.first >= 1024 * 1024) {
      size.second = 512 * 1024;
    } else if (size.first >= 512 * 1024) {
      size.second = 128 * 1024;
    } else if (size.first >= 256 * 1024) {
      size.second = 64 * 1024;
    } else {
      size.second = 32 * 1024;
    }
    size.first -= size.second;
  }

  return size;
}

size_t Context::merge_io_buffer_size(size_t n_buffers) const noexcept {
  ut_a(n_buffers > 0);

  const auto io_size = load_io_buffer_size(n_buffers);

  /* We aim to do IO_BLOCK_SIZE writes all the time. */
  ut_a(!(io_size % IO_BLOCK_SIZE));

  /* The buffer must be at least large enough to fit one IO block plus one row.
     2 * IO_BLOCK_SIZE meets this criterion given limits on key length -
     see ha_innobase::max_supported_key_length() */
  return std::max(std::max((ulong)srv_page_size, (ulong)IO_BLOCK_SIZE * 2LU),
                  (ulong)io_size);
}

size_t Context::load_io_buffer_size(size_t n_buffers) const noexcept {
  ut_a(n_buffers > 0);
  const auto io_size = m_max_buffer_size / n_buffers;

  return std::max(std::max((ulong)srv_page_size, (ulong)IO_BLOCK_SIZE),
                  (ulong)((io_size / IO_BLOCK_SIZE) * IO_BLOCK_SIZE));
}

bool Context::has_virtual_columns() const noexcept {
  if (m_add_v != nullptr || dict_index_has_virtual(index())) {
    return true;
  }

  /* Find out if there are any virtual coumns defined on the table. */
  for (size_t i = 0; i < m_table->s->fields; ++i) {
    if (innobase_is_v_fld(m_table->field[i])) {
      return true;
    }
  }

  return false;
}

dberr_t Context::handle_autoinc(const dtuple_t *dtuple,
                                mem_heap_t *heap) noexcept {
  ut_ad(m_add_autoinc != ULINT_UNDEFINED);
  ut_ad(m_add_autoinc < m_new_table->get_n_user_cols());

  const auto dfield = dtuple_get_nth_field(dtuple, m_add_autoinc);
  /* Perform a deep copy of the field because for spatial indexes,
  the default tuple allocation is overwritten, as tuples are
  processed at the end of the page. */
  dfield_dup(dfield, heap);

  if (dfield_is_null(dfield)) {
    return DB_SUCCESS;
  }

  const auto dtype = dfield_get_type(dfield);
  const auto b = static_cast<byte *>(dfield_get_data(dfield));

  if (m_sequence.eof()) {
    m_trx->error_key_num = SERVER_CLUSTER_INDEX_ID;
    return DB_AUTOINC_READ_ERROR;
  }

  mutex_enter(&m_autoinc_mutex);

  auto value = m_sequence++;

  mutex_exit(&m_autoinc_mutex);

  switch (dtype_get_mtype(dtype)) {
    case DATA_INT: {
      auto len = dfield_get_len(dfield);
      auto usign = dtype_get_prtype(dtype) & DATA_UNSIGNED;
      mach_write_ulonglong(b, value, len, usign);
      break;
    }

    case DATA_FLOAT:
      mach_float_write(b, static_cast<float>(value));
      break;

    case DATA_DOUBLE:
      mach_double_write(b, static_cast<double>(value));
      break;

    default:
      ut_d(ut_error);
  }

  return DB_SUCCESS;
}

dberr_t Context::fts_create(dict_index_t *index) noexcept {
  /* There can only be one FTS index per table. */
  ut_a(m_fts.m_ptr == nullptr);

  m_fts.m_ptr = ut::new_withkey<ddl::FTS>(ut::make_psi_memory_key(mem_key_ddl),
                                          *this, index, m_old_table);

  if (m_fts.m_ptr != nullptr) {
    return m_fts.m_ptr->init(m_fts.m_n_parser_threads);
  } else {
    return DB_OUT_OF_MEMORY;
  }
}

dberr_t Context::cleanup(dberr_t err) noexcept {
  ut_a(err == m_err);

  if (m_err != DB_SUCCESS &&
      m_err_key_number != std::numeric_limits<size_t>::max()) {
    m_trx->error_key_num = m_err_key_number;
  }

  if (m_online && m_old_table == m_new_table && err != DB_SUCCESS) {
    /* On error, flag all online secondary index creation as aborted. */
    for (auto index : m_indexes) {
      ut_a(!index->is_committed());
      ut_a(!index->is_clustered());
      ut_a(!(index->type & DICT_FTS));

      /* Completed indexes should be dropped as well, and indexes whose
      creation was aborted should be dropped from the persistent storage.
      However, at this point we can only set some flags in the
      not-yet-published indexes. These indexes will be dropped later in
      drop_indexes(), called by rollback_inplace_alter_table(). */

      auto latch = dict_index_get_lock(index);

      switch (dict_index_get_online_status(index)) {
        case ONLINE_INDEX_COMPLETE:
          break;
        case ONLINE_INDEX_CREATION:
          rw_lock_x_lock(latch, UT_LOCATION_HERE);
          row_log_abort_sec(index);
          index->type |= DICT_CORRUPT;
          rw_lock_x_unlock(latch);
          m_new_table->drop_aborted = true;
          [[fallthrough]];
        case ONLINE_INDEX_ABORTED:
        case ONLINE_INDEX_ABORTED_DROPPED:
          break;
      }
    }
  }

  DBUG_EXECUTE_IF("ib_index_crash_after_bulk_load", DBUG_SUICIDE(););

  auto observer = m_trx->flush_observer;

  if (observer != nullptr) {
    ut_a(m_need_observer);

    DBUG_EXECUTE_IF("ib_index_build_fail_before_flush", err = DB_FAIL;);

    if (err != DB_SUCCESS) {
      observer->interrupted();
    }

    observer->flush();

    ut::delete_(observer);

    m_trx->flush_observer = nullptr;

    auto space_id = m_new_table != nullptr ? m_new_table->space
                                           : dict_sys_t::s_invalid_space_id;

    /* Notify clone after flushing all pages. */
    Clone_notify notifier(Clone_notify::Type::SPACE_ALTER_INPLACE_BULK,
                          space_id, false);

    if (notifier.failed()) {
      err = DB_ERROR;

    } else if (is_interrupted()) {
      err = DB_INTERRUPTED;
    }

    if (err == DB_SUCCESS) {
      auto first_index = m_new_table->first_index();

      for (auto index = first_index; index != nullptr; index = index->next()) {
        if (m_old_table != m_new_table) {
          Builder::write_redo(index);
        }
      }
    }
  }

  return err;
}

void Context::setup_nonnull() noexcept {
  ut_a(m_nonnull.empty());

  if (m_old_table == m_new_table) {
    return;
  }

  /* The table is being rebuilt.  Identify the columns
  that were flagged NOT nullptr in the new table, so that
  we can quickly check that the records in the old table
  do not violate the added NOT nullptr constraints. */

  for (size_t i = 0; i < m_old_table->get_n_cols(); ++i) {
    if (m_old_table->get_col(i)->prtype & DATA_NOT_NULL) {
      continue;
    }

    const auto col_no = m_col_map[i];

    if (col_no == ULINT_UNDEFINED) {
      /* The column was dropped. */
      continue;
    }

    if (m_new_table->get_col(col_no)->prtype & DATA_NOT_NULL) {
      m_nonnull.push_back(col_no);
    }
  }
}

bool Context::check_null_constraints(const dtuple_t *row) const noexcept {
  for (const auto i : m_nonnull) {
    auto field = &row->fields[i];

    ut_ad(dfield_get_type(field)->prtype & DATA_NOT_NULL);

    if (dfield_is_null(field)) {
      return false;
    }
  }

  return true;
}

bool Context::has_fts_indexes() const noexcept {
  if (dict_table_has_fts_index(m_old_table)) {
    return true;
  }

  for (auto index : m_indexes) {
    if (index->type & DICT_FTS) {
      return true;
    }
  }
  return false;
}

dberr_t Context::setup_fts_build() noexcept {
  for (auto index : m_indexes) {
    if (!(index->type & DICT_FTS)) {
      continue;
    }

    /* There can be only one FTS index on a table. */
    auto err = fts_create(index);

    if (err != DB_SUCCESS) {
      return err;
    }
  }

  return DB_SUCCESS;
}

dberr_t Context::check_state_of_online_build_log() noexcept {
  if (m_online && m_old_table != m_new_table) {
    const auto err = row_log_table_get_error(index());

    if (err != DB_SUCCESS) {
      m_trx->error_key_num = SERVER_CLUSTER_INDEX_ID;
      return err;
    }
  }

  return DB_SUCCESS;
}

void Context::note_max_trx_id(dict_index_t *index) noexcept {
  if (!m_online || m_new_table != m_old_table) {
    return;
  }

  auto rw_latch = dict_index_get_lock(index);

  rw_lock_x_lock(rw_latch, UT_LOCATION_HERE);

  ut_a(dict_index_get_online_status(index) == ONLINE_INDEX_CREATION);

  const auto max_trx_id = row_log_get_max_trx(index);

  if (max_trx_id > index->trx_id) {
    index->trx_id = max_trx_id;
  }

  rw_lock_x_unlock(rw_latch);
}

dberr_t Context::setup_pk_sort(Cursor *cursor) noexcept {
  if (m_skip_pk_sort) {
    return cursor->setup_pk_sort(m_n_uniq);
  } else {
    return DB_SUCCESS;
  }
}

dberr_t Context::read_init(Cursor *cursor) noexcept {
  ut_a(m_cursor == nullptr);

  m_cursor = cursor;
  setup_nonnull();

  return setup_pk_sort(cursor);
}

dberr_t Context::build() noexcept {
  Loader loader{*this};

  const auto err = cleanup(loader.build_all());

  /* Validate the indexes  after the pages have been flushed to disk.
  Otherwise we can deadlock between flushing and is_free page check. */
  ut_ad(err != DB_SUCCESS || loader.validate_indexes());

  return err;
}

bool Context::is_interrupted() noexcept { return trx_is_interrupted(m_trx); }

dtuple_t *Context::create_add_cols() noexcept {
  ut_a(m_add_cols != nullptr);
  ut_a(m_dtuple_heap != nullptr);

  auto dtuple = dtuple_copy(m_add_cols, m_dtuple_heap);

  for (size_t i = 0; i < m_add_cols->n_fields; ++i) {
    dfield_dup(&dtuple->fields[i], m_dtuple_heap);
  }

  return dtuple;
}

Sequence::Sequence(THD *thd, ulonglong start_value,
                   ulonglong max_value) noexcept
    : m_max_value(max_value), m_next_value(start_value) {
  if (thd != nullptr && m_max_value > 0) {
    thd_get_autoinc(thd, &m_offset, &m_increment);

    if (m_increment > 1 || m_offset > 1) {
      /* If there is an offset or increment specified
      then we need to work out the exact next value. */

      m_next_value = innobase_next_autoinc(start_value, 1, m_increment,
                                           m_offset, m_max_value);

    } else if (start_value == 0) {
      /* The next value can never be 0. */
      m_next_value = 1;
    }
  } else {
    m_eof = true;
  }
}

ulonglong Sequence::operator++(int) noexcept {
  const auto current = m_next_value;

  ut_ad(!m_eof);
  ut_ad(m_max_value > 0);

  m_next_value =
      innobase_next_autoinc(current, 1, m_increment, m_offset, m_max_value);

  if (m_next_value == m_max_value && current == m_next_value) {
    m_eof = true;
  }

  return current;
}
}  // namespace ddl